TARGET:=therm
TOOLCHAIN_PATH:=/usr/bin
TOOLCHAIN_PREFIX:=arm-none-eabi
OPTLVL:=3 # Optimization level, can be [0, 1, 2, 3, s].
#PROJECT_NAME:=$(notdir $(lastword $(CURDIR)))
TOP:=$(shell readlink -f "../..")
DISCOVERY:=Utilities/STM32L100C-Discovery
STMLIB:=libraries
OLEDDRV:=oleddrv
USBDRV:=USB
STD_PERIPH:=$(STMLIB)/STM32L1xx_StdPeriph_Driver
STARTUP:=$(STMLIB)/CMSIS/Device/ST/STM32L1xx/Source/Templates/gcc_ride7
LINKER_SCRIPT:=$(CURDIR)/stm32-flash.ld
#LINKER_SCRIPT:=$(CURDIR)/../stm32_flash.ld
INCLUDE=-I$(CURDIR)
INCLUDE+=-I$(STMLIB)/CMSIS/Include
INCLUDE+=-I$(STMLIB)/CMSIS/Device/ST/STM32L1xx/Include
INCLUDE+=-I$(STD_PERIPH)/inc
INCLUDE+=-I$(DISCOVERY)
INCLUDE+=-I$(STMLIB)/$(OLEDDRV)
INCLUDE+=-I$(STMLIB)/$(USBDRV)
# vpath is used so object files are written to the current directory instead
# of the same directory as their source files
vpath %.c $(DISCOVERY) $(STD_PERIPH)/src \
$(STMLIB)/USB \
$(STMLIB)/STM32_USB-FS_Device_Library/Class/hid/src \
$(STMLIB)/STM32_USB-FS_Device_Library/Core/src
vpath %.s $(STARTUP)
ASRC=startup_stm32l1xx_mdp.s
# Project Source Files
SRC=main.c
SRC+=stm32l1xx_it.c
SRC+=system_stm32l1xx.c
SRC+=stm32l100c_discovery.c
SRC+=ssd1306.c
SRC+=eeprom_min.c
SRC+=gpio.c
SRC+=spi.c
SRC+=stringhelpers.c
# Discovery Source Files
#SRC+=stm32f4_discovery_lis302dl.c
#SRC+=stm32f4_discovery.c
#SRC+=stm32f4_discovery_audio_codec.c
# Standard Peripheral Source Files
SRC+=stm32l1xx_syscfg.c
SRC+=misc.c
SRC+=stm32l1xx_adc.c
SRC+=stm32l1xx_dac.c
SRC+=stm32l1xx_dma.c
SRC+=stm32l1xx_exti.c
SRC+=stm32l1xx_flash.c
SRC+=stm32l1xx_gpio.c
SRC+=stm32l1xx_i2c.c
SRC+=stm32l1xx_rcc.c
SRC+=stm32l1xx_spi.c
SRC+=stm32l1xx_tim.c
# USB Source Files
SRC+=usb_core.c
SRC+=usb_init.c
SRC+=usb_int.c
SRC+=usb_mem.c
SRC+=usb_regs.c
SRC+=usb_sil.c
SRC+=hw_config.c
SRC+=usb_desc.c
SRC+=usb_endp.c
SRC+=usb_istr.c
SRC+=usb_prop.c
SRC+=usb_pwr.c
CDEFS=-DUSE_STDPERIPH_DRIVER
CDEFS+=-DSTM32L1XX
CDEFS+=-DMANGUSTA_DISCOVERY
#CDEFS+=-DUSE_USB_OTG_FS
CDEFS+=-DHSE_VALUE=8000000
#EMZ Optimized:
MCUFLAGS=-mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections
MCUFLAGS=-mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -mfloat-abi=soft
# Default: MCUFLAGS=-mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections
#MCUFLAGS=-mcpu=cortex-m4 -mthumb -mlittle-endian -mfpu=fpa -mfloat-abi=hard -mthumb-interwork
#MCUFLAGS=-mcpu=cortex-m4 -mfpu=vfpv4-sp-d16 -mfloat-abi=hard
COMMONFLAGS=-O$(OPTLVL) -g -Wall
CFLAGS=$(COMMONFLAGS) $(MCUFLAGS) $(INCLUDE) $(CDEFS)
LDLIBS=
LDFLAGS=$(COMMONFLAGS) -fno-exceptions -ffunction-sections -fdata-sections \
-nostartfiles -Wl,--gc-sections,-T$(LINKER_SCRIPT)
#####
OBJ = $(SRC:%.c=%.o) $(ASRC:%.s=%.o)
CC=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-gcc
LD=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-gcc
OBJCOPY=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-objcopy
AS=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-as
AR=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-ar
GDB=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-gdb
SIZE=$(TOOLCHAIN_PATH)/$(TOOLCHAIN_PREFIX)-size
all: $(OBJ)
$(CC) -o $(TARGET).elf $(LDFLAGS) $(OBJ) $(LDLIBS)
$(OBJCOPY) -O ihex $(TARGET).elf $(TARGET).hex
$(OBJCOPY) -O binary $(TARGET).elf $(TARGET).bin
.PHONY: clean
clean:
rm -f $(OBJ)
rm -f $(TARGET).elf
rm -f $(TARGET).hex
rm -f $(TARGET).bin
# Display size
size: $(TARGET).elf
@echo Invoking: ARM GNU Print Size
$(SIZE) --format=berkeley $<
@echo
#include "main.h"
#include "stm32l100c_discovery.h"
#include "ssd1306.h"
#include "config.h"
#include "eeprom_min.h"
#include "gpio.h"
