Changeset - 7021dff6a9f0
[Not reviewed]
default
0 7 0
kripperger@CL-SEC241-09.cedarville.edu - 12 years ago 2013-04-29 17:17:13
kripperger@CL-SEC241-09.cedarville.edu
Added generic voltage reading function
7 files changed with 39 insertions and 6 deletions:
0 comments (0 inline, 0 general)
slave/slave/config.h
Show inline comments
 
/*
 
 * config.h
 
 *
 
 * Created: 10/25/2012 10:00:09 PM
 
 *  Author: mkanning
 
 */
 
 
 
 #ifndef CONFIG_H_
 
 #define CONFIG_H_
 
 
 #define F_CPU 11059200				// Clock frequency (used in calculations)
 
 
//Serial
 
#define USART0_BAUDRATE 115200
 
#define USART1_BAUDRATE 115200 
 
 
// Circular serial buffer size. Must be at least MAX_CMD_LEN + 5
 
#define BUFFER_SIZE 32
 
 
// Maximum payload size of command
 
#define MAX_PAYLOAD_LEN 16
 
 
// Number of datatypes to transmit per module type
 
// Number of datatypes to transmit per module type. This should match what is being sent in masterComm.c
 
#define DATATYPES_GENERIC 3
 
#define DATATYPES_SENSOR 8
 
#define DATATYPES_GEIGER 4
 
#define DATATYPES_CAMERA 3
 
 
//Sensors and IO
 
#define SENSOR_LOOP 200				// Frequency of sensor reads (in ms) (should be 200)
 
#define HEATER_THRESHOLD 0			// Temperature threshold in Fahrenheit where heater is activated
 
#define CAMERA_FREQ 30000		// Camera pulse frequency (Should be 30000 for 30 Secs)
 
#define CAMERA_PULSE 400 			// Camera pulse duration
 
 
 //I2C Addresses
 
 #define EEPROM_ADDR 0xA0		// Read 0xA1 - Write 0xA0
 
 #define BOARDTEMP_ADDR 0x90	// Read 0x91 - Write 0x90
 
 #define PRESSURE_ADDR 0xEE		// Read 0xEF - Write 0xEE
 
 #define HUMID_ADDR 0x27		// Read 0x28 - Write 0x27
 
 #define LIGHT_ADDR 0x94		// Read 0x95 - Write 0x94
 
 #define ACCEL_ADDR	0x38		// Read 0x39 - Write 0x38
 
 #define RTC_ADDR 0xB2			//DEBUG [Used for testing]      // Read 0xA3 - Write 0xA2
 
 
 
 
 #endif /* CONFIG_H_ */
 
\ No newline at end of file
slave/slave/lib/geiger.c
Show inline comments
 
/*
 
 * geiger.c
 
 *
 
 * Created: 11/19/2012 9:24:05 PM
 
 *  Author: kripperger
 
 */ 
 
 
 
#include <inttypes.h>
 
#include <avr/io.h>
 
#include <avr/interrupt.h>
 
#include "../config.h"
 
#include <util/delay.h>
 
#include "geiger.h"
 
#include "loopTimer.h"
 
#include "led.h"
 
#include "inputOutput.h"
 
 
volatile uint8_t seconds;		// Counts Seconds from Timer2 interrupt
 
volatile uint16_t counts;		// Counts the pulses
 
volatile uint16_t CPM;			// Counts per Minuite
 
volatile uint32_t countStart = 0;
 
volatile uint8_t CPS[60];		// Counts per Second
 
volatile uint8_t i;
 
 
ISR(TIMER2_OVF_vect)    // Timer 2 overflow interrupt handler
 
{
 
	// This executes every second.  Update real-time clocks.
 
