/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_rfft_f32.c * * Description: RFFT & RIFFT Floating point process function * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" void stage_rfft_f32( arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut) { uint32_t k; /* Loop Counter */ float32_t twR, twI; /* RFFT Twiddle coefficients */ float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ float32_t *pA = p; /* increasing pointer */ float32_t *pB = p; /* decreasing pointer */ float32_t xAR, xAI, xBR, xBI; /* temporary variables */ float32_t t1a, t1b; /* temporary variables */ float32_t p0, p1, p2, p3; /* temporary variables */ k = (S->Sint).fftLen - 1; /* Pack first and last sample of the frequency domain together */ xBR = pB[0]; xBI = pB[1]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++ ; twI = *pCoeff++ ; // U1 = XA(1) + XB(1); % It is real t1a = xBR + xAR ; // U2 = XB(1) - XA(1); % It is imaginary t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); *pOut++ = 0.5f * ( t1a + t1b ); *pOut++ = 0.5f * ( t1a - t1b ); // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); pB = p + 2*k; pA += 2; do { /* function X = my_split_rfft(X, ifftFlag) % X is a series of real numbers L = length(X); XC = X(1:2:end) +i*X(2:2:end); XA = fft(XC); XB = conj(XA([1 end:-1:2])); TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; for l = 2:L/2 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); end XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); X = XA; */ xBI = pB[1]; xBR = pB[0]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xBR - xAR ; t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); p0 = twR * t1a; p1 = twI * t1a; p2 = twR * t1b; p3 = twI * t1b; *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI pA += 2; pB -= 2; k--; } while(k > 0u); } /* Prepares data for inverse cfft */ void merge_rfft_f32( arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut) { uint32_t k; /* Loop Counter */ float32_t twR, twI; /* RFFT Twiddle coefficients */ float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ float32_t *pA = p; /* increasing pointer */ float32_t *pB = p; /* decreasing pointer */ float32_t xAR, xAI, xBR, xBI; /* temporary variables */ float32_t t1a, t1b, r, s, t, u; /* temporary variables */ k = (S->Sint).fftLen - 1; xAR = pA[0]; xAI = pA[1]; pCoeff += 2 ; *pOut++ = 0.5f * ( xAR + xAI ); *pOut++ = 0.5f * ( xAR - xAI ); pB = p + 2*k ; pA += 2 ; while(k > 0u) { /* G is half of the frequency complex spectrum */ //for k = 2:N // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); xBI = pB[1] ; xBR = pB[0] ; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xAR - xBR ; t1b = xAI + xBI ; r = twR * t1a; s = twI * t1b; t = twI * t1a; u = twR * t1b; // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI pA += 2; pB -= 2; k--; } } /** * @ingroup groupTransforms */ /** * @defgroup Fast Real FFT Functions * * \par * The CMSIS DSP library includes specialized algorithms for computing the * FFT of real data sequences. The FFT is defined over complex data but * in many applications the input is real. Real FFT algorithms take advantage * of the symmetry properties of the FFT and have a speed advantage over complex * algorithms of the same length. * \par * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage. * \par * The real length N forward FFT of a sequence is computed using the steps shown below. * \par * \image html RFFT.gif "Real Fast Fourier Transform" * \par * The real sequence is initially treated as if it were complex to perform a CFFT. * Later, a processing stage reshapes the data to obtain half of the frequency spectrum * in complex format. Except the first complex number that contains the two real numbers * X[0] and X[N/2] all the data is complex. In other words, the first complex sample * contains two real values packed. * \par * The input for the inverse RFFT should keep the same format as the output of the * forward RFFT. A first processing stage pre-process the data to later perform an * inverse CFFT. * \par * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" * \par * The algorithms for floating-point, Q15, and Q31 data are slightly different * and we describe each algorithm in turn. * \par Floating-point * The main functions are arm_rfft_fast_f32() * and arm_rfft_fast_init_f32(). The older functions * arm_rfft_f32() and arm_rfft_init_f32() have been * deprecated but are still documented. * \par * The FFT of a real N-point sequence has even symmetry in the frequency * domain. The second half of the data equals the conjugate of the first half * flipped in frequency: *
 *X[0] - real data
 *X[1] - complex data
 *X[2] - complex data
 *... 
