diff --git a/libraries/CMSIS/Include/arm_math.h b/libraries/CMSIS/Include/arm_math.h
new file mode 100644
--- /dev/null
+++ b/libraries/CMSIS/Include/arm_math.h
@@ -0,0 +1,7306 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
+*
+* $Date: 17. January 2013
+* $Revision: V1.4.1
+*
+* Project: CMSIS DSP Library
+* Title: arm_math.h
+*
+* Description: Public header file for CMSIS DSP Library
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS DSP Software Library
+ *
+ * Introduction
+ *
+ * This user manual describes the CMSIS DSP software library,
+ * a suite of common signal processing functions for use on Cortex-M processor based devices.
+ *
+ * The library is divided into a number of functions each covering a specific category:
+ * - Basic math functions
+ * - Fast math functions
+ * - Complex math functions
+ * - Filters
+ * - Matrix functions
+ * - Transforms
+ * - Motor control functions
+ * - Statistical functions
+ * - Support functions
+ * - Interpolation functions
+ *
+ * The library has separate functions for operating on 8-bit integers, 16-bit integers,
+ * 32-bit integer and 32-bit floating-point values.
+ *
+ * Using the Library
+ *
+ * The library installer contains prebuilt versions of the libraries in the Lib
folder.
+ * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+ * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+ * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+ * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+ * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
+ * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
+ *
+ * The library functions are declared in the public file arm_math.h
which is placed in the Include
folder.
+ * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+ * public header file arm_math.h
for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
+ * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+ *
+ * Examples
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Toolchain Support
+ *
+ * The library has been developed and tested with MDK-ARM version 4.60.
+ * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+ *
+ * Building the Library
+ *
+ * The library installer contains project files to re build libraries on MDK Tool chain in the CMSIS\\DSP_Lib\\Source\\ARM
folder.
+ * - arm_cortexM0b_math.uvproj
+ * - arm_cortexM0l_math.uvproj
+ * - arm_cortexM3b_math.uvproj
+ * - arm_cortexM3l_math.uvproj
+ * - arm_cortexM4b_math.uvproj
+ * - arm_cortexM4l_math.uvproj
+ * - arm_cortexM4bf_math.uvproj
+ * - arm_cortexM4lf_math.uvproj
+ *
+ *
+ * The project can be built by opening the appropriate project in MDK-ARM 4.60 chain and defining the optional pre processor MACROs detailed above.
+ *
+ * Pre-processor Macros
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * - UNALIGNED_SUPPORT_DISABLE:
+ *
+ * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_MATH_MATRIX_CHECK:
+ *
+ * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+ *
+ * - ARM_MATH_ROUNDING:
+ *
+ * Define macro ARM_MATH_ROUNDING for rounding on support functions
+ *
+ * - ARM_MATH_CMx:
+ *
+ * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+ * and ARM_MATH_CM0 for building library on cortex-M0 target, ARM_MATH_CM0PLUS for building library on cortex-M0+ target.
+ *
+ * - __FPU_PRESENT:
+ *
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+ *
+ * Copyright Notice
+ *
+ * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
+ */
+
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ *
+ * typedef struct + * { + * uint16_t numRows; // number of rows of the matrix. + * uint16_t numCols; // number of columns of the matrix. + * float32_t *pData; // points to the data of the matrix. + * } arm_matrix_instance_f32; + *+ * There are similar definitions for Q15 and Q31 data types. + * + * The structure specifies the size of the matrix and then points to + * an array of data. The array is of size
numRows X numCols
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ * + * pData[i*numCols + j] + *+ * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to the function
arm_mat_init_f32()
, arm_mat_init_q31()
+ * and arm_mat_init_q15()
for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ * + *+ * wherearm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ *arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ *arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ *
nRows
specifies the number of rows, nColumns
+ * specifies the number of columns, and pData
points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ * + * ARM_MATH_SIZE_MISMATCH + *+ * Otherwise the functions return + *
+ * ARM_MATH_SUCCESS + *+ * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + *
+ * ARM_MATH_MATRIX_CHECK + *+ * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return
ARM_MATH_SUCCESS
.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
+
+#if defined (ARM_MATH_CM4)
+#include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+#include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+#include "core_cm0.h"
+#define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+#include "core_cm0plus.h"
+#define ARM_MATH_CM0_FAMILY
+#else
+#include "ARMCM4.h"
+#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
+#endif
+
+#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
+#include "string.h"
+#include "math.h"
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
+#ifndef PI
+#define PI 3.14159265358979f
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define TABLE_SIZE 256
+#define TABLE_SPACING_Q31 0x800000
+#define TABLE_SPACING_Q15 0x80
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+ /**
+ * @brief Macro for Unaligned Support
+ */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+ #define ALIGN4
+#else
+ #if defined (__GNUC__)
+ #define ALIGN4 __attribute__((aligned(4)))
+ #else
+ #define ALIGN4 __align(4)
+ #endif
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
+ } arm_status;
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+ typedef float float32_t;
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief definition to read/write two 16 bit values.