	// Used only in Geiger module
 
	
 
	//	The following is a 60 second moving average of the CPS
 
	seconds++;
 
	if (seconds>=60)
 
	{
 
		seconds = 0;
 
	}
 
	
 
	CPS[seconds] = counts;
 
	counts = 0;
 
	
 
	CPM = 0;
 
	for (i=0;i<60;i++)
 
	{
 
		CPM = CPM + CPS[i];
 
	}
 
	//CPM = CPM * 2;	// For a 30 second moving average
 
	
 
	
 
}
 
 
ISR(PCINT0_vect)    // Interrupt on PA0
 
{
 
	if(((PINA & 0b00000001))==1)
 
	{
 
		// Interrupts when pulse received from Geiger tube
 
		counts++;	// Increment counter.
 
		countStart = time_millis();
 
		
 
		led_on(1);
 
		io_piezoOff();
 
		
 
		_delay_us(50);
 
	}
 
 
}
 
 
uint16_t geiger_getCpm()
 
{
 
	return CPM;
 
}
 
 
uint8_t geiger_getCount()	//DEBUG
 
{
 
	return counts;
 
}
 
 
uint32_t geiger_getCountStart()
 
{
 
	return countStart;
 
}
 
 
void geiger_on()
 
{
 
	// Turn the Flyback Transformer on
 
	PORTA |= (1 << PA1);	//ON
 
	
 
}
 
 
void geiger_refresh()
 
{
 
	// Turn the Flyback Transformer off
 
	PORTA &= ~(1 << PA1);	//OFF
 
	_delay_ms(1);
 
 
	// Turn the Flyback Transformer on
 
	PORTA |= (1 << PA1);	//ON
 
}
slave/slave/lib/inputOutput.c
Show inline comments
 
/*
 
 * io.c
 
 *
 
 * Created: 11/7/2012 7:17:52 PM
 
 *  Author: kripperger
 
 */ 
 
 
#include <avr/io.h>
 
#include "../config.h"
 
#include "inputOutput.h"
 
#include "led.h"
 
#include "sensors.h"
 
#include "i2c.h"
 
 
int8_t	moduleID;	// Slave Module ID from rotary dip switch (or EEPROM)
 
 
 void io_configure()
 
 {
 
	// Configure ports/pins
 
	DDRB |= (1 << DDB4);		// Set PB4 to Output for Heater (also allows SCK (on SPI bus) to operate)
 
 
	DDRC &= ~(1 << DDC2);		// Set PC2 to input for rotary dip
 
	DDRC &= ~(1 << DDC3);		// Set PC3 to input for rotary dip
 
	DDRC &= ~(1 << DDC4);		// Set PC4 to input for rotary dip
 
	DDRC &= ~(1 << DDC5);		// Set PC5 to input for rotary dip
 
	
 
	DDRA &= ~(1 << DDA7);		// Set PA7 to input for battery voltage divider
 
 
	//ADC register configurations for battery level detection on PA7
 
	ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);	// Set prescaler for ADC, 128 gives ADC freq of 125 KHz
 
	ADMUX |= (1 << REFS0);									// Set ADC reference voltage to AVCC
 
	//ADMUX |= (1 << ADLAR);								// Sets 10 bit ADC to 8 bit
 
	ADMUX |= (1 << MUX2) | (1 << MUX1) | (1 << MUX0);		// Select ADC7 as the conversion channel
 
	ADCSRA |= (1 << ADATE);									// Enables auto trigger, determined in ADCSRB bits ADTS
 
	//ADCSRA |= (1 << ADIF);								// 
 
	//ADCSRA |= (1 << ADIE);								// ADC interrupt enable set
 
	ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));// Set ADC auto trigger source to free running mode
 
	ADCSRA |= (1 << ADEN);									// Enable ADC
 
	ADCSRA |= (1 << ADSC);									// Start ADC measurements.  ADC should now continuously run conversions, which are stored in ADCH 0x79
 
	
 
 }
 
 
 
  
 
 void io_readModuleId()
 
 {
 
	// Get ID from rotary dip and return it. 
 
	moduleID = 0;
 
	
 
	
 
	// First read ID from rotary encoder
 
	PORTC |= (1 << PC2);	// Pull pins on rotary dip high
 
	PORTC |= (1 << PC3);	// Pull pins on rotary dip high
 
	PORTC |= (1 << PC4);	// Pull pins on rotary dip high
 
	PORTC |= (1 << PC5);	// Pull pins on rotary dip high
 
	
 
	moduleID = ((PINC & 0b00011100) >> 2);		// Read Dip Encoder
 
	moduleID = ~moduleID;						//Invert Dip reading
 
	moduleID = (moduleID & 0b0111);				//Mask bits
 
	
 
