/** ****************************************************************************** * @file stm32f0xx_hal_rcc_ex.c * @author MCD Application Team * @version V1.1.0 * @date 03-Oct-2014 * @brief Extended RCC HAL module driver * This file provides firmware functions to manage the following * functionalities RCC extension peripheral: * + Extended Clock Source configuration functions * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== For CRS, RCC Extention HAL driver can be used as follows: (#) In System clock config, HSI48 need to be enabled (#] Enable CRS clock in IP MSP init which will use CRS functions (#) Call CRS functions like this (##) Prepare synchronization configuration necessary for HSI48 calibration (+++) Default values can be set for frequency Error Measurement (reload and error limit) and also HSI48 oscillator smooth trimming. (+++) Macro __HAL_RCC_CRS_CALCULATE_RELOADVALUE can be also used to calculate directly reload value with target and sychronization frequencies values (##) Call function HAL_RCCEx_CRSConfig which (+++) Reset CRS registers to their default values. (+++) Configure CRS registers with synchronization configuration (+++) Enable automatic calibration and frequency error counter feature (##) A polling function is provided to wait for complete Synchronization (+++) Call function HAL_RCCEx_CRSWaitSynchronization() (+++) According to CRS status, user can decide to adjust again the calibration or continue application if synchronization is OK (#) User can retrieve information related to synchronization in calling function HAL_RCCEx_CRSGetSynchronizationInfo() (#) Regarding synchronization status and synchronization information, user can try a new calibration in changing synchronization configuration and call again HAL_RCCEx_CRSConfig. Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), it means that the actual frequency is lower than the target (and so, that the TRIM value should be incremented), while when it is detected during the upcounting phase it means that the actual frequency is higher (and that the TRIM value should be decremented). (#) To use IT mode, user needs to handle it in calling different macros available to do it (__HAL_RCC_CRS_XXX_IT). Interuptions will go through RCC Handler (RCC_IRQn/RCC_CRS_IRQHandler) (++) Call function HAL_RCCEx_CRSConfig() (++) Enable RCC_IRQn (thnaks to NVIC functions) (++) Enable CRS IT (__HAL_RCC_CRS_ENABLE_IT) (++) Implement CRS status management in RCC_CRS_IRQHandler (#) To force a SYNC EVENT, user can use function HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). Function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler) @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2014 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f0xx_hal.h" /** @addtogroup STM32F0xx_HAL_Driver * @{ */ /** @defgroup RCCEx RCCEx Extended HAL module driver * @brief RCC Extension HAL module driver. * @{ */ #ifdef HAL_RCC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup RCCEx_Private_Define RCCEx Private Define * @{ */ #define HSI48_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ /* Bit position in register */ #define CRS_CFGR_FELIM_BITNUMBER 16 #define CRS_CR_TRIM_BITNUMBER 8 #define CRS_ISR_FECAP_BITNUMBER 16 /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @defgroup RCCEx_Private_Variables RCCEx Private Variables * @{ */ const uint8_t PLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16}; const uint8_t PredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16}; /** * @} */ /* Private function prototypes -----------------------------------------------*/ /* Exported functions ---------------------------------------------------------*/ /** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions * @{ */ /** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions * @brief Extended RCC clocks control functions * @verbatim =============================================================================== ##### Extended Peripheral Control functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to control the RCC Clocks frequencies. [..] (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select the RTC clock source; in this case the Backup domain will be reset in order to modify the RTC Clock source, as consequence RTC registers (including the backup registers) and RCC_BDCR register are set to their reset values. @endverbatim * @{ */ /** * @brief Initializes the RCC Oscillators according to the specified parameters in the * RCC_OscInitTypeDef. * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that * contains the configuration information for the RCC Oscillators. * @note The PLL is not disabled when used as system clock. * @retval HAL status */ HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) { uint32_t tickstart = 0; /* Check the parameters */ assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); /*------------------------------- HSE Configuration ------------------------*/ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) { /* Check the parameters */ assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) { if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState != RCC_HSE_ON)) { return HAL_ERROR; } } else { /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/ __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) { if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Set the new HSE configuration ---------------------------------------*/ __HAL_RCC_HSE_CONFIG((uint8_t)RCC_OscInitStruct->HSEState); /* Check the HSE State */ if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) { /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) { if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else { /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) { if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } } /*----------------------------- HSI Configuration --------------------------*/ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) { /* Check the parameters */ assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI))) { /* When the HSI is used as system clock it is not allowed to be disabled */ if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) { return HAL_ERROR; } /* Otherwise, just the calibration is allowed */ else { /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); } } else { /* Check the HSI State */ if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) { /* Enable the Internal High Speed oscillator (HSI). */ __HAL_RCC_HSI_ENABLE(); tickstart = HAL_GetTick(); /* Wait till HSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) { if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Adjusts the Internal High Speed oscillator (HSI) calibration value. */ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); } else { /* Disable the Internal High Speed oscillator (HSI). */ __HAL_RCC_HSI_DISABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) { if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } } /*------------------------------ LSI Configuration -------------------------*/ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) { /* Check the parameters */ assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); /* Check the LSI State */ if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) { /* Enable the Internal Low Speed oscillator (LSI). */ __HAL_RCC_LSI_ENABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till LSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) { if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else { /* Disable the Internal Low Speed oscillator (LSI). */ __HAL_RCC_LSI_DISABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till LSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) { if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } /*------------------------------ LSE Configuration -------------------------*/ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) { /* Check the parameters */ assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); /* Enable Power Clock */ __PWR_CLK_ENABLE(); /* Enable write access to Backup domain */ SET_BIT(PWR->CR, PWR_CR_DBP); /* Wait for Backup domain Write protection disable */ tickstart = HAL_GetTick(); while((PWR->CR & PWR_CR_DBP) == RESET) { if((HAL_GetTick() - tickstart) > DBP_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/ __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till LSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) { if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Set the new LSE configuration -----------------------------------------*/ __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); /* Check the LSE State */ if(RCC_OscInitStruct->LSEState == RCC_LSE_ON) { /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till LSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) { if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else { /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till LSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) { if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } /*----------------------------- HSI14 Configuration --------------------------*/ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14) { /* Check the parameters */ assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State)); assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue)); /* Check the HSI14 State */ if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON) { /* Disable ADC control of the Internal High Speed oscillator HSI14 */ __HAL_RCC_HSI14ADC_DISABLE(); /* Enable the Internal High Speed oscillator (HSI). */ __HAL_RCC_HSI14_ENABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET) { if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */ __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue); } else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL) { /* Enable ADC control of the Internal High Speed oscillator HSI14 */ __HAL_RCC_HSI14ADC_ENABLE(); /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */ __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue); } else { /* Disable ADC control of the Internal High Speed oscillator HSI14 */ __HAL_RCC_HSI14ADC_DISABLE(); /* Disable the Internal High Speed oscillator (HSI). */ __HAL_RCC_HSI14_DISABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET) { if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /*----------------------------- HSI48 Configuration --------------------------*/ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) { /* Check the parameters */ assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); /* When the HSI48 is used as system clock it is not allowed to be disabled */ if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48))) { if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON)) { return HAL_ERROR; } } else { /* Check the HSI State */ if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) { /* Enable the Internal High Speed oscillator (HSI48). */ __HAL_RCC_HSI48_ENABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) { if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else { /* Disable the Internal High Speed oscillator (HSI48). */ __HAL_RCC_HSI48_DISABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till HSI is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) { if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ /*-------------------------------- PLL Configuration -----------------------*/ /* Check the parameters */ assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) { /* Check if the PLL is used as system clock or not */ if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) { if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) { /* Check the parameters */ assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV)); assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); /* Disable the main PLL. */ __HAL_RCC_PLL_DISABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till PLL is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) { if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Configure the main PLL clock source, predivider and multiplication factor. */ __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, RCC_OscInitStruct->PLL.PREDIV, RCC_OscInitStruct->PLL.PLLMUL); /* Enable the main PLL. */ __HAL_RCC_PLL_ENABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till PLL is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) { if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else { /* Disable the main PLL. */ __HAL_RCC_PLL_DISABLE(); /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till PLL is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) { if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } else { return HAL_ERROR; } } return HAL_OK; } /** * @brief Initializes the CPU, AHB and APB busses clocks according to the specified * parameters in the RCC_ClkInitStruct. * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that * contains the configuration information for the RCC peripheral. * @param FLatency: FLASH Latency * This parameter can be one of the following values: * @arg FLASH_LATENCY_0: FLASH 0 Latency cycle * @arg FLASH_LATENCY_1: FLASH 1 Latency cycle * * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency * and updated by HAL_RCC_GetHCLKFreq() function called within this function * * @note The HSI is used (enabled by hardware) as system clock source after * startup from Reset, wake-up from STOP and STANDBY mode, or in case * of failure of the HSE used directly or indirectly as system clock * (if the Clock Security System CSS is enabled). * * @note A switch from one clock source to another occurs only if the target * clock source is ready (clock stable after startup delay or PLL locked). * If a clock source which is not yet ready is selected, the switch will * occur when the clock source will be ready. * @retval None */ HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) { uint32_t tickstart = 0; /* Check the parameters */ assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); assert_param(IS_FLASH_LATENCY(FLatency)); /* To correctly read data from FLASH memory, the number of wait states (LATENCY) must be correctly programmed according to the frequency of the CPU clock (HCLK) of the device. */ /* Increasing the CPU frequency */ if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) { /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ __HAL_FLASH_SET_LATENCY(FLatency); /* Check that the new number of wait states is taken into account to access the Flash memory by reading the FLASH_ACR register */ if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) { return HAL_ERROR; } /*-------------------------- HCLK Configuration --------------------------*/ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) { assert_param(IS_RCC_SYSCLK_DIV(RCC_ClkInitStruct->AHBCLKDivider)); MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); } /*------------------------- SYSCLK Configuration ---------------------------*/ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) { assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); /* HSE is selected as System Clock Source */ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) { /* Check the HSE ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) { return HAL_ERROR; } } /* PLL is selected as System Clock Source */ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) { /* Check the PLL ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) { return HAL_ERROR; } } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /* HSI48 is selected as System Clock Source */ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48) { /* Check the HSI48 ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) { return HAL_ERROR; } } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ /* HSI is selected as System Clock Source */ else { /* Check the HSI ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) { return HAL_ERROR; } } MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); /* Get timeout */ tickstart = HAL_GetTick(); if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) { while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) { while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48) { while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ else { while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } } /* Decreasing the CPU frequency */ else { /*-------------------------- HCLK Configuration --------------------------*/ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) { assert_param(IS_RCC_SYSCLK_DIV(RCC_ClkInitStruct->AHBCLKDivider)); MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); } /*------------------------- SYSCLK Configuration ---------------------------*/ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) { assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); /* HSE is selected as System Clock Source */ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) { /* Check the HSE ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) { return HAL_ERROR; } } /* PLL is selected as System Clock Source */ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) { /* Check the PLL ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) { return HAL_ERROR; } } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /* HSI48 is selected as System Clock Source */ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48) { /* Check the HSI48 ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) { return HAL_ERROR; } } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ /* HSI is selected as System Clock Source */ else { /* Check the HSI ready flag */ if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) { return HAL_ERROR; } } MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); /* Get timeout */ tickstart = HAL_GetTick(); if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) { while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) { while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48) { while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ else { while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) { if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } } /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ __HAL_FLASH_SET_LATENCY(FLatency); /* Check that the new number of wait states is taken into account to access the Flash memory by reading the FLASH_ACR register */ if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) { return HAL_ERROR; } } /*-------------------------- PCLK1 Configuration ---------------------------*/ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) { assert_param(IS_RCC_HCLK_DIV(RCC_ClkInitStruct->APB1CLKDivider)); MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider); } /* Configure the source of time base considering new system clocks settings*/ HAL_InitTick (TICK_INT_PRIORITY); return HAL_OK; } /** * @brief Returns the SYSCLK frequency * @note The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * @note If SYSCLK source is HSI, function returns a value based on HSI_VALUE(*) * @note If SYSCLK source is HSI48, function returns a value based on HSI48_VALUE(*) * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE * divided by PREDIV factor(**) * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE * divided by PREDIV factor(**) or depending on STM32F0xx devices either a value based * on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the * PLL factor . * @note (*) HSI_VALUE & HSI48_VALUE are constants defined in stm32f0xx_hal_conf.h file * (default values 8 MHz and 48MHz). * @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value * 8 MHz), user has to ensure that HSE_VALUE is same as the real * frequency of the crystal used. Otherwise, this function may * have wrong result. * * @note The result of this function could be not correct when using fractional * value for HSE crystal. * * @note This function can be used by the user application to compute the * baudrate for the communication peripherals or configure other parameters. * * @note Each time SYSCLK changes, this function must be called to update the * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. * * @retval SYSCLK frequency */ uint32_t HAL_RCC_GetSysClockFreq(void) { uint32_t tmpreg = 0, prediv = 0, pllmul = 0, pllclk = 0; uint32_t sysclockfreq = 0; tmpreg = RCC->CFGR; /* Get SYSCLK source -------------------------------------------------------*/ switch (tmpreg & RCC_CFGR_SWS) { case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ sysclockfreq = HSE_VALUE; break; case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock source */ pllmul = PLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER]; prediv = PredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER]; if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE) { /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */ pllclk = (HSE_VALUE/prediv) * pllmul; } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48) { /* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */ pllclk = (HSI48_VALUE/prediv) * pllmul; } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ else { #if defined(STM32F042x6) || defined(STM32F048xx) || \ defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */ pllclk = (HSI_VALUE/prediv) * pllmul; #else /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */ pllclk = (HSI_VALUE >> 1) * pllmul; #endif /* STM32F042x6 || STM32F048xx || STM32F071xB || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ } sysclockfreq = pllclk; break; #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) case RCC_SYSCLKSOURCE_STATUS_HSI48: /* HSI48 used as system clock source */ sysclockfreq = HSI48_VALUE; break; #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ default: sysclockfreq = HSI_VALUE; break; } return sysclockfreq; } /** * @brief Initializes the RCC extended peripherals clocks according to the specified * parameters in the RCC_PeriphCLKInitTypeDef. * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that * contains the configuration information for the Extended Peripherals clocks * (USART, RTC, I2C, CEC and USB). * * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select * the RTC clock source; in this case the Backup domain will be reset in * order to modify the RTC Clock source, as consequence RTC registers (including * the backup registers) and RCC_BDCR register are set to their reset values. * * @retval None */ HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) { uint32_t tickstart = 0; uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PERIPHCLK(PeriphClkInit->PeriphClockSelection)); /*---------------------------- RTC configuration -------------------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC)) { /* Enable Power Clock*/ __PWR_CLK_ENABLE(); /* Enable write access to Backup domain */ SET_BIT(PWR->CR, PWR_CR_DBP); /* Wait for Backup domain Write protection disable */ tickstart = HAL_GetTick(); while((PWR->CR & PWR_CR_DBP) == RESET) { if((HAL_GetTick() - tickstart) > DBP_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } /* Reset the Backup domain only if the RTC Clock source selction is modified */ if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)) { /* Store the content of BDCR register before the reset of Backup Domain */ tmpreg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL)); /* RTC Clock selection can be changed only if the Backup Domain is reset */ __HAL_RCC_BACKUPRESET_FORCE(); __HAL_RCC_BACKUPRESET_RELEASE(); /* Restore the Content of BDCR register */ RCC->BDCR = tmpreg; } /* If LSE is selected as RTC clock source, wait for LSE reactivation */ if(PeriphClkInit->RTCClockSelection == RCC_RTCCLKSOURCE_LSE) { /* Get timeout */ tickstart = HAL_GetTick(); /* Wait till LSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) { if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE) { return HAL_TIMEOUT; } } } __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); } /*------------------------------- USART1 Configuration ------------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) { /* Check the parameters */ assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection)); /* Configure the USART1 clock source */ __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection); } #if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /*----------------------------- USART2 Configuration --------------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) { /* Check the parameters */ assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection)); /* Configure the USART2 clock source */ __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection); } #endif /* STM32F071xB || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ #if defined(STM32F091xC) || defined(STM32F098xx) /*----------------------------- USART3 Configuration --------------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) { /* Check the parameters */ assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection)); /* Configure the USART3 clock source */ __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection); } #endif /* STM32F091xC || STM32F098xx */ /*------------------------------ I2C1 Configuration ------------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) { /* Check the parameters */ assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection)); /* Configure the I2C1 clock source */ __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection); } #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) /*------------------------------ USB Configuration ------------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB) { /* Check the parameters */ assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection)); /* Configure the USB clock source */ __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection); } #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */ #if defined(STM32F042x6) || defined(STM32F048xx) || \ defined(STM32F051x8) || defined(STM32F058xx) || \ defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /*------------------------------ CEC clock Configuration -------------------*/ if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) { /* Check the parameters */ assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection)); /* Configure the CEC clock source */ __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection); } #endif /* STM32F042x6 || STM32F048xx || */ /* STM32F051x8 || STM32F058xx || */ /* STM32F071xB || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ return HAL_OK; } /** * @brief Get the RCC_ClkInitStruct according to the internal * RCC configuration registers. * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that * returns the configuration information for the Extended Peripherals clocks * (USART, RTC, I2C, CEC and USB). * @retval None */ void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) { /* Set all possible values for the extended clock type parameter------------*/ /* Common part first */ PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_RTC; /* Get the RTC configuration --------------------------------------------*/ PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE(); /* Get the USART1 configuration --------------------------------------------*/ PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE(); /* Get the I2C1 clock source -----------------------------------------------*/ PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE(); #if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2; /* Get the USART2 clock source ---------------------------------------------*/ PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE(); #endif /* STM32F071xB || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ #if defined(STM32F091xC) || defined(STM32F098xx) PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3; /* Get the USART3 clock source ---------------------------------------------*/ PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE(); #endif /* STM32F091xC || STM32F098xx */ #if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB; /* Get the USB clock source ---------------------------------------------*/ PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE(); #endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */ #if defined(STM32F042x6) || defined(STM32F048xx) || \ defined(STM32F051x8) || defined(STM32F058xx) || \ defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC; /* Get the CEC clock source ------------------------------------------------*/ PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE(); #endif /* STM32F042x6 || STM32F048xx || */ /* STM32F051x8 || STM32F058xx || */ /* STM32F071xB || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ } #if defined(STM32F042x6) || defined(STM32F048xx) || \ defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ defined(STM32F091xC) || defined(STM32F098xx) /** * @brief Start automatic synchronization using polling mode * @param pInit Pointer on RCC_CRSInitTypeDef structure * @retval None */ void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit) { /* Check the parameters */ assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler)); assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source)); assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity)); assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue)); assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue)); assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue)); /* CONFIGURATION */ /* Before configuration, reset CRS registers to their default values*/ __CRS_FORCE_RESET(); __CRS_RELEASE_RESET(); /* Configure Synchronization input */ /* Clear SYNCDIV[2:0], SYNCSRC[1:0] & SYNCSPOL bits */ CRS->CFGR &= ~(CRS_CFGR_SYNCDIV | CRS_CFGR_SYNCSRC | CRS_CFGR_SYNCPOL); /* Set the CRS_CFGR_SYNCDIV[2:0] bits according to Prescaler value */ CRS->CFGR |= pInit->Prescaler; /* Set the SYNCSRC[1:0] bits according to Source value */ CRS->CFGR |= pInit->Source; /* Set the SYNCSPOL bits according to Polarity value */ CRS->CFGR |= pInit->Polarity; /* Configure Frequency Error Measurement */ /* Clear RELOAD[15:0] & FELIM[7:0] bits*/ CRS->CFGR &= ~(CRS_CFGR_RELOAD | CRS_CFGR_FELIM); /* Set the RELOAD[15:0] bits according to ReloadValue value */ CRS->CFGR |= pInit->ReloadValue; /* Set the FELIM[7:0] bits according to ErrorLimitValue value */ CRS->CFGR |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER); /* Adjust HSI48 oscillator smooth trimming */ /* Clear TRIM[5:0] bits */ CRS->CR &= ~CRS_CR_TRIM; /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */ CRS->CR |= (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER); /* START AUTOMATIC SYNCHRONIZATION*/ /* Enable Automatic trimming */ __HAL_RCC_CRS_ENABLE_AUTOMATIC_CALIB(); /* Enable Frequency error counter */ __HAL_RCC_CRS_ENABLE_FREQ_ERROR_COUNTER(); } /** * @brief Generate the software synchronization event * @retval None */ void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void) { CRS->CR |= CRS_CR_SWSYNC; } /** * @brief Function to return synchronization info * @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure * @retval None */ void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo) { /* Check the parameter */ assert_param(pSynchroInfo != NULL); /* Get the reload value */ pSynchroInfo->ReloadValue = (uint32_t)(CRS->CFGR & CRS_CFGR_RELOAD); /* Get HSI48 oscillator smooth trimming */ pSynchroInfo->HSI48CalibrationValue = (uint32_t)((CRS->CR & CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER); /* Get Frequency error capture */ pSynchroInfo->FreqErrorCapture = (uint32_t)((CRS->ISR & CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER); /* Get FFrequency error direction */ pSynchroInfo->FreqErrorDirection = (uint32_t)(CRS->ISR & CRS_ISR_FEDIR); } /** * @brief This function handles CRS Synchronization Timeout. * @param Timeout: Duration of the timeout * @note Timeout is based on the maximum time to receive a SYNC event based on synchronization * frequency. * @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned. * @retval Combination of Synchronization status * This parameter can be a combination of the following values: * @arg RCC_CRS_TIMEOUT * @arg RCC_CRS_SYNCOK * @arg RCC_CRS_SYNCWARM * @arg RCC_CRS_SYNCERR * @arg RCC_CRS_SYNCMISS * @arg RCC_CRS_TRIMOV */ RCC_CRSStatusTypeDef HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout) { RCC_CRSStatusTypeDef crsstatus = RCC_CRS_NONE; uint32_t tickstart = 0; /* Get timeout */ tickstart = HAL_GetTick(); /* Check that if one of CRS flags have been set */ while(RCC_CRS_NONE == crsstatus) { if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout)) { crsstatus = RCC_CRS_TIMEOUT; } } /* Check CRS SYNCOK flag */ if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK)) { /* CRS SYNC event OK */ crsstatus |= RCC_CRS_SYNCOK; /* Clear CRS SYNC event OK bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK); } /* Check CRS SYNCWARN flag */ if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN)) { /* CRS SYNC warning */ crsstatus |= RCC_CRS_SYNCWARM; /* Clear CRS SYNCWARN bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN); } /* Check CRS TRIM overflow flag */ if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF)) { /* CRS SYNC Error */ crsstatus |= RCC_CRS_TRIMOV; /* Clear CRS Error bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF); } /* Check CRS Error flag */ if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR)) { /* CRS SYNC Error */ crsstatus |= RCC_CRS_SYNCERR; /* Clear CRS Error bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR); } /* Check CRS SYNC Missed flag */ if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS)) { /* CRS SYNC Missed */ crsstatus |= RCC_CRS_SYNCMISS; /* Clear CRS SYNC Missed bit */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS); } /* Check CRS Expected SYNC flag */ if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC)) { /* frequency error counter reached a zero value */ __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC); } } return crsstatus; } #endif /* STM32F042x6 || STM32F048xx || */ /* STM32F071xB || STM32F072xB || STM32F078xx || */ /* STM32F091xC || STM32F098xx */ /** * @} */ /** * @} */ #endif /* HAL_RCC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/