+ */
+#if defined __CC_ARM
+#define __SIMD32_TYPE int32_t __packed
+#define CMSIS_UNUSED __attribute__((unused))
+#elif defined __ICCARM__
+#define CMSIS_UNUSED
+#define __SIMD32_TYPE int32_t __packed
+#elif defined __GNUC__
+#define __SIMD32_TYPE int32_t
+#define CMSIS_UNUSED __attribute__((unused))
+#else
+#error Unknown compiler
+#endif
+
+#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
+
+#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
+
+#define __SIMD64(addr) (*(int64_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+
+#endif
+
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+
+#endif
+
+
+ /**
+ * @brief Clips Q63 to Q31 values.
+ */
+ static __INLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ static __INLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ static __INLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ static __INLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+
+ static __INLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y)));
+ }
+
+
+#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
+#define __CLZ __clz
+#endif
+
+#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
+
+ static __INLINE uint32_t __CLZ(
+ q31_t data);
+
+
+ static __INLINE uint32_t __CLZ(
+ q31_t data)
+ {
+ uint32_t count = 0;
+ uint32_t mask = 0x80000000;
+
+ while((data & mask) == 0)
+ {
+ count += 1u;
+ mask = mask >> 1u;
+ }
+
+ return (count);
+
+ }
+
+#endif
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+ */
+
+ static __INLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ q31_t * pRecipTable)
+ {
+
+ uint32_t out, tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 1;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 1;
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t) (in >> 24u);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0u; i < 2u; i++)
+ {
+ tempVal = (q31_t) (((q63_t) in * out) >> 31u);
+ tempVal = 0x7FFFFFFF - tempVal;
+ /* 1.31 with exp 1 */
+ //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
+ out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1u);
+
+ }
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+ */
+ static __INLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ q15_t * pRecipTable)
+ {
+
+ uint32_t out = 0, tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 17;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 17;
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = in >> 8;
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0; i < 2; i++)
+ {
+ tempVal = (q15_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFF - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+
+ }
+
+
+ /*
+ * @brief C custom defined intrinisic function for only M0 processors
+ */
+#if defined(ARM_MATH_CM0_FAMILY)
+
+ static __INLINE q31_t __SSAT(
+ q31_t x,
+ uint32_t y)
+ {
+ int32_t posMax, negMin;
+ uint32_t i;
+
+ posMax = 1;
+ for (i = 0; i < (y - 1); i++)
+ {
+ posMax = posMax * 2;
+ }
+
+ if(x > 0)
+ {
+ posMax = (posMax - 1);
+
+ if(x > posMax)
+ {
+ x = posMax;
+ }
+ }
+ else
+ {
+ negMin = -posMax;
+
+ if(x < negMin)
+ {
+ x = negMin;
+ }
+ }
+ return (x);
+
+
+ }
+
+#endif /* end of ARM_MATH_CM0_FAMILY */
+
+
+
+ /*
+ * @brief C custom defined intrinsic function for M3 and M0 processors
+ */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+
+ /*
+ * @brief C custom defined QADD8 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q7_t r, s, t, u;
+
+ r = (q7_t) x;
+ s = (q7_t) y;
+
+ r = __SSAT((q31_t) (r + s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
+ t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
+ u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
+
+ sum =
+ (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
+ (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB8 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s, t, u;
+
+ r = (q7_t) x;
+ s = (q7_t) y;
+
+ r = __SSAT((r - s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
+ t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
+ u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
+
+ sum =
+ (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
+ 0x000000FF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r + s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined SHADD16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (s >> 1));
+ s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r - s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSUB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t diff;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (s >> 1));
+ s = (((x >> 17) - (y >> 17)) << 16);
+
+ diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return diff;
+ }
+
+ /*
+ * @brief C custom defined QASX for M3 and M0 processors
+ */
+ static __INLINE q31_t __QASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum =
+ ((sum +
+ clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHASX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (y >> 17));
+ s = (((x >> 17) + (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+
+ /*
+ * @brief C custom defined QSAX for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum =
+ ((sum +
+ clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSAX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (y >> 17));
+ s = (((x >> 17) - (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SMUSDX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUSDX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t) (((short) x * (short) (y >> 16)) -
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined SMUADX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUADX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t) (((short) x * (short) (y >> 16)) +
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined QADD for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x + y);
+ }
+
+ /*
+ * @brief C custom defined QSUB for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x - y);
+ }
+
+ /*
+ * @brief C custom defined SMLAD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLAD(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLADX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLADX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLSDX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLSDX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum - ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLALD for M3 and M0 processors
+ */
+ static __INLINE q63_t __SMLALD(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLALDX for M3 and M0 processors
+ */
+ static __INLINE q63_t __SMLALDX(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) y)) +
+ ((short) x * (short) (y >> 16));
+ }
+
+ /*
+ * @brief C custom defined SMUAD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUAD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMUSD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUSD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (-((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+
