/** ****************************************************************************** * @file stm32f0xx_hal_adc.c * @author MCD Application Team * @version V1.1.0 * @date 03-Oct-2014 * @brief This file provides firmware functions to manage the following * functionalities of the Analog to Digital Convertor (ADC) * peripheral: * + Initialization and de-initialization functions * ++ Initialization and Configuration of ADC * + Operation functions * ++ Start, stop, get result of conversions of regular group, * using 3 possible modes: polling, interruption or DMA. * + Control functions * ++ Analog Watchdog configuration * ++ Channels configuration on regular group * + State functions * ++ ADC state machine management * ++ Interrupts and flags management * @verbatim ============================================================================== ##### ADC specific features ##### ============================================================================== [..] (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution (#) Interrupt generation at the end of regular conversion and in case of analog watchdog or overrun events. (#) Single and continuous conversion modes. (#) Scan mode for automatic conversion of channel 0 to channel 'n'. (#) Data alignment with in-built data coherency. (#) Programmable sampling time. (#) ADC conversion group Regular. (#) External trigger (timer or EXTI) with configurable polarity. (#) DMA request generation for transfer of conversions data of regular group. (#) ADC calibration (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed. (#) ADC input range: from Vref minus (connected to Vssa) to Vref plus (connected to Vdda or to an external voltage reference). ##### How to use this driver ##### ============================================================================== [..] (#) Enable the ADC interface (++) As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured at RCC top level: clock source and clock prescaler. (++)Two possible clock sources: synchronous clock derived from APB clock or asynchronous clock derived from ADC dedicated HSI RC oscillator 14MHz. (++)Example: __ADC1_CLK_ENABLE(); (mandatory) HI14 enable or let under control of ADC: (optional) RCC_OscInitTypeDef RCC_OscInitStructure; RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT; RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL; RCC_OscInitStructure.PLL... (optional if used for system clock) HAL_RCC_OscConfig(&RCC_OscInitStructure); Parameter "HSI14State" must be set either: - to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control the HSI14 oscillator enable/disable (if not used to supply the main system clock): feature used if ADC mode LowPowerAutoPowerOff is enabled. - to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator always enabled: can be used to supply the main system clock. (#) ADC pins configuration (++) Enable the clock for the ADC GPIOs using the following function: __GPIOx_CLK_ENABLE(); (++) Configure these ADC pins in analog mode using HAL_GPIO_Init(); (#) Configure the ADC parameters (conversion resolution, data alignment, continuous mode, ...) using the HAL_ADC_Init() function. (#) Activate the ADC peripheral using one of the start functions: HAL_ADC_Start(), HAL_ADC_Start_IT(), HAL_ADC_Start_DMA(). *** Channels configuration to regular group *** ================================================ [..] (+) To configure the ADC regular group features, use HAL_ADC_Init() and HAL_ADC_ConfigChannel() functions. (+) To activate the continuous mode, use the HAL_ADC_Init() function. (+) To read the ADC converted values, use the HAL_ADC_GetValue() function. *** DMA for regular configuration *** ============================================================= [..] (+) To enable the DMA mode for regular group, use the HAL_ADC_Start_DMA() function. (+) To enable the generation of DMA requests continuously at the end of the last DMA transfer, use the HAL_ADC_Init() function. @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2014 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f0xx_hal.h" /** @addtogroup STM32F0xx_HAL_Driver * @{ */ /** @defgroup ADC ADC HAL module driver * @brief ADC HAL module driver * @{ */ #ifdef HAL_ADC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup ADC_Private_Constants ADC Private Constants * @{ */ /* Fixed timeout values for ADC calibration, enable settling time, disable */ /* settling time. */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescaler. */ /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ /* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */ /* Unit: ms */ #define ADC_ENABLE_TIMEOUT ((uint32_t) 2) #define ADC_DISABLE_TIMEOUT ((uint32_t) 2) #define ADC_STOP_CONVERSION_TIMEOUT ((uint32_t) 2) /* Delay for temperature sensor stabilization time. */ /* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */ /* Delay in CPU cycles, fixed to worst case: maximum CPU frequency 48MHz to */ /* have the minimum number of CPU cycles to fulfill this delay. */ #define ADC_TEMPSENSOR_DELAY_CPU_CYCLES ((uint32_t) 480) /* Delay for ADC stabilization time. */ /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */ /* Delay in CPU cycles, fixed to worst case: maximum CPU frequency 48MHz to */ /* have the minimum number of CPU cycles to fulfill this delay. */ #define ADC_STAB_DELAY_CPU_CYCLES ((uint32_t)48) /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc); static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc); static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc); static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); static void ADC_DMAError(DMA_HandleTypeDef *hdma); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup ADC_Exported_Functions ADC Exported Functions * @{ */ /** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the ADC. (+) De-initialize the ADC @endverbatim * @{ */ /** * @brief Initializes the ADC peripheral and regular group according to * parameters specified in structure "ADC_InitTypeDef". * @note As prerequisite, ADC clock must be configured at RCC top level * depending on both possible clock sources: APB clock of HSI clock. * See commented example code below that can be copied and uncommented * into HAL_ADC_MspInit(). * @note Possibility to update parameters on the fly: * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when * coming from ADC state reset. Following calls to this function can * be used to reconfigure some parameters of ADC_InitTypeDef * structure on the fly, without modifying MSP configuration. If ADC * MSP has to be modified again, HAL_ADC_DeInit() must be called * before HAL_ADC_Init(). * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_InitTypeDef". * @note This function configures the ADC within 2 scopes: scope of entire * ADC and scope of regular group. For parameters details, see comments * of structure "ADC_InitTypeDef". * @param hadc: ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; uint32_t tmpCFGR1 = 0; /* Check ADC handle */ if(hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff)); /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */ /* at RCC top level depending on both possible clock sources: */ /* APB clock or HSI clock. */ /* Refer to header of this file for more details on clock enabling procedure*/ /* Actions performed only if ADC is coming from state reset: */ /* - Initialization of ADC MSP */ /* - ADC voltage regulator enable */ if (hadc->State == HAL_ADC_STATE_RESET) { /* Init the low level hardware */ HAL_ADC_MspInit(hadc); } /* Configuration of ADC parameters if previous preliminary actions are */ /* correctly completed. */ /* and if there is no conversion on going on regular group (ADC can be */ /* enabled anyway, in case of call of this function to update a parameter */ /* on the fly). */ if ((hadc->State != HAL_ADC_STATE_ERROR) && (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) ) { /* Initialize the ADC state */ hadc->State = HAL_ADC_STATE_BUSY; /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated only when ADC is disabled: */ /* - ADC clock mode */ /* - ADC clock prescaler */ if (__HAL_ADC_IS_ENABLED(hadc) == RESET) { /* Some parameters of this register are not reset, since they are set */ /* by other functions and must be kept in case of usage of this */ /* function on the fly (update of a parameter of ADC_InitTypeDef */ /* without needing to reconfigure all other ADC groups/channels */ /* parameters): */ /* - internal measurement paths: Vbat, temperature sensor, Vref */ /* (set into HAL_ADC_ConfigChannel() ) */ /* Reset configuration of ADC configuration register CFGR2: */ /* - ADC clock mode: CKMODE */ hadc->Instance->CFGR2 &= ~(ADC_CFGR2_CKMODE); /* Configuration of ADC clock mode: clock source AHB or HSI with */ /* selectable prescaler */ hadc->Instance->CFGR2 |= hadc->Init.ClockPrescaler; } /* Configuration of ADC: */ /* - discontinuous mode */ /* - LowPowerAutoWait mode */ /* - LowPowerAutoPowerOff mode */ /* - continuous conversion mode */ /* - overrun */ /* - external trigger to start conversion */ /* - external trigger polarity */ /* - data alignment */ /* - resolution */ /* - scan direction */ /* - DMA continuous request */ hadc->Instance->CFGR1 &= ~( ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_AUTDLY | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTSEL | ADC_CFGR1_EXTEN | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG ); tmpCFGR1 |= (__HAL_ADC_CFGR1_AUTOWAIT(hadc->Init.LowPowerAutoWait) | __HAL_ADC_CFGR1_AUTOOFF(hadc->Init.LowPowerAutoPowerOff) | __HAL_ADC_CFGR1_CONTINUOUS(hadc->Init.ContinuousConvMode) | __HAL_ADC_CFGR1_OVERRUN(hadc->Init.Overrun) | hadc->Init.DataAlign | hadc->Init.Resolution | __HAL_ADC_CFGR1_SCANDIR(hadc->Init.ScanConvMode) | __HAL_ADC_CFGR1_DMACONTREQ(hadc->Init.DMAContinuousRequests) ); /* Enable discontinuous mode only if continuous mode is disabled */ if ((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* Enable discontinuous mode of regular group */ tmpCFGR1 |= ADC_CFGR1_DISCEN; } /* Enable external trigger if trigger selection is different of software */ /* start. */ /* Note: This configuration keeps the hardware feature of parameter */ /* ExternalTrigConvEdge "trigger edge none" equivalent to */ /* software start. */ if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) { tmpCFGR1 |= ( hadc->Init.ExternalTrigConv | hadc->Init.ExternalTrigConvEdge ); } /* Update ADC configuration register with previous settings */ hadc->Instance->CFGR1 |= tmpCFGR1; /* Check back that ADC registers have effectively been configured to */ /* ensure of no potential problem of ADC core IP clocking. */ /* Check through register CFGR1 (excluding analog watchdog configuration: */ /* set into separate dedicated function). */ if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL)) == tmpCFGR1) { /* Set ADC error code to none */ __HAL_ADC_CLEAR_ERRORCODE(hadc); /* Initialize the ADC state */ hadc->State = HAL_ADC_STATE_READY; } else { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; tmpHALStatus = HAL_ERROR; } } else { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; tmpHALStatus = HAL_ERROR; } /* Return function status */ return tmpHALStatus; } /** * @brief Deinitialize the ADC peripheral registers to their default reset * values, with deinitialization of the ADC MSP. * @note For devices with several ADCs: reset of ADC common registers is done * only if all ADCs sharing the same common group are disabled. * If this is not the case, reset of these common parameters reset is * bypassed without error reporting: it can be the intended behaviour in * case of reset of a single ADC while the other ADCs sharing the same * common group is still running. * @param hadc: ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check ADC handle */ if(hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Change ADC state */ hadc->State = HAL_ADC_STATE_BUSY; /* Stop potential conversion on going, on regular group */ tmpHALStatus = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmpHALStatus != HAL_ERROR) { /* Disable the ADC peripheral */ tmpHALStatus = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmpHALStatus != HAL_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Configuration of ADC parameters if previous preliminary actions are */ /* correctly completed. */ if (tmpHALStatus != HAL_ERROR) { /* ========== Reset ADC registers ========== */ /* Reset register IER */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD | ADC_IT_OVR | ADC_IT_EOS | ADC_IT_EOC | ADC_IT_EOSMP | ADC_IT_RDY ) ); /* Reset register ISR */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_OVR | ADC_FLAG_EOS | ADC_FLAG_EOC | ADC_FLAG_EOSMP | ADC_FLAG_RDY ) ); /* Reset register CR */ /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ /* "read-set": no direct reset applicable. */ /* Reset register CFGR1 */ hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN ); /* Reset register CFGR2 */ /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ /* already done above. */ hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE; /* Reset register SMPR */ hadc->Instance->SMPR &= ~ADC_SMPR_SMP; /* Reset register TR1 */ hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT); /* Reset register CHSELR */ hadc->Instance->CHSELR &= ~(ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 | ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 | ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0 ); /* Reset register DR */ /* bits in access mode read only, no direct reset applicable*/ /* Reset register CCR */ ADC->CCR &= ~( ADC_CCR_VBATEN | ADC_CCR_TSEN | ADC_CCR_VREFEN ); /* ========== Hard reset ADC peripheral ========== */ /* Performs a global reset of the entire ADC peripheral: ADC state is */ /* forced to a similar state after device power-on. */ /* If needed, copy-paste and uncomment the following reset code into */ /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */ /* */ /* __ADC1_FORCE_RESET() */ /* __ADC1_RELEASE_RESET() */ /* DeInit the low level hardware */ HAL_ADC_MspDeInit(hadc); /* Set ADC error code to none */ __HAL_ADC_CLEAR_ERRORCODE(hadc); /* Change ADC state */ hadc->State = HAL_ADC_STATE_RESET; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Initializes the ADC MSP. * @param hadc: ADC handle * @retval None */ __weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) { /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspInit must be implemented in the user file. */ } /** * @brief DeInitializes the ADC MSP. * @param hadc: ADC handle * @retval None */ __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) { /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspDeInit must be implemented in the user file. */ } /** * @} */ /** @defgroup ADC_Exported_Functions_Group2 IO operation functions * @brief IO operation functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Start conversion of regular group. (+) Stop conversion of regular group. (+) Poll for conversion complete on regular group. (+) Poll for conversion event. (+) Get result of regular channel conversion. (+) Start conversion of regular group and enable