Changeset - facb8c86942c
[Not reviewed]
cortex-f0
0 2 0
Ethan Zonca - 10 years ago 2015-01-25 15:50:38
ez@ethanzonca.com
Removed dead code, fixed SPI clock rate, removed unneeded delays
2 files changed with 1 insertions and 36 deletions:
main.c
2
spi.c
1
34
0 comments (0 inline, 0 general)
main.c
Show inline comments
 
@@ -71,202 +71,200 @@ void deinit(void)
 
}
 
 
volatile int i=0;
 
int main(void)
 
{
 
 
    /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 
    HAL_Init();
 
 
    /* Configure the system clock */
 
    SystemClock_Config();
 
 
    /* Initialize all configured peripherals */
 
    init_gpio();
 
    MX_USB_DEVICE_Init();
 
 
    // USB startup delay
 
    HAL_Delay(1000);
 
    HAL_GPIO_WritePin(LED_POWER, 1);
 
 
    // TODO: Awesome pwm of power LED 
 
 
    // Configure 1ms SysTick (change if more temporal resolution needed) 
 
    //RCC_ClocksTypeDef RCC_Clocks;
 
    //RCC_GetClocksFreq(&RCC_Clocks);
 
    //SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
 
 
    // Init SPI busses
 
    init_spi();
 
 
    // Init OLED over SPI
 
    ssd1306_Init();
 
    ssd1306_clearscreen();
 
 
    // Startup screen 
 
    ssd1306_DrawString("therm v0.1", 1, 40);
 
    ssd1306_DrawString("protofusion.org/therm", 3, 0);
 
 
    HAL_Delay(1500);
 
    ssd1306_clearscreen();
 
    
 
    restore_settings();
 
    if(boottobrew)
 
      state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly
 
 
    // Main loop
 
    while(1)
 
    {
 
        // Process sensor inputs
 
        process();
 
 
        // Run state machine
 
        machine(); 
 
    }
 
 
}
 
 
/** System Clock Configuration
 
*/
 
void SystemClock_Config(void)
 
{
 
 
  RCC_OscInitTypeDef RCC_OscInitStruct;
 
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
 
  RCC_PeriphCLKInitTypeDef PeriphClkInit;
 
 
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
 
  RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
 
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 
  HAL_RCC_OscConfig(&RCC_OscInitStruct);
 
 
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
 
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
 
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);
 
 
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
 
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;
 
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
 
 
  __SYSCFG_CLK_ENABLE();
 
 
}
 
 
 
// Read temperature and update global temp vars
 
int32_t temp = 0;
 
uint8_t temp_frac = 0;
 
uint8_t state_resume = 0;
 
 
 
void update_temp() {
 
 
    // Assert CS
 
    HAL_GPIO_WritePin(MAX_CS, 0);
 
    HAL_Delay(100);
 
 
    uint8_t rxdatah[1] = {0x00};
 
    uint8_t rxdatal[1] = {0x00};
 
 
    HAL_SPI_Receive(&hspi1, rxdatah, 1, 100);
 
    HAL_SPI_Receive(&hspi1, rxdatal, 1, 100);
 
 
    // Release CS
 
    HAL_Delay(1);
 
    HAL_GPIO_WritePin(MAX_CS, 1);
 
 
    // Assemble data array into one var
 
    uint16_t temp_pre = rxdatal[0] | (rxdatah[0]<<8);
 
 
    if(temp_pre & 0b0000000000000010) {
 
        ssd1306_clearscreen();
 
        ssd1306_DrawString("Fatal Error", 3, 35);
 
        HAL_Delay(100);
 
        state = STATE_TC_ERROR;
 
    }
 
    else if(temp_pre & 0b0000000000000001 && !ignore_tc_error) {
 
        state_resume = state;
 
        state = STATE_TC_ERROR;
 
        temp = 0;
 
        temp_frac = 0;
 
    }
 
    else 
 
    {
 
        if(state == STATE_TC_ERROR)
 
        {
 
            state = state_resume;
 
            ssd1306_clearscreen();
 
