Changeset - e3153d5a767c
[Not reviewed]
default
0 6 0
ethanzonca@CL-ENS241-08.cedarville.edu - 12 years ago 2013-01-21 20:59:15
ethanzonca@CL-ENS241-08.cedarville.edu
Implemented new serial protocol and slave sensor data storage technique, appears to be functional.
6 files changed with 74 insertions and 87 deletions:
0 comments (0 inline, 0 general)
master/master/config.h
Show inline comments
 
/*
 
 * Master Firmware: Configuration
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
#ifndef CONFIG_H_
 
#define CONFIG_H_
 
 
// --------------------------------------------------------------------------
 
// Module config (master.c)
 
// --------------------------------------------------------------------------
 
 
//#define DEBUG_OUTPUT
 
 
#define F_CPU 11059200
 
#define MODULE_ID '1'
 
#define BOARDTEMP_ADDR 0x90
 
 
#define HEATER_THRESHOLD 70
 
 
// --------------------------------------------------------------------------
 
// Error Codes config (led.c, used throughout code)
 
// --------------------------------------------------------------------------
 
 
// SD Card
 
#define ERROR_SD_INIT 2
 
#define ERROR_SD_PARTITION 3
 
#define ERROR_SD_FILE 4
 
 
#define ERROR_XBEETIMEOUT 5
 
#define ERROR_NOXBEE 6
 
 
#define ERROR_CRAP 15
 
 
// --------------------------------------------------------------------------
 
// Slave Sensors config (slavesensors.c)
 
// --------------------------------------------------------------------------
 
 
// NOT USED. Could integrate into slavesensors.c setup function for configurability eventually.
 
// Currently manual configuration of sensors is done in slavesensors.c
 
#define SLAVE0_SENSORS BOARDTEMP
 
#define SLAVE1_SENSORS BOARDTEMP | HUMIDITY | TEMPERATURE | PRESSURE | AMBIENTLIGHT
 
#define SLAVE2_SENSORS BOARDTEMP | GEIGER
 
#define SLAVE3_SENSORS BOARDTEMP | CAMERA
 
#define SLAVE4_SENSORS NONE
 
#define SLAVE5_SENSORS NONE
 
#define SLAVE6_SENSORS NONE
 
#define SLAVE7_SENSORS NONE
 
 
// MAX_SLAVES should be one more than the number of slaves we actually have (loop ends when next slave first sensor is NONE)
 
#define MAX_SLAVES 8
 
#define MAX_SLAVE_SENSORS 8
 
#define MAX_NUM_SLAVES 5  // Maximum number of nodes in the system
 
#define MAX_NUM_SENSORS 20 // Maximum number of unique types of sensors in the system
 
 
// Node identifier of log destination xbee
 
#define XBEE_LOGDEST_NAME "HAB-LOGGER"
 
 
// --------------------------------------------------------------------------
 
// Command Parser config (serparser.c)
 
// --------------------------------------------------------------------------
 
 
// Maximum payload size of command
 
#define MAX_PAYLOAD_LEN 16
 
 
// Circular serial buffer size. Must be at least MAX_CMD_LEN + 5
 
#define BUFFER_SIZE 32 
 
 
// Public broadcast address
 
#define BROADCAST_ADDR 0 
 
 
 
// --------------------------------------------------------------------------
 
// GPS config (xxx.c)
 
// --------------------------------------------------------------------------
 
#define NMEABUFFER_SIZE 150
 
 
// --------------------------------------------------------------------------
 
// USART config (serial.c)
 
// --------------------------------------------------------------------------
 
 
#define USART0_BAUDRATE 115200
 
#define USART1_BAUDRATE 115200
 
 
 
// --------------------------------------------------------------------------
 
// AX.25 config (ax25.c)
 
// --------------------------------------------------------------------------
 

	
 
// TX delay in milliseconds
 
#define TX_DELAY      500
 

	
 
// Maximum packet delay
 
#define MAX_PACKET_LEN 512  // bytes
 
 

	
 
// --------------------------------------------------------------------------
 
// APRS config (aprs.c)
 
// --------------------------------------------------------------------------
 

	
 
// Set your callsign and SSID here. Common values for the SSID are
 
// (from http://zlhams.wikidot.com/aprs-ssidguide):
 
//
 
// - Balloons:  11
 
// - Cars:       9
 
// - Home:       0
 
// - IGate:      5
 
#define S_CALLSIGN      "KD8TDF"
 
#define S_CALLSIGN_ID   9 // 11
 

	
 
// Destination callsign: APRS (with SSID=0) is usually okay.
 
#define D_CALLSIGN      "APRS"
 
#define D_CALLSIGN_ID   0
 

	
 
// Digipeating paths:
 
// (read more about digipeating paths here: http://wa8lmf.net/DigiPaths/ )
 
// The recommended digi path for a balloon is WIDE2-1 or pathless. The default
 
// is pathless. Uncomment the following two lines for WIDE2-1 path:
 
#define DIGI_PATH1      "WIDE2"
 
#define DIGI_PATH1_TTL  1
 

	
 
// APRS comment: this goes in the comment portion of the APRS message. You
 
// might want to keep this short. The longer the packet, the more vulnerable
 
// it is to noise.
 
