Files @ f1a2d85da29b
Branch filter:

Location: therm/drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sin_f32.c - annotation

Ethan Zonca
Bootloader is now the top menu item, and menu defaults to second item. System resets on flash erase.
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
ab7abb62e433
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
*    
* $Date:        17. January 2013
* $Revision: 	V1.4.1
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_sin_f32.c    
*    
* Description:	Fast sine calculation for floating-point values.   
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE. 
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFastMath    
 */

/**    
 * @defgroup sin Sine    
 *    
 * Computes the trigonometric sine function using a combination of table lookup   
 * and cubic interpolation.  There are separate functions for   
 * Q15, Q31, and floating-point data types.   
 * The input to the floating-point version is in radians while the   
 * fixed-point Q15 and Q31 have a scaled input with the range   
 * [0 +0.9999] mapping to [0 2*pi).  The fixed-point range is chosen so that a
 * value of 2*pi wraps around to 0.
 *   
 * The implementation is based on table lookup using 256 values together with cubic interpolation.   
 * The steps used are:   
 *  -# Calculation of the nearest integer table index   
 *  -# Fetch the four table values a, b, c, and d     
 *  -# Compute the fractional portion (fract) of the table index.   
 *  -# Calculation of wa, wb, wc, wd    
 *  -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>   
 *   
 * where   
 * <pre>    
 *    a=Table[index-1];    
 *    b=Table[index+0];    
 *    c=Table[index+1];    
 *    d=Table[index+2];    
 * </pre>   
 * and   
 * <pre>    
 *    wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;    
 *    wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;    
 *    wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;    
 *    wd=(1/6)*fract.^3 - (1/6)*fract;    
 * </pre>    
 */

/**    
 * @addtogroup sin    
 * @{    
 */


/**   
 * \par    
 * Example code for the generation of the floating-point sine table:
 * <pre>
 * tableSize = 256;    
 * for(n = -1; n < (tableSize + 1); n++)    
 * {    
 *	sinTable[n+1]=sin(2*pi*n/tableSize);    
 * }</pre>    
 * \par    
 * where pi value is  3.14159265358979    
 */

static const float32_t sinTable[259] = {
  -0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f,
  0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
  0.122410677373409270f, 0.146730467677116390f,
  0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
  0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
  0.313681751489639280f, 0.336889863014221190f,
  0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
  0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
  0.492898195981979370f, 0.514102756977081300f,
  0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
  0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
  0.653172850608825680f, 0.671558976173400880f,
  0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
  0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
  0.788346409797668460f, 0.803207516670227050f,
  0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
  0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
  0.893224298954010010f, 0.903989315032958980f,
  0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
  0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
  0.963776051998138430f, 0.970031261444091800f,
  0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
  0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
  0.997290432453155520f, 0.998795449733734130f,
  0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
  0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
  0.992479562759399410f, 0.989176511764526370f,
  0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
  0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
  0.949528157711029050f, 0.941544055938720700f,
  0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
  0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
  0.870086967945098880f, 0.857728600502014160f,
  0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
  0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
  0.757208824157714840f, 0.740951120853424070f,
  0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
  0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
  0.615231573581695560f, 0.595699310302734380f,
  0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
  0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
  0.449611335992813110f, 0.427555084228515630f,
  0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
  0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
  0.266712754964828490f, 0.242980182170867920f,
  0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
  0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
  0.073564566671848297f, 0.049067676067352295f,
  0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f,
  -0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
  -0.122410677373409270f, -0.146730467677116390f,
  -0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
  -0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
  -0.313681751489639280f, -0.336889863014221190f,
  -0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
  -0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
  -0.492898195981979370f, -0.514102756977081300f,
  -0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
  -0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
  -0.653172850608825680f, -0.671558976173400880f,
  -0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
  -0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
  -0.788346409797668460f, -0.803207516670227050f,
  -0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
  -0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
  -0.893224298954010010f, -0.903989315032958980f,
  -0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
  -0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
  -0.963776051998138430f, -0.970031261444091800f,
  -0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
  -0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
  -0.997290432453155520f, -0.998795449733734130f,
  -0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
  -0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
  -0.992479562759399410f, -0.989176511764526370f,
  -0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
  -0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
  -0.949528157711029050f, -0.941544055938720700f,
  -0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
  -0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
  -0.870086967945098880f, -0.857728600502014160f,
  -0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
  -0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
  -0.757208824157714840f, -0.740951120853424070f,
  -0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
  -0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
  -0.615231573581695560f, -0.595699310302734380f,
  -0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
  -0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
  -0.449611335992813110f, -0.427555084228515630f,
  -0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
  -0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
  -0.266712754964828490f, -0.242980182170867920f,
  -0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
  -0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
  -0.073564566671848297f, -0.049067676067352295f,
  -0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f
};


/**   
 * @brief  Fast approximation to the trigonometric sine function for floating-point data.   
 * @param[in] x input value in radians.   
 * @return  sin(x).   
 */

float32_t arm_sin_f32(
  float32_t x)
{
  float32_t sinVal, fract, in;                   /* Temporary variables for input, output */
  int32_t index;                                 /* Index variable */
  uint32_t tableSize = (uint32_t) TABLE_SIZE;    /* Initialise tablesize */
  float32_t wa, wb, wc, wd;                      /* Cubic interpolation coefficients */
  float32_t a, b, c, d;                          /* Four nearest output values */
  float32_t *tablePtr;                           /* Pointer to table */
  int32_t n;
  float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
  float32_t oneminusfractby2;
  float32_t frby2xfrsq, frby6xfrsq;

  /* input x is in radians */
  /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
  in = x * 0.159154943092f;

  /* Calculation of floor value of input */
  n = (int32_t) in;

  /* Make negative values towards -infinity */
  if(x < 0.0f)
  {
    n = n - 1;
  }

  /* Map input value to [0 1] */
  in = in - (float32_t) n;

  /* Calculation of index of the table */
  index = (uint32_t) (tableSize * in);

  /* fractional value calculation */
  fract = ((float32_t) tableSize * in) - (float32_t) index;

  /* Checking min and max index of table */
  if(index < 0)
  {
    index = 0;
  }
  else if(index > 256)
  {
    index = 256;
  }

  /* Initialise table pointer */
  tablePtr = (float32_t *) & sinTable[index];

  /* Read four nearest values of input value from the sin table */
  a = tablePtr[0];
  b = tablePtr[1];
  c = tablePtr[2];
  d = tablePtr[3];

  /* Cubic interpolation process */
  fractsq = fract * fract;
  fractby2 = fract * 0.5f;
  fractby6 = fract * 0.166666667f;
  fractby3 = fract * 0.3333333333333f;
  fractsqby2 = fractsq * 0.5f;
  frby2xfrsq = (fractby2) * fractsq;
  frby6xfrsq = (fractby6) * fractsq;
  oneminusfractby2 = 1.0f - fractby2;
  wb = fractsqby2 - fractby3;
  wc = (fractsqby2 + fract);
  wa = wb - frby6xfrsq;
  wb = frby2xfrsq - fractsq;
  sinVal = wa * a;
  wc = wc - frby2xfrsq;
  wd = (frby6xfrsq) - fractby6;
  wb = wb + oneminusfractby2;

  /* Calculate sin value */
  sinVal = (sinVal + (b * wb)) + ((c * wc) + (d * wd));

  /* Return the output value */
  return (sinVal);

}

/**    
 * @} end of sin group    
 */