	// If rotary encoder was 0, read ID from EEPROM
 
	while(moduleID==0)           
 
	{
 
		moduleID = i2c_read(EEPROM_ADDR, 0x05);
 
	}
 
 }
 
 
 
 
 
 uint8_t io_getModuleId()
 
 {
 
	return moduleID;
 
 }
 
 
 
 
 
 void io_heaterOn()
 
 {		
 
	PORTB |= (1 << PB4);	//ON
 
 }
 
 
 
 void io_heaterOff()
 
 {
 
	PORTB &= ~(1 << PB4);	//OFF
 
 }
 
 
 
 void io_piezoOn()
 
 {
 
	 PORTA |= (1 << PA2);	//ON
 
 }
 
  
 
 void io_piezoOff()
 
 {
 
	 PORTA &= ~(1 << PA2);	//OFF
 
 }
 
 
 
 uint8_t io_heaterStatus()
 
 {
 
	 uint8_t state;
 
	 state = 0;
 
	 
 
	 state = ((PORTB & 0b00010000) >> 4);
 
	 
 
	 return state;
 
 }
 
 
 
  void io_regulateTemp()
 
  {
 
	  // Gets board temperature and enables heater if below threshold
 
	  if (sensors_getBoardTemp() <= HEATER_THRESHOLD)
 
	  {
 
		  io_heaterOn();
slave/slave/lib/masterComm.c
Show inline comments
 
/*
 
 * masterComm.c
 
 *
 
 * Created: 1/22/2013 3:40:53 PM
 
 *  Author: kripperger
 
 */ 
 
 
 
#include <inttypes.h>
 
#include <avr/io.h>
 
#include <stdio.h>
 
#include "../config.h"
 
#include "masterComm.h"
 
#include "serial.h"
 
#include "serparser.h"
 
#include "inputOutput.h"
 
#include "sensors.h"
 
#include "geiger.h"
 
#include "led.h"
 
#include "loopTimer.h"
 
 
uint8_t dataTypes;
 
volatile uint32_t lastRX;
 
char buff2[64];
 
 
 
char masterComm_checksum(const char* stringPtr)
 
{
 
	char sum = 0;
 
	while(*stringPtr != 0x00)
 
	{
 
		sum += *stringPtr;
 
		stringPtr++;
 
	}
 
	return sum;
 
}
 
 
 
void masterComm_types()
 
{
 
	switch(io_getModuleId())
 
	{
 
		case 0:
 
			// Generic
 
			dataTypes = DATATYPES_GENERIC;
 
			break;
 
			
 
		case 1:
 
			// Sensors
 
			dataTypes = DATATYPES_SENSOR;
 
			break;
 
			
 
		case 2:
 
			// Geiger
 
			dataTypes = DATATYPES_GEIGER;
 
			break;
 
			
 
		case 3:
 
			// Camera
 
			dataTypes = DATATYPES_CAMERA;
 
			break;
 
			
 
		default:
 
			dataTypes = DATATYPES_GENERIC;
 
			break;
 
	}
 
}
 
 
 
void masterComm_packetSend_unsigned(uint8_t id, uint32_t data)
 
void masterComm_packetSend_unsigned(uint8_t id, uint32_t data)	//Sends the data type and data to master for unsigned data
 
{
 
	serial0_sendChar('[');
 
	snprintf(buff2,64,"%u%lu",id,data);
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');
 
	serial0_sendChar(masterComm_checksum(buff2));
 
}
 
 
void masterComm_packetSend_signed(uint8_t id, int32_t data)
 
void masterComm_packetSend_signed(uint8_t id, int32_t data)	//Sends the data type and data to master for signed data
 
{
 
	serial0_sendChar('[');
 
	snprintf(buff2,64,"%u%ld",id,data);
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');
 
	serial0_sendChar(masterComm_checksum(buff2));
 
}
 
 
 
 
void masterComm_modules()
 
{
 
	// Send Board Temperature (Common for all modules)
 
	masterComm_packetSend_signed(0,sensors_getBoardTemp());
 
 
	// Send Heater Status (Common for all modules)
 
	masterComm_packetSend_unsigned(1,io_heaterStatus());
 
	
 