+ /*
+ * @brief C custom defined SXTB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SXTB16(
+ q31_t x)
+ {
+
+ return ((((x << 24) >> 24) & 0x0000FFFF) |
+ (((x << 8) >> 8) & 0xFFFF0000));
+ }
+
+
+#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] *S points to an instance of the Q7 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ * @return none
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] *S points to an instance of the Q15 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+ * numTaps
is not a supported value.
+ */
+
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] *S points to an instance of the Q31 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] *S points to an instance of the floating-point FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q15;
+
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+
+
+ } arm_biquad_casd_df1_inst_f32;
+
+
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q31;
+
+
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @param[in] *pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @param[in] *pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] *pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData);
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#ifdef ARM_MATH_CM0_FAMILY
+ q15_t A1;
+ q15_t A2;
+#else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] *S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] *S is an instance of the floating-point PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q31 PID Control structure
+ * @return none
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the q15 PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q15;
+
+ arm_status arm_cfft_radix2_init_q15(
+ arm_cfft_radix2_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ void arm_cfft_radix2_q15(
+ const arm_cfft_radix2_instance_q15 * S,
+ q15_t * pSrc);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q31;
+
+ arm_status arm_cfft_radix2_init_q31(
+ arm_cfft_radix2_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ void arm_cfft_radix2_q31(
+ const arm_cfft_radix2_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f32(
+ arm_cfft_radix2_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f32(
+ const arm_cfft_radix2_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_f32;
+
+ void arm_cfft_f32(
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q15;
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q31;
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+
+typedef struct
+ {
+ arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
+
+void arm_rfft_fast_f32(
+ arm_rfft_fast_instance_f32 * S,
+ float32_t * p, float32_t * pOut,
+ uint8_t ifftFlag);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q31 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q15 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_f32(
+ float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q7(
+ q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q15(
+ q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q31(
+ q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q7(
+ q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q15(
+ q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q31(
+ q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_f32(
+ float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q7(
+ q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q15(
+ q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q31(
+ q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+
+ void arm_conv_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+ void arm_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+ void arm_conv_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q7 sequences
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_f32;
+
+
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] *S points to an instance of the filter data structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+
+ } arm_lms_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @return none.
+ */
+ void arm_correlate_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @return none.
+ */
+
+ void arm_correlate_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return none.
+ */
+
+ void arm_correlate_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /*
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cos output.
+ * @return none.
+ */
+
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t * pSinVal,
+ float32_t * pCcosVal);
+
+ /*
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cosine output.
+ * @return none.
+ */
+
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t * pSinVal,
+ q31_t * pCosVal);
+
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * S
points to an instance of the PID control data structure. in
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ * + * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] + * A0 = Kp + Ki + Kd + * A1 = (-Kp ) - (2 * Kd ) + * A2 = Kd+ * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] *S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + */ + + + static __INLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q31 PID Control. + * @param[in,out] *S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using an internal 64-bit accumulator. + * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + * Thus, if the accumulator result overflows it wraps around rather than clip. + * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ + + static __INLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31u); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q15 PID Control. + * @param[in,out] *S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using a 64-bit internal accumulator. + * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + * Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ + + static __INLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#ifndef ARM_MATH_CM0_FAMILY + __SIMD32_TYPE *vstate; + + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD(S->A0, in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + vstate = __SIMD32_CONST(S->state); + acc = __SMLALD(S->A1, (q31_t) *vstate, acc); + +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; + +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @} end of PID group + */ + + + /** + * @brief Floating-point matrix inverse. + * @param[in] *src points to the instance of the input floating-point matrix structure. + * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + + /** + * @ingroup groupController + */ + + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents
Ia, Ib and Ic
to calculate currents
+ * in the two-phase orthogonal stator axis Ialpha
and Ibeta
.