#define APRS_COMMENT    "[A-30.5 B45.64 C99542]"
 
 
// Transmit the APRS sentence every X milliseconds
 
#define APRS_TRANSMIT_PERIOD 20000
 

	
 

	
 
// --------------------------------------------------------------------------
 
// Logger config (logger.c)
 
// --------------------------------------------------------------------------
 
 
#define LOGGER_ID_EEPROM_ADDR 0x10
 
 
// Written to the beginning of every log file
 
#define LOGGER_HEADERTEXT "HAB Control Master - 1.0\n"
 
 
// Log to SD card every X milliseconds
 
#define LOGGER_RATE 1000 
 
 
// LED cycle indicator speed
 
#define LEDCYCLE_RATE 100 
 
 
#endif /* CONFIG_H_ */
 
\ No newline at end of file
master/master/lib/gps.c
Show inline comments
 
/*
 
* gpsMKa.c
 
*
 
* Created: 11/15/2012 12:02:38 PM
 
*  Author: mkanning
 
*/
 
 
#include <stdbool.h>
 
#include <avr/io.h>
 
#include <avr/interrupt.h>
 
#include "gps.h"
 
#include "serial.h"
 
#include "../config.h"
 
#include "led.h"
 
 
// Circular buffer for incoming data
 
uint8_t nmeaBuffer[NMEABUFFER_SIZE];
 
 
// Location of parser in the buffer
 
uint8_t nmeaBufferParsePosition = 0;
 
 
// Location of receive byte interrupt in the buffer
 
volatile uint16_t nmeaBufferDataPosition = 0;
 

	
 
// holds the byte ALREADY PARSED. includes starting character
 
int bytesReceived = 0;
 

	
 
//data (and checksum) of most recent transmission
 
char data[16];
 

	
 
//used to skip over bytes during parse
 
int skipBytes = 0;
 

	
 
//used to index data arrays during data collection
 
int numBytes = 0;
 

	
 
//variables to store data from transmission
 
//least significant digit is stored at location 0 of arrays
 
char tramsmissionType[7];
 

	
 
char timestamp[12];	//hhmmss.ss
 
char* get_timestamp() {
 
	return timestamp;
 
}
 
	
 
char latitude[14];	//lllll.lla
 
char* get_latitude() {
 
	return latitude;
 
}
 

	
 
char longitude[14];	//yyyyy.yyb
 
char* get_longitude() {
 
	return longitude;
 
}
 

	
 

	
 
char quality;		//quality for GGA and validity for RMC
 
char numSatellites[4];
 
char* getNumSatelites() {
 
	return numSatellites;
 
}
 

	
 
char hdop[6];		//xx.x
 
char* get_hdop() {
 
	return hdop;
 
}
 

	
 
char altitude[10];	//xxxxxx.x
 
char wgs84Height[8];	//sxxx.x
 
char lastUpdated[8];	//blank - included for testing
 
char stationID[8];	//blank - included for testing
 
char checksum[3];	//xx
 

	
 
char knots[8];		//xxx.xx
 
char* get_speedKnots() {
 
	return knots;
 
}
 

	
 
char course[8];		//xxx.x
 
char* get_course() {
 
	return course;
 
}
 
	
 
char dayofmonth[9];	//ddmmyy
 
char* get_dayofmonth() {
 
	return dayofmonth;
 
}
 

	
 
char variation[9];	//xxx.xb
 
int calculatedChecksum;
 
int receivedChecksum;
 

	
 
// transmission state machine
 
enum decodeState {
 
	//shared fields
 
	INITIALIZE=0,
 
	GET_TYPE,
 
	GPS_CHECKSUM,	//XOR of all the bytes between the $ and the * (not including the delimiters themselves), written in hexadecimal
 
	//GGA data fields
 
	GGA_TIME,
 
	GGA_LATITUDE,
 
	GGA_LONGITUDE,
 
	GGA_QUALITY,
 
	GGA_SATELLITES,
 
	GGA_HDOP,
 
	GGA_ALTITUDE,
 
	GGA_WGS84,
 
	GGA_LAST_UPDATE,
 
	GGA_STATION_ID,
 
	//RMC data fields
 
	RMC_TIME,
 
	RMC_VALIDITY,
 
	RMC_LATITUDE,
 
	RMC_LONGITUDE,
 
	RMC_KNOTS,
 
	RMC_COURSE,
 
	RMC_DATE,
 
	RMC_MAG_VARIATION,
 
	
 
}decodeState;
 

	
 

	
 
char debugBuff[128];
 

	
 
ISR(USART1_RX_vect)
 
{
 
	nmeaBuffer[nmeaBufferDataPosition % NMEABUFFER_SIZE] = UDR1;
 
	nmeaBufferDataPosition = (nmeaBufferDataPosition + 1) % NMEABUFFER_SIZE;
 
	//serial0_sendChar(UDR1);
 
	//snprintf(debugBuff, 32, "GPS: bdp: %d, bpp: %d decodestate: %u \r\n", nmeaBufferDataPosition, nmeaBufferParsePosition, decodeState);
 