	// Send Battery Level (Common for all modules)
 
	masterComm_packetSend_unsigned(2,sensors_getBatt());
 
	
 
	
 
	// Send module specific sensor readings
 
	switch(io_getModuleId())
 
	{
 
		case 0:
 
			// Generic
 
			
 
 
			break;
 
		
 
		case 1:
 
			// Sensors
 
			
 
			// Send SPI Temperature (Air)
 
			masterComm_packetSend_signed(3,sensors_getSpiTemp());
 
			
 
			// Send Ambient Light (Needs to be formatted)
 
			masterComm_packetSend_unsigned(4,sensors_getLux());
 
			
 
			// Send Humidity
 
			masterComm_packetSend_unsigned(5,/*Humidity Get Function Here */999);		
 
			
 
			// Send Pressure 
 
			masterComm_packetSend_unsigned(6,sensors_getPressure());			
 
			
 
			// Send Altitude
 
			masterComm_packetSend_unsigned(7,sensors_getAltitude());
 
			break;
 
			
 
		case 2:
 
			// Geiger
 
			
 
			// Send CPM (radiation)
 
			masterComm_packetSend_unsigned(8,geiger_getCpm());
 
			break;
 
		
 
		case 3:
 
			// Camera
 
			
 
			
 
			break;
 
		
 
		default:
 
			
 
			break;
 
	}
 
}
 
 
 
void masterComm_send()
 
{
 
	masterComm_types();		// Calculates how many data types to send
 
	
 
	// Return request with number of data types to be sent
 
	serial0_sendChar('[');						// Send opening bracket
 
	snprintf(buff2,64,"@%u",dataTypes);				// Send package (@ reply and number of data types)
 
	snprintf(buff2,64,"@%u",dataTypes);			// Send package (@ reply and number of data types)
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');						// Send closing bracket
 
	serial0_sendChar(masterComm_checksum(buff2));	// Calculate and send checksum
 
	
 
	masterComm_modules();	// Send sensor data
 
}
 
 
 
void masterComm_checkParser()
 
{
 
	if ((time_millis() - lastRX) > 200)	// Timer for LED
 
	{
 
		led_off(2);
 
	}
 
	
 
	if (serparser_parse() == PARSERESULT_PARSEOK)
 
	{
 
		if (getPayloadType() == ('@'-0x30))		// Request for data recieved
 
		{
 
			led_on(2);
 
			lastRX = time_millis();
 
			
 
			// Send all data
 
			masterComm_send();
 
		}	
 
	}
 
}
 
 
slave/slave/lib/sensors.c
Show inline comments
 
/*
 
 * sensors.c
 
 *
 
 * Created: 11/19/2012 9:25:01 PM
 
 *  Author: kripperger
 
 */ 
 
 
 
#include <inttypes.h>
 
#include <math.h>
 
#include <avr/io.h>
 
#include <avr/interrupt.h>
 
#include "../config.h"
 
#include <util/delay.h>
 
#include "sensors.h"
 
#include "spi.h"
 
#include "i2c.h"
 
 
int16_t	spiTemp;	// Thermocouple Temperature (from spi)
 
int8_t	boardTemp;	// Board Temperature (from i2c)
 
int32_t ut;			// Temperature from BMP085 (from i2c)
 
int32_t up;			// Pressure from BMP085 (from i2c)
 
uint16_t humid;		// Humidity (from i2c)
 
uint8_t lightH;		// Higher byte from light sensor (from i2c)
 
uint8_t lightL;		// Lower byte from light sensor
 
uint8_t exponent;	// Exponent for Lux
 
uint8_t mantissa;	// Mantissa for Lux
 
uint32_t lux;		// Calculated Lux value
 
uint8_t battL;		// Low byte of ADC
 
uint16_t batt;		// Read battery voltage from ADC
 
uint16_t vBatt;		// battery voltage
 
 
int8_t analogL;		// Low byte of ADC
 
int16_t analog;		// Read analog voltage from ADC
 
 
int16_t ac1;		// The following 11 variables are the calibration values for the BMP085
 
int16_t ac2;
 
int16_t ac3;
 
uint16_t ac4;
 
uint16_t ac5;
 
uint16_t ac6;
 
int16_t b1;
 
int16_t b2;
 
int16_t mb;
 
int16_t mc;
 
int16_t md;
 
 
int32_t x1;			// The following variables are needed to calculate the true pressure
 
int32_t x2;
 
int32_t x3;
 
int32_t b3;
 
uint32_t b4;
 
int32_t b5;
 
int32_t b6;
 
uint32_t b7;
 
int32_t trueTemp;
 
int32_t pressure;
 
uint32_t altitude;
 
