Changeset - 0ee0ed9a3b7d
[Not reviewed]
default
0 3 0
Ethan Zonca - 10 years ago 2014-09-25 21:34:24
ez@ethanzonca.com
Added clock startup failure check
3 files changed with 14 insertions and 7 deletions:
0 comments (0 inline, 0 general)
main.c
Show inline comments
 
#include "main.h"
 
#include "stm32l100c_discovery.h"
 
#include "ssd1306.h"
 
#include "config.h"
 
#include "eeprom_min.h"
 
 
// USB includes
 
#include "hw_config.h"
 
#include "usb_lib.h"
 
#include "usb_desc.h"
 
#include "usb_pwr.h"
 
#include "stringhelpers.h"
 
 
// TODO: Grab buttonpresses with interrupts
 
// TODO: Eliminate screen buffer since we aren't using it...
 
 
// USB Supporting Vars
 
extern __IO uint8_t Receive_Buffer[64];
 
extern __IO  uint32_t Receive_length ;
 
extern __IO  uint32_t length ;
 
uint8_t Send_Buffer[64];
 
uint32_t packet_sent=1;
 
uint32_t packet_receive=1;
 
 
// Globalish setting vars
 
uint8_t boottobrew = 0;
 
#define WINDUP_GUARD_GAIN 100
 
uint16_t windup_guard = WINDUP_GUARD_GAIN;
 
uint16_t k_p = 1;
 
uint16_t k_i = 1;
 
uint16_t k_d = 1;
 
 
// ISR ticks var TODO: Double check functionality after volatilazation... needed on ARM?
 
volatile uint32_t ticks = 0;
 
 
// Increase on each press, and increase at a fast rate after duration elapsed of continuously holding down... somehow...
 
uint32_t change_time_reset = 0;
 
#define CHANGE_PERIOD_MS 100
 
#define CHANGE_ELAPSED (ticks - change_time_reset) > CHANGE_PERIOD_MS
 
#define CHANGE_RESET change_time_reset = ticks
 
 
 
int16_t setpoint_brew = 0;
 
int16_t setpoint_steam = 0;
 
 
// State definition
 
enum state {
 
    STATE_IDLE = 0,
 
 
    STATE_SETP,
 
    STATE_SETI,
 
    STATE_SETD,
 
    STATE_SETWINDUP,
 
    STATE_SETBOOTTOBREW,
 
 
    STATE_PREHEAT_BREW,
 
    STATE_MAINTAIN_BREW,
 
    STATE_PREHEAT_STEAM,
 
    STATE_MAINTAIN_STEAM,
 
};
 
 
uint8_t state = STATE_IDLE;
 
 
static __IO uint32_t TimingDelay;
 
 
// Move to header file
 
void init_gpio();
 
void init_spi();
 
void process();
 
void machine();
 
void delay(__IO uint32_t nTime);
 
void restore_settings();
 
void save_settings();
 
void save_setpoints();
 
 
int main(void)
 
{
 
 
    // Init clocks
 
    SystemInit();
 
 
    // Init GPIO
 
    init_gpio();
 
 
    // Init USB
 
    //Set_USBClock();
 
    //USB_Interrupts_Config();
 
    //USB_Init();
 
 
    // Turn on power LED
 
    GPIO_SetBits(LED_POWER);
 
 
    // TODO: Awesome pwm of power LED (TIM4_CH4 or TIM11_CH1)
 
 
    // Configure 1ms SysTick (change if more temporal resolution needed) 
 
    RCC_ClocksTypeDef RCC_Clocks;
 
    RCC_GetClocksFreq(&RCC_Clocks);
 
    SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
 
 
    // Init SPI busses
 
    init_spi();
 
 
    // Init OLED over SPI
 
    ssd1306_Init();
 
    ssd1306_clearscreen();
 
 
    // Check for problems on startup
 
    if(clock_fail) {
 
        ssd1306_DrawString("ERROR: Check Xtal", 3, 0);
 
        delay(2000);
 
    }
 
 
    // Startup screen 
 
    ssd1306_DrawString("therm v0.1", 1, 40);
 
    ssd1306_DrawString("protofusion.org/therm", 3, 0);
 
 
 
 
    delay(1500);
 
    ssd1306_clearscreen();
 
    
 
    restore_settings();
 
    if(boottobrew)
 
      state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly
 
 
    GPIO_ResetBits(LED_STAT);
 