	//serial0_sendString((debugBuff));
 
}
 

	
 

	
 
// Could inline if program space available
 
static void setParserState(uint8_t state)
 
{
 
	decodeState = state;
 
 
	
 
	// If resetting, clear vars
 
	if(state == INITIALIZE)
 
	{
 
		calculatedChecksum = 0;
 
	}
 
	
 
	// Every time we change state, we have parsed a byte
 
	nmeaBufferParsePosition = (nmeaBufferParsePosition + 1) % NMEABUFFER_SIZE;
 
}
 

	
 

	
 

	
 
//// MKa GPS transmission parser START
 
void parse_gps_transmission(void){
 
	
 
	// Pull byte off of the buffer
 
	char byte;
 
	
 
	
 
	
 
	while(nmeaBufferDataPosition != nmeaBufferParsePosition) {
 
	led_on(LED_ACTIVITY);
 
		
 
		byte = nmeaBuffer[nmeaBufferParsePosition];
 
		
 
		//snprintf(debugBuff, 64, "GPSParse: byte [%c] decodestate: %u bp: %u pp: %u\r\n",  byte, decodeState, nmeaBufferDataPosition, nmeaBufferParsePosition);
 
		//serial0_sendString((debugBuff));
 
		
 
		if(decodeState == INITIALIZE) //start of transmission sentence
 
		{
 
			if(byte == '$') {
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found $\r\n");
 
				#endif
 
				
 
				setParserState(GET_TYPE);
 
				numBytes = 0; //prep for next phases
 
				skipBytes = 0;
 
				calculatedChecksum = 0;
 
			}		
 
			
 
			else {
 
				setParserState(INITIALIZE);
 
			}
 
		}
 
	
 
		//parse transmission type
 
		else if (decodeState == GET_TYPE)
 
		{
 
			tramsmissionType[numBytes] = byte;
 
			numBytes++;
 
			
 
			#ifdef DEBUG_NMEA
 
			serial0_sendString("stored a type byte\r\n");
 
			#endif
 
			
 
			if(byte == ',') //end of this data type
 
			{
 
				tramsmissionType[5] = 0x00;
 
				
 
				if (tramsmissionType[2] == 'G' &&
 
				tramsmissionType[3] == 'G' &&
 
				tramsmissionType[4] == 'A')
 
				{
 
					setParserState(GGA_TIME);
 
					numBytes = 0;
 
				}
 
				else if (tramsmissionType[2] == 'R' &&
 
				tramsmissionType[3] == 'M' &&
 
				tramsmissionType[4] == 'C')
 
				{
 
					setParserState(RMC_TIME);
 
					numBytes = 0;
 
				}
 
				else //this is an invalid transmission type
 
				{
 
					setParserState(INITIALIZE);
 
				}
 
			}
 
			else {
 
				// continue
 
				setParserState(GET_TYPE);
 
			}
 
			
 
		}
 
	
 
		///parses GGA transmissions START
 
		/// $--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*xx
 
		//timestamp
 
		else if (decodeState == GGA_TIME)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				timestamp[4] = 0x00; // Cut off at 4 (no seconds) for APRS
 
				setParserState(GGA_LATITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found GGA time byte\r\n");
 
				#endif
 
				
 
				setParserState(GGA_TIME);
 
				timestamp[numBytes] = byte; //byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//latitude
 
		else if (decodeState == GGA_LATITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat skip byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1;
 
				setParserState(GGA_LATITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				
 
				latitude[7] = 0x00; // null terminate
 
				
 
				setParserState(GGA_LONGITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat byte\r\n");
 
				#endif
 
				
 
				latitude[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_LATITUDE);
 
			}
 
		}
 
	
 
		//longitude
 
		else if (decodeState == GGA_LONGITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long skip byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1;
 
				setParserState(GGA_LONGITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				longitude[8] = 0x00;
 
				setParserState(GGA_QUALITY);
 
				numBytes = 0; //prep for next phase of parse
 
				skipBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long byte\r\n");
 
				#endif
 
				
 
				longitude[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_LONGITUDE);
 
			}
 
		}
 
	
 
		//GGA quality
 
		else if (decodeState == GGA_QUALITY)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				setParserState(GGA_SATELLITES);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found quality byte\r\n");
 
				#endif
 
				
 
				quality = byte; //maybe reset if invalid data ??
 
				setParserState(GGA_QUALITY);
 
			}
 
		}
 
	
 
		//number of satellites
 
		else if (decodeState == GGA_SATELLITES)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				numSatellites[numBytes] = 0x00;
 
				setParserState(GGA_HDOP);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				numSatellites[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_SATELLITES);
 
			}
 
		}
 
	
 
		//HDOP
 
		else if (decodeState == GGA_HDOP)
 
		{
 
			if (byte == ',' ) //end of this data type
 
			{
 
				hdop[numBytes] = 0x00;
 
				setParserState(GGA_ALTITUDE);
 
				numBytes = 0; //prep for next phase of parse
 
				skipBytes = 0;
 