 
 
 
void sensors_setupPressure()
 
{
 
	//This function reads in the calibration values from the BMP085.  This is done only once.
 
	ac1 = i2c_read(PRESSURE_ADDR, 0xAA);
 
	ac1 = ac1 << 8;
 
	ac1 = ac1 | i2c_read(PRESSURE_ADDR, 0xAB);
 
	
 
	ac2 = i2c_read(PRESSURE_ADDR, 0xAC);
 
	ac2 = ac2 << 8;
 
	ac2 = ac2 | i2c_read(PRESSURE_ADDR, 0xAD);
 
	
 
	ac3 = i2c_read(PRESSURE_ADDR, 0xAE);
 
	ac3 = ac3 << 8;
 
	ac3 = ac3 | i2c_read(PRESSURE_ADDR, 0xAF);
 
	
 
	ac4 = i2c_read(PRESSURE_ADDR, 0xB0);
 
	ac4 = ac4 << 8;
 
	ac4 = ac4 | i2c_read(PRESSURE_ADDR, 0xB1);
 
	
 
	ac5 = i2c_read(PRESSURE_ADDR, 0xB2);
 
	ac5 = ac5 << 8;
 
	ac5 = ac5 | i2c_read(PRESSURE_ADDR, 0xB3);
 
	
 
	ac6 = i2c_read(PRESSURE_ADDR, 0xB4);
 
	ac6 = ac6 << 8;
 
	ac6 = ac6 | i2c_read(PRESSURE_ADDR, 0xB5);
 
	
 
	b1 = i2c_read(PRESSURE_ADDR, 0xB6);
 
	b1 = b1 << 8;
 
	b1 = b1 | i2c_read(PRESSURE_ADDR, 0xB7);
 
	
 
	b2 = i2c_read(PRESSURE_ADDR, 0xB8);
 
	b2 = b2 << 8;
 
	b2 = b2 | i2c_read(PRESSURE_ADDR, 0xB9);
 
	
 
	mb = i2c_read(PRESSURE_ADDR, 0xBA);
 
	mb = mb << 8;
 
	mb = mb | i2c_read(PRESSURE_ADDR, 0xBB);
 
	
 
	mc = i2c_read(PRESSURE_ADDR, 0xBC);
 
	mc = mc << 8;
 
	mc = mc | i2c_read(PRESSURE_ADDR, 0xBD);
 
	
 
	md = i2c_read(PRESSURE_ADDR, 0xBE);
 
	md = md << 8;
 
	md = md | i2c_read(PRESSURE_ADDR, 0xBF);
 
}
 
 
void sensors_readSpiTemp()
 
{
 
	// Select TEMP wait 100 microseconds then read four bytes
 
	SELECT_TEMP;
 
	_delay_us(100);
 
	uint8_t one = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t two = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t three = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t four = send_spi(0xFF);
 
	DESELECT_TEMP;
 
	
 
	int16_t temperature = ((one<<4)|(two>>4));	// Shift and place into larger int. (Cuts off Decimal)
 
	temperature = (temperature & (0x0800)) ? (temperature & 0xF000) : temperature;	// Sign extend
 
	
 
	//int16_t temperature = ((one<<6)|(two>>2));	// Shift and place into larger int. (Includes Decimal)
 
	//temperature = (temperature & (0x2000)) ? (temperature & 0xC000) : temperature;	// Sign extend
 
	
 
	temperature = (two & 0x01) ? 0x00DE : temperature;	// Error Condition. If error is detected output is set to 222 degrees (0x00DE)
 
	
 
	// Note: Temperature still needs to be scaled in order to be accurate (eg. boil water). Do this before implementing.
 
	spiTemp = temperature;
 
}
 
 
void sensors_readBoardTemp()
 