#include "spi.h"
// USB includes
#include "hw_config.h"
#include "usb_lib.h"
#include "usb_desc.h"
#include "usb_pwr.h"
#include "stringhelpers.h"
// TODO: Grab buttonpresses with interrupts
// USB Supporting Vars
extern __IO uint8_t Receive_Buffer[64];
extern __IO uint32_t Receive_length ;
extern __IO uint32_t length ;
uint8_t Send_Buffer[64];
uint32_t packet_sent=1;
uint32_t packet_receive=1;
enum tempunits {
TEMP_UNITS_CELSIUS = 0,
TEMP_UNITS_FAHRENHEIT,
};
// Globalish setting vars
uint8_t boottobrew = 0;
uint8_t temp_units = TEMP_UNITS_CELSIUS;
uint16_t windup_guard = 1;
uint16_t k_p = 1;
uint16_t k_i = 1;
uint16_t k_d = 1;
uint8_t ignore_tc_error = 0;
// ISR ticks var
volatile uint32_t ticks = 0;
int16_t setpoint_brew = 0;
int16_t setpoint_steam = 0;
// State definition
enum state {
STATE_IDLE = 0,
STATE_SETP,
STATE_SETI,
STATE_SETD,
STATE_SETSTEPS,
STATE_SETWINDUP,
STATE_SETBOOTTOBREW,
STATE_SETUNITS,
STATE_PREHEAT_BREW,
STATE_MAINTAIN_BREW,
STATE_PREHEAT_STEAM,
STATE_MAINTAIN_STEAM,
STATE_TC_ERROR
uint8_t state = STATE_IDLE;
static __IO uint32_t TimingDelay;
// Move to header file
void process();
void machine();
void restore_settings();
void save_settings();
void save_setpoints();
int main(void)
{
// Init clocks
SystemInit();
// Init GPIO
init_gpio();
// Turn on power LED
GPIO_SetBits(LED_POWER);
// TODO: Awesome pwm of power LED (TIM4_CH4 or TIM11_CH1)
// Configure 1ms SysTick (change if more temporal resolution needed)
RCC_ClocksTypeDef RCC_Clocks;
RCC_GetClocksFreq(&RCC_Clocks);
SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
// Init SPI busses
init_spi();
// Init OLED over SPI
ssd1306_Init();
ssd1306_clearscreen();
// Check for problems on startup
if(clock_fail) {
//ssd1306_DrawStringBig("ERROR: Check Xtal", 2, 0);
ssd1306_DrawStringBig("NO XTAL", 2, 0);
delay(1000);
}
// Init USB
//Set_System(); // hw_config.h
Set_USBClock();
USB_Interrupts_Config();
USB_Init();
//SYSCFG_USBPuCmd(ENABLE);
//PowerOn();
// Startup screen
ssd1306_DrawString("therm v0.1", 1, 40);
ssd1306_DrawString("protofusion.org/therm", 3, 0);
delay(1500);
restore_settings();
if(boottobrew)
state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly
GPIO_ResetBits(LED_STAT);
// Main loop
while(1)
// Process sensor inputs
process();
// Run state machine
machine();
// Read temperature and update global temp vars
int16_t temp = 0;
int32_t temp = 0;
uint8_t temp_frac = 0;
void update_temp() {
// Assert CS
GPIO_ResetBits(MAX_CS);
delay(1);
// This may not clock at all... might need to send 16 bits first
SPI_I2S_SendData(SPI2, 0xAAAA); // send dummy data
//SPI_I2S_SendData(SPI2, 0xAA); // send dummy data
uint16_t temp_pre = SPI_I2S_ReceiveData(SPI2);
if(temp_pre & 0b0000000000000010) {
ssd1306_DrawString("Fatal Error", 3, 35);
state = STATE_TC_ERROR;
else if(temp_pre & 0b0000000000000001 && !ignore_tc_error) {
temp = 0;
temp_frac = 0;
else
uint8_t sign = temp >> 15;// top bit is sign
temp_pre = temp_pre >> 2; // Drop 2 lowest bits
temp_frac = temp_pre & 0b11; // get fractional part
temp_frac *= 25; // each bit is .25 a degree, up to fixed point
temp_pre = temp_pre >> 2; // Drop 2 fractional bits
if(sign) {
temp = -temp_pre;
else {
temp = temp_pre;
if(temp_units == TEMP_UNITS_FAHRENHEIT) {
temp *= 10; // fixed point mul by 1.8
temp *= 18;
temp /= 100;
temp *= 9; // fixed point mul by 1.8
temp /= 5;
temp += 32;
temp_frac *= 9;
temp_frac /= 5;
temp_frac += 32;
temp += temp_frac/100; // add overflow to above
temp_frac %= 100;
// Deassert CS
GPIO_SetBits(MAX_CS);
// PID implementation
// TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe.