			}
 
@@ -453,225 +445,224 @@ void parse_gps_transmission(void){
 
		else if(decodeState == RMC_TIME)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				//timestamp[numBytes] = 0x00;
 
				setParserState(RMC_VALIDITY);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found time byte\r\n");
 
				#endif
 
				
 
				//timestamp[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(RMC_TIME);
 
			}
 
		}
 
	
 
		//validity
 
		// not needed? dupe gga
 
		else if(decodeState == RMC_VALIDITY)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				setParserState(RMC_LATITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found valid byte\r\n");
 
				#endif
 
				
 
				//quality = byte;
 
				numBytes++;
 
				setParserState(RMC_VALIDITY);
 
			}
 
		}
 
	
 
		//latitude RMC (we don't need this, commented out setter)
 
		else if(decodeState == RMC_LATITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat skip byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1; 
 
				setParserState(RMC_LATITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				setParserState(RMC_LONGITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat byte\r\n");
 
				#endif
 
				
 
				//latitude[numBytes]= byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(RMC_LATITUDE);
 
			}
 
		}
 
	
 
		//longitude RMC (we don't need this, commented out setter)
 
		else if(decodeState == RMC_LONGITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1; 
 
				setParserState(RMC_LONGITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				setParserState(RMC_KNOTS);
 
				skipBytes = 0;
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long byte\r\n");
 
				#endif
 
				
 
				//longitude[numBytes]= byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(RMC_LONGITUDE);
 
			}
 
		}
 
	
 
		//knots
 
		else if(decodeState == RMC_KNOTS)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				knots[numBytes] = 0x00;
 
				setParserState(RMC_COURSE);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_KNOTS);
 
				knots[numBytes]= byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//course
 
		else if(decodeState == RMC_COURSE)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				course[numBytes] = 0x00;
 
				setParserState(RMC_DATE);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_COURSE);
 
				course[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//date
 
		else if(decodeState == RMC_DATE)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				// Cut it off at day of month. Also has month and year if we ever need it.
 
				dayofmonth[2] = 0x00;
 
				setParserState(RMC_MAG_VARIATION);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_DATE);
 
				dayofmonth[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//magnetic variation
 
		else if(decodeState == RMC_MAG_VARIATION)
 
		{
 
			if (byte == '*') //end of this data type
 
			{
 
				variation[numBytes] = 0x00;
 
				setParserState(GPS_CHECKSUM);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_MAG_VARIATION);
 
				variation[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
		///parses RMC transmissions END
 
	
 
	
 
		//checksum
 
		else if (decodeState == GPS_CHECKSUM)
 
		{
 
			if (numBytes == 2) //end of data - terminating character ??
 
			{
 
				//checksum calculator for testing http://www.hhhh.org/wiml/proj/nmeaxor.html
 
				//TODO: must determine what to do with correct and incorrect messages
 
				receivedChecksum = checksum[0] + (checksum[1]*16);	//convert bytes to int
 
				if(calculatedChecksum==receivedChecksum)
 
				{
 
				
 
				}
 
				else
 
				{
 
				
 
				}
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("OMG GOT TO CHECKSUM!\r\n");
 
				#endif
 
				#endif
 
				
 
				serial0_sendString((debugBuff));
 
				setParserState(INITIALIZE);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(GPS_CHECKSUM);
 
				checksum[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
		else {
 
			setParserState(INITIALIZE);
 
		}
 
	
 
		if (decodeState!=GPS_CHECKSUM && decodeState!=INITIALIZE)	//want bytes between '$' and '*'
 
		{
 
			//input byte into running checksum
 
			XORbyteWithChecksum(byte);
 
		}
 
		led_off(LED_ACTIVITY);
 
	}	
 
	
 

	
 
}
 
/// MKa GPS transmission parser END
 

	
 
void XORbyteWithChecksum(uint8_t byte){
 
	calculatedChecksum ^= (int)byte; //this may need to be re-coded
 
}
 

	
master/master/lib/sensordata.c
Show inline comments
 
/*
 
 * Master Firmware: Sensor Data
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 

	
 
#include "../config.h"
 
#include "sensordata.h"
 

	
 
int16_t boardTemps[MAX_SLAVES];
 
uint16_t variousSensors[MAX_SLAVES * (MAX_SLAVE_SENSORS - 1)];
 
int16_t slaves[MAX_NUM_SLAVES][MAX_NUM_SENSORS];
 

	
 
void sensordata_setup() 
 
{
 
	for(int i=0; i<MAX_SLAVES; i++)
 
	{
 
		boardTemps[i] = 0;
 
	for(int i=0; i<MAX_NUM_SLAVES; i++) {
 
		for(int j=0; j<MAX_NUM_SLAVES; j++) {
 
			slaves[i][j] = -32768; // minimum value of 16 bit integer
 
		}
 
	}
 
}
 
 
void sensordata_set(uint8_t type, uint16_t value) 
 
void sensordata_set(uint8_t nodeID, uint8_t type, uint16_t value)
 
{
 
	variousSensors[type] = value;
 
}
 
 
uint16_t sensordata_get(uint8_t type) 
 
{
 
	return variousSensors[type];
 
	if(nodeID < MAX_NUM_SLAVES) {
 
		slaves[nodeID][type] = value;
 