{
 
	boardTemp = i2c_read(BOARDTEMP_ADDR, 0x00);		// Read only the first byte of data (we don't need the resolution here)
 
	boardTemp = ((boardTemp*18)/10) + (32);			// Converting Celsius to Fahrenheit
 
	boardTemp = boardTemp - 3;						// Linear offset
 
}
 
 
void sensors_readPressure()
 
{
 
	i2c_write(PRESSURE_ADDR, 0xF4, 0x2E);				//write 0x2E (temp) into 0xF4 (control register), (write is 0xEE)
 
	_delay_us(4500);							//wait 4.5 ms
 
	ut = i2c_read(PRESSURE_ADDR, 0xF6);
 
	ut = ut << 8;
 
	ut = ut | i2c_read(PRESSURE_ADDR, 0xF7);	//ut = MSB<<8 + LSB
 
	
 
	i2c_write(PRESSURE_ADDR, 0xF4, 0x34);				//write 0x34 (pressure) into 0xF4 (control register), (write is 0xEE)
 
	_delay_us(4500);							//wait 4.5 ms
 
	up = i2c_read(PRESSURE_ADDR, 0xF6);
 
	up = up << 8;
 
	up = up | i2c_read(PRESSURE_ADDR, 0xF7);	//up = (MSB<<16 + LSB<<8 + XLSB(NOT USED)) >> (8-oss)
 
	
 
	//calculate true temperature
 
	x1 = ((ut - ac6) * ac5) >> 15;
 
	x2 = (mc << 11) / (x1 + md);
 
	b5 = x1 + x2;
 
	trueTemp = (b5 + 8) >> 4;
 
	
 
	//calculate b3
 
	b6 = b5 - 4000;
 
	x1 = (b2 * (b6 * b6) >> 12) >> 11;
 
	x2 = (ac2 * b6) >> 11;
 
	x3 = x1 + x2;
 
	b3 = ((ac1 * 4 + x3) + 2) / 4;
 
	
 
	//calculate b4
 
	x1 = (ac3 * b6) >> 16;
 
	x2 = (b1 * ((b6 * b6) >> 12)) >> 16;
 
	x3 = ((x1 + x2) + 2) >> 2;
 
	b4 = (ac4 * (x3 + 32768)) >> 15;
 
	
 
	b7 = (up - b3) * 50000;
 
	
 
	if (b7 < 0x80000000)
 
	{
 
		pressure = (b7 << 1) / b4;
 
	}
 
	
 
	else
 
	{
 
		pressure = (b7 / b4) << 1;
 
	}
 
	
 
	x1 = (pressure >> 8) * (pressure >> 8);
 
	x1 = (x1 * 3038) >> 16;
 
	x2 = (-7357 * pressure) >> 16;
 
	pressure += (x1 + x2 + 3791) >> 4;				//This is the final value for our pressure
 
	pressure = pressure;	// Linear Offset for actual pressure
 
	
 
	altitude = (float)44330 * (1 - pow(((float) pressure/101325), 0.190295));	// 101325 THIS IS IN METERS
 
	altitude = (float)altitude * 3.2804;	//THIS IS IN FEET
 
}
 
 
void sensors_readHumid()
 
{
 
	//i2c_write(HUMID_ADDR, 0x00, 0x00);		//Measurement Request
 
	//humid = i2c_read16(HUMID_ADDR);
 
 
//humid = i2c_humidRead();
 
 
	//calculations to relative humidity: humid = (humid/((2^14) - 1))*100%       >> is divide by power, << is multiply by power, 2^14-1 = 16383
 
	 //humid = (humid / 16383) * 100;
 
	 //humid = (humid / 2500) * 100;
 
}
 
 
void sensors_readLux()
 
{
 
	lightH = i2c_read(LIGHT_ADDR, 0x03);
 
	lightL = i2c_read(LIGHT_ADDR, 0x04);
 
	
 
	exponent = lightH;
 
	exponent = exponent >> 4;
 
	
 
	lightH = lightH << 4;
 
	mantissa = lightH | lightL;
 
 
	lux = (float)(pow(2,exponent) * mantissa) * 0.045;
 
}
 
 
void sensors_readBatt()
 
{
 
	ADMUX |= (1 << MUX2) | (1 << MUX1) | (1 << MUX0);		// Select ADC7 as the conversion channel
 
	battL = ADCL;					// Read low battery byte from ADC (all 8 bits)
 
	batt = ADCH;					// Read high battery byte from ADC (only two LSBs)
 
	batt = batt << 8;
 
	batt |= battL;
 
	vBatt = (batt * 10.0) / 67.4;
 
}
 
 
 
 
void sensors_readAnalog(uint8_t pin)
 
{
 
	// Reads analog input on PORTA on the pin (0-7) specified.
 