 
    // Main loop
 
    while(1)
 
    {
 
        // Process sensor inputs
 
        process();
 
 
        // Run state machine
 
        machine(); 
 
    }
 
}
 
 
// Read temperature and update global temp vars
 
int16_t temp = 0;
 
uint8_t temp_frac = 0;
 
 
void update_temp() {
 
    // Assert CS
 
    GPIO_ResetBits(MAX_CS);
 
    delay(1);
 
 
    // This may not clock at all... might need to send 16 bits first
 
    SPI_I2S_SendData(SPI2, 0xAAAA); // send dummy data
 
    //SPI_I2S_SendData(SPI2, 0xAA); // send dummy data
 
    uint16_t temp_pre = SPI_I2S_ReceiveData(SPI2);
 
 
    if(temp_pre & 0b0000000000000010) {
 
        ssd1306_DrawString("Fatal Error", 2, 35);
 
    }
 
    else if(temp_pre & 0b0000000000000001) {
 
        ssd1306_DrawString("Error: No TC", 2, 40);
 
        temp = 0;
 
        temp_frac = 0;
 
    }
 
    else 
 
    {
 
        uint8_t sign = temp >> 15;// top bit is sign
 
 
        temp_pre = temp_pre >> 2; // Drop 2 lowest bits
 
        temp_frac = temp_pre & 0b11; // get fractional part
 
@@ -325,109 +332,105 @@ void save_settings()
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW, boottobrew);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD, windup_guard);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P, k_p);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I, k_i);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D, k_d);
 
    Minimal_EEPROM_Lock();
 
}
 
 
void save_setpoints()
 
{
 
 
    Minimal_EEPROM_Unlock();
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP, setpoint_brew);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP, setpoint_steam); 
 
    Minimal_EEPROM_Lock();
 
}
 
 
void restore_settings()
 
{
 
    Minimal_EEPROM_Unlock();
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    boottobrew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    windup_guard = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_p = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_i = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_d = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    setpoint_brew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    setpoint_steam = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP));    
 
    
 
    Minimal_EEPROM_Lock();
 
}
 
 
 
void user_input(uint16_t* to_modify)
 
{
 
    if(CHANGE_ELAPSED) {
 
 
        // TODO: Make function that takes reference to a var and increase/decreases it based on buttonpress
 
        if(!GPIO_ReadInputDataBit(SW_UP) ) {
 
            CHANGE_RESET;
 
            (*to_modify)++;
 
        }
 
        else if(!GPIO_ReadInputDataBit(SW_DOWN) && (*to_modify) > 0) {
 
            CHANGE_RESET;
 
            (*to_modify)--;
 
        }
 
 
    }
 
 
}
 
 
void machine()
 
{
 
    uint8_t last_state = state;
 
 
    uint8_t sw_btn = !GPIO_ReadInputDataBit(SW_BTN);
 
    uint8_t sw_up = !GPIO_ReadInputDataBit(SW_UP);
 
    uint8_t sw_down = !GPIO_ReadInputDataBit(SW_DOWN);
 
    uint8_t sw_left = !GPIO_ReadInputDataBit(SW_LEFT);
 
    uint8_t sw_right = !GPIO_ReadInputDataBit(SW_RIGHT);
 
 
    switch(state)
 
    {
 
        // Idle state
 
        case STATE_IDLE:
 
        {
 
            // Write text to OLED
 
            // [ therm :: idle ]
 
            ssd1306_DrawString("therm :: idle ", 0, 40);
 
            pid_enabled = 0;
 
 
            char tempstr[6];
 
            itoa_fp(temp, temp_frac, tempstr);
 
            ssd1306_DrawString("Temp: ", 3, 40);
 
            ssd1306_DrawString("    ", 3, 72);
 
            ssd1306_DrawString(tempstr, 3, 72);
 
 
            ssd1306_drawlogo();
 
 
            switch(goto_mode) {
 
                case 2:
 
                {
 
                    ssd1306_DrawString("-> brew     ", 1, 40);
 
                } break;
 
 
                case 1:
 
                {
 
                    ssd1306_DrawString("-> setup    ", 1, 40);
 
                } break;
 
 
                case 0:
 
                {
 
                    ssd1306_DrawString("-> reset    ", 1, 40);
 
                } break;
 