        }
 
 
        uint8_t sign = temp >> 15;// top bit is sign
 
 
        temp_pre = temp_pre >> 2; // Drop 2 lowest bits
 
        temp_frac = temp_pre & 0b11; // get fractional part
 
        temp_frac *= 25; // each bit is .25 a degree, up to fixed point
 
        temp_pre = temp_pre >> 2; // Drop 2 fractional bits 
 
 
        int8_t signint;
 
 
        if(sign) {
 
            signint = -1;
 
        }
 
        else {
 
            signint = 1;
 
        }
 
 
        // Convert to Fahrenheit
 
        if(temp_units == TEMP_UNITS_FAHRENHEIT)
 
        {
 
            temp = signint * ((temp_pre*100) + temp_frac);
 
            temp = temp * 1.8;
 
            temp += 3200;
 
            temp_frac = temp % 100;
 
            temp /= 100;
 
        }
 
 
        // Use Celsius values
 
        else
 
        {
 
            temp = temp_pre * signint;
 
        }
 
    }
 
 
    // Print temp to cdc
 
    CDC_Transmit_FS("Temp: ", 6);
 
    char tempstr[6];
 
    zitoa(temp, tempstr);
 
    CDC_Transmit_FS(tempstr, sizeof(tempstr));
 
 
    CDC_Transmit_FS("\r\n", 2);
 
    CDC_Transmit_FS("\r\n", 2);
 
    CDC_Transmit_FS("\r\n", 2);
 
    CDC_Transmit_FS("\r\n", 2);
 
    CDC_Transmit_FS("\r\n", 2);
 
 
}
 
 
 
// PID implementation
 
// TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe.
 
int16_t last_pid_temp = 0;
 
uint8_t last_pid_temp_frac = 0;
 
int16_t i_state = 0;
 
 
int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint) 
 
{
 
  // Calculate instantaneous error
 
  int16_t error = (int16_t)setpoint - (int16_t)temp; // TODO: Use fixed point fraction
 
 
  // Proportional component
 
  int16_t p_term = k_p * error;
 
 
  // Error accumulator (integrator)
 
  i_state += error;
 
 
  // to prevent the iTerm getting huge despite lots of 
 
  //  error, we use a "windup guard" 
 
  // (this happens when the machine is first turned on and
 
  // it cant help be cold despite its best efforts)
 
  // not necessary, but this makes windup guard values 
 
  // relative to the current iGain
spi.c
Show inline comments
 

	
 
#include "stm32f0xx_hal_conf.h"
 
#include "stm32f0xx_hal_gpio_ex.h"
 
extern SPI_HandleTypeDef hspi1;
 

	
 
void init_spi()
 
{
 
    hspi1.Instance = SPI1;
 
    hspi1.Init.Mode = SPI_MODE_MASTER;
 
    hspi1.Init.Direction = SPI_DIRECTION_2LINES;
 
    hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
 
    hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
 
    hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
 
    hspi1.Init.NSS = SPI_NSS_SOFT;
 
    hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
 
    hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
 
    hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
 
    hspi1.Init.TIMode = SPI_TIMODE_DISABLED;
 
    hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
 
    hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLED;
 
    HAL_SPI_Init(&hspi1);
 
}    
 
    
 
    /* OLD:
 
        SPI_InitTypeDef  SPI_InitStructure;
 

	
 
    // OLED IC
 
    SPI_Cmd(SPI1, DISABLE); 
 
    SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx;
 
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
 
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
 
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
 
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
 
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
 
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
 
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
 
    SPI_InitStructure.SPI_CRCPolynomial = 7;
 
    SPI_Init(SPI1, &SPI_InitStructure);
 
    SPI_Cmd(SPI1, ENABLE);          
 

	
 

	
 
    // MAX IC
 
    SPI_Cmd(SPI2, DISABLE); 
 
    SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
 
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
 
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; // Andysworkshop
 
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; // From andysworkshop
 
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; // same
 
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
 
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
 
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
 
    SPI_InitStructure.SPI_CRCPolynomial = 7;
 
    SPI_Init(SPI2, &SPI_InitStructure);
 
    SPI_Cmd(SPI2, ENABLE);          
 
    */
 

	
 
// vim:softtabstop=4 shiftwidth=4 expandtab 
0 comments (0 inline, 0 general)