Changeset - 0e02d91dac04
[Not reviewed]
default
0 6 0
ethanzonca@CL-ENS241-08.cedarville.edu - 12 years ago 2013-02-21 16:58:34
ethanzonca@CL-ENS241-08.cedarville.edu
Fixed compiler warnings
6 files changed with 10 insertions and 9 deletions:
0 comments (0 inline, 0 general)
master/master/lib/gps.c
Show inline comments
 
/*
 
 * Master Firmware: NMEA Parser
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
#include <stdbool.h>
 
#include <string.h>
 
#include <stdio.h>
 
#include <avr/io.h>
 
#include <avr/interrupt.h>
 
#include "gps.h"
 
#include "serial.h"
 
#include "../config.h"
 
#include "led.h"
 
#include "logger.h"
 
 
// Circular buffer for incoming data
 
uint8_t nmeaBuffer[NMEABUFFER_SIZE];
 
 
// Location of parser in the buffer
 
uint8_t nmeaBufferParsePosition = 0;
 
 
// Location of receive byte interrupt in the buffer
 
volatile uint16_t nmeaBufferDataPosition = 0;
 

	
 
// holds the byte ALREADY PARSED. includes starting character
 
int bytesReceived = 0;
 

	
 
//data (and checksum) of most recent transmission
 
char data[16];
 

	
 
//used to skip over bytes during parse
 
int skipBytes = 0;
 

	
 
//used to index data arrays during data collection
 
int numBytes = 0;
 

	
 
//variables to store data from transmission
 
//least significant digit is stored at location 0 of arrays
 
char tramsmissionType[7];
 

	
 
char timestamp[12];	//hhmmss.ss
 
char* get_timestamp() 
 
{
 
	return timestamp;
 
}
 
	
 
char latitude[14];	//lllll.lla
 
char latitudeTmp[8];
 
char* get_latitudeTrimmed() 
 
{
 
	strncpy(latitudeTmp, &latitude[0], 7);
 
	latitudeTmp[7] = 0x00;
 
	return latitudeTmp;
 
}
 
char* get_latitudeLSBs()
 
{
 
	strncpy(latitudeTmp, &latitude[7], 3);
 
	latitudeTmp[3] = 0x00;
 
	return latitudeTmp;
 
}
 

	
 
char longitude[14];	//yyyyy.yyb
 
char longitudeTmp[9];
 

	
 
char* get_longitudeTrimmed() 
 
{
 
	strncpy(longitudeTmp, &longitude[0], 8);
 
	longitudeTmp[8] = 0x00;
 
	return longitudeTmp;
 
}
 
char* get_longitudeLSBs()
 
{
 
	strncpy(longitudeTmp, &longitude[8], 3);
 
	longitudeTmp[3] = 0x00;
 
	return longitudeTmp;
 
}
 

	
 
char quality;		//quality for GGA and validity for RMC
 
char numSatellites[4];
 
char* get_sv() 
 
{
 
	return numSatellites;
 
}
 

	
 
char hdop[6];		//xx.x
 
char* get_hdop() 
 
{
 
	return hdop;
 
}
 

	
 
char altitude[10];	//xxxxxx.x
 
char wgs84Height[8];	//sxxx.x
 
char lastUpdated[8];	//blank - included for testing
 
char stationID[8];	//blank - included for testing
 
char checksum[3];	//xx
 

	
 
char knots[8];		//xxx.xx
 
char* get_speedKnots() 
 
{
 
	return knots;
 
}
 

	
 
char course[8];		//xxx.x
 
char* get_course() 
 
{
 
	return course;
 
}
 
	
 
char dayofmonth[9];	//ddmmyy
 
char* get_dayofmonth() 
master/master/lib/led.h
Show inline comments
 
/*
 
 * Master Firmware: Status and Error LED Handler
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
 
#ifndef LED_H_
 
#define LED_H_
 
 
#include <avr/io.h>
 
 
enum leds {
 
	LED_ACT0 = 0,
 
	LED_ACT1,
 
	LED_ACT2,
 
	LED_ACT3,
 
	
 
