Changeset - f859ce69ebdb
[Not reviewed]
default
0 4 0
kripperger@CL-SEC241-09.cedarville.edu - 12 years ago 2013-02-01 17:06:48
kripperger@CL-SEC241-09.cedarville.edu
Master comms
4 files changed with 151 insertions and 115 deletions:
0 comments (0 inline, 0 general)
slave/slave/lib/i2c.h
Show inline comments
 
@@ -60,6 +60,6 @@ void i2c_write(unsigned char addr, unsig
 
unsigned char i2c_read(unsigned char addr, unsigned char reg);
 
 
/////////////////added for humidity
 
unsigned char i2c_read16(unsigned char addr);
 
uint16_t i2c_read16(unsigned char addr);
 
 
#endif /* I2C_H_ */
 
\ No newline at end of file
slave/slave/lib/masterComm.c
Show inline comments
 
@@ -64,15 +64,47 @@ void masterComm_types()
 
}
 
 
 
void masterComm_packetSend_unsigned(uint8_t id, uint32_t data)
 
{
 
	serial0_sendChar('[');
 
	snprintf(buff2,64,"%u%u",id,data);
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');
 
	serial0_sendChar(masterComm_checksum(buff2));
 
}
 
 
void masterComm_packetSend_signed(uint8_t id, int32_t data)
 
{
 
	serial0_sendChar('[');
 
	snprintf(buff2,64,"%u%d",id,data);
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');
 
	serial0_sendChar(masterComm_checksum(buff2));
 
}
 
 
 
 
void masterComm_modules()
 
{
 
	// Send BoardTemperature (Common for all modules)
 
	// Send Board Temperature (Common for all modules)
 
	masterComm_packetSend_signed(0,sensors_getBoardTemp());
 
 
	
 
	// Send Heater Status (Common for all modules)
 
	serial0_sendChar('[');
 
	snprintf(buff2,64,"0%u",sensors_getBoardTemp());
 
	snprintf(buff2,64,"1%u",/*Heater Status Function Here */2);
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');	
 
	serial0_sendChar(masterComm_checksum(buff2));	
 
	
 
	// Send Battery Level (Common for all modules)
 
	serial0_sendChar('[');
 
	snprintf(buff2,64,"2%u",/*Heater Status Function Here */2);
 
	serial0_sendString(buff2);
 
	serial0_sendChar(']');	
 
	serial0_sendChar(masterComm_checksum(buff2));	
 
	
 
	
 
	// Send module specific sensor readings
 
	switch(io_getModuleId())
 
	{
slave/slave/lib/masterComm.h
Show inline comments
 
@@ -10,11 +10,15 @@
 
 
char masterComm_checksum(const char* stringPtr);
 
 
void masterComm_types();	// Calculates the number of types the module has
 
void masterComm_modules();	// Sends sensor data depending on module
 
void masterComm_types();		// Calculates the number of types the module has
 
 
void masterComm_packetSend_unsigned(uint8_t id, uint32_t data);	//Creates the sensor specific packets and sends them
 
void masterComm_packetSend_signed(uint8_t id, int32_t data);
 
 
void masterComm_modules();		// Sends sensor data depending on module
 
 
void masterComm_checkParser();	// Runs parser and checks for data request
 
void masterComm_send();		// Sends data after being requested
 
void masterComm_send();			// Sends data after being requested
 
 
 
slave/slave/lib/sensors.c
Show inline comments
 
@@ -94,116 +94,116 @@ void sensors_setupPressure()
 
	md = i2c_read(PRESSURE_ADDR, 0xBE);
 
	md = md << 8;
 
	md = md | i2c_read(PRESSURE_ADDR, 0xBF);
 
}
 

	
 
void sensors_readSpiTemp()
 
{
 
	// Select TEMP wait 100 microseconds then read four bytes
 
	SELECT_TEMP;
 
	_delay_us(100);
 
	uint8_t one = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t two = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t three = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t four = send_spi(0xFF);
 
	DESELECT_TEMP;
 
	
 
	int16_t temperature = ((one<<4)|(two>>4));	// Shift and place into larger int. (Cuts off Decimal)
 
	temperature = (temperature & (0x0800)) ? (temperature & 0xF000) : temperature;	// Sign extend
 
	
 
	//int16_t temperature = ((one<<6)|(two>>2));	// Shift and place into larger int. (Includes Decimal)
 
	//temperature = (temperature & (0x2000)) ? (temperature & 0xC000) : temperature;	// Sign extend
 
	
 
	temperature = (two & 0x01) ? 0x00DE : temperature;	// Error Condition. If error is detected output is set to 222 degrees (0x00DE)
 
	
 
	// Note: Temperature still needs to be scaled in order to be accurate (eg. boil water). Do this before implementing.
 
	spiTemp = temperature;
 
}
 

	
 
void sensors_readBoardTemp()
 