+ * When Ialpha
is superposed with Ia
as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and Ia + Ib + Ic = 0
, in this condition Ialpha
and Ibeta
+ * can be calculated using only Ia
and Ib
.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where Ia
and Ib
are the instantaneous stator phases and
+ * pIalpha
and pIbeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ */
+
+ static __INLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta =
+ ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+
+ }
+
+ /**
+ * @brief Clarke transform for Q31 version
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+ static __INLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q31(
+ q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where pIa
and pIb
are the instantaneous stator phases and
+ * Ialpha
and Ibeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ */
+
+
+ static __INLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
+
+ }
+
+ /**
+ * @brief Inverse Clarke transform for Q31 version
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+
+ static __INLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q15(
+ q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the Ialpha
and the Ibeta
currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where Ialpha
and Ibeta
are the stator vector components,
+ * pId
and pIq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+
+ static __INLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+
+ }
+
+ /**
+ * @brief Park transform for Q31 version
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+
+
+ static __INLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_float(
+ q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where pIalpha
and pIbeta
are the stator vector components,
+ * Id
and Iq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ */
+
+ static __INLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+
+ }
+
+
+ /**
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+
+ static __INLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_float(
+ q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup LinearInterpolate Linear Interpolation
+ *
+ * Linear interpolation is a method of curve fitting using linear polynomials.
+ * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+ *
+ * \par
+ * \image html LinearInterp.gif "Linear interpolation"
+ *
+ * \par
+ * A Linear Interpolate function calculates an output value(y), for the input(x)
+ * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+ *
+ * \par Algorithm:
+ * + * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) + * where x0, x1 are nearest values of input x + * y0, y1 are nearest values to output y + *+ * + * \par + * This set of functions implements Linear interpolation process + * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single + * sample of data and each call to the function returns a single processed value. + *
S
points to an instance of the Linear Interpolate function data structure.
+ * x
is the input sample value. The functions returns the output value.
+ *
+ * \par
+ * if x is outside of the table boundary, Linear interpolation returns first value of the table
+ * if x is below input range and returns last value of table if x is above range.
+ */
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+
+ static __INLINE float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x)
+ {
+
+ float32_t y;
+ float32_t x0, x1; /* Nearest input values */
+ float32_t y0, y1; /* Nearest output values */
+ float32_t xSpacing = S->xSpacing; /* spacing between input values */
+ int32_t i; /* Index variable */
+ float32_t *pYData = S->pYData; /* pointer to output table */
+
+ /* Calculation of index */
+ i = (int32_t) ((x - S->x1) / xSpacing);
+
+ if(i < 0)
+ {
+ /* Iniatilize output for below specified range as least output value of table */
+ y = pYData[0];
+ }
+ else if((uint32_t)i >= S->nValues)
+ {
+ /* Iniatilize output for above specified range as last output value of table */
+ y = pYData[S->nValues - 1];
+ }
+ else
+ {
+ /* Calculation of nearest input values */
+ x0 = S->x1 + i * xSpacing;
+ x1 = S->x1 + (i + 1) * xSpacing;
+
+ /* Read of nearest output values */
+ y0 = pYData[i];
+ y1 = pYData[i + 1];
+
+ /* Calculation of output */
+ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
+
+ }
+
+ /* returns output value */
+ return (y);
+ }
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ static __INLINE q31_t arm_linear_interp_q31(
+ q31_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q31_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20);
+
+ if(index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* shift left by 11 to keep fract in 1.31 format */
+ fract = (x & 0x000FFFFF) << 11;
+
+ /* Read two nearest output values from the index in 1.31(q31) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+ /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+ y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+ /* Convert y to 1.31 format */
+ return (y << 1u);
+
+ }
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ static __INLINE q15_t arm_linear_interp_q15(
+ q15_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q63_t y; /* output */
+ q15_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20u);
+
+ if(index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+ y = ((q63_t) y0 * (0xFFFFF - fract));
+
+ /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+ y += ((q63_t) y1 * (fract));
+
+ /* convert y to 1.15 format */
+ return (y >> 20);
+ }
+
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+
+
+ static __INLINE q7_t arm_linear_interp_q7(
+ q7_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q7_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ uint32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ if (x < 0)
+ {
+ return (pYData[0]);
+ }
+ index = (x >> 20) & 0xfff;
+
+
+ if(index >= (nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index and are in 1.7(q7) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+ y = ((y0 * (0xFFFFF - fract)));
+
+ /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+ y += (y1 * fract);
+
+ /* convert y to 1.7(q7) format */
+ return (y >> 20u);
+
+ }
+
+ }
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+
+ float32_t arm_sin_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q31_t arm_sin_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q15_t arm_sin_q15(
+ q15_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+
+ float32_t arm_cos_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q31_t arm_cos_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q15_t arm_cos_q15(
+ q15_t x);
+
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ * + * x1 = x0 - f(x0)/f'(x0) + *+ * where
x1
is the current estimate,
+ * x0
is the previous estimate, and
+ * f'(x0)
is the derivative of f()
evaluated at x0
.