	LED_POWER,
 
	LED_STATUS,
 
	LED_ERROR,
 
	LED_SIDEBOARD,
 
	LED_ACTIVITY,
 
	LED_CYCLE,
 
	LED_HEAT,
 
	LED_BUZZ,
 
};
 
 
typedef struct {uint8_t* direction; uint8_t* port; uint8_t pin;} led_t;
 
typedef struct {volatile uint8_t* direction; volatile uint8_t* port; uint8_t pin;} led_t;
 
 
// Match order of leds enum
 
static led_t ledList[] = {
 
	{&DDRA, &PORTA, PA1}, // ACT0
 
	{&DDRA, &PORTA, PA2}, // ACT1
 
	{&DDRA, &PORTA, PA3}, // ACT2
 
	{&DDRA, &PORTA, PA4}, // ACT3
 
 
	{&DDRB, &PORTB, PB4}, // POWER
 
	{&DDRB, &PORTB, PB3}, // STATUS
 
	{&DDRB, &PORTB, PB2}, // ERROR
 
 
	{&DDRD, &PORTD, PD6}, // SIDEBOARD
 
	{&DDRD, &PORTD, PD5}, // ACTIVITY
 
	{&DDRD, &PORTD, PD4}, // CYCLE
 
	
 
	{&DDRA, &PORTA, PA6}, // HEAT
 
	{&DDRA, &PORTA, PA7}, // BUZZER
 
};
 
 
#define NUM_LEDS 12
 
 
void led_setup();
 
void led_on(uint8_t led);
 
void led_off(uint8_t led);
 
void led_toggle(uint8_t led);
 
void led_errorcode(uint8_t code);
 
void led_spin();
 
void led_alert();
 
 
#endif /* LED_H_ */
master/master/lib/logger.c
Show inline comments
 
@@ -18,194 +18,194 @@
 
#include <avr/sleep.h>
 
#include <avr/eeprom.h>
 
#include <string.h>
 
#include "sdcard/fat.h"
 
#include "sdcard/fat_config.h"
 
#include "sdcard/partition.h"
 
#include "sdcard/sd_raw.h"
 
#include "sdcard/sd_raw_config.h"
 
#include "serial.h"
 
#include "logger.h"
 
#include "led.h"
 
#include "looptime.h"
 

	
 
#define MAX_ERRNO 8
 

	
 
// Label lookup table
 
// Make sure there are never more labels than there are MAX_NUM_SENSORS!
 
const char err_0[] PROGMEM = "slave timeout";
 
const char err_1[] PROGMEM = "initializing SD card failed";
 
const char err_2[] PROGMEM = "opening SD partition failed";
 
const char err_3[] PROGMEM = "opening SD file failed";
 
const char err_4[] PROGMEM = "XBee timeout";
 
const char err_5[] PROGMEM = "FATAL UNHANDLED ERROR";
 
const char err_6[] PROGMEM = "enter AT mode failed";
 
const char err_7[] PROGMEM = "exit AT mode failed";
 
const char err_8[] PROGMEM = "infotext";
 

	
 
const char *const errorMessageLookup[] PROGMEM =
 
{
 
	err_0,
 
	err_1,
 
	err_2,
 
	err_3,
 
	err_4,
 
	err_5,
 
	err_6,
 
	err_7,
 
	err_8,
 
};
 
 
 
 
struct partition_struct* partition;
 
struct fat_fs_struct* fs;
 
struct fat_dir_struct* dd;
 
struct fat_file_struct* fd_datalog;
 
struct fat_file_struct* fd_errorlog;
 
 
void logger_setup()
 
{
 
 
	if(!sd_raw_init())
 
	{
 
		error_log(ERROR_SD_INIT, true);
 
		return;
 
	}
 
 
	// TODO: Check SD card switch to see if inserted.
 
	// this was included in the library, but is commented out right now
 
	
 
	// Open first partition
 
	partition = partition_open(sd_raw_read, sd_raw_read_interval, sd_raw_write, sd_raw_write_interval, 0);
 
	
 
	// Check that partition was created correctly
 
	if(!partition)
 
	{
 
		// Error opening partition. MBR might be screwed up.
 
		error_log(ERROR_SD_PARTITION, true);
 
		return;
 
	}
 
	
 
	
 
	// Open FAT filesystem
 
	fs = fat_open(partition);
 
	if(!fs)
 
	{
 
		// opening filesystem failed
 
		error_log(ERROR_SD_PARTITION, true);
 
		return;
 
	}
 
	
 