	
 
	DDRA &= ~(1 << pin);		// Set pin to input
 
	
 
	ADMUX &= 0xF8;
 
	ADMUX |= pin;
 
	
 
	analogL = ADCL;				// Read low battery byte from ADC (all 8 bits)
 
	analog = ADCH;				// Read high battery byte from ADC (only two LSBs)
 
	
 
	analogL = ADCL;				// Second Read low battery byte from ADC (all 8 bits)
 
	analog = ADCH;				// Second Read high battery byte from ADC (only two LSBs)
 
	
 
	analog = analog << 8;
 
	analog |= analogL;
 
	analog = (analog * 10.0) / 67.4;
 
}
 
 
 
 
 
 
int16_t sensors_getSpiTemp(void)	// Gets spi temperature from variable
 
{
 
	return spiTemp;
 
}
 
 
int8_t sensors_getBoardTemp(void)	// Gets board temperature from variable
 
{
 
	return boardTemp;
 
}
 
 
int32_t sensors_getPressure(void)	// Gets pressure from variable
 
{
 
	return pressure;
 
}
 
 
uint16_t sensors_getHumid(void)			// Gets relative humidity from variable
 
{
 
	return humid;
 
}
 
 
uint32_t sensors_getLux(void)		// Gets light from variable
 
{
 
	return lux;
 
}
 
 
uint16_t sensors_getBatt(void)		// Gets battery voltage from variable
 
{
 
	return vBatt;
 
}
 
 
int16_t sensors_getAnalog(void)		// Gets battery voltage from variable
 
{
 
	return analog;
 
}
 
 
uint32_t sensors_getAltitude(void)
 
{
 
	return altitude;
 
}
 
\ No newline at end of file
slave/slave/lib/sensors.h
Show inline comments
 
/*
 
 * sensors.h
 
 *
 
 * Created: 11/19/2012 9:24:50 PM
 
 *  Author: kripperger
 
 */ 
 
 
 
#ifndef SENSORS_H_
 
#define SENSORS_H_
 
 
 
void sensors_setupPressure(void);	// Reads pressure calibration values
 
void sensors_readSpiTemp(void);		// Reads spi temperature
 
void sensors_readBoardTemp(void);	// Reads board temperature
 
void sensors_readPressure(void);	// Reads pressure
 
void sensors_readHumid(void);		// Reads humidity
 
void sensors_readLux(void);			// Reads lux
 
void sensors_readBatt(void);		// Reads battery voltage from ADC
 
void sensors_readAnalog(uint8_t pin);	// Reads generic analog voltage from ADC
 
 
int16_t sensors_getSpiTemp(void);	// Gets spi temperature from variable
 
int8_t sensors_getBoardTemp(void);	// Gets board temperature from variable
 
int32_t sensors_getPressure(void);	// Gets pressure from variable
 
uint16_t sensors_getHumid(void);	// Gets humidity from variable
 
uint32_t sensors_getLux(void);		// Gets lux from variable
 
uint16_t sensors_getBatt(void);		// Gets battery voltage from variable
 
int16_t sensors_getAnalog(void);		// Gets battery voltage from variable
 
uint32_t sensors_getAltitude(void);	// Gets altitude from variable
 
 
#endif /* SENSORS_H_ */
 
\ No newline at end of file
slave/slave/modules.c
Show inline comments
 
@@ -53,132 +53,133 @@
 
	switch(id)
 
	{
 
		case 0:
 
			modules_generic();
 
			break;
 
		  
 
		case 1:
 
			modules_sensors();
 
			break;
 
		  
 
		case 2:
 
			modules_geiger();
 
			break;
 