 *X[fftLen/2-1] - complex data
 *X[fftLen/2] - real data
 *X[fftLen/2+1] - conjugate of X[fftLen/2-1]
 *X[fftLen/2+2] - conjugate of X[fftLen/2-2]
 *... 
 *X[fftLen-1] - conjugate of X[1]
 * 
* Looking at the data, we see that we can uniquely represent the FFT using only *
 *N/2+1 samples:
 *X[0] - real data
 *X[1] - complex data
 *X[2] - complex data
 *... 
 *X[fftLen/2-1] - complex data
 *X[fftLen/2] - real data
 * 
* Looking more closely we see that the first and last samples are real valued. * They can be packed together and we can thus represent the FFT of an N-point * real sequence by N/2 complex values: *
 *X[0],X[N/2] - packed real data: X[0] + jX[N/2]
 *X[1] - complex data
 *X[2] - complex data
 *... 
 *X[fftLen/2-1] - complex data
 * 
* The real FFT functions pack the frequency domain data in this fashion. The * forward transform outputs the data in this form and the inverse transform * expects input data in this form. The function always performs the needed * bitreversal so that the input and output data is always in normal order. The * functions support lengths of [32, 64, 128, ..., 4096] samples. * \par * The forward and inverse real FFT functions apply the standard FFT scaling; no * scaling on the forward transform and 1/fftLen scaling on the inverse * transform. * \par Q15 and Q31 * The real algorithms are defined in a similar manner and utilize N/2 complex * transforms behind the scenes. In the case of fixed-point data, a radix-4 * complex transform is performed and this limits the allows sequence lengths to * 128, 512, and 2048 samples. * \par * TBD. We need to document input and output order of data. * \par * The complex transforms used internally include scaling to prevent fixed-point * overflows. The overall scaling equals 1/(fftLen/2). * \par * A separate instance structure must be defined for each transform used but * twiddle factor and bit reversal tables can be reused. * \par * There is also an associated initialization function for each data type. * The initialization function performs the following operations: * - Sets the values of the internal structure fields. * - Initializes twiddle factor table and bit reversal table pointers. * - Initializes the internal complex FFT data structure. * \par * Use of the initialization function is optional. * However, if the initialization function is used, then the instance structure * cannot be placed into a const data section. To place an instance structure * into a const data section, the instance structure should be manually * initialized as follows: *
 *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
 *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
 * 
* where fftLenReal is the length of the real transform; * fftLenBy2 length of the internal complex transform. * ifftFlagR Selects forward (=0) or inverse (=1) transform. * bitReverseFlagR Selects bit reversed output (=0) or normal order * output (=1). * twidCoefRModifier stride modifier for the twiddle factor table. * The value is based on the FFT length; * pTwiddleARealpoints to the A array of twiddle coefficients; * pTwiddleBRealpoints to the B array of twiddle coefficients; * pCfft points to the CFFT Instance structure. The CFFT structure * must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding * static initialization of the complex FFT instance structure. */ /** * @addtogroup RealFFT * @{ */ /** * @brief Processing function for the floating-point real FFT. * @param[in] *S points to an arm_rfft_fast_instance_f32 structure. * @param[in] *p points to the input buffer. * @param[in] *pOut points to an arm_rfft_fast_instance_f32 structure. * @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1 * @return none. */ void arm_rfft_fast_f32( arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut, uint8_t ifftFlag) { arm_cfft_instance_f32 * Sint = &(S->Sint); Sint->fftLen = S->fftLenRFFT / 2; /* Calculation of Real FFT */ if(ifftFlag) { /* Real FFT comression */ merge_rfft_f32(S, p, pOut); /* Complex radix-4 IFFT process */ arm_cfft_f32( Sint, pOut, ifftFlag, 1); } else { /* Calculation of RFFT of input */ arm_cfft_f32( Sint, p, ifftFlag, 1); /* Real FFT extraction */ stage_rfft_f32(S, p, pOut); } }