int16_t last_pid_temp = 0;
uint8_t last_pid_temp_frac = 0;
int16_t i_state = 0;
int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint)
// Calculate instantaneous error
int16_t error = (int16_t)setpoint - (int16_t)temp; // TODO: Use fixed point fraction
// Proportional component
int16_t p_term = k_p * error;
// Error accumulator (integrator)
i_state += error;
// to prevent the iTerm getting huge despite lots of
// error, we use a "windup guard"
// (this happens when the machine is first turned on and
// it cant help be cold despite its best efforts)
// not necessary, but this makes windup guard values
// relative to the current iGain
int16_t windup_guard_res = windup_guard / k_i;
// Calculate integral term with windup guard
if (i_state > windup_guard_res)
i_state = windup_guard_res;
else if (i_state < -windup_guard_res)
i_state = -windup_guard_res;
int16_t i_term = k_i * i_state;
// Calculate differential term (slope since last iteration)
int16_t d_term = (k_d * (temp - last_pid_temp));
// Save temperature for next iteration
last_pid_temp = temp;
last_pid_temp_frac = temp_frac;
int16_t result = p_term + i_term - d_term;
// Put out tenths of percent, 0-1000.
if(result > 1000)
result = 1000;
else if(result < -1000)
result = -1000;
// Return feedback
return result;
uint32_t last_ssr_on = 0;
uint32_t last_led = 0;
int32_t setpoint = 0;
int16_t ssr_output = 0; // Duty cycle of ssr, 0 to SSR_PERIOD
uint8_t pid_enabled = 0;
// Process things
void process()
update_temp(); // Read MAX31855
// TODO: Add calibration offset (linear)
if(ticks - last_led > 400)
GPIO_ToggleBits(LED_POWER);
last_led = ticks;
// Every 200ms, set the SSR on unless output is 0
if((ticks - last_ssr_on > SSR_PERIOD))
if(pid_enabled)
// Get ssr output for next time
int16_t power_percent = update_pid(k_p, k_i, k_d, temp, temp_frac, setpoint);
//power-percent is 0-1000
ssr_output = power_percent; //(((uint32_t)SSR_PERIOD * (uint32_t)10 * (uint32_t)100) * power_percent) / (uint32_t)1000000;
ssr_output = 0;
// Only support heating (ssr_output > 0) right now
if(ssr_output > 0) {
char tempstr[6];
itoa(ssr_output, tempstr);
ssd1306_DrawString(tempstr, 0, 90);
GPIO_SetBits(LED_STAT);
GPIO_SetBits(SSR_PIN);
last_ssr_on = ticks;
// Kill SSR after elapsed period less than SSR_PERIOD
if(ticks - last_ssr_on > ssr_output || ssr_output == 0)
GPIO_ResetBits(SSR_PIN);
void draw_setpoint() {
char tempstr[3];
itoa_fp(temp, temp_frac, tempstr);
ssd1306_DrawStringBig(" ", 3, 0);
ssd1306_DrawStringBig(tempstr, 3, 0);
ssd1306_DrawStringBig(">", 3, 74);
itoa(setpoint, tempstr);
ssd1306_DrawStringBig(" ", 3, 90);
ssd1306_DrawStringBig(tempstr, 3, 90);
uint8_t goto_mode = 2;
// State machine
uint8_t sw_btn_last = 0;
uint8_t sw_up_last = 0;
uint8_t sw_down_last = 0;
uint8_t sw_left_last = 0;
uint8_t sw_right_last = 0;
#define SW_BTN_PRESSED (sw_btn_last == 0 && sw_btn == 1) // rising edge on buttonpress
#define SW_UP_PRESSED (sw_up_last == 0 && sw_up == 1)
#define SW_DOWN_PRESSED (sw_down_last == 0 && sw_down == 1)
#define SW_LEFT_PRESSED (sw_left_last == 0 && sw_left == 1)
#define SW_RIGHT_PRESSED (sw_right_last == 0 && sw_right == 1)
void save_settings()
Minimal_EEPROM_Unlock();
// Try programming a word at an address divisible by 4
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW, boottobrew);
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD, windup_guard);
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P, k_p);
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I, k_i);
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D, k_d);
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS, temp_units);
Minimal_EEPROM_Lock();
void save_setpoints()
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP, setpoint_brew);
Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP, setpoint_steam);
// TODO: Make a struct that has all settings in it. Pass by ref to this func in a library.
