/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_shift_q31.c * * Description: Shifts the elements of a Q31 vector by a specified number of bits. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @defgroup shift Vector Shift * * Shifts the elements of a fixed-point vector by a specified number of bits. * There are separate functions for Q7, Q15, and Q31 data types. * The underlying algorithm used is: * *
        
 *     pDst[n] = pSrc[n] << shift,   0 <= n < blockSize.        
 * 
* * If shift is positive then the elements of the vector are shifted to the left. * If shift is negative then the elements of the vector are shifted to the right. * * The functions support in-place computation allowing the source and destination * pointers to reference the same memory buffer. */ /** * @addtogroup shift * @{ */ /** * @brief Shifts the elements of a Q31 vector a specified number of bits. * @param[in] *pSrc points to the input vector * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in the vector * @return none. * * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated. */ void arm_shift_q31( q31_t * pSrc, int8_t shiftBits, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */ #ifndef ARM_MATH_CM0_FAMILY q31_t in1, in2, in3, in4; /* Temporary input variables */ q31_t out1, out2, out3, out4; /* Temporary output variables */ /*loop Unrolling */ blkCnt = blockSize >> 2u; if(sign == 0u) { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A << shiftBits */ /* Shift the input and then store the results in the destination buffer. */ in1 = *pSrc; in2 = *(pSrc + 1); out1 = in1 << shiftBits; in3 = *(pSrc + 2); out2 = in2 << shiftBits; in4 = *(pSrc + 3); if(in1 != (out1 >> shiftBits)) out1 = 0x7FFFFFFF ^ (in1 >> 31); if(in2 != (out2 >> shiftBits)) out2 = 0x7FFFFFFF ^ (in2 >> 31); *pDst = out1; out3 = in3 << shiftBits; *(pDst + 1) = out2; out4 = in4 << shiftBits; if(in3 != (out3 >> shiftBits)) out3 = 0x7FFFFFFF ^ (in3 >> 31); if(in4 != (out4 >> shiftBits)) out4 = 0x7FFFFFFF ^ (in4 >> 31); *(pDst + 2) = out3; *(pDst + 3) = out4; /* Update destination pointer to process next sampels */ pSrc += 4u; pDst += 4u; /* Decrement the loop counter */ blkCnt--; } } else { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A >> shiftBits */ /* Shift the input and then store the results in the destination buffer. */ in1 = *pSrc; in2 = *(pSrc + 1); in3 = *(pSrc + 2); in4 = *(pSrc + 3); *pDst = (in1 >> -shiftBits); *(pDst + 1) = (in2 >> -shiftBits); *(pDst + 2) = (in3 >> -shiftBits); *(pDst + 3) = (in4 >> -shiftBits); pSrc += 4u; pDst += 4u; blkCnt--; } } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ while(blkCnt > 0u) { /* C = A (>> or <<) shiftBits */ /* Shift the input and then store the result in the destination buffer. */ *pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) : (*pSrc++ >> -shiftBits); /* Decrement the loop counter */ blkCnt--; } } /** * @} end of shift group */