	// Open root directory
 
	struct fat_dir_entry_struct rootDirEntry;
 
	fat_get_dir_entry_of_path(fs, "/", &rootDirEntry);
 

	
 
	dd = fat_open_dir(fs, &rootDirEntry);
 
	if(!dd)
 
	{
 
		// opening root directory failed
 
		_delay_ms(10);
 
		error_log(ERROR_SD_FILE, true);
 
		return;
 
	}
 
	
 
		
 
	// we pre-increment logid here because it starts at 255, then wraps to 0
 
	uint8_t logid = eeprom_read_byte(LOGGER_ID_EEPROM_ADDR) + 1;
 
	eeprom_update_byte(LOGGER_ID_EEPROM_ADDR, logid);
 
	uint8_t logid = eeprom_read_byte((uint8_t*)LOGGER_ID_EEPROM_ADDR) + 1;
 
	eeprom_update_byte((uint8_t*)LOGGER_ID_EEPROM_ADDR, logid);
 
	
 
	int32_t errorOffset = 0;
 
	char errorFilename[17];
 
	
 
	
 
	// Form filename
 
	snprintf(errorFilename, 17, "run%derror.csv",logid);
 
	struct fat_dir_entry_struct errorDirEntry;
 
	if(fat_create_file(dd, errorFilename, &errorDirEntry) == 0)
 
	{
 
		serial0_sendString("Error create errorlog\r\n");
 
		error_log(ERROR_SD_FILE, true);
 
	}
 
	// Search for file in current directory and open it
 
	fd_errorlog = open_file_in_dir(fs, dd, errorFilename);
 
	if(!fd_errorlog)
 
	{
 
		serial0_sendString("Error open errorlog!\r\n");
 
		error_log(ERROR_SD_FILE, true);
 
		return;
 
	}
 
	errorOffset=0;
 
	if(!fat_seek_file(fd_errorlog, &errorOffset, FAT_SEEK_SET))
 
	{
 
		// Error seeking to file
 
		serial0_sendString("Error seek errorlog!\r\n");
 
		error_log(ERROR_SD_FILE, true);
 
		fat_close_file(fd_errorlog);
 
		return;
 
	}
 
	
 
		
 
	int32_t dataOffset = 0;
 
	char dataFilename[17];
 
	
 
	// Form filename
 
	snprintf(dataFilename, 17, "run%ddata.csv",logid);
 
	struct fat_dir_entry_struct dataDirEntry;
 
	// Create new data log file
 
	if(fat_create_file(dd, dataFilename, &dataDirEntry) == 0) 
 
	{
 
		serial0_sendString("Error create datalog\r\n");
 
		error_log(ERROR_SD_FILE, true);
 
	}
 
	// Search for file in current directory and open it
 
	fd_datalog = open_file_in_dir(fs, dd, dataFilename);
 
	if(!fd_datalog)
 
	{
 
		serial0_sendString("Error open datalog!\r\n");
 
		error_log(ERROR_SD_FILE, true);
 
		return;
 
	}
 
	dataOffset=0;
 
	if(!fat_seek_file(fd_datalog, &dataOffset, FAT_SEEK_SET))
 
	{
 
		// Error seeking to file
 
		serial0_sendString("Error seek datalog!\r\n");
 
		error_log(ERROR_SD_FILE, true);
 
		fat_close_file(fd_datalog);
 
		return;
 
	}
 
	
 
	
 
	// Write header information
 
	logger_log(LOGGER_HEADERTEXT);
 
	logger_log("\n-- BEGIN DATA --\n");
 
	
 
	error_log_rawwrite(LOGGER_HEADERTEXT);
 
	error_log_rawwrite("\n-- BEGIN ERROR --\n");
 
	error_log_rawwrite("\nErrorNo,ErrorMsg,ErrorInfo,\r\n");
 
}	
 
 
void logger_log(char *buffer) 
 
{
 
	uint8_t len = strlen(buffer);
 
	if(fat_write_file(fd_datalog, (uint8_t*) buffer, len) != len)
 
	{
 
		// Error writing to file
 
		return;
 
	}
 
}
 
 
void error_log(uint8_t errNo, bool flashLED)
 
{
 
	char labelBuffer[32];
 
	labelBuffer[0] = 0x00;
 
	
 
	if(errNo <= MAX_ERRNO) 
 
