Files
@ ab94f8a0a0c6
Branch filter:
Location: HydroBot/protomodule-firmware/Drivers/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_f32.c - annotation
ab94f8a0a0c6
18.8 KiB
text/plain
Read analog ph sensor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 3970a40efdc5 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_cfft_f32.c
*
* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
extern void arm_radix8_butterfly_f32(
float32_t * pSrc,
uint16_t fftLen,
const float32_t * pCoef,
uint16_t twidCoefModifier);
extern void arm_bitreversal_32(
uint32_t * pSrc,
const uint16_t bitRevLen,
const uint16_t * pBitRevTable);
/**
* @ingroup groupTransforms
*/
/**
* @defgroup ComplexFFT Complex FFT Functions
*
* \par
* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
* Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
* than the DFT, especially for long lengths.
* The algorithms described in this section
* operate on complex data. A separate set of functions is devoted to handling
* of real sequences.
* \par
* There are separate algorithms for handling floating-point, Q15, and Q31 data
* types. The algorithms available for each data type are described next.
* \par
* The FFT functions operate in-place. That is, the array holding the input data
* will also be used to hold the corresponding result. The input data is complex
* and contains <code>2*fftLen</code> interleaved values as shown below.
* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
* The FFT result will be contained in the same array and the frequency domain
* values will have the same interleaving.
*
* \par Floating-point
* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
* stages are performed along with a single radix-2 or radix-4 stage, as needed.
* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
* a different twiddle factor table.
* \par
* The function uses the standard FFT definition and output values may grow by a
* factor of <code>fftLen</code> when computing the forward transform. The
* inverse transform includes a scale of <code>1/fftLen</code> as part of the
* calculation and this matches the textbook definition of the inverse FFT.
* \par
* Pre-initialized data structures containing twiddle factors and bit reversal
* tables are provided and defined in <code>arm_const_structs.h</code>. Include
* this header in your function and then pass one of the constant structures as
* an argument to arm_cfft_f32. For example:
* \par
* <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
* \par
* computes a 64-point inverse complex FFT including bit reversal.
* The data structures are treated as constant data and not modified during the
* calculation. The same data structure can be reused for multiple transforms
* including mixing forward and inverse transforms.
* \par
* Earlier releases of the library provided separate radix-2 and radix-4
* algorithms that operated on floating-point data. These functions are still
* provided but are deprecated. The older functions are slower and less general
* than the new functions.
* \par
* An example of initialization of the constants for the arm_cfft_f32 function follows:
* \code
* const static arm_cfft_instance_f32 *S;
* ...
* switch (length) {
* case 16:
* S = &arm_cfft_sR_f32_len16;
* break;
* case 32:
* S = &arm_cfft_sR_f32_len32;
* break;
* case 64:
* S = &arm_cfft_sR_f32_len64;
* break;
* case 128:
* S = &arm_cfft_sR_f32_len128;
* break;
* case 256:
* S = &arm_cfft_sR_f32_len256;
* break;
* case 512:
* S = &arm_cfft_sR_f32_len512;
* break;
* case 1024:
* S = &arm_cfft_sR_f32_len1024;
* break;
* case 2048:
* S = &arm_cfft_sR_f32_len2048;
* break;
* case 4096:
* S = &arm_cfft_sR_f32_len4096;
* break;
* }
* \endcode
* \par Q15 and Q31
* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
* stages are performed along with a single radix-2 stage, as needed.
* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
* a different twiddle factor table.
* \par
* The function uses the standard FFT definition and output values may grow by a
* factor of <code>fftLen</code> when computing the forward transform. The
* inverse transform includes a scale of <code>1/fftLen</code> as part of the
* calculation and this matches the textbook definition of the inverse FFT.
* \par
* Pre-initialized data structures containing twiddle factors and bit reversal
* tables are provided and defined in <code>arm_const_structs.h</code>. Include
* this header in your function and then pass one of the constant structures as
* an argument to arm_cfft_q31. For example:
* \par
* <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
* \par
* computes a 64-point inverse complex FFT including bit reversal.
* The data structures are treated as constant data and not modified during the
* calculation. The same data structure can be reused for multiple transforms
* including mixing forward and inverse transforms.
* \par
* Earlier releases of the library provided separate radix-2 and radix-4
* algorithms that operated on floating-point data. These functions are still
* provided but are deprecated. The older functions are slower and less general
* than the new functions.
* \par
* An example of initialization of the constants for the arm_cfft_q31 function follows:
* \code
* const static arm_cfft_instance_q31 *S;
* ...
* switch (length) {
* case 16:
* S = &arm_cfft_sR_q31_len16;
* break;
* case 32:
* S = &arm_cfft_sR_q31_len32;
* break;
* case 64:
* S = &arm_cfft_sR_q31_len64;
* break;
* case 128:
* S = &arm_cfft_sR_q31_len128;
* break;
* case 256:
* S = &arm_cfft_sR_q31_len256;
* break;
* case 512:
* S = &arm_cfft_sR_q31_len512;
* break;
* case 1024:
* S = &arm_cfft_sR_q31_len1024;
* break;
* case 2048:
* S = &arm_cfft_sR_q31_len2048;
* break;
* case 4096:
* S = &arm_cfft_sR_q31_len4096;
* break;
* }
* \endcode
*
*/
void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
{
uint32_t L = S->fftLen;
float32_t * pCol1, * pCol2, * pMid1, * pMid2;
float32_t * p2 = p1 + L;
const float32_t * tw = (float32_t *) S->pTwiddle;
float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
float32_t m0, m1, m2, m3;
uint32_t l;
pCol1 = p1;
pCol2 = p2;
// Define new length
L >>= 1;
// Initialize mid pointers
pMid1 = p1 + L;
pMid2 = p2 + L;
// do two dot Fourier transform
for ( l = L >> 2; l > 0; l-- )
{
t1[0] = p1[0];
t1[1] = p1[1];
t1[2] = p1[2];
t1[3] = p1[3];
t2[0] = p2[0];
t2[1] = p2[1];
t2[2] = p2[2];
t2[3] = p2[3];
t3[0] = pMid1[0];
t3[1] = pMid1[1];
t3[2] = pMid1[2];
t3[3] = pMid1[3];
t4[0] = pMid2[0];
t4[1] = pMid2[1];
t4[2] = pMid2[2];
t4[3] = pMid2[3];
*p1++ = t1[0] + t2[0];
*p1++ = t1[1] + t2[1];
*p1++ = t1[2] + t2[2];
*p1++ = t1[3] + t2[3]; // col 1
t2[0] = t1[0] - t2[0];
t2[1] = t1[1] - t2[1];
t2[2] = t1[2] - t2[2];
t2[3] = t1[3] - t2[3]; // for col 2
*pMid1++ = t3[0] + t4[0];
*pMid1++ = t3[1] + t4[1];
*pMid1++ = t3[2] + t4[2];
*pMid1++ = t3[3] + t4[3]; // col 1
t4[0] = t4[0] - t3[0];
t4[1] = t4[1] - t3[1];
t4[2] = t4[2] - t3[2];
t4[3] = t4[3] - t3[3]; // for col 2
twR = *tw++;
twI = *tw++;
// multiply by twiddle factors
m0 = t2[0] * twR;
m1 = t2[1] * twI;
m2 = t2[1] * twR;
m3 = t2[0] * twI;
// R = R * Tr - I * Ti
*p2++ = m0 + m1;
// I = I * Tr + R * Ti
*p2++ = m2 - m3;
// use vertical symmetry
// 0.9988 - 0.0491i <==> -0.0491 - 0.9988i
m0 = t4[0] * twI;
m1 = t4[1] * twR;
m2 = t4[1] * twI;
m3 = t4[0] * twR;
*pMid2++ = m0 - m1;
*pMid2++ = m2 + m3;
twR = *tw++;
twI = *tw++;
m0 = t2[2] * twR;
m1 = t2[3] * twI;
m2 = t2[3] * twR;
m3 = t2[2] * twI;
*p2++ = m0 + m1;
*p2++ = m2 - m3;
m0 = t4[2] * twI;
m1 = t4[3] * twR;
m2 = t4[3] * twI;
m3 = t4[2] * twR;
*pMid2++ = m0 - m1;
*pMid2++ = m2 + m3;
}
// first col
arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u);
// second col
arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u);
}
void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
{
uint32_t L = S->fftLen >> 1;
float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
const float32_t *tw2, *tw3, *tw4;
float32_t * p2 = p1 + L;
float32_t * p3 = p2 + L;
float32_t * p4 = p3 + L;
float32_t t2[4], t3[4], t4[4], twR, twI;
float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
float32_t m0, m1, m2, m3;
uint32_t l, twMod2, twMod3, twMod4;
pCol1 = p1; // points to real values by default
pCol2 = p2;
pCol3 = p3;
pCol4 = p4;
pEnd1 = p2 - 1; // points to imaginary values by default
pEnd2 = p3 - 1;
pEnd3 = p4 - 1;
pEnd4 = pEnd3 + L;
tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
L >>= 1;
// do four dot Fourier transform
twMod2 = 2;
twMod3 = 4;
twMod4 = 6;
// TOP
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
// col 2
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
// col 3
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
// col 4
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
// col 1
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
// Twiddle factors are ones
*p2++ = t2[0];
*p2++ = t2[1];
*p3++ = t3[0];
*p3++ = t3[1];
*p4++ = t4[0];
*p4++ = t4[1];
tw2 += twMod2;
tw3 += twMod3;
tw4 += twMod4;
for (l = (L - 2) >> 1; l > 0; l-- )
{
// TOP
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
// col 2
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
// col 3
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
// col 4
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
// col 1 - top
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
// BOTTOM
p1ap3_1 = pEnd1[-1] + pEnd3[-1];
p1sp3_1 = pEnd1[-1] - pEnd3[-1];
p1ap3_0 = pEnd1[0] + pEnd3[0];
p1sp3_0 = pEnd1[0] - pEnd3[0];
// col 2
t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
// col 3
t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0];
// col 4
t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1;
t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
// col 1 - Bottom
*pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
*pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
// COL 2
// read twiddle factors
twR = *tw2++;
twI = *tw2++;
// multiply by twiddle factors
// let Z1 = a + i(b), Z2 = c + i(d)
// => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d)
// Top
m0 = t2[0] * twR;
m1 = t2[1] * twI;
m2 = t2[1] * twR;
m3 = t2[0] * twI;
*p2++ = m0 + m1;
*p2++ = m2 - m3;
// use vertical symmetry col 2
// 0.9997 - 0.0245i <==> 0.0245 - 0.9997i
// Bottom
m0 = t2[3] * twI;
m1 = t2[2] * twR;
m2 = t2[2] * twI;
m3 = t2[3] * twR;
*pEnd2-- = m0 - m1;
*pEnd2-- = m2 + m3;
// COL 3
twR = tw3[0];
twI = tw3[1];
tw3 += twMod3;
// Top
m0 = t3[0] * twR;
m1 = t3[1] * twI;
m2 = t3[1] * twR;
m3 = t3[0] * twI;
*p3++ = m0 + m1;
*p3++ = m2 - m3;
// use vertical symmetry col 3
// 0.9988 - 0.0491i <==> -0.9988 - 0.0491i
// Bottom
m0 = -t3[3] * twR;
m1 = t3[2] * twI;
m2 = t3[2] * twR;
m3 = t3[3] * twI;
*pEnd3-- = m0 - m1;
*pEnd3-- = m3 - m2;
// COL 4
twR = tw4[0];
twI = tw4[1];
tw4 += twMod4;
// Top
m0 = t4[0] * twR;
m1 = t4[1] * twI;
m2 = t4[1] * twR;
m3 = t4[0] * twI;
*p4++ = m0 + m1;
*p4++ = m2 - m3;
// use vertical symmetry col 4
// 0.9973 - 0.0736i <==> -0.0736 + 0.9973i
// Bottom
m0 = t4[3] * twI;
m1 = t4[2] * twR;
m2 = t4[2] * twI;
m3 = t4[3] * twR;
*pEnd4-- = m0 - m1;
*pEnd4-- = m2 + m3;
}
//MIDDLE
// Twiddle factors are
// 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i
p1ap3_0 = p1[0] + p3[0];
p1sp3_0 = p1[0] - p3[0];
p1ap3_1 = p1[1] + p3[1];
p1sp3_1 = p1[1] - p3[1];
// col 2
t2[0] = p1sp3_0 + p2[1] - p4[1];
t2[1] = p1sp3_1 - p2[0] + p4[0];
// col 3
t3[0] = p1ap3_0 - p2[0] - p4[0];
t3[1] = p1ap3_1 - p2[1] - p4[1];
// col 4
t4[0] = p1sp3_0 - p2[1] + p4[1];
t4[1] = p1sp3_1 + p2[0] - p4[0];
// col 1 - Top
*p1++ = p1ap3_0 + p2[0] + p4[0];
*p1++ = p1ap3_1 + p2[1] + p4[1];
// COL 2
twR = tw2[0];
twI = tw2[1];
m0 = t2[0] * twR;
m1 = t2[1] * twI;
m2 = t2[1] * twR;
m3 = t2[0] * twI;
*p2++ = m0 + m1;
*p2++ = m2 - m3;
// COL 3
twR = tw3[0];
twI = tw3[1];
m0 = t3[0] * twR;
m1 = t3[1] * twI;
m2 = t3[1] * twR;
m3 = t3[0] * twI;
*p3++ = m0 + m1;
*p3++ = m2 - m3;
// COL 4
twR = tw4[0];
twI = tw4[1];
m0 = t4[0] * twR;
m1 = t4[1] * twI;
m2 = t4[1] * twR;
m3 = t4[0] * twI;
*p4++ = m0 + m1;
*p4++ = m2 - m3;
// first col
arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u);
// second col
arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u);
// third col
arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u);
// fourth col
arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u);
}
/**
* @addtogroup ComplexFFT
* @{
*/
/**
* @details
* @brief Processing function for the floating-point complex FFT.
* @param[in] *S points to an instance of the floating-point CFFT structure.
* @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return none.
*/
void arm_cfft_f32(
const arm_cfft_instance_f32 * S,
float32_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t L = S->fftLen, l;
float32_t invL, * pSrc;
if(ifftFlag == 1u)
{
/* Conjugate input data */
pSrc = p1 + 1;
for(l=0; l<L; l++)
{
*pSrc = -*pSrc;
pSrc += 2;
}
}
switch (L)
{
case 16:
case 128:
case 1024:
arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
break;
case 32:
case 256:
case 2048:
arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
break;
case 64:
case 512:
case 4096:
arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
break;
}
if( bitReverseFlag )
arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
if(ifftFlag == 1u)
{
invL = 1.0f/(float32_t)L;
/* Conjugate and scale output data */
pSrc = p1;
for(l=0; l<L; l++)
{
*pSrc++ *= invL ;
*pSrc = -(*pSrc) * invL;
pSrc++;
}
}
}
/**
* @} end of ComplexFFT group
*/
|