/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_cfft_radix2_f32.c * * Description: Radix-2 Decimation in Frequency CFFT & CIFFT Floating point processing function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" void arm_radix2_butterfly_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pCoef, uint16_t twidCoefModifier); void arm_radix2_butterfly_inverse_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pCoef, uint16_t twidCoefModifier, float32_t onebyfftLen); extern void arm_bitreversal_f32( float32_t * pSrc, uint16_t fftSize, uint16_t bitRevFactor, uint16_t * pBitRevTab); /** * @ingroup groupTransforms */ /** * @addtogroup ComplexFFT * @{ */ /** * @details * @brief Radix-2 CFFT/CIFFT. * @deprecated Do not use this function. It has been superceded by \ref arm_cfft_f32 and will be removed * in the future. * @param[in] *S points to an instance of the floating-point Radix-2 CFFT/CIFFT structure. * @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. * @return none. */ void arm_cfft_radix2_f32( const arm_cfft_radix2_instance_f32 * S, float32_t * pSrc) { if(S->ifftFlag == 1u) { /* Complex IFFT radix-2 */ arm_radix2_butterfly_inverse_f32(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier, S->onebyfftLen); } else { /* Complex FFT radix-2 */ arm_radix2_butterfly_f32(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } if(S->bitReverseFlag == 1u) { /* Bit Reversal */ arm_bitreversal_f32(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); } } /** * @} end of ComplexFFT group */ /* ---------------------------------------------------------------------- ** Internal helper function used by the FFTs ** ------------------------------------------------------------------- */ /* * @brief Core function for the floating-point CFFT butterfly process. * @param[in, out] *pSrc points to the in-place buffer of floating-point data type. * @param[in] fftLen length of the FFT. * @param[in] *pCoef points to the twiddle coefficient buffer. * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_radix2_butterfly_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pCoef, uint16_t twidCoefModifier) { uint32_t i, j, k, l; uint32_t n1, n2, ia; float32_t xt, yt, cosVal, sinVal; float32_t p0, p1, p2, p3; float32_t a0, a1; #ifndef ARM_MATH_CM0_FAMILY /* Initializations for the first stage */ n2 = fftLen >> 1; ia = 0; i = 0; // loop for groups for (k = n2; k > 0; k--) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; /* Twiddle coefficients index modifier */ ia += twidCoefModifier; /* index calculation for the input as, */ /* pSrc[i + 0], pSrc[i + fftLen/1] */ l = i + n2; /* Butterfly implementation */ a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 + p1; pSrc[2 * l + 1] = p2 - p3; i++; } // groups loop end twidCoefModifier <<= 1u; // loop for stage for (k = n2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups j = 0; do { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia += twidCoefModifier; // loop for butterfly i = j; do { l = i + n2; a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 + p1; pSrc[2 * l + 1] = p2 - p3; i += n1; } while( i < fftLen ); // butterfly loop end j++; } while( j < n2); // groups loop end twidCoefModifier <<= 1u; } // stages loop end // loop for butterfly for (i = 0; i < fftLen; i += 2) { a0 = pSrc[2 * i] + pSrc[2 * i + 2]; xt = pSrc[2 * i] - pSrc[2 * i + 2]; yt = pSrc[2 * i + 1] - pSrc[2 * i + 3]; a1 = pSrc[2 * i + 3] + pSrc[2 * i + 1]; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * i + 2] = xt; pSrc[2 * i + 3] = yt; } // groups loop end #else n2 = fftLen; // loop for stage for (k = fftLen; k > 1; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups j = 0; do { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia += twidCoefModifier; // loop for butterfly i = j; do { l = i + n2; a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 + p1; pSrc[2 * l + 1] = p2 - p3; i += n1; } while(i < fftLen); j++; } while(j < n2); twidCoefModifier <<= 1u; } #endif // #ifndef ARM_MATH_CM0_FAMILY } void arm_radix2_butterfly_inverse_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pCoef, uint16_t twidCoefModifier, float32_t onebyfftLen) { uint32_t i, j, k, l; uint32_t n1, n2, ia; float32_t xt, yt, cosVal, sinVal; float32_t p0, p1, p2, p3; float32_t a0, a1; #ifndef ARM_MATH_CM0_FAMILY n2 = fftLen >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia += twidCoefModifier; l = i + n2; a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 - p1; pSrc[2 * l + 1] = p2 + p3; } // groups loop end twidCoefModifier <<= 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups j = 0; do { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia += twidCoefModifier; // loop for butterfly i = j; do { l = i + n2; a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 - p1; pSrc[2 * l + 1] = p2 + p3; i += n1; } while( i < fftLen ); // butterfly loop end j++; } while(j < n2); // groups loop end twidCoefModifier <<= 1u; } // stages loop end // loop for butterfly for (i = 0; i < fftLen; i += 2) { a0 = pSrc[2 * i] + pSrc[2 * i + 2]; xt = pSrc[2 * i] - pSrc[2 * i + 2]; a1 = pSrc[2 * i + 3] + pSrc[2 * i + 1]; yt = pSrc[2 * i + 1] - pSrc[2 * i + 3]; p0 = a0 * onebyfftLen; p2 = xt * onebyfftLen; p1 = a1 * onebyfftLen; p3 = yt * onebyfftLen; pSrc[2 * i] = p0; pSrc[2 * i + 1] = p1; pSrc[2 * i + 2] = p2; pSrc[2 * i + 3] = p3; } // butterfly loop end #else n2 = fftLen; // loop for stage for (k = fftLen; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups j = 0; do { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly i = j; do { l = i + n2; a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; p0 = xt * cosVal; p1 = yt * sinVal; p2 = yt * cosVal; p3 = xt * sinVal; pSrc[2 * i] = a0; pSrc[2 * i + 1] = a1; pSrc[2 * l] = p0 - p1; pSrc[2 * l + 1] = p2 + p3; i += n1; } while( i < fftLen ); // butterfly loop end j++; } while( j < n2 ); // groups loop end twidCoefModifier = twidCoefModifier << 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; a0 = pSrc[2 * i] + pSrc[2 * l]; xt = pSrc[2 * i] - pSrc[2 * l]; a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1]; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; p0 = a0 * onebyfftLen; p2 = xt * onebyfftLen; p1 = a1 * onebyfftLen; p3 = yt * onebyfftLen; pSrc[2 * i] = p0; pSrc[2u * l] = p2; pSrc[2 * i + 1] = p1; pSrc[2u * l + 1u] = p3; } // butterfly loop end #endif // #ifndef ARM_MATH_CM0_FAMILY }