	{
 
		strncpy_P(labelBuffer,(char*)pgm_read_word(&(errorMessageLookup[errNo])),32);
 
	}
 
	char errorLine[128];
 
	snprintf(errorLine, 128, "%lu, %u, %s,,\r\n", time_millis(), errNo, labelBuffer);
 
	error_log_rawwrite(errorLine);
 
	
 
	led_on(LED_ERROR);
master/master/lib/sdcard/sd_raw.c
Show inline comments
 
@@ -248,208 +248,205 @@ uint8_t sd_raw_init()
 
        /* determine SD/MMC card type */
 
        sd_raw_send_command(CMD_APP, 0);
 
        response = sd_raw_send_command(CMD_SD_SEND_OP_COND, 0);
 
        if((response & (1 << R1_ILL_COMMAND)) == 0)
 
        {
 
            /* card conforms to SD 1 card specification */
 
            sd_raw_card_type |= (1 << SD_RAW_SPEC_1);
 
        }
 
        else
 
        {
 
            /* MMC card */
 
        }
 
    }
 

	
 
    /* wait for card to get ready */
 
    for(uint16_t i = 0; ; ++i)
 
    {
 
        if(sd_raw_card_type & ((1 << SD_RAW_SPEC_1) | (1 << SD_RAW_SPEC_2)))
 
        {
 
            uint32_t arg = 0;
 
#if SD_RAW_SDHC
 
            if(sd_raw_card_type & (1 << SD_RAW_SPEC_2))
 
                arg = 0x40000000;
 
#endif
 
            sd_raw_send_command(CMD_APP, 0);
 
            response = sd_raw_send_command(CMD_SD_SEND_OP_COND, arg);
 
        }
 
        else
 
        {
 
            response = sd_raw_send_command(CMD_SEND_OP_COND, 0);
 
        }
 

	
 
        if((response & (1 << R1_IDLE_STATE)) == 0)
 
            break;
 

	
 
        if(i == 0x7fff)
 
        {
 
            unselect_card();
 
            return 0;
 
        }
 
    }
 

	
 
#if SD_RAW_SDHC
 
    if(sd_raw_card_type & (1 << SD_RAW_SPEC_2))
 
    {
 
        if(sd_raw_send_command(CMD_READ_OCR, 0))
 
        {
 
            unselect_card();
 
            return 0;
 
        }
 

	
 
        if(sd_raw_rec_byte() & 0x40)
 
            sd_raw_card_type |= (1 << SD_RAW_SPEC_SDHC);
 

	
 
        sd_raw_rec_byte();
 
        sd_raw_rec_byte();
 
        sd_raw_rec_byte();
 
    }
 
#endif
 

	
 
    /* set block size to 512 bytes */
 
    if(sd_raw_send_command(CMD_SET_BLOCKLEN, 512))
 
    {
 
        unselect_card();
 
        return 0;
 
    }
 

	
 
    /* deaddress card */
 
    unselect_card();
 

	
 
    /* switch to highest SPI frequency possible */
 
    SPCR &= ~((1 << SPR1) | (1 << SPR0)); /* Clock Frequency: f_OSC / 4 */
 
    SPSR |= (1 << SPI2X); /* Doubled Clock Frequency: f_OSC / 2 */
 

	
 
#if !SD_RAW_SAVE_RAM
 
    /* the first block is likely to be accessed first, so precache it here */
 
    raw_block_address = (offset_t) -1;
 
#if SD_RAW_WRITE_BUFFERING
 
    raw_block_written = 1;
 
#endif
 
    if(!sd_raw_read(0, raw_block, sizeof(raw_block))) {
 
		return 0;
 
	}		
 
#endif
 

	
 
    return 1;
 
}
 

	
 
/**
 
 * \ingroup sd_raw
 
 * Checks wether a memory card is located in the slot.
 
 *
 
 * \returns 1 if the card is available, 0 if it is not.
 
 */
 
uint8_t sd_raw_available()
 
{
 
	int i;
 
	return 1; // !!TODO: OH GOSH CHANGE ME
 
	return 1; // EMZ: Assume always available
 
    return get_pin_available() == 0x00;
 
}
 

	
 
/**
 
 * \ingroup sd_raw
 
 * Checks whether the memory card is locked for write access.
 