	}	
 
}
 
 
void sensordata_setBoardTemp(uint8_t slaveID, int16_t value) 
 
uint16_t sensordata_get(uint8_t nodeID, uint8_t type) 
 
{
 
	boardTemps[slaveID] = value;
 
	// Avoid reading out of bad places!
 
	if(nodeID < MAX_NUM_SLAVES) {
 
		return slaves[nodeID][type];
 
	}
 
	else {
 
		return 0;
 
	}
 
}
 
 
int16_t sensordata_getBoardTemp(uint8_t slaveID)
 
{
 
	return boardTemps[slaveID];
 
}
 
\ No newline at end of file
master/master/lib/sensordata.h
Show inline comments
 
/*
 
 * Master Firmware: Sensor Data
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
 
#ifndef SENSORDATA_H_
 
#define SENSORDATA_H_
 
 
#include "slavesensors.h"
 
 
void sensordata_setup();
 
void sensordata_set(uint8_t type, uint16_t value);
 
uint16_t sensordata_get(uint8_t type);
 
void sensordata_set(uint8_t nodeID, uint8_t type, uint16_t value);
 
uint16_t sensordata_get(uint8_t nodeID, uint8_t type);
 
void sensordata_setBoardTemp(uint8_t slaveID, int16_t value);
 
int16_t sensordata_getBoardTemp(uint8_t slaveID);
 
 
#endif /* SENSORDATA_H_ */
 
\ No newline at end of file
master/master/lib/serparser.c
Show inline comments
 
/*
 
 * Master Firmware: Serial Parser
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
 
#include <avr/io.h>
 
#include <avr/interrupt.h>
 
#include "../config.h"
 
#include "serial.h"
 
#include "serparser.h"
 
#include "led.h"
 
 
// Circular buffer for incoming data
 
uint8_t buffer[BUFFER_SIZE];
 
 
// Location of parser in the buffer
 
uint8_t bufferParsePosition = 0;
 
 
// Location of receive byte interrupt in the buffer
 
volatile uint16_t bufferDataPosition = 0;
 
 
// Parser state
 
uint8_t parserState = STATE_RESET;
 
uint8_t lastParserState = STATE_RESET;
 
 
// Length of current payload data (and checksum)
 
uint8_t payloadLength = 0;
 
 
// Data and checksum of most recent transmission
 
char receivedPayload[MAX_PAYLOAD_LEN];
 
 
// Payload type ID of the sensor of most recent transmission
 
char receivedPayloadType = 0;
 
 
// Checksum to be calculated and then compared to the received checksum
 
char checksumCalc = 0;
 
 
// Accessors
 
uint8_t getPayloadLength() 
 
{
 
	return payloadLength;
 
}
 
uint8_t* getPayload() 
 
{
 
	return receivedPayload;
 
}
 
uint8_t getPayloadType() {
 
	return receivedPayloadType;
 
}
 
 
 
// Could inline if program space available
 
static void setParserState(uint8_t state)
 
{
 
	lastParserState = parserState;
 
	parserState = state;
 
	
 
	// If resetting, clear vars
 
	if(state == STATE_RESET) 
 
	{
 
		payloadLength = 0;
 
		checksumCalc = 0;
 
	}
 
	
 
	// Every time we change state, we have parsed a byte
 
	bufferParsePosition = (bufferParsePosition + 1) % BUFFER_SIZE;
 
}
 
 
// Receive data on USART
 
 
char debugBuff[16];
 
 
 
ISR(USART0_RX_vect)
 
{
 
	buffer[bufferDataPosition % BUFFER_SIZE] = UDR0;
 
	bufferDataPosition = (bufferDataPosition + 1) % BUFFER_SIZE;
 
	//sprintf(debugBuff, "bdp: %d, bpp: %d \r\n", bufferDataPosition, bufferParsePosition);
 
	//serial0_sendString((debugBuff)); 
 
}
 
 
 
 
 
#define DEBUG
 
//#define DEBUG
 
 
// Parse data from circular buffer
 
int serparser_parse(void)
 
{
 
	
 
	char byte;
 
 
	// Process first command (if any) on the circular buffer
 
	while(bufferDataPosition != bufferParsePosition)
 
	{
 
		byte = buffer[bufferParsePosition];
 
		
 
		// Reset 
 
		if(parserState == STATE_RESET)
 
		{
 
			if(byte == '[') // Start of frame; keep parsing
 
			{
 
				#ifdef DEBUG
 
				serial0_sendString("start\r\n");
 
				#endif
 
				setParserState(STATE_GETDATATYPE);
 
			}
 
			else // Not start of frame, reset
 
			{
 
				#ifdef DEBUG
 
				serial0_sendString("invalid\r\n");
 
				#endif
 
				setParserState(STATE_RESET);
 
				return PARSERESULT_NODATA; // no valid start bit; better luck next time. run the function the next time around the main loop.
 
