#include "stm32f0xx_hal.h" #include "states.h" // PID implementation // TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe. static int16_t last_pid_temp = 0; static uint8_t last_pid_temp_frac = 0; static int32_t i_state = 0; int16_t pid_update(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint, therm_settings_t* set, therm_status_t* status) { // Calculate instantaneous error int16_t error = setpoint - temp; // TODO: Use fixed point fraction // Proportional component int32_t p_term = k_p * error; // Error accumulator (integrator) i_state += error; // to prevent the iTerm getting huge from lots of // error, we use a "windup guard" // (this happens when the machine is first turned on and // it cant help be cold despite its best efforts) // not necessary, but this makes windup guard values // relative to the current iGain int32_t windup_guard_res = set->val.windup_guard / k_i; // Calculate integral term with windup guard if (i_state > windup_guard_res) i_state = windup_guard_res; else if (i_state < -windup_guard_res) i_state = -windup_guard_res; int32_t i_term = k_i * i_state; // Calculate differential term (slope since last iteration) int32_t d_term = (k_d * (status->temp - last_pid_temp)); // Save temperature for next iteration last_pid_temp = status->temp; last_pid_temp_frac = status->temp_frac; int16_t result = p_term + i_term - d_term; // Put out tenths of percent, 0-1000. if(result > 1000) result = 1000; else if(result < -1000) result = -1000; // Return feedback return result; }