 *
 
 * \returns 1 if the card is locked, 0 if it is not.
 
 */
 
uint8_t sd_raw_locked()
 
{
 
	int i;
 
	// !!TODO oh gosh change me
 
	return 0;
 
	return 0; // EMZ: Assume always unlocked
 
    return get_pin_locked() == 0x00;
 
}
 

	
 
/**
 
 * \ingroup sd_raw
 
 * Sends a raw byte to the memory card.
 
 *
 
 * \param[in] b The byte to sent.
 
 * \see sd_raw_rec_byte
 
 */
 
void sd_raw_send_byte(uint8_t b)
 
{
 
    SPDR = b;
 
    /* wait for byte to be shifted out */
 
    while(!(SPSR & (1 << SPIF)));
 
    SPSR &= ~(1 << SPIF);
 
}
 

	
 
/**
 
 * \ingroup sd_raw
 
 * Receives a raw byte from the memory card.
 
 *
 
 * \returns The byte which should be read.
 
 * \see sd_raw_send_byte
 
 */
 
uint8_t sd_raw_rec_byte()
 
{
 
    /* send dummy data for receiving some */
 

	
 
    SPDR = 0xff;
 
    while(!(SPSR & (1 << SPIF)));
 
    SPSR &= ~(1 << SPIF);
 

	
 
    return SPDR;
 
}
 

	
 
/**
 
 * \ingroup sd_raw
 
 * Send a command to the memory card which responses with a R1 response (and possibly others).
 
 *
 
 * \param[in] command The command to send.
 
 * \param[in] arg The argument for command.
 
 * \returns The command answer.
 
 */
 
uint8_t sd_raw_send_command(uint8_t command, uint32_t arg)
 
{
 
    uint8_t response;
 

	
 
    /* wait some clock cycles */
 
    sd_raw_rec_byte();
 

	
 
    /* send command via SPI */
 
    sd_raw_send_byte(0x40 | command);
 
    sd_raw_send_byte((arg >> 24) & 0xff);
 
    sd_raw_send_byte((arg >> 16) & 0xff);
 
    sd_raw_send_byte((arg >> 8) & 0xff);
 
    sd_raw_send_byte((arg >> 0) & 0xff);
 
    switch(command)
 
    {
 
        case CMD_GO_IDLE_STATE:
 
           sd_raw_send_byte(0x95);
 
           break;
 
        case CMD_SEND_IF_COND:
 
           sd_raw_send_byte(0x87);
 
           break;
 
        default:
 
           sd_raw_send_byte(0xff);
 
           break;
 
    }
 
    
 
    /* receive response */
 
    for(uint8_t i = 0; i < 10; ++i)
 
    {
 
        response = sd_raw_rec_byte();
 
        if(response != 0xff)
 
            break;
 
    }
 

	
 
    return response;
 
}
 

	
 
/**
 
 * \ingroup sd_raw
 
 * Reads raw data from the card.
 
 *
 
 * \param[in] offset The offset from which to read.
 
 * \param[out] buffer The buffer into which to write the data.
 
 * \param[in] length The number of bytes to read.
 
 * \returns 0 on failure, 1 on success.
 
 * \see sd_raw_read_interval, sd_raw_write, sd_raw_write_interval
 
 */
 
uint8_t sd_raw_read(offset_t offset, uint8_t* buffer, uintptr_t length)
 
{
 
    offset_t block_address;
 
    uint16_t block_offset;
 
    uint16_t read_length;
master/master/lib/slavesensors.c
Show inline comments
 
@@ -393,178 +393,178 @@ int xbeeIsOk()
 
		error_log(ERROR_SLAVETIMEOUT, true);
 
		return 1;
 
	}
 
}
 
 
bool slavesensors_dataReady() 
 
{
 
	return dataReady;
 
}
 
 
bool slavesensors_isrequesting() 
 
{
 
	return requesting;	
 
}
 
 
void slavesensors_startprocess() 
 
{
 
	requesting = true;
 
	slavesensors_request();		
 
}
 
 
// TODO: inline. static.
 
uint32_t beginRequest = 0;
 
void slavesensors_request() 
 
{
 
	slavesensors_selectnode(currentSlave);
 
	beginRequest = time_millis();
 
	serial_sendCommand("@"); // Request data!
 