		  
 
		case 3:
 
			modules_cameras();
 
			break;
 
		  
 
		default:
 
			modules_generic();
 
			break;
 
	}
 
	  
 
 }
 
 
 
 
 
 void modules_generic_setup()
 
 {
 
	  
 
 }
 
  
 
 void modules_sensors_setup()
 
 {
 
	DESELECT_TEMP;
 
	setup_spi();
 
	sensors_setupPressure();
 
 }
 
  
 
 void modules_geiger_setup()
 
 {
 
	// Pin setup
 
	DDRA &= ~(1 << DDA0);	// PA0 is an input for count interrupt
 
	DDRA |= (1 << DDA1);	// PA1 is an output for HV control
 
	DDRA |= (1 << DDA2);	// PA2 is an output for piezo
 
	
 
	geiger_on();	// Turn on HV supply
 
	
 
	// Setup for interrupt input on PA0 (PCINT0)
 
	PCMSK0 |= (1 << PCINT0);	// Enable interrupt for PA0
 
	PCICR |= (1 << PCIE0);		// Enable ioc section PCIF0
 
	
 
	// Setup for interrupt from Timer2
 
	ASSR &= ~(1 << EXCLK);	// Disable external clock input (enabling crystal use)
 
	ASSR |= (1 << AS2);		// Enable timer2 async mode with an external crystal	
 
	_delay_ms(100);			// Let external 32KHz crystal stabilize
 
	TCCR2B = 0x05;			// Set the prescaler to 128: 32.768kHz / 128 = 1Hz overflow
 
	TIFR2 = 0x01;			// Reset timer2 overflow interrupt flag
 
	TIMSK2 = 0x01;			// Enable interrupt on overflow
 
 }
 
  
 
  
 
  
 
 void modules_cameras_setup()
 
 {
 
	 lastPicture = time_millis();	 
 
	 
 
	 DDRA |= (1 << DDA0);	// Set PA0 to Output for Camera
 
	 DDRA |= (1 << DDA1);	// Set PA1 to Output for Camera
 
	 DDRA |= (1 << DDA2);	// Set PA2 to Output for Camera
 
	 DDRA |= (1 << DDA3);	// Set PA3 to Output for Camera
 
 }
 
  
 
 
 void modules_generic()
 
 {
 
	// Gathers data and performs functions for generic daughter board
 
	
 
	
 
 }
 
  
 
 void modules_sensors()
 
 {
 
	// Gathers data and performs functions for sensor daughter board
 
	sensors_readBoardTemp();		//Data Read
 
	sensors_readSpiTemp();			//Data Read	
 
	sensors_readPressure();			//Data Read
 
	//sensors_readHumid();			//Data Read
 
	sensors_readLux();				//Data Read
 
	 
 
 }
 
  
 
 void modules_geiger()
 
 {
 
	// No data gatering function needed for geiger daughter board
 
		// This is taken care of in interrupt (See geiger.c)
 
		
 
		
 
	//lastRefresh = time_millis();
 
	//if ((time_millis() - lastRefresh) > 1000000)
 
	//{
 
	//	geiger_refresh();	//Refreshes every 1000sec (16min)
 
	//}
 
		
 
	if ((time_millis() - geiger_getCountStart()) > 30)
 
	{
 
		led_off(1);
 
		io_piezoOn();
 
	}		
 
					
 
	  
 
 }
 
  
 
 void modules_cameras()
 
 {
 
	 
 
	// Gathers data and performs functions for cameras daughter board
 
		
 
		//cameras_readAccelXYZ();
 
		
 
		if ((time_millis() - lastPicture) > CAMERA_FREQ)
 
		{
 
			cameras_sendPulse();
 
			lastPicture = time_millis();
 
		}
 
		else if ((time_millis() - lastPicture) > CAMERA_PULSE)
 
		{
 
			PORTA &= ~(1 << PA0);	// Pull pin on usb low
 
			PORTA &= ~(1 << PA1);	// Pull pin on usb low
 
			PORTA &= ~(1 << PA2);	// Pull pin on usb low
 
			PORTA &= ~(1 << PA3);	// Pull pin on usb low
 
		}		
 
 } 
 
  
 
\ No newline at end of file
0 comments (0 inline, 0 general)