{
 
}
 
 
void sensors_readSpiTemp()
 
{
 
	// Select TEMP wait 100 microseconds then read four bytes
 
	SELECT_TEMP;
 
	_delay_us(100);
 
	uint8_t one = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t two = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t three = send_spi(0xFF);
 
	_delay_us(100);
 
	uint8_t four = send_spi(0xFF);
 
	DESELECT_TEMP;
 
	
 
	int16_t temperature = ((one<<4)|(two>>4));	// Shift and place into larger int. (Cuts off Decimal)
 
	temperature = (temperature & (0x0800)) ? (temperature & 0xF000) : temperature;	// Sign extend
 
	
 
	//int16_t temperature = ((one<<6)|(two>>2));	// Shift and place into larger int. (Includes Decimal)
 
	//temperature = (temperature & (0x2000)) ? (temperature & 0xC000) : temperature;	// Sign extend
 
	
 
	temperature = (two & 0x01) ? 0x00DE : temperature;	// Error Condition. If error is detected output is set to 222 degrees (0x00DE)
 
	
 
	// Note: Temperature still needs to be scaled in order to be accurate (eg. boil water). Do this before implementing.
 
	spiTemp = temperature;
 
}
 
 
void sensors_readBoardTemp()
 
{
 
	boardTemp = i2c_read(BOARDTEMP_ADDR, 0x00);		// Read only the first byte of data (we don't need the resolution here)
 
	boardTemp = ((boardTemp*18)/10) + (32);			// Converting Celsius to Fahrenheit
 
	boardTemp = boardTemp - 3;						// Linear offset
 
}
 

	
 
void sensors_readPressure()
 
{
 
	i2c_write(0xEE, 0xF4, 0x2E);				//write 0x2E (temp) into 0xF4 (control register), (write is 0xEE)
 
	_delay_us(4500);							//wait 4.5 ms
 
	ut = i2c_read(PRESSURE_ADDR, 0xF6);
 
	ut = ut << 8;
 
	ut = ut | i2c_read(PRESSURE_ADDR, 0xF7);	//ut = MSB<<8 + LSB
 
	
 
	i2c_write(0xEE, 0xF4, 0x34);				//write 0x34 (pressure) into 0xF4 (control register), (write is 0xEE)
 
	_delay_us(4500);							//wait 4.5 ms
 
	up = i2c_read(PRESSURE_ADDR, 0xF6);
 
	up = up << 8;
 
	up = up | i2c_read(PRESSURE_ADDR, 0xF7);	//up = (MSB<<16 + LSB<<8 + XLSB(NOT USED)) >> (8-oss)
 
	
 
	//calculate true temperature
 
	x1 = ((ut - ac6) * ac5) >> 15;
 
	x2 = (mc << 11) / (x1 + md);
 
	b5 = x1 + x2;
 
	trueTemp = (b5 + 8) >> 4;
 
	
 
	//calculate b3
 
	b6 = b5 - 4000;
 
	x1 = (b2 * (b6 * b6) >> 12) >> 11;
 
	x2 = (ac2 * b6) >> 11;
 
	x3 = x1 + x2;
 
	b3 = ((ac1 * 4 + x3) + 2) / 4;
 
	
 
	//calculate b4
 
	x1 = (ac3 * b6) >> 16;
 
	x2 = (b1 * ((b6 * b6) >> 12)) >> 16;
 
	x3 = ((x1 + x2) + 2) >> 2;
 
	b4 = (ac4 * (x3 + 32768)) >> 15;
 
	
 
	b7 = (up - b3) * 50000;
 
	
 
	if (b7 < 0x80000000)
 
	{
 
		pressure = (b7 << 1) / b4;
 
	}
 
	
 
	else
 
	{
 
		pressure = (b7 / b4) << 1;
 
	}
 
	
 
	x1 = (pressure >> 8) * (pressure >> 8);
 
	x1 = (x1 * 3038) >> 16;
 
	x2 = (-7357 * pressure) >> 16;
 
	pressure += (x1 + x2 + 3791) >> 4;				//This is the final value for our pressure
 
}
 

	
 
void sensors_readHumid()
 
{
 
	humid = i2c_read16(HUMID_ADDR);
 
	
 
	//calculations to relative humidity: humid = (humid/((2^14) - 1))*100%       >> is divide by power, << is multiply by power, 2^14-1 = 16383
 
	humid = (humid / 16383) * 100;
 
}
 

	
 
void sensors_readLight()
 
{
 
	// FOR FIRST BYTE:
 
	light = i2c_read(LIGHT_ADDR, 0x03);
 
	// exponent = 8xE3 + 4xE2 + 2xE1 + E0
 
	// mantissa = 8xM7 + 4xM6 + 2xM5 + M4
 
	// light = 2^(exponent)*mantissa*0.72
 

	
 