void restore_settings()
while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
boottobrew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW));
windup_guard = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD));
k_p = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P));
k_i = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I));
k_d = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D));
setpoint_brew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP));
setpoint_steam = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP));
temp_units = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS));
int16_t last_temp = 21245;
///////////////////////////////////////////////////////////////////////////////////////
/// freaking multiple setpoint support ///
uint8_t step_duration[10] = {0,0,0,0,0,0,0,0,0,0};
int16_t step_setpoint[10] = {0,0,0,0,0,0,0,0,0,0};
uint8_t final_setpoint = 0;
// Multiple screens to set setpoint and duration on each screen
// press center to go to the next one, and press left or right or something to confirm
// When executing, complete on time AND(?) temperature. Maybe allow switching to OR via settings
////////////////////////////////////////////////////////////////////////////////////////////////
void machine()
uint8_t last_state = state;
uint8_t temp_changed = temp != last_temp;
last_temp = temp;
uint8_t sw_btn = !GPIO_ReadInputDataBit(SW_BTN);
uint8_t sw_up = !GPIO_ReadInputDataBit(SW_UP);
uint8_t sw_down = !GPIO_ReadInputDataBit(SW_DOWN);
uint8_t sw_left = !GPIO_ReadInputDataBit(SW_LEFT);
uint8_t sw_right = !GPIO_ReadInputDataBit(SW_RIGHT);
switch(state)
// Idle state
case STATE_IDLE:
// Write text to OLED
// [ therm :: idle ]
ssd1306_DrawString("therm :: idle ", 0, 40);
pid_enabled = 0;
if(temp_changed) {
ssd1306_DrawString("Temp: ", 3, 40);
ssd1306_DrawString(" ", 3, 72);
ssd1306_DrawString(tempstr, 3, 72);
ssd1306_drawlogo();
switch(goto_mode) {
case 2:
ssd1306_DrawString("-> brew ", 1, 40);
} break;
case 1:
ssd1306_DrawString("-> setup ", 1, 40);
case 0:
ssd1306_DrawString("-> reset ", 1, 40);
// Button handler
if(SW_BTN_PRESSED) {
state = STATE_PREHEAT_BREW;
break;
state = STATE_SETP;
state = STATE_IDLE;
default:
else if(SW_UP_PRESSED && goto_mode < 2) {
goto_mode++;
else if(SW_DOWN_PRESSED && goto_mode > 0) {
goto_mode--;
// Event Handler
// N/A
case STATE_SETP:
// [ therm :: set p ]
// [ p = 12 ]
ssd1306_DrawString("Proportional", 0, 40);
itoa(k_p, tempstr);
ssd1306_DrawString("P=", 1, 45);
ssd1306_DrawString(" ", 1, 57);
ssd1306_DrawString(tempstr, 1, 57);
ssd1306_DrawString("Press to accept", 3, 40);
state = STATE_SETI;
user_input(&k_p);
case STATE_SETI:
// [ therm :: set i ]
// [ i = 12 ]
ssd1306_DrawString("Integral", 0, 40);
itoa(k_i, tempstr);
ssd1306_DrawString("I=", 1, 45);
state = STATE_SETD;
user_input(&k_i);
case STATE_SETD:
// [ therm :: set d ]
// [ d = 12 ]
ssd1306_DrawString("Derivative", 0, 40);
itoa(k_d, tempstr);
ssd1306_DrawString("D=", 1, 45);
state = STATE_SETWINDUP;
user_input(&k_d);
case STATE_SETSTEPS:
// [ step #1:: Duration: ### ]
// [ Setpoint: ### ]
Status change: