/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
*
* Description: Floating-point complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_conj Complex Conjugate
*
* Conjugates the elements of a complex data vector.
*
* The pSrc
points to the source data and
* pDst
points to the where the result should be written.
* numSamples
specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of 2*numSamples
values.
* The underlying algorithm is used:
*
*
* for(n=0; n* * There are separate functions for floating-point, Q15, and Q31 data types. */ /** * @addtogroup cmplx_conj * @{ */ /** * @brief Floating-point complex conjugate. * @param *pSrc points to the input vector * @param *pDst points to the output vector * @param numSamples number of complex samples in each vector * @return none. */ void arm_cmplx_conj_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples) { uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t inR1, inR2, inR3, inR4; float32_t inI1, inI2, inI3, inI4; /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ /* read real input samples */ inR1 = pSrc[0]; /* store real samples to destination */ pDst[0] = inR1; inR2 = pSrc[2]; pDst[2] = inR2; inR3 = pSrc[4]; pDst[4] = inR3; inR4 = pSrc[6]; pDst[6] = inR4; /* read imaginary input samples */ inI1 = pSrc[1]; inI2 = pSrc[3]; /* conjugate input */ inI1 = -inI1; /* read imaginary input samples */ inI3 = pSrc[5]; /* conjugate input */ inI2 = -inI2; /* read imaginary input samples */ inI4 = pSrc[7]; /* conjugate input */ inI3 = -inI3; /* store imaginary samples to destination */ pDst[1] = inI1; pDst[3] = inI2; /* conjugate input */ inI4 = -inI4; /* store imaginary samples to destination */ pDst[5] = inI3; /* increment source pointer by 8 to process next sampels */ pSrc += 8u; /* store imaginary sample to destination */ pDst[7] = inI4; /* increment destination pointer by 8 to store next samples */ pDst += 8u; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ blkCnt = numSamples; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ while(blkCnt > 0u) { /* realOut + j (imagOut) = realIn + j (-1) imagIn */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ *pDst++ = *pSrc++; *pDst++ = -*pSrc++; /* Decrement the loop counter */ blkCnt--; } } /** * @} end of cmplx_conj group */