interruptions. (+) Stop conversion of regular group and disable interruptions. (+) Handle ADC interrupt request (+) Start conversion of regular group and enable DMA transfer. (+) Stop conversion of regular group and disable ADC DMA transfer. @endverbatim * @{ */ /** * @brief Enables ADC, starts conversion of regular group. * Interruptions enabled in this function: None. * @param hadc: ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { tmpHALStatus = ADC_Enable(hadc); } /* Start conversion if ADC is effectively enabled */ if (tmpHALStatus != HAL_ERROR) { /* State machine update: Change ADC state */ hadc->State = HAL_ADC_STATE_BUSY_REG; /* Set ADC error code to none */ __HAL_ADC_CLEAR_ERRORCODE(hadc); /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ hadc->Instance->CR |= ADC_CR_ADSTART; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Stop ADC conversion of regular group, disable ADC peripheral. * @param hadc: ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on regular group */ tmpHALStatus = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmpHALStatus != HAL_ERROR) { /* 2. Disable the ADC peripheral */ tmpHALStatus = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmpHALStatus != HAL_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Wait for regular group conversion to be completed. * @param hadc: ADC handle * @param Timeout: Timeout value in millisecond. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) { uint32_t tickstart; uint32_t tmp_Flag_EOC; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* If end of conversion selected to end of sequence */ if (hadc->Init.EOCSelection == EOC_SEQ_CONV) { tmp_Flag_EOC = ADC_FLAG_EOS; } /* If end of conversion selected to end of each conversion */ else /* EOC_SINGLE_CONV */ { tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS); } /* Get timeout */ tickstart = HAL_GetTick(); /* Wait until End of Conversion flag is raised */ while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC)) { /* Check if timeout is disabled (set to infinite wait) */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) { /* Update ADC state machine to timeout */ hadc->State = HAL_ADC_STATE_TIMEOUT; /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_ERROR; } } } /* Clear end of conversion flag of regular group if low power feature */ /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ /* until data register is read using function HAL_ADC_GetValue(). */ if (hadc->Init.LowPowerAutoWait == DISABLE) { /* Clear regular group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); } /* Update state machine on conversion status if not in error state */ if(hadc->State != HAL_ADC_STATE_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_EOC_REG; } /* Return ADC state */ return HAL_OK; } /** * @brief Poll for conversion event. * @param hadc: ADC handle * @param EventType: the ADC event type. * This parameter can be one of the following values: * @arg AWD_EVENT: ADC Analog watchdog event * @arg OVR_EVENT: ADC Overrun event * @param Timeout: Timeout value in millisecond. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) { uint32_t tickstart=0; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_EVENT_TYPE(EventType)); tickstart = HAL_GetTick(); /* Check selected event flag */ while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) { /* Check if timeout is disabled (set to infinite wait) */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) { /* Update ADC state machine to timeout */ hadc->State = HAL_ADC_STATE_TIMEOUT; /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_ERROR; } } } switch(EventType) { /* Analog watchdog (level out of window) event */ case AWD_EVENT: /* Change ADC state */ hadc->State = HAL_ADC_STATE_AWD; /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); break; /* Overrun event */ default: /* Case OVR_EVENT */ /* If overrun is set to overwrite previous data, overrun event is not */ /* considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ if (hadc->Init.Overrun == OVR_DATA_PRESERVED) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to overrun */ hadc->ErrorCode |= HAL_ADC_ERROR_OVR; } /* Clear ADC Overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); break; } /* Return ADC state */ return HAL_OK; } /** * @brief Enables ADC, starts conversion of regular group with interruption. * Interruptions enabled in this function: EOC (end of conversion), * overrun. * Each of these interruptions has its dedicated callback function. * @param hadc: ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { tmpHALStatus = ADC_Enable(hadc); } /* Start conversion if ADC is effectively enabled */ if (tmpHALStatus != HAL_ERROR) { /* State machine update: Change ADC state */ hadc->State = HAL_ADC_STATE_BUSY_REG; /* Set ADC error code to none */ __HAL_ADC_CLEAR_ERRORCODE(hadc); /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Enable ADC end of conversion interrupt */ /* Enable ADC overrun interrupt */ switch(hadc->Init.EOCSelection) { case EOC_SEQ_CONV: __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR)); break; /* case EOC_SINGLE_CONV */ default: __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); break; } /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ hadc->Instance->CR |= ADC_CR_ADSTART; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Stop ADC conversion of regular group, disable interruption of * end-of-conversion, disable ADC peripheral. * @param hadc: ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on regular group */ tmpHALStatus = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmpHALStatus != HAL_ERROR) { /* Disable ADC end of conversion interrupt for regular group */ /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); /* 2. Disable the ADC peripheral */ tmpHALStatus = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmpHALStatus != HAL_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Enables ADC, starts conversion of regular group and transfers result * through DMA. * Interruptions enabled in this function: * overrun, DMA half transfer, DMA transfer complete. * Each of these interruptions has its dedicated callback function. * @param hadc: ADC handle * @param pData: The destination Buffer address. * @param Length: The length of data to be transferred from ADC peripheral to memory. * @retval None */ HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { tmpHALStatus = ADC_Enable(hadc); } /* Start conversion if ADC is effectively enabled */ if (tmpHALStatus != HAL_ERROR) { /* State machine update: Change ADC state */ hadc->State = HAL_ADC_STATE_BUSY_REG; /* Set ADC error code to none */ __HAL_ADC_CLEAR_ERRORCODE(hadc); /* Set the DMA transfer complete callback */ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; /* Set the DMA half transfer complete callback */ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; /* Set the DMA error callback */ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ /* start (in case of SW start): */ /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC */ /* operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Enable ADC overrun interrupt */ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); /* Enable ADC DMA mode */ hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN; /* Start the DMA channel */ HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ hadc->Instance->CR |= ADC_CR_ADSTART; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Stop ADC conversion of regular group, disable ADC DMA transfer, disable * ADC peripheral. * Each of these interruptions has its dedicated callback function. * @param hadc: ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on regular group */ tmpHALStatus = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmpHALStatus != HAL_ERROR) { /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */ hadc->Instance->CFGR1 &= ~ADC_CFGR1_DMAEN; /* Disable the DMA channel (in case of DMA in circular mode or stop while */ /* while DMA transfer is on going) */ tmpHALStatus = HAL_DMA_Abort(hadc->DMA_Handle); /* Check if DMA channel effectively disabled */ if (tmpHALStatus != HAL_OK) { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; } /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); /* 2. Disable the ADC peripheral */ /* Update "tmpHALStatus" only if DMA channel disabling passed, to keep in */ /* memory a potential failing status. */ if (tmpHALStatus == HAL_OK) { tmpHALStatus = ADC_Disable(hadc); } else { ADC_Disable(hadc); } /* Check if ADC is effectively disabled */ if (tmpHALStatus == HAL_OK) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Get ADC regular group conversion result. * @param hadc: ADC handle * @retval Converted value */ uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Note: EOC flag is automatically cleared by hardware when reading */ /* register DR. Additionally, clear flag EOS by software. */ /* Clear regular group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) ); /* Return ADC converted value */ return hadc->Instance->DR; } /** * @brief DMA transfer complete callback. * @param hdma: pointer to DMA handle. * @retval None */ static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Update state machine on conversion status if not in error state */ if(hadc->State != HAL_ADC_STATE_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_EOC_REG; } /* Conversion complete callback */ HAL_ADC_ConvCpltCallback(hadc); } /** * @brief DMA half transfer complete callback. * @param hdma: pointer to DMA handle. * @retval None */ static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Half conversion callback */ HAL_ADC_ConvHalfCpltCallback(hadc); } /** * @brief DMA error callback * @param hdma: pointer to DMA handle. * @retval None */ static void ADC_DMAError(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Change ADC state */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to DMA error */ hadc->ErrorCode |= HAL_ADC_ERROR_DMA; /* Error callback */ HAL_ADC_ErrorCallback(hadc); } /** * @brief Handles ADC interrupt request. * @param hadc: ADC handle * @retval