	// FOR BOTH BYTES:
 
	// light = light << 4;
 
	// light = light | (0x0F & i2c_read(LIGHT_ADDR, 0x04));  //  This can be used to read in the 4 LSBs from the second register
 
	// exponent = 8xE3 + 4xE2 + 2xE1 + E0
 
	// mantissa = 128xM7 + 64xM6 + 32xM5 + 16xM4 + 8xM3 + 4xM2 + 2xM1 + M0
 
	// light = 2^(exponent)*mantissa*0.045
 
}
 

	
 
	boardTemp = boardTemp - 3;						// Linear offset
 
}
 
 
void sensors_readPressure()
 
{
 
	i2c_write(0xEE, 0xF4, 0x2E);				//write 0x2E (temp) into 0xF4 (control register), (write is 0xEE)
 
	_delay_us(4500);							//wait 4.5 ms
 
	ut = i2c_read(PRESSURE_ADDR, 0xF6);
 
	ut = ut << 8;
 
	ut = ut | i2c_read(PRESSURE_ADDR, 0xF7);	//ut = MSB<<8 + LSB
 
	
 
	i2c_write(0xEE, 0xF4, 0x34);				//write 0x34 (pressure) into 0xF4 (control register), (write is 0xEE)
 
	_delay_us(4500);							//wait 4.5 ms
 
	up = i2c_read(PRESSURE_ADDR, 0xF6);
 
	up = up << 8;
 
	up = up | i2c_read(PRESSURE_ADDR, 0xF7);	//up = (MSB<<16 + LSB<<8 + XLSB(NOT USED)) >> (8-oss)
 
	
 
	//calculate true temperature
 
	x1 = ((ut - ac6) * ac5) >> 15;
 
	x2 = (mc << 11) / (x1 + md);
 
	b5 = x1 + x2;
 
	trueTemp = (b5 + 8) >> 4;
 
	
 
	//calculate b3
 
	b6 = b5 - 4000;
 
	x1 = (b2 * (b6 * b6) >> 12) >> 11;
 
	x2 = (ac2 * b6) >> 11;
 
	x3 = x1 + x2;
 
	b3 = ((ac1 * 4 + x3) + 2) / 4;
 
	
 
	//calculate b4
 
	x1 = (ac3 * b6) >> 16;
 
	x2 = (b1 * ((b6 * b6) >> 12)) >> 16;
 
	x3 = ((x1 + x2) + 2) >> 2;
 
	b4 = (ac4 * (x3 + 32768)) >> 15;
 
	
 
	b7 = (up - b3) * 50000;
 
	
 
	if (b7 < 0x80000000)
 
	{
 
		pressure = (b7 << 1) / b4;
 
	}
 
	
 
	else
 
	{
 
		pressure = (b7 / b4) << 1;
 
	}
 
	
 
	x1 = (pressure >> 8) * (pressure >> 8);
 
	x1 = (x1 * 3038) >> 16;
 
	x2 = (-7357 * pressure) >> 16;
 
	pressure += (x1 + x2 + 3791) >> 4;				//This is the final value for our pressure
 
}
 
 
void sensors_readHumid()
 
{
 
	humid = i2c_read16(HUMID_ADDR);
 
	
 
	//calculations to relative humidity: humid = (humid/((2^14) - 1))*100%       >> is divide by power, << is multiply by power, 2^14-1 = 16383
 
	humid = (humid / 16383) * 100;
 
}
 
 
void sensors_readLight()
 
{
 
	// FOR FIRST BYTE:
 
	light = i2c_read(LIGHT_ADDR, 0x03);
 
	// exponent = 8xE3 + 4xE2 + 2xE1 + E0
 
	// mantissa = 8xM7 + 4xM6 + 2xM5 + M4
 
	// light = 2^(exponent)*mantissa*0.72
 
 
	// FOR BOTH BYTES:
 
	// light = light << 4;
 
	// light = light | (0x0F & i2c_read(LIGHT_ADDR, 0x04));  //  This can be used to read in the 4 LSBs from the second register
 
	// exponent = 8xE3 + 4xE2 + 2xE1 + E0
 
	// mantissa = 128xM7 + 64xM6 + 32xM5 + 16xM4 + 8xM3 + 4xM2 + 2xM1 + M0
 
	// light = 2^(exponent)*mantissa*0.045
 
}
 
 
int16_t sensors_getSpiTemp(void)	// Gets spi temperature from variable
 
{
 
	return spiTemp;
 
@@ -219,7 +219,7 @@ int32_t sensors_getPressure(void)	// Get
 
	return pressure;
 
}
 
 
int sensors_getHumid(void)			// Gets relative humidity from variable
 
uint16_t sensors_getHumid(void)			// Gets relative humidity from variable
 
{
 
	return humid;
 
}
0 comments (0 inline, 0 general)