#include "main.h" #include "stm32l100c_discovery.h" #include "ssd1306.h" #include "config.h" // USB includes #include "hw_config.h" #include "usb_lib.h" #include "usb_desc.h" #include "usb_pwr.h" #include "stringhelpers.h" // TODO: Grab buttonpresses with interrupts // TODO: Eliminate screen buffer since we aren't using it... // USB Supporting Vars extern __IO uint8_t Receive_Buffer[64]; extern __IO uint32_t Receive_length ; extern __IO uint32_t length ; uint8_t Send_Buffer[64]; uint32_t packet_sent=1; uint32_t packet_receive=1; // Globalish setting vars uint8_t boottobrew = 0; #define WINDUP_GUARD_GAIN 100 uint16_t windup_guard = WINDUP_GUARD_GAIN; uint16_t k_p = 1; uint16_t k_i = 1; uint16_t k_d = 1; // ISR ticks var TODO: Double check functionality after volatilazation... needed on ARM? volatile uint32_t ticks = 0; // Increase on each press, and increase at a fast rate after duration elapsed of continuously holding down... somehow... uint32_t change_time_reset = 0; #define CHANGE_PERIOD_MS 100 #define CHANGE_ELAPSED (ticks - change_time_reset) > CHANGE_PERIOD_MS #define CHANGE_RESET change_time_reset = ticks int16_t setpoint_brew = 0; int16_t setpoint_steam = 0; // State definition enum state { STATE_IDLE = 0, STATE_SETP, STATE_SETI, STATE_SETD, STATE_SETWINDUP, STATE_SETBOOTTOBREW, STATE_PREHEAT_BREW, STATE_MAINTAIN_BREW, STATE_PREHEAT_STEAM, STATE_MAINTAIN_STEAM, }; uint8_t state = STATE_IDLE; static __IO uint32_t TimingDelay; // Move to header file void init_gpio(); void init_spi(); void process(); void machine(); void delay(__IO uint32_t nTime); void restore_settings(); void save_settings(); void save_setpoints(); int main(void) { // Init clocks SystemInit(); // Init GPIO init_gpio(); // Init USB //Set_USBClock(); //USB_Interrupts_Config(); //USB_Init(); // Turn on power LED GPIO_SetBits(LED_POWER); // TODO: Awesome pwm of power LED (TIM4_CH4 or TIM11_CH1) // Configure 1ms SysTick (change if more temporal resolution needed) RCC_ClocksTypeDef RCC_Clocks; RCC_GetClocksFreq(&RCC_Clocks); SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000); // Init SPI busses init_spi(); // Init OLED over SPI ssd1306_Init(); ssd1306_clearscreen(); // Startup screen ssd1306_DrawString("therm v0.1", 1, 40); ssd1306_DrawString("protofusion.org/therm", 3, 0); delay(1500); ssd1306_clearscreen(); restore_settings(); if(boottobrew) state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly GPIO_ResetBits(LED_STAT); // Main loop while(1) { // Process sensor inputs process(); // Run state machine machine(); } } // Read temperature and update global temp vars int16_t temp = 0; uint8_t temp_frac = 0; void update_temp() { // Assert CS GPIO_ResetBits(MAX_CS); delay(1); // This may not clock at all... might need to send 16 bits first SPI_I2S_SendData(SPI2, 0xAAAA); // send dummy data //SPI_I2S_SendData(SPI2, 0xAA); // send dummy data uint16_t temp_pre = SPI_I2S_ReceiveData(SPI2); if(temp_pre & 0b0000000000000010) { ssd1306_DrawString("Fatal Error", 2, 35); } else if(temp_pre & 0b0000000000000001) { ssd1306_DrawString("Error: No TC", 2, 40); temp = 0; temp_frac = 0; } else { uint8_t sign = temp >> 15;// top bit is sign temp_pre = temp_pre >> 2; // Drop 2 lowest bits temp_frac = temp_pre & 0b11; // get fractional part temp_frac *= 25; // each bit is .25 a degree, up to fixed point temp_pre = temp_pre >> 2; // Drop 2 fractional bits if(sign) { temp = -temp_pre; } else { temp = temp_pre; } } // Deassert CS delay(1); GPIO_SetBits(MAX_CS); } // PID implementation int16_t last_pid_temp = 0; uint8_t last_pid_temp_frac = 0; int16_t i_state = 0; int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint) { // Calculate instantaneous error int16_t error = (int16_t)setpoint - (int16_t)temp; // TODO: Use fixed point fraction // Proportional component int16_t p_term = k_p * error; // Error accumulator (integrator) i_state += error; // to prevent the iTerm getting huge despite lots of // error, we use a "windup guard" // (this happens when the