            }
 
 
            // Button handler
 
@@ -710,97 +713,96 @@ void machine()
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        // Something is terribly wrong
 
        default:
 
        {
 
            state = STATE_IDLE;
 
            pid_enabled = 0;
 
 
        } break;
 
            
 
    }
 
 
    if(last_state != state) {
 
        // Clear screen on state change
 
        goto_mode = 2;
 
        ssd1306_clearscreen();
 
    }
 
 
    // Last buttonpress
 
    sw_btn_last = sw_btn;
 
    sw_up_last = sw_up;
 
    sw_down_last = sw_down;
 
    sw_left_last = sw_left;
 
    sw_right_last = sw_right;
 
}
 
 
 
// Delay a number of systicks
 
void delay(__IO uint32_t nTime)
 
{
 
  TimingDelay = nTime;
 
  while(TimingDelay != 0);
 
}
 
 
// ISR-triggered decrement of delay and increment of tickcounter
 
void TimingDelay_Decrement(void)
 
{
 
  if (TimingDelay != 0x00)
 
  { 
 
    TimingDelay--;
 
  }
 
  ticks++;
 
}
 
 
 
void init_spi(void)
 
{
 
    SPI_InitTypeDef  SPI_InitStructure;
 
 
    // OLED IC
 
    SPI_Cmd(SPI1, DISABLE); 
 
    SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx;
 
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
 
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
 
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
 
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
 
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
 
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
 
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
 
    SPI_InitStructure.SPI_CRCPolynomial = 7;
 
    SPI_Init(SPI1, &SPI_InitStructure);
 
    SPI_Cmd(SPI1, ENABLE);           /* Enable the SPI  */   
 
 
 
    // MAX IC
 
    SPI_Cmd(SPI2, DISABLE); 
 
    SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
 
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
 
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; // Andysworkshop
 
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; // From andysworkshop
 
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; // same
 
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
 
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
 
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
 
    SPI_InitStructure.SPI_CRCPolynomial = 7;
 
    SPI_Init(SPI2, &SPI_InitStructure);
 
    SPI_Cmd(SPI2, ENABLE);           /* Enable the SPI */
 
}
 
 
void init_gpio(void) {
 
 
 GPIO_InitTypeDef GPIO_InitStruct;
 
 
  // Enable SPI clocks
 
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
 
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
 
 
  // Enable GPIO clocks
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC|RCC_AHBPeriph_GPIOB|RCC_AHBPeriph_GPIOA, ENABLE);
 
 
  // Enable DMA clocks (Is AHB even the right thing???)
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // EMZ TODO get the right ones
 
system_stm32l1xx.c
Show inline comments
 
@@ -250,147 +250,150 @@ void SystemCoreClockUpdate (void)
 
      SystemCoreClock = (32768 * (1 << (msirange + 1)));
 
      break;
 
    case 0x04:  /* HSI used as system clock */
 
      SystemCoreClock = HSI_VALUE;
 
      break;
 
    case 0x08:  /* HSE used as system clock */
 
      SystemCoreClock = HSE_VALUE;
 
      break;
 
    case 0x0C:  /* PLL used as system clock */
 
      /* Get PLL clock source and multiplication factor ----------------------*/
 
      pllmul = RCC->CFGR & RCC_CFGR_PLLMUL;
 
      plldiv = RCC->CFGR & RCC_CFGR_PLLDIV;
 
      pllmul = PLLMulTable[(pllmul >> 18)];
 
      plldiv = (plldiv >> 22) + 1;
 
      
 
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
 

	
 
      if (pllsource == 0x00)
 
      {
 
        /* HSI oscillator clock selected as PLL clock entry */
 
        SystemCoreClock = (((HSI_VALUE) * pllmul) / plldiv);
 
      }
 
      else
 
      {
 
        /* HSE selected as PLL clock entry */
 
        SystemCoreClock = (((HSE_VALUE) * pllmul) / plldiv);
 
      }
 
      break;
 
    default: /* MSI used as system clock */
 
      msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE) >> 13;
 
      SystemCoreClock = (32768 * (1 << (msirange + 1)));
 
      break;
 
  }
 
  /* Compute HCLK clock frequency --------------------------------------------*/
 
  /* Get HCLK prescaler */
 
  tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
 
  /* HCLK clock frequency */
 
  SystemCoreClock >>= tmp;
 
}
 

	
 
/**
 
  * @brief  Configures the System clock frequency, AHB/APBx prescalers and Flash 
 
  *         settings.
 