}
 
 
 
uint8_t numReadingsToExpect = 0; // number of values that the slave is about to send
 
uint8_t numRetries = 0;
 
 
void gotoNextSlaveOrSensor(bool fail) {
 
	// If we finished all sensors for all slaves
 
	if(currentSlave >= (nodeCount-1) && currentSlaveSensor >= (numReadingsToExpect-1))
 
	{
 
		#ifdef DEBUG_GETSLAVEDATA
 
		serial0_sendString("We got all data for all slaves!\r\n");
 
		#endif
 
		
 
		dataReady = true;
 
		currentSlave = 0;
 
		currentSlaveSensor = 0;
 
		requesting = false;
 
		
 
		if(!fail) 
 
		{
 
			led_alert();	
 
		}
 
		
 
	}
 
	// If we finished up one slave, go to the next
 
	else if(currentSlaveSensor >= (numReadingsToExpect-1))
 
	{
 
		#ifdef DEBUG_GETSLAVEDATA
 
		serial0_sendString("Finished up one slave, go to another.\r\n");
 
		#endif
 
		
 
		currentSlave++;
 
		currentSlaveSensor = 0;
 
		requesting = true;
 
		
 
		slavesensors_request();
 
	}
 
	// If we haven't finished a slave (or all of them), just get the next sensor of the current slave
 
	else
 
	{
 
		#ifdef DEBUG_GETSLAVEDATA
 
		serial0_sendString("Give me another sensor value...");
 
		#endif
 
		
 
		// request data for the current sensor of the current slave
 
		currentSlaveSensor++;
 
		requesting = true;
 
	}
 
}
 
 
// Request data from slave modules
 
void slavesensors_process(uint8_t parseResult) 
 
{
 
	if(!requesting) 
 
	{
 
		// we got a command when we didn't request anything. skip it.
 
		return;
 
	}
 
	
 
	// TODO: If we time out, WE NEED TO RESET THE PARSER. It could be in a bad state.
 
	else if(parseResult == PARSERESULT_NODATA) 
 
	{
 
		// Wait for data
 
		if(requesting && time_millis() - beginRequest > TIMEOUT_SLAVEREQUEST) {
 
			// if we're requesting, we have no data, and we're over the timeout, this is bad!
 
			// setParserState(STATE_RESET); - meh, can't do this because it freaking increments the cirbufptr
 
			gotoNextSlaveOrSensor(true);
 
			char* msg[128];
 
			char msg[128];
 
			snprintf(msg, 128, "Slave %u (%s) timeout",currentSlave,slaveNames[currentSlave]);
 
			error_log_msg(ERROR_SLAVETIMEOUT, false, msg); // log error, don't blink LED
 
		}
 
	}
 
	
 
	// Finished reception of a message (one sensor data value). If not finished, send out command to get the next one
 
	else if(parseResult == PARSERESULT_PARSEOK)
 
	{
 
		
 
		#ifdef DEBUG_GETSLAVEDATA
 
		char debug[50];
 
		snprintf(debug, 50, "Slave %u sensor %u of total nodes %u\r\n", currentSlave, currentSlaveSensor,nodeCount);
 
		serial0_sendString(debug);
 
		#endif
 
		
 
		// We got data, reset retries
 
		numRetries = 0;
 
		
 
		// We got some data, let's handle it
 
		// ASCII payload
 
		uint8_t len = getPayloadLength();
 
		char* load = getPayload();
 
		uint8_t type = getPayloadType();
 
		int32_t parsedVal = strtol(load, NULL, 10);//atoi(load);
 

	
 
		// Special case for slave telling us how many things we're about to get		
 
		if(type + 0x30 == '@')
 
		{
 
			
 
			#ifdef DEBUG_GETSLAVEDATA
 
			serial0_sendString("Got an awesome count!\r\n");
 
			serial0_sendChar(parsedVal + 0x30);
 
			serial0_sendString("\r\n");
 
			#endif
 
			
 
			numReadingsToExpect = parsedVal;
 
			currentSlaveSensor = 0;
 
			requesting = true;
 
		}
 
		else 
 
		{
 
		
 
			// Store data in structure
 
			sensordata_set(currentSlave,type,parsedVal);
 
			
 
			#ifdef DEBUG_GETSLAVEDATA
 
			serial0_sendString("Stored some sexy data!\r\n");
 
			#endif 
 
			
 
			gotoNextSlaveOrSensor(false);
 
		}
 
	}
 
	
 
	// If fail, try retransmit. Or we could skip and hit it next time.
 