			}
 
		}
 
		
 
		// Get payload type ID
 
		else if(parserState == STATE_GETDATATYPE)
 
		{
 
			#ifdef DEBUG
 
			serial0_sendString("type\r\n");
 
			#endif
 
			receivedPayloadType = byte; // Store the type of data receiving
 
			receivedPayloadType = byte - 0x30; // Store the type of data receiving
 
			checksumCalc += byte;
 
			setParserState(STATE_GETDATA);
 
		}
 
		
 
		// Get payload data
 
		else if(parserState == STATE_GETDATA)
 
		{		
 
			if (byte == ']') // End of frame
 
			{
 
				#ifdef DEBUG
 
				serial0_sendString("eof\r\n");
 
				sprintf(debugBuff, "%d B, sum=%d\r\n", payloadLength, checksumCalc);
 
				serial0_sendString((debugBuff));
 
				#endif
 
				
 
				receivedPayload[payloadLength] = 0; // null-terminate string for atoi
 
				
 
				setParserState(STATE_GETCHECKSUM);
 
				// Checksum is now after the close bracket to solve bug FS#29		
 
				
 
 
			}
 
			else // Still receiving data
 
			{
 
				#ifdef DEBUG
 
				serial0_sendString("data\r\n");
 
				#endif
 
				receivedPayload[payloadLength] = byte;
 
				payloadLength++;
 
				checksumCalc += byte;
 
				
 
				// Data buffer overrun protection
 
				if(payloadLength > MAX_PAYLOAD_LEN) {
 
					#ifdef DEBUG
 
					serial0_sendString("ovf\r\n");
 
					#endif
 
					setParserState(STATE_RESET);
 
					return PARSERESULT_FAIL;
 
				}
 
				else {
 
					// Set state. MUST call even though state is maintained to update parse position
 
					setParserState(STATE_GETDATA);
 
					return PARSERESULT_STILLPARSING;
 
				}
 
				
 
			}
 
 
		}
 
		else if(STATE_GETCHECKSUM)
 
		{
 
			// TODO: Compare checksums
 
			if(byte == checksumCalc) {
 
				#ifdef DEBUG
 
				serial0_sendString("check\r\n");
 
				#endif
 
				setParserState(STATE_RESET);
 
				return PARSERESULT_PARSEOK;
 
			}
 
			else {
 
				#ifdef DEBUG
 
				serial0_sendString("bcheck\r\n");
 
				#endif
 
				setParserState(STATE_RESET);
 
				
 
				return PARSERESULT_FAIL;
 
				return PARSERESULT_PARSEOK;
 
				// !!!!!!!!!!!!!DEBUGGGGG ignore checksum ///// return PARSERESULT_FAIL;
 
			}
 
			
 
			/*
 
			if(bufferParsePosition == bufferDataPosition)
 
			{
 
				// We are at the end of the line. No more data to parse.
 
				setParserState(STATE_RESET);
 
				return PARSERESULT_PARSEOK;
 
			}
 
			else
 
			{
 
				setParserState(STATE_RESET);
 
				// we could choose to keep parsing now, or parse the next message next loop around (better idea).
 
				// return now so we hit it the next time around
 
				return PARSERESULT_PARSEOK;
 
			}
 
			*/
 
		}			
 
	}
 
	return PARSERESULT_NODATA;
 
	
 
}
 
\ No newline at end of file
master/master/lib/slavesensors.c
Show inline comments
 
/*
 
 * Master Firmware: Slave Sensor Data Aquisition
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
#include <avr/io.h>
 
#include <stdbool.h>
 
#include "../config.h"
 
#include "serial.h"
 
#include "serparser.h"
 
#include "slavesensors.h"
 
#include "led.h"
 
#include "looptime.h"
 
#include <util/delay.h>
 
#include <avr/wdt.h>
 

	
 
uint8_t currentSlave = 0;
 
uint8_t currentSlaveSensor = 0;
 
 
uint16_t slaves[MAX_SLAVES][MAX_SLAVE_SENSORS];
 
 
bool requesting = false;
 
 
void slavesensors_setup() 
 
{
 
 
	
 
}
 

	
 
 
#define DEBUG_NETWORKSCAN
 
 
char* bufPtr = 0x00;
 
char debugBuf[64];
 
char slaveAddressLow[6][9];
 
char slaveAddressHigh[6][9];
 
char slaveAddressLow[MAX_NUM_SLAVES][9];
 
char slaveAddressHigh[MAX_NUM_SLAVES][9];
 
uint8_t loggerIndex = 255;
 
uint8_t nodeCount = 0;
 

	
 
void slavesensors_network_scan() {
 
	serial0_ioff();
 
	
 
	int atOK;
 
	
 
	#ifdef DEBUG_OUTPUT
 
	serial0_sendString("Beginning network scan...\r\n\r\n");
 
	#endif
 
	
 
	_delay_ms(500); // xbee warmup
 
	wdt_reset();
 
	
 
	led_on(LED_ACTIVITY);
 
	atOK = slavesensors_enterAT();
 

	
 
	char nameString[20] = "NONE";
 
	
 
	char slaveNames[6][16]; // Hold 16-char addresses of max 6 nodes, we only need them for debug so they are local 
 
	
 
	
 
	char slaveNames[MAX_NUM_SLAVES][16]; // Hold 16-char addresses of max MAX_NUM_SLAVES nodes, local so the memory can be reused
 