  * @note   This function should be called only once the RCC clock configuration  
 
  *         is reset to the default reset state (done in SystemInit() function).             
 
  * @param  None
 
  * @retval None
 
  */
 
uint8_t clock_fail = 0;
 

	
 
static void SetSysClock(void)
 
{
 
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
 
  
 
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
 
  /* Enable HSE */
 
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
 
 
  /* Wait till HSE is ready and if Time out is reached exit */
 
  do
 
  {
 
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
 
    StartUpCounter++;
 
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
 

	
 
  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
 
  {
 
    HSEStatus = (uint32_t)0x01;
 
  }
 
  else
 
  {
 
    HSEStatus = (uint32_t)0x00;
 
  }
 
  
 
  if (HSEStatus == (uint32_t)0x01)
 
  {
 
    /* Enable 64-bit access */
 
    FLASH->ACR |= FLASH_ACR_ACC64;
 
    
 
    /* Enable Prefetch Buffer */
 
    FLASH->ACR |= FLASH_ACR_PRFTEN;
 

	
 
    /* Flash 1 wait state */
 
    FLASH->ACR |= FLASH_ACR_LATENCY;
 
    
 
    /* Power enable */
 
    RCC->APB1ENR |= RCC_APB1ENR_PWREN;
 
  
 
    /* Select the Voltage Range 1 (1.8 V) */
 
    PWR->CR = PWR_CR_VOS_0;
 
  
 
    /* Wait Until the Voltage Regulator is ready */
 
    while((PWR->CSR & PWR_CSR_VOSF) != RESET)
 
    {
 
    }
 
        
 
    /* HCLK = SYSCLK /1*/
 
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
 
  
 
    /* PCLK2 = HCLK /1*/
 
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
 
    
 
    /* PCLK1 = HCLK /1*/
 
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;
 
    
 
    /*  PLL configuration */
 
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL |
 
                                        RCC_CFGR_PLLDIV));
 
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMUL24 | RCC_CFGR_PLLDIV3);
 

	
 
    /* Enable PLL */
 
    RCC->CR |= RCC_CR_PLLON;
 

	
 
    /* Wait till PLL is ready */
 
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
 
    {
 
    }
 
        
 
    /* Select PLL as system clock source */
 
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
 
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
 

	
 
    /* Wait till PLL is used as system clock source */
 
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
 
    {
 
    }
 
  }
 
  else
 
  {
 
	clock_fail = 1;
 
//	while(1);
 
    /* If HSE fails to start-up, the application will have wrong clock
 
       configuration. User can add here some code to deal with this error */
 
  }
 
}
 

	
 
/**
 
  * @}
 
  */
 

	
 
/**
 
  * @}
 
  */
 

	
 
/**
 
  * @}
 
  */
 

	
 
/******************* (C) COPYRIGHT 2013 STMicroelectronics *****END OF FILE****/
 

	
system_stm32l1xx.h
Show inline comments
 
@@ -13,92 +13,94 @@
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */
 
 
/** @addtogroup CMSIS
 
  * @{
 
  */
 
 
/** @addtogroup stm32l1xx_system
 
  * @{
 
  */  
 
  
 
/**
 
  * @brief Define to prevent recursive inclusion
 
  */
 
#ifndef __SYSTEM_STM32L1XX_H
 
#define __SYSTEM_STM32L1XX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif 
 
 
/** @addtogroup STM32L1xx_System_Includes
 
  * @{
 
  */
 
 
/**
 
  * @}
 
  */
 
 
 
/** @addtogroup STM32L1xx_System_Exported_types
 
  * @{
 
  */
 
 
extern uint32_t SystemCoreClock;          /*!< System Clock Frequency (Core Clock) */
 
 
extern uint8_t clock_fail;
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup STM32L1xx_System_Exported_Constants
 
  * @{
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup STM32L1xx_System_Exported_Macros
 
  * @{
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup STM32L1xx_System_Exported_Functions
 
  * @{
 
  */
 
  
 
extern void SystemInit(void);
 
extern void SystemCoreClockUpdate(void);
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /*__SYSTEM_STM32L1XX_H */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */  
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
0 comments (0 inline, 0 general)