	// TODO: Maximum number of retransmissions
 
	else if(parseResult == PARSERESULT_FAIL) 
 
	{
 
		if(requesting) 
 
		{
 
			if(numRetries < MAX_SLAVEREQUEST_RETRIES) 
 
			{
 
				slavesensors_request();	// re-request
 
			}
 
			else {
 
				numRetries = 0;
 
				gotoNextSlaveOrSensor(true);
 
			}
 
		}			
 
	}
 
	
 
	
 
	else if(parseResult == PARSERESULT_STILLPARSING)
 
	{
 
		return; // do nothing
 
	}
 
	else 
 
	{
 
		error_log_msg(ERROR_FATAL, true, "parseResult is invalid!");
 
		return;
 
	}
 
}		
 
\ No newline at end of file
master/master/master.c
Show inline comments
 
@@ -51,106 +51,109 @@ int main(void)
 
	i2c_init();
 
	sensordata_setup(); // must happen before slavesensors/logger/AFSK
 
	slavesensors_setup();
 
	logger_setup();
 
	afsk_setup();
 
	
 
	serial0_sendString("\r\nHello.\r\n\r\n");
 
	
 
	// Blocking ZigBee node discovery
 
	slavesensors_network_scan();
 
	
 
	// Software timers	
 
	uint32_t lastAprsBroadcast = 0;
 
	uint32_t lastLog = 0;
 
	uint32_t lastLedCycle = 0;
 
	uint32_t lastDataReq = 0;
 
	
 
	// Result of last parser run
 
	int parseResult = PARSERESULT_NODATA;
 
	
 
	// FIXME: Probably don't need this.
 
	serial1_ioff();
 
	
 
	while(1)
 
    {
 
		
 
		// Periodic: LED execution indicator
 
		if(time_millis() - lastLedCycle > LEDCYCLE_RATE) 
 
		{
 
			led_spin();
 
			
 
			// Enable GPS serial interrupts if we aren't doing AFSK
 
			if(!afsk_busy())
 
				serial1_ion();
 
				
 
			lastLedCycle = time_millis();	
 
		}
 
		
 
		// Periodic: Logging
 
		if(time_millis() - lastLog > LOGGER_RATE) 
 
		{
 
			led_on(LED_CYCLE);
 
			
 
			heater_regulateTemp();
 
			
 
			// Turn on sideboard LED if we have a fix
 
			if(gps_hasfix()) 
 
			{
 
				led_on(LED_SIDEBOARD);
 
			}
 
			else 
 
			{
 
				led_off(LED_SIDEBOARD);
 
			}
 
			
 
			sensors_readBoardTemp();
 
		
 
			// Write CSV header and log data values
 
			sensordata_logvalues();			
 
			
 
			led_off(LED_CYCLE);
 
			lastLog = time_millis();
 
		}		
 
		
 
		
 
		// Periodic: Data Request
 
		if(time_millis() - lastDataReq > DATAREQUEST_RATE)  
 
		{
 
			
 
			// Start getting values for next transmission
 
			if(slavesensors_isrequesting())
 
			{
 
				// TODO: something is terribly wrong. Timeout?
 
			}
 
			else
 
			{
 
				slavesensors_startprocess();
 
			}
 
			
 
			lastDataReq = time_millis();
 
		}
 
		
 
		
 
		// Periodic: APRS transmission
 
		if(time_millis() - lastAprsBroadcast > APRS_TRANSMIT_PERIOD) 
 
		{
 
			// Ensure we aren't already transmitting
 
			while(afsk_busy());
 
			
 
			// Turn off interrupts and transmit APRS sentence
 
			serial1_ioff();
 
			aprs_send(); // non-blocking
 
			
 
			lastAprsBroadcast = time_millis();
 
		}			
 
		
 
		
 
		// Parse any serial data in the XBee software buffer
 
		parseResult = serparser_parse();
 
		slavesensors_process(parseResult);
 
		
 
		
 
		// Parse any NMEA messages in the GPS software buffer
 
		parse_gps_transmission();
 
		
 
		
 
		wdt_reset();
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)