machine is first turned on and // it cant help be cold despite its best efforts) // not necessary, but this makes windup guard values // relative to the current iGain int16_t windup_guard_res = WINDUP_GUARD_GAIN / k_i; // Calculate integral term with windup guard if (i_state > windup_guard_res) i_state = windup_guard_res; else if (i_state < -windup_guard_res) i_state = -windup_guard_res; int16_t i_term = k_i * i_state; // Calculate differential term (slope since last iteration) int16_t d_term = (k_d * (temp - last_pid_temp)); // Save temperature for next iteration last_pid_temp = temp; last_pid_temp_frac = temp_frac; int16_t result = p_term + i_term - d_term; // Put out tenths of percent, 0-1000. if(result > 1000) result = 1000; else if(result < -1000) result = -1000; // Return feedback return result; } uint32_t last_ssr_on = 0; uint32_t last_led = 0; int32_t setpoint = 0; int16_t ssr_output = 0; // Duty cycle of ssr, 0 to SSR_PERIOD uint8_t pid_enabled = 0; // Process things void process() { update_temp(); // Read MAX31855 // TODO: Add calibration offset (linear) if(ticks - last_led > 400) { GPIO_ToggleBits(LED_POWER); last_led = ticks; } // Every 200ms, set the SSR on unless output is 0 if((ticks - last_ssr_on > SSR_PERIOD)) { if(pid_enabled) { // Get ssr output for next time int16_t power_percent = update_pid(k_p, k_i, k_d, temp, temp_frac, setpoint); //power-percent is 0-1000 ssr_output = power_percent; //(((uint32_t)SSR_PERIOD * (uint32_t)10 * (uint32_t)100) * power_percent) / (uint32_t)1000000; } else { ssr_output = 0; } // Only support heating (ssr_output > 0) right now if(ssr_output > 0) { char tempstr[6]; itoa(ssr_output, tempstr); ssd1306_DrawString("#=", 2, 45); ssd1306_DrawString(" ", 2, 57); ssd1306_DrawString(tempstr, 2, 57); GPIO_SetBits(LED_STAT); GPIO_SetBits(SSR_PIN); last_ssr_on = ticks; } } // Kill SSR after elapsed period less than SSR_PERIOD if(ticks - last_ssr_on > ssr_output || ssr_output == 0) { GPIO_ResetBits(LED_STAT); GPIO_ResetBits(SSR_PIN); } } void draw_setpoint() { char tempstr[3]; itoa_fp(temp, temp_frac, tempstr); //ssd1306_DrawString(" ", 3, 40); ssd1306_DrawString(tempstr, 3, 40); ssd1306_DrawString("-> ", 3, 80); itoa(setpoint, tempstr); ssd1306_DrawString(" ", 3, 95); ssd1306_DrawString(tempstr, 3, 95); } uint8_t goto_mode = 2; // State machine uint8_t sw_btn_last = 0; uint8_t sw_up_last = 0; uint8_t sw_down_last = 0; uint8_t sw_left_last = 0; uint8_t sw_right_last = 0; #define SW_BTN_PRESSED (sw_btn_last == 0 && sw_btn == 1) // rising edge on buttonpress #define SW_UP_PRESSED (sw_up_last == 0 && sw_up == 1) #define SW_DOWN_PRESSED (sw_down_last == 0 && sw_down == 1) #define SW_LEFT_PRESSED (sw_left_last == 0 && sw_left == 1) #define SW_RIGHT_PRESSED (sw_right_last == 0 && sw_right == 1) /* * uint8_t boottobrew = 0; #define WINDUP_GUARD_GAIN 100 uint16_t windup_guard = WINDUP_GUARD_GAIN; uint16_t k_p = 1; uint16_t k_i = 1; uint16_t k_d = 1;*/ #define EEPROM_ADDR_WINDUP_GUARD 0x001C #define EEPROM_ADDR_BOOTTOBREW 0x0020 #define EEPROM_ADDR_K_P 0x0024 #define EEPROM_ADDR_K_I 0x0028 #define EEPROM_ADDR_K_D 0x002C #define EEPROM_ADDR_BREWTEMP 0x0030 #define EEPROM_ADDR_STEAMTEMP 0x0034 #define EEPROM_BASE_ADDR 0x08080000 #define EEPROM_BYTE_SIZE 0x0FFF void Minimal_EEPROM_Unlock(void) { if((FLASH->PECR & FLASH_PECR_PELOCK) != RESET) { /* Unlocking the Data memory and FLASH_PECR register access*/ FLASH->PEKEYR = FLASH_PEKEY1; FLASH->PEKEYR = FLASH_PEKEY2; } } void Minimal_EEPROM_Lock(void) { /* Set the PELOCK Bit to lock the data memory and FLASH_PECR register access */ FLASH->PECR |= FLASH_PECR_PELOCK; } FLASH_Status Minimal_FLASH_GetStatus(void) { FLASH_Status FLASHstatus = FLASH_COMPLETE; if((FLASH->SR & FLASH_FLAG_BSY) == FLASH_FLAG_BSY) { FLASHstatus = FLASH_BUSY; } else { if((FLASH->SR & (uint32_t)FLASH_FLAG_WRPERR)!