None */ void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); /* ========== Check End of Conversion flag for regular group ========== */ if( (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) || (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOS)) ) { /* Update state machine on conversion status if not in error state */ if(hadc->State != HAL_ADC_STATE_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_EOC_REG; } /* Disable interruption if no further conversion upcoming by regular */ /* external trigger or by continuous mode, */ /* and if scan sequence if completed. */ if(__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* If End of Sequence is reached, disable interrupts */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Disable ADC end of sequence conversion interrupt */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); } else { /* Change ADC state to error state */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; } } } /* Conversion complete callback */ /* Note: into callback, to determine if conversion has been triggered */ /* from EOC or EOS, possibility to use: */ /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ HAL_ADC_ConvCpltCallback(hadc); /* Clear regular group conversion flag */ /* Note: in case of overrun set to OVR_DATA_PRESERVED, end of conversion */ /* flags clear induces the release of the preserved data. */ /* Therefore, if the preserved data value is needed, it must be */ /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) ); } /* ========== Check Analog watchdog flags ========== */ if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD)) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_AWD; /* Clear ADC Analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); /* Level out of window callback */ HAL_ADC_LevelOutOfWindowCallback(hadc); } /* ========== Check Overrun flag ========== */ if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR)) { /* If overrun is set to overwrite previous data (default setting), */ /* overrun event is not considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ /* Exception for usage with DMA overrun event always considered as an */ /* error. */ if ((hadc->Init.Overrun == OVR_DATA_PRESERVED) || HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN) ) { /* Change ADC state to error state */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to overrun */ hadc->ErrorCode |= HAL_ADC_ERROR_OVR; /* Error callback */ HAL_ADC_ErrorCallback(hadc); } /* Clear the Overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); } } /** * @brief Conversion complete callback in non blocking mode * @param hadc: ADC handle * @retval None */ __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvCpltCallback must be implemented in the user file. */ } /** * @brief Conversion DMA half-transfer callback in non blocking mode * @param hadc: ADC handle * @retval None */ __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) { /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. */ } /** * @brief Analog watchdog callback in non blocking mode. * @param hadc: ADC handle * @retval None */ __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) { /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_LevelOoutOfWindowCallback must be implemented in the user file. */ } /** * @brief ADC error callback in non blocking mode * (ADC conversion with interruption or transfer by DMA) * @param hadc: ADC handle * @retval None */ __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ErrorCallback must be implemented in the user file. */ } /** * @} */ /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions * @brief Peripheral Control functions * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Configure channels on regular group (+) Configure the analog watchdog @endverbatim * @{ */ /** * @brief Configures the the selected channel to be linked to the regular * group. * @note In case of usage of internal measurement channels: * VrefInt/Vbat/TempSensor. * Sampling time constraints must be respected (sampling time can be * adjusted in function of ADC clock frequency and sampling time * setting). * Refer to device datasheet for timings values, parameters TS_vrefint, * TS_vbat, TS_temp (values rough order: 5us to 17us). * These internal paths can be be disabled using function * HAL_ADC_DeInit(). * @note Possibility to update parameters on the fly: * This function initializes channel into regular group, following * calls to this function can be used to reconfigure some parameters * of structure "ADC_ChannelConfTypeDef" on the fly, without reseting * the ADC. * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_ChannelConfTypeDef". * @param hadc: ADC handle * @param sConfig: Structure of ADC channel for regular group. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; __IO uint32_t wait_loop_index = 0; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CHANNEL(sConfig->Channel)); assert_param(IS_ADC_RANK(sConfig->Rank)); assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Channel number */ /* - Channel sampling time */ /* - Management of internal measurement channels: Vbat/VrefInt/TempSensor */ if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Configure channel: depending on rank setting, add it or remove it from */ /* ADC conversion sequencer. */ if (sConfig->Rank != ADC_RANK_NONE) { /* Regular sequence configuration */ /* Set the channel selection register from the selected channel */ hadc->Instance->CHSELR |= __HAL_ADC_CHSELR_CHANNEL(sConfig->Channel); /* Channel sampling time configuration */ /* Modify sampling time if needed (not needed in case of reoccurrence */ /* for several channels programmed consecutively into the sequencer) */ if (sConfig->SamplingTime != __HAL_ADC_GET_SAMPLINGTIME(hadc)) { /* Channel sampling time configuration */ /* Clear the old sample time */ hadc->Instance->SMPR &= ~(ADC_SMPR_SMP); /* Set the new sample time */ hadc->Instance->SMPR |= (sConfig->SamplingTime); } /* Management of internal measurement channels: Vbat/VrefInt/TempSensor */ /* internal measurement paths enable: If internal channel selected, */ /* enable dedicated internal buffers and path. */ /* Note: these internal measurement paths can be disabled using */ /* HAL_ADC_DeInit() or removing the channel from sequencer with */ /* channel configuration parameter "Rank". */ /* If Channel_16 is selected, enable Temp. sensor measurement path. */ if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) { ADC->CCR |= ADC_CCR_TSEN; /* Delay for temperature sensor stabilization time */ while(wait_loop_index < ADC_TEMPSENSOR_DELAY_CPU_CYCLES) { wait_loop_index++; } } /* If Channel_17 is selected, enable VBAT measurement path. */ else if (sConfig->Channel == ADC_CHANNEL_VBAT) { ADC->CCR |= ADC_CCR_VBATEN; } /* If Channel_18 is selected, enable VREFINT measurement path. */ else if (sConfig->Channel == ADC_CHANNEL_VREFINT) { ADC->CCR |= ADC_CCR_VREFEN; } } else { /* Regular sequence configuration */ /* Reset the channel selection register from the selected channel */ hadc->Instance->CHSELR &= ~__HAL_ADC_CHSELR_CHANNEL(sConfig->Channel); /* Management of internal measurement channels: Vbat/VrefInt/TempSensor */ /* internal measurement paths disable: If internal channel selected, */ /* disable dedicated internal buffers and path. */ /* If Channel_16 is selected, disable Temp. sensor measurement path. */ if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) { ADC->CCR &= ~ADC_CCR_TSEN; } /* If Channel_17 is selected, disable VBAT measurement path. */ else if (sConfig->Channel == ADC_CHANNEL_VBAT) { ADC->CCR &= ~ADC_CCR_VBATEN; } /* If Channel_18 is selected, disable VREFINT measurement path. */ else if (sConfig->Channel == ADC_CHANNEL_VREFINT) { ADC->CCR &= ~ADC_CCR_VREFEN; } } } /* If a conversion is on going on regular group, no update on regular */ /* channel could be done on neither of the channel configuration structure */ /* parameters. */ else { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; tmpHALStatus = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @brief Configures the analog watchdog. * @note Possibility to update parameters on the fly: * This function initializes the selected analog watchdog, following * calls to this function can be used to reconfigure some parameters * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without reseting * the ADC. * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_AnalogWDGConfTypeDef". * @param hadc: ADC handle * @param AnalogWDGConfig: Structure of ADC analog watchdog configuration * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) { HAL_StatusTypeDef tmpHALStatus = HAL_OK; uint32_t tmpAWDHighThresholdShifted; uint32_t tmpAWDLowThresholdShifted; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); /* Verify if threshold is within the selected ADC resolution */ assert_param(IS_ADC_RANGE(__HAL_ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); assert_param(IS_ADC_RANGE(__HAL_ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Analog watchdog channels */ /* - Analog watchdog thresholds */ if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Configuration of analog watchdog: */ /* - Set the analog watchdog enable mode: one or overall group of */ /* channels. */ /* - Set the Analog watchdog channel (is not used if watchdog */ /* mode "all channels": ADC_CFGR_AWD1SGL=0). */ hadc->Instance->CFGR1 &= ~( ADC_CFGR1_AWDSGL | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDCH ); hadc->Instance->CFGR1 |= ( AnalogWDGConfig->WatchdogMode | __HAL_ADC_CFGR_AWDCH(AnalogWDGConfig->Channel) ); /* Shift the offset in function of the selected ADC resolution: Thresholds*/ /* have to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ tmpAWDHighThresholdShifted = __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); tmpAWDLowThresholdShifted = __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); /* Set the high and low thresholds */ hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT); hadc->Instance->TR |= ( __HAL_ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) | tmpAWDLowThresholdShifted ); /* Clear the ADC Analog watchdog flag (in case of let enabled by */ /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */ /* or HAL_ADC_PollForEvent(). */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD); /* Configure ADC Analog watchdog interrupt */ if(AnalogWDGConfig->ITMode == ENABLE) { /* Enable the ADC Analog watchdog interrupt */ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); } else { /* Disable the ADC Analog watchdog interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); } } /* If a conversion is on going on regular group, no update could be done */ /* on neither of the AWD configuration structure parameters. */ else { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; tmpHALStatus = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmpHALStatus; } /** * @} */ /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions * @brief Peripheral State functions * @verbatim =============================================================================== ##### Peripheral State and Errors functions ##### =============================================================================== [..] This subsection provides functions to get in run-time the status of the peripheral. (+) Check the ADC state (+) Check the ADC error code @endverbatim * @{ */ /** * @brief return the ADC state * @param hadc: ADC handle * @retval HAL state */ HAL_ADC_StateTypeDef HAL_ADC_GetState(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Return ADC state */ return hadc->State; } /** * @brief Return the ADC error code * @param hadc: ADC handle * @retval ADC Error Code */ uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) { return hadc->ErrorCode; } /** * @} */ /** * @} */ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ /** * @brief Enable the selected ADC. * @note Prerequisite condition to use this function: ADC must be disabled * and voltage regulator must be enabled (done into HAL_ADC_Init()). * @param hadc: ADC handle * @retval HAL status. */ static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc) { uint32_t tickstart = 0; __IO uint32_t wait_loop_index = 0; /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ /* enabling phase not yet completed: flag ADC ready not yet set). */ /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ /* causes: ADC clock not running, ...). */ if (__HAL_ADC_IS_ENABLED(hadc) == RESET) { /* Check if conditions to enable the ADC are fulfilled */ if (__HAL_ADC_ENABLING_CONDITIONS(hadc) == RESET) { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; return HAL_ERROR; } /* Enable the ADC peripheral */ __HAL_ADC_ENABLE(hadc); /* Delay for ADC stabilization time. */ /* Delay fixed to worst case: maximum CPU frequency */ while(wait_loop_index < ADC_STAB_DELAY_CPU_CYCLES) { wait_loop_index++; } /* Get timeout */ tickstart = HAL_GetTick(); /* Wait for ADC effectively enabled */ while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET) { if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief Disable the selected ADC. * @note Prerequisite condition to use this function: ADC conversions must be * stopped. * @param hadc: ADC handle * @retval HAL status. */ static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc) { uint32_t tickstart = 0; /* Verification if ADC is not already disabled: */ /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ /* disabled. */ if (__HAL_ADC_IS_ENABLED(hadc) != RESET ) { /* Check if conditions to disable the ADC are fulfilled */ if (__HAL_ADC_DISABLING_CONDITIONS(hadc) != RESET) { /* Disable the ADC peripheral */ __HAL_ADC_DISABLE(hadc); } else { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; return HAL_ERROR; } /* Wait for ADC effectively disabled */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN)) { if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief Stop ADC conversion. * @note Prerequisite condition to use this function: ADC conversions must be * stopped to disable the ADC. * @param hadc: ADC handle * @retval HAL status. */ static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc) { uint32_t tickstart = 0; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Verification if ADC is not already stopped on regular group to bypass */ /* this function if not needed. */ if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc)) { /* Stop potential conversion on going on regular group */ /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS) ) { /* Stop conversions on regular group */ hadc->Instance->CR |= ADC_CR_ADSTP; } /* Wait for conversion effectively stopped */ tickstart = HAL_GetTick(); while((hadc->Instance->CR & ADC_CR_ADSTART) != RESET) { if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) { /* Update ADC state machine to error */ hadc->State = HAL_ADC_STATE_ERROR; /* Set ADC error code to ADC IP internal error */ hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL; return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @} */ #endif /* HAL_ADC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/