+ * For the square root function, the algorithm reduces to:
+ * + * x0 = in/2 [initial guess] + * x1 = 1/2 * ( x0 + in / x0) [each iteration] + *+ */ + + + /** + * @addtogroup SQRT + * @{ + */ + + /** + * @brief Floating-point square root function. + * @param[in] in input value. + * @param[out] *pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + *
in
is negative value and returns zero output for negative values.
+ */
+
+ static __INLINE arm_status arm_sqrt_f32(
+ float32_t in,
+ float32_t * pOut)
+ {
+ if(in > 0)
+ {
+
+// #if __FPU_USED
+#if (__FPU_USED == 1) && defined ( __CC_ARM )
+ *pOut = __sqrtf(in);
+#else
+ *pOut = sqrtf(in);
+#endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+
+ }
+
+
+ /**
+ * @brief Q31 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q31(
+ q31_t in,
+ q31_t * pOut);
+
+ /**
+ * @brief Q15 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q15(
+ q15_t in,
+ q15_t * pOut);
+
+ /**
+ * @} end of SQRT group
+ */
+
+
+
+
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+
+ static __INLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ static __INLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (int32_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+
+ static __INLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ static __INLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q15_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+
+ static __INLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ static __INLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q7_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_mean_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_q15(
+ q15_t * pSrcCmplx,
+ q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_q31(
+ q31_t * pSrcCmplx,
+ q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_f32(
+ float32_t * pSrcCmplx,
+ float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[in] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[out] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+ void arm_min_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[out] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ */
+ void arm_float_to_q31(
+ float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none
+ */
+ void arm_float_to_q15(
+ float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none
+ */
+ void arm_float_to_q7(
+ float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_q15(
+ q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_q7(
+ q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_float(
+ q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_q31(
+ q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_q7(
+ q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup BilinearInterpolate Bilinear Interpolation
+ *
+ * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
+ * The underlying function f(x, y)
is sampled on a regular grid and the interpolation process
+ * determines values between the grid points.
+ * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
+ * Bilinear interpolation is often used in image processing to rescale images.
+ * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
+ *
+ * Algorithm
+ * \par
+ * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
+ * For floating-point, the instance structure is defined as:
+ * + * typedef struct + * { + * uint16_t numRows; + * uint16_t numCols; + * float32_t *pData; + * } arm_bilinear_interp_instance_f32; + *+ * + * \par + * where
numRows
specifies the number of rows in the table;
+ * numCols
specifies the number of columns in the table;
+ * and pData
points to an array of size numRows*numCols
values.
+ * The data table pTable
is organized in row order and the supplied data values fall on integer indexes.
+ * That is, table element (x,y) is located at pTable[x + y*numCols]
where x and y are integers.
+ *
+ * \par
+ * Let (x, y)
specify the desired interpolation point. Then define:
+ * + * XF = floor(x) + * YF = floor(y) + *+ * \par + * The interpolated output point is computed as: + *
+ * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) + * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) + * + f(XF, YF+1) * (1-(x-XF))*(y-YF) + * + f(XF+1, YF+1) * (x-XF)*(y-YF) + *+ * Note that the coordinates (x, y) contain integer and fractional components. + * The integer components specify which portion of the table to use while the + * fractional components control the interpolation processor. + * + * \par + * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. + */ + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + /** + * + * @brief Floating-point bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + + + static __INLINE float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y) + { + float32_t out; + float32_t f00, f01, f10, f11; + float32_t *pData = S->pData; + int32_t xIndex, yIndex, index; + float32_t xdiff, ydiff; + float32_t b1, b2, b3, b4; + + xIndex = (int32_t) X; + yIndex = (int32_t) Y; + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 + || yIndex > (S->numCols - 1)) + { + return (0); + } + + /* Calculation of index for two nearest points in X-direction */ + index = (xIndex - 1) + (yIndex - 1) * S->numCols; + + + /* Read two nearest points in X-direction */ + f00 = pData[index]; + f01 = pData[index + 1]; + + /* Calculation of index for two nearest points in Y-direction */ + index = (xIndex - 1) + (yIndex) * S->numCols; + + + /* Read two nearest points in Y-direction */ + f10 = pData[index]; + f11 = pData[index + 1]; + + /* Calculation of intermediate values */ + b1 = f00; + b2 = f01 - f00; + b3 = f10 - f00; + b4 = f00 - f01 - f10 + f11; + + /* Calculation of fractional part in X */ + xdiff = X - xIndex; + + /* Calculation of fractional part in Y */ + ydiff = Y - yIndex; + + /* Calculation of bi-linear interpolated output */ + out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; + + /* return to application */ + return (out); + + } + + /** + * + * @brief Q31 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y) + { + q31_t out; /* Temporary output */ + q31_t acc = 0; /* output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q31_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q31_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20u); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20u); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* shift left xfract by 11 to keep 1.31 format */ + xfract = (X & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + /* 20 bits for the fractional part */ + /* shift left yfract by 11 to keep 1.31 format */ + yfract = (Y & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); + + /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); + + /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* Convert acc to 1.31(q31) format */ + return (acc << 2u); + + } + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q15_t x1, x2, y1, y2; /* Nearest output values */ + q31_t xfract, yfract; /* X, Y fractional parts */ + int32_t rI, cI; /* Row and column indices */ + q15_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ + + /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ + /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ + out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); + acc = ((q63_t) out * (0xFFFFF - yfract)); + + /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); + acc += ((q63_t) out * (xfract)); + + /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* acc is in 13.51 format and down shift acc by 36 times */ + /* Convert out to 1.15 format */ + return (acc >> 36); + + } + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] *S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + + static __INLINE q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q7_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q7_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & 0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & 0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + nCols * (cI)]; + x2 = pYData[(rI) + nCols * (cI) + 1u]; + + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + nCols * (cI + 1)]; + y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ + out = ((x1 * (0xFFFFF - xfract))); + acc = (((q63_t) out * (0xFFFFF - yfract))); + + /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ + out = ((x2 * (0xFFFFF - yfract))); + acc += (((q63_t) out * (xfract))); + + /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y1 * (0xFFFFF - xfract))); + acc += (((q63_t) out * (yfract))); + + /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y2 * (yfract))); + acc += (((q63_t) out * (xfract))); + + /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ + return (acc >> 40); + + } + + /** + * @} end of BilinearInterpolate group + */ + + +#if defined ( __CC_ARM ) //Keil +//SMMLAR + #define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +//SMMLSR + #define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +//SMMULR + #define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +//Enter low optimization region - place directly above function definition + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + +//Exit low optimization region - place directly after end of function definition + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + +//Enter low optimization region - place directly above function definition + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + +//Exit low optimization region - place directly after end of function definition + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__ICCARM__) //IAR + //SMMLA + #define multAcc_32x32_keep32_R(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + + //SMMLS + #define multSub_32x32_keep32_R(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +//SMMUL + #define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + +//Enter low optimization region - place directly above function definition + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + +//Exit low optimization region - place directly after end of function definition + #define LOW_OPTIMIZATION_EXIT + +//Enter low optimization region - place directly above function definition + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + +//Exit low optimization region - place directly after end of function definition + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__GNUC__) + //SMMLA + #define multAcc_32x32_keep32_R(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + + //SMMLS + #define multSub_32x32_keep32_R(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +//SMMUL + #define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + + #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) + + #define LOW_OPTIMIZATION_EXIT + + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#endif + + + + + +#ifdef __cplusplus +} +#endif + + +#endif /* _ARM_MATH_H */ + + +/** + * + * End of file. + */