= (uint32_t)0x00) { FLASHstatus = FLASH_ERROR_WRP; } else { if((FLASH->SR & (uint32_t)0x1E00) != (uint32_t)0x00) { FLASHstatus = FLASH_ERROR_PROGRAM; } else { FLASHstatus = FLASH_COMPLETE; } } } /* Return the FLASH Status */ return FLASHstatus; } FLASH_Status Minimal_FLASH_WaitForLastOperation(uint32_t Timeout) { __IO FLASH_Status status = FLASH_COMPLETE; /* Check for the FLASH Status */ status = Minimal_FLASH_GetStatus(); /* Wait for a FLASH operation to complete or a TIMEOUT to occur */ while((status == FLASH_BUSY) && (Timeout != 0x00)) { status = Minimal_FLASH_GetStatus(); Timeout--; } if(Timeout == 0x00 ) { status = FLASH_TIMEOUT; } /* Return the operation status */ return status; } void Minimal_EEPROM_ProgramWord(uint32_t Address, uint32_t Data) { // Wait for last operation to be completed FLASH_Status status = FLASH_COMPLETE; status = Minimal_FLASH_WaitForLastOperation(FLASH_ER_PRG_TIMEOUT); if(status == FLASH_COMPLETE) { *(__IO uint32_t *)Address = Data; // Wait for last operation to be completed status = Minimal_FLASH_WaitForLastOperation(FLASH_ER_PRG_TIMEOUT); } // Return the Write Status return status; } void save_settings() { Minimal_EEPROM_Unlock(); // Try programming a word at an address divisible by 4 Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW, boottobrew); Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD, windup_guard); Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P, k_p); Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I, k_i); Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D, k_d); Minimal_EEPROM_Lock(); } void save_setpoints() { Minimal_EEPROM_Unlock(); Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP, setpoint_brew); Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP, setpoint_steam); Minimal_EEPROM_Lock(); } // TODO: Save/restore temperature setpoint settings void restore_settings() { Minimal_EEPROM_Unlock(); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); boottobrew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW)); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); windup_guard = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD)); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); k_p = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P)); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); k_i = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I)); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); k_d = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D)); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); setpoint_brew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP)); while(Minimal_FLASH_GetStatus()==FLASH_BUSY); setpoint_steam = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP)); Minimal_EEPROM_Lock(); } void user_input(uint16_t* to_modify) { if(CHANGE_ELAPSED) { // TODO: Make function that takes reference to a var and increase/decreases it based on buttonpress if(!GPIO_ReadInputDataBit(SW_UP) ) { CHANGE_RESET; (*to_modify)++; } else if(!GPIO_ReadInputDataBit(SW_DOWN) && (*to_modify) > 0) { CHANGE_RESET; (*to_modify)--; } } } void machine() { uint8_t last_state = state; uint8_t sw_btn = !GPIO_ReadInputDataBit(SW_BTN); uint8_t sw_up = !GPIO_ReadInputDataBit(SW_UP); uint8_t sw_down = !GPIO_ReadInputDataBit(SW_DOWN); uint8_t sw_left = !GPIO_ReadInputDataBit(SW_LEFT); uint8_t sw_right = !GPIO_ReadInputDataBit(SW_RIGHT); switch(state) { // Idle state case STATE_IDLE: { // Write text to OLED // [ therm :: idle ] ssd1306_DrawString("therm :: idle ", 0, 40); pid_enabled = 0; char tempstr[6]; itoa_fp(temp, temp_frac, tempstr); ssd1306_DrawString("Temp: ", 3, 40); ssd1306_DrawString(" ", 3, 72); ssd1306_DrawString(tempstr, 3, 72); ssd1306_drawlogo(); switch(goto_mode) { case 2: { ssd1306_DrawString("-> brew ", 1, 40); } break; case 1: { ssd1306_DrawString("-> setup ", 1, 40); } break; case 0: { ssd1306_DrawString("-> reset ", 1, 40); } break; } // Button handler if(SW_BTN_PRESSED) { switch(goto_mode) { case 2: state = STATE_PREHEAT_BREW; break; case 1: state = STATE_SETP; break; case 0: state = STATE_IDLE; break; default: state = STATE_PREHEAT_BREW; } } else