	
 
	// wait for OK
 
	//todo
 
	if(atOK == 0)
 
	{
 
		led_on(LED_CYCLE);
 
		serial0_sendString("ATND");
 
		serial0_sendChar(0x0D);
 
		
 
		// wait for scan to complete
 
		uint16_t scanStart = time_millis(); 		
 
		while(!serial0_hasChar()) {
 
			if(time_millis() - scanStart > 5000) {
 
				led_errorcode(ERROR_XBEETIMEOUT);
 
				return;
 
			}
 
			wdt_reset();
 
		}
 
		// Scan data end when newline by itself ("")	
 
		int lineCount = 0;	
 
	
 
		while(1) {
 
			bufPtr = serial0_readLine();
 

	
 
			// If we're starting a new block but got a newline instead, we're done!
 
			if(lineCount == 0 && strcmp(bufPtr, "") == 0) {
 
				break;			
 
			}
 
			
 
			if(lineCount == 1) {
 
				strcpy(slaveAddressHigh[nodeCount], bufPtr);
 
			}
 
			else if(lineCount == 2) {
 
				strcpy(slaveAddressLow[nodeCount], bufPtr);
 
			}
 
			else if(lineCount == 3) {
 
				strcpy(nameString, bufPtr);
 
				strcpy(slaveNames[nodeCount], bufPtr);
 
			}
 
			
 
			// If we've finished one chunk (including the newline after it). Can't be else if because it controls increment.
 
			if(lineCount == 9) {
 
				// bufPtr should be null at this point, because we read in a newlinem after one chunk
 
				// bufPtr should be null at this point, because we read in a newline after one chunk
 
				nodeCount++;
 
				lineCount = 0;
 
			}
 
			else {
 
				lineCount++;
 
			}
 

	
 
		}		
 

	
 
		slavesensors_exitAT();
 

	
 
	}
 
	
 
	// Display number of found nodes on spinning indicator
 
	switch(nodeCount) {
 
		case 0:
 
			break;
 
		case 3:
 
			led_on(LED_ACT2);
 
			_delay_ms(100);
 
		case 2:
 
			led_on(LED_ACT1);
 
			_delay_ms(100);	
 
		case 1:
 
			led_on(LED_ACT0);
 
			_delay_ms(100);
 
	}
 
	
 
	led_on(LED_SIDEBOARD);
 
	_delay_ms(200);
 
	led_off(LED_SIDEBOARD);
 

	
 
	#ifdef DEBUG_OUTPUT
 
	
 
	char debugBuf[64];
 
	serial0_sendString("Discovered: \r\n");
 
	for(int i=0; i<nodeCount; i++) {
 
		snprintf(debugBuf, 64, "  %s - %s%s\r\n", slaveNames[i],slaveAddressHigh,slaveAddressLow[i]);
 
		serial0_sendString(debugBuf);
 
	}
 
	serial0_sendString("\r\n");
 
	if(atOK != 0) {
 
		serial0_sendString("AT mode failed \r\n");
 
	}
 
	
 
	#endif
 
	
 
	for(int i=0; i<nodeCount; i++) 
 
	{
 
		if(strcmp(slaveNames[i], XBEE_LOGDEST_NAME) == 0) 
 
		{
 
			loggerIndex = i;
 
		}
 
	}
 
	
 
	slavesensors_selectlogger();
 
	
 
	serial0_ion();
 
}
 
 
void slavesensors_selectnode(uint8_t nodeIndex)
 
{
 
	char tmpBuf[23];
 
	
 
	// If we can get into AT mode
 
	if(slavesensors_enterAT() == 0) {
 
		
 
		snprintf(tmpBuf, 23, "ATDH %s%c",slaveAddressHigh[nodeIndex], 0x0D);
 
		serial0_sendString(tmpBuf);
 
		
 
		if(xbeeIsOk() != 0) {
 
			led_errorcode(ERROR_NOXBEE);
 
			return;
 
		}
 
		
 
		snprintf(tmpBuf, 23, "ATDL %s%c",slaveAddressLow[nodeIndex], 0x0D);
 
		serial0_sendString(tmpBuf);
 
		
 
		if(xbeeIsOk() != 0) {
 
			led_errorcode(ERROR_NOXBEE);
 
			return;
 
		}
 
		
 
		slavesensors_exitAT();
 
	}
 
	return;
 
}
 
 
void slavesensors_selectlogger() 
 
{
 
	if(loggerIndex != 255) {
 
		slavesensors_selectnode(loggerIndex);
 
	}	
 
}
 
 
void slavesensors_exitAT() 
 
{
 
	// Exit AT
 
	serial0_sendString("ATCN");
 
	serial0_sendChar(0x0D);
 
	xbeeIsOk(); // wait for OK
 
}
 
 
// Enter AT mode. Leaves "OK" on the buffer.
 
int slavesensors_enterAT() 
 
{
 
	// Delay guard time
 
	_delay_ms(1);
 
	
 
	// Enter AT mode
 
	serial0_sendChar('+'); // Enter AT mode
 
	serial0_sendChar('+');
 
	serial0_sendChar('+');
 
	
 
	// Wait 1ms until we get "OK"
 
	int atStart = time_millis();
 
	while(!serial0_hasChar()) {
 
		if(time_millis() - atStart > 500) {
 
			led_errorcode(ERROR_XBEETIMEOUT);
 
			wdt_reset();
 
			return 1;
 
		}
 
	};	
 
	
 
	return xbeeIsOk();
 
 
}
 
 
int xbeeIsOk() 
 
{
 
	char* tmppntr = serial0_readLine();
 
	if(strcmp(tmppntr, "OK") == 0)
 
	{
 
		return 0;
 
	}
 
	else
 
	{
 
		led_errorcode(ERROR_NOXBEE);
 
		return 1;
 
	}
 
}
 
 
 
 
bool slavesensors_isrequesting() 
 
{
 
	return requesting;	
 
}
 
 
void slavesensors_startprocess() 
 
{
 
	requesting = true;
 
	slavesensors_request();		
 
}
 
 
// TODO: inline. static.
 
void slavesensors_request() 
 
{
 
	//slavesensors_selectnode(currentSlave);
 
	serial_sendCommand("@"); // Request data!
 
}
 
 
 
int numValues = 0; // number of values that the slave is about to send (testing)
 
int numReadingsToExpect = 0; // number of values that the slave is about to send (testing)
 
 
 
// TODO: needs to skip logger!
 
void slavesensors_process(uint8_t parseResult) 
 
{
 
	if(!requesting) {
 
		// we got a command when we didn't request anything. probably skip it.
 
		return;
 
	}
 
	
 
	// TODO: timeout. If we're at NODATA for a long time and we are requesting, that's an issue.
 
	else if(parseResult == PARSERESULT_NODATA) {
 
		// Wait for data
 
	}
 
	
 
	// Finished reception of a message (one sensor data value). If not finished, send out command to get the next one
 
	else if(parseResult == PARSERESULT_PARSEOK)
 
	{
 
		// We got some data, let's handle it
 
		// ASCII payload
 
		uint8_t len = getPayloadLength();
 
		uint8_t* load = getPayload();
 
		
 
		uint8_t type = getPayloadType();
 

	
 
		
 
		uint16_t parsedVal = atoi(load);
 
		
 
		// Store data in structure
 
		//sensordata_set(slaves[currentSlave][currentSlaveSensor], parsedVal);
 
		
 
		// If we finished all sensors for all slaves
 
		if(currentSlave >= nodeCount && currentSlaveSensor >= numValues)
 
		{
 

	
 
		// Special case for slave telling us how many things we're about to get		
 
		if(type + 0x30 == '@') {
 
			serial0_sendString("Got an awesome count!\r\n");
 
			serial0_sendChar(parsedVal + 0x30);
 
			serial0_sendString("\r\n");
 
			numReadingsToExpect = parsedVal;
 
			currentSlave = 0;
 
			currentSlaveSensor = 0;
 
			requesting = false;
 
			requesting = true;
 
		}
 
		// If we finished up one slave, go to the next
 
		else if(currentSlaveSensor >= numValues) 
 
		{
 
			currentSlave++;
 
			currentSlaveSensor = 0;
 
			requesting = true;
 
			slavesensors_request();
 
		}
 
		// If we haven't finished a slave (or all of them), just get the next sensor of the current slave
 
		else
 
		{
 
			// request data for the current sensor of the current slave
 
			currentSlaveSensor++;
 
			requesting = true;
 
			slavesensors_request();	
 
		else {
 
		
 
			// Store data in structure
 
			sensordata_set(currentSlave,type,parsedVal);
 
			serial0_sendString("Stored some sexy data!\r\n");
 
		
 
			// If we finished all sensors for all slaves
 
			if(currentSlave >= nodeCount && currentSlaveSensor >= numReadingsToExpect)
 
			{
 
				currentSlave = 0;
 
				currentSlaveSensor = 0;
 
				requesting = false;
 
			}
 
			// If we finished up one slave, go to the next
 
			else if(currentSlaveSensor >= (numReadingsToExpect-1)) 
 
			{
 
				currentSlave++;
 
				currentSlaveSensor = 0;
 
				requesting = true;
 
				slavesensors_request();
 
			}
 
			// If we haven't finished a slave (or all of them), just get the next sensor of the current slave
 
			else
 
			{
 
				// request data for the current sensor of the current slave
 
				currentSlaveSensor++;
 
				requesting = true;
 
				//slavesensors_request();	 slaves now send all values at once, we don't need to keep requesting
 
			}
 
		}
 
	}
 
	
 
	// If fail, try retransmit. Or we could skip and hit it next time.
 
	// TODO: Maximum number of retransmissions
 
	else if(parseResult == PARSERESULT_FAIL) {
 
		if(requesting) {
 
			slavesensors_request();	// re-request
 
		}			
 
	}
 
	
 
	
 
	else if(parseResult == PARSERESULT_STILLPARSING)
 
	{
 
		return; // do nothing
 
	}
 
	else {
 
		// something is terribly wrong!
 
		return;
 
	}
 
}		
 
\ No newline at end of file
0 comments (0 inline, 0 general)