if(SW_UP_PRESSED && goto_mode < 2) { goto_mode++; } else if(SW_DOWN_PRESSED && k_p > 0 && goto_mode > 0) { goto_mode--; } // Event Handler // N/A } break; case STATE_SETP: { // Write text to OLED // [ therm :: set p ] // [ p = 12 ] ssd1306_DrawString("Proportional", 0, 40); ssd1306_drawlogo(); char tempstr[6]; itoa(k_p, tempstr); ssd1306_DrawString("P=", 1, 45); ssd1306_DrawString(" ", 1, 57); ssd1306_DrawString(tempstr, 1, 57); ssd1306_DrawString("Press to accept", 3, 40); // Button handler if(SW_BTN_PRESSED) { state = STATE_SETI; } else { user_input(&k_p); } // Event Handler // N/A } break; case STATE_SETI: { // Write text to OLED // [ therm :: set i ] // [ i = 12 ] ssd1306_DrawString("Integral", 0, 40); ssd1306_drawlogo(); char tempstr[6]; itoa(k_i, tempstr); ssd1306_DrawString("I=", 1, 45); ssd1306_DrawString(" ", 1, 57); ssd1306_DrawString(tempstr, 1, 57); ssd1306_DrawString("Press to accept", 3, 40); // Button handler if(SW_BTN_PRESSED) { state = STATE_SETD; } else { user_input(&k_i); } // Event Handler // N/A } break; case STATE_SETD: { // Write text to OLED // [ therm :: set d ] // [ d = 12 ] ssd1306_DrawString("Derivative", 0, 40); ssd1306_drawlogo(); char tempstr[6]; itoa(k_d, tempstr); ssd1306_DrawString("D=", 1, 45); ssd1306_DrawString(" ", 1, 57); ssd1306_DrawString(tempstr, 1, 57); ssd1306_DrawString("Press to accept", 3, 40); // Button handler if(SW_BTN_PRESSED) { state = STATE_SETWINDUP; } else { user_input(&k_d); } // Event Handler // N/A } break; case STATE_SETWINDUP: { // Write text to OLED // [ therm :: set windup ] // [ g = 12 ] ssd1306_DrawString("Windup Guard", 0, 40); ssd1306_drawlogo(); char tempstr[6]; itoa(windup_guard, tempstr); ssd1306_DrawString("G=", 1, 45); ssd1306_DrawString(" ", 1, 57); ssd1306_DrawString(tempstr, 1, 57); ssd1306_DrawString("Press to accept", 3, 40); // Button handler if(SW_BTN_PRESSED) { state = STATE_SETBOOTTOBREW; } else { user_input(&windup_guard); } // Event Handler // N/A } break; case STATE_SETBOOTTOBREW: { // Write text to OLED // [ therm :: set windup ] // [ g = 12 ] ssd1306_DrawString("Boot to Brew", 0, 40); ssd1306_drawlogo(); ssd1306_DrawString("btb=", 1, 45); if(boottobrew) ssd1306_DrawString("Enabled ", 1, 70); else ssd1306_DrawString("Disabled", 1, 70); ssd1306_DrawString("Press to accept", 3, 40); // Button handler if(SW_BTN_PRESSED) { save_settings(); state = STATE_IDLE; } else if(!GPIO_ReadInputDataBit(SW_UP)) { boottobrew = 1; } else if(!GPIO_ReadInputDataBit(SW_DOWN)) { boottobrew = 0; } // Event Handler // N/A } break; case STATE_PREHEAT_BREW: { // Write text to OLED // [ therm : preheating brew ] // [ 30 => 120 C ] ssd1306_DrawString("Preheating...", 0, 40); ssd1306_drawlogo(); draw_setpoint(); pid_enabled = 1; setpoint = setpoint_brew; // Button handler if(SW_BTN_PRESSED) { save_setpoints(); // TODO: Check for mod state = STATE_IDLE; } else { user_input(&setpoint_brew); } // Event Handler if(temp >= setpoint) { state = STATE_MAINTAIN_BREW; } } break; case STATE_MAINTAIN_BREW: { // Write text to OLED // [ therm : ready to brew ] // [ 30 => 120 C ] ssd1306_DrawString("Ready to Brew!", 0, 40); ssd1306_drawlogo(); draw_setpoint(); pid_enabled = 1; setpoint = setpoint_brew; // Button handler if(SW_BTN_PRESSED) { save_setpoints(); // TODO: Check for mod state = STATE_IDLE; } else { user_input(&setpoint_brew); } // Event Handler // N/A } break; case STATE_PREHEAT_STEAM: { // Write text to OLED // [ therm : preheating steam ] // [ 30 => 120 C ] ssd1306_DrawString("Preheating...", 0, 40); ssd1306_drawlogo(); draw_setpoint(); pid_enabled = 1; setpoint = setpoint_steam; // Button handler if(SW_BTN_PRESSED) { state = STATE_IDLE; save_setpoints(); // TODO: Check for mod } else { user_input(&setpoint_steam); } // Event Handler if(temp >= setpoint) { state = STATE_MAINTAIN_STEAM; } } break; case STATE_MAINTAIN_STEAM: { // Write text to OLED // [ therm : ready to steam ] // [ 30 => 120 C ] ssd1306_DrawString("Ready to Steam!", 0, 40); ssd1306_drawlogo(); draw_setpoint(); pid_enabled = 1; setpoint = setpoint_steam; // Button handler if(SW_BTN_PRESSED) { state = STATE_IDLE; save_setpoints(); // TODO: Check for mod } else { user_input(&setpoint_steam); } // Event Handler // N/A } break; // Something is terribly wrong default: { state = STATE_IDLE; pid_enabled = 0; } break; } if(last_state != state) { // Clear screen on state change goto_mode = 2; ssd1306_clearscreen(); } // Last buttonpress sw_btn_last = sw_btn; sw_up_last = sw_up; sw_down_last = sw_down; sw_left_last = sw_left; sw_right_last = sw_right; } // Delay a number of systicks void delay(__IO uint32_t nTime) { TimingDelay = nTime; while(TimingDelay != 0); } // ISR-triggered decrement of delay and increment of tickcounter void TimingDelay_Decrement(void) { if (TimingDelay != 0x00) { TimingDelay--; } ticks++; } void init_spi(void) { SPI_InitTypeDef SPI_InitStructure; // OLED IC SPI_Cmd(SPI1, DISABLE); SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI1, &SPI_InitStructure); SPI_Cmd(SPI1, ENABLE); /* Enable the SPI */ // MAX IC SPI_Cmd(SPI2, DISABLE); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; // Andysworkshop SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; // From andysworkshop SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; // same SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI2, &SPI_InitStructure); SPI_Cmd(SPI2, ENABLE); /* Enable the SPI */ } void init_gpio(void) { GPIO_InitTypeDef GPIO_InitStruct; // Enable SPI clocks RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); // Enable GPIO clocks RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC|RCC_AHBPeriph_GPIOB|RCC_AHBPeriph_GPIOA, ENABLE); // Enable DMA clocks (Is AHB even the right thing???) RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // EMZ TODO get the right ones /*Configure GPIO pin : PC */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PB */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_10|GPIO_Pin_12 |GPIO_Pin_9; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PA */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PB */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6 |GPIO_Pin_7; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOB, &GPIO_InitStruct); /** SPI1 GPIO Configuration PA5 ------> SPI1_SCK PA7 ------> SPI1_MOSI */ /*Enable or disable the AHB peripheral clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); /*Configure GPIO pin : PA: MOSI,SCK */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5|GPIO_Pin_7; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin alternate function */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1); /*Configure GPIO pin alternate function */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1); /** SPI2 GPIO Configuration PB13 ------> SPI2_SCK PB14 ------> SPI2_MISO PB15 ------> SPI2_MOSI */ /*Enable or disable the AHB peripheral clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE); // SPI PINSSS /*Configure GPIO pin : PB, MOSI, SCK */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_15; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitTypeDef GPIO_InitStruct2; // MISO GPIO_InitStruct2.GPIO_Pin = GPIO_Pin_14; GPIO_InitStruct2.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct2.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct2.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(GPIOB, &GPIO_InitStruct2); //Configure GPIO pin alternate function GPIO_PinAFConfig(GPIOB, GPIO_PinSource13, GPIO_AF_SPI2); GPIO_PinAFConfig(GPIOB, GPIO_PinSource14, GPIO_AF_SPI2); GPIO_PinAFConfig(GPIOB, GPIO_PinSource15, GPIO_AF_SPI2); /** USB GPIO Configuration PA11 ------> USB_DM PA12 ------> USB_DP */ /*Enable or disable the AHB peripheral clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); /*Configure GPIO pin : PA */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11|GPIO_Pin_12; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOA, &GPIO_InitStruct); } // vim:softtabstop=4 shiftwidth=4 expandtab