/** ****************************************************************************** * @file stm32f0xx_can.c * @author MCD Application Team * @version V1.4.0 * @date 24-July-2014 * @brief This file provides firmware functions to manage the following * functionalities of the Controller area network (CAN) peripheral and * applicable only for STM32F072 devices : * + Initialization and Configuration * + CAN Frames Transmission * + CAN Frames Reception * + Operation modes switch * + Error management * + Interrupts and flags * @verbatim =============================================================================== ##### How to use this driver ##### =============================================================================== [..] (#) Enable the CAN controller interface clock using RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN, ENABLE); (#) CAN pins configuration: (++) Enable the clock for the CAN GPIOs using the following function: RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOx, ENABLE); (++) Connect the involved CAN pins to AF0 using the following function GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_CANx); (++) Configure these CAN pins in alternate function mode by calling the function GPIO_Init(); (#) Initialise and configure the CAN using CAN_Init() and CAN_FilterInit() functions. (#) Transmit the desired CAN frame using CAN_Transmit() function. (#) Check the transmission of a CAN frame using CAN_TransmitStatus() function. (#) Cancel the transmission of a CAN frame using CAN_CancelTransmit() function. (#) Receive a CAN frame using CAN_Recieve() function. (#) Release the receive FIFOs using CAN_FIFORelease() function. (#) Return the number of pending received frames using CAN_MessagePending() function. (#) To control CAN events you can use one of the following two methods: (++) Check on CAN flags using the CAN_GetFlagStatus() function. (++) Use CAN interrupts through the function CAN_ITConfig() at initialization phase and CAN_GetITStatus() function into interrupt routines to check if the event has occurred or not. After checking on a flag you should clear it using CAN_ClearFlag() function. And after checking on an interrupt event you should clear it using CAN_ClearITPendingBit() function. @endverbatim * ****************************************************************************** * @attention * *

© COPYRIGHT 2014 STMicroelectronics

* * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f0xx_can.h" #include "stm32f0xx_rcc.h" /** @addtogroup STM32F0xx_StdPeriph_Driver * @{ */ /** @defgroup CAN * @brief CAN driver modules * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* CAN Master Control Register bits */ #define MCR_DBF ((uint32_t)0x00010000) /* software master reset */ /* CAN Mailbox Transmit Request */ #define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */ /* CAN Filter Master Register bits */ #define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */ /* Time out for INAK bit */ #define INAK_TIMEOUT ((uint32_t)0x00FFFFFF) /* Time out for SLAK bit */ #define SLAK_TIMEOUT ((uint32_t)0x00FFFFFF) /* Flags in TSR register */ #define CAN_FLAGS_TSR ((uint32_t)0x08000000) /* Flags in RF1R register */ #define CAN_FLAGS_RF1R ((uint32_t)0x04000000) /* Flags in RF0R register */ #define CAN_FLAGS_RF0R ((uint32_t)0x02000000) /* Flags in MSR register */ #define CAN_FLAGS_MSR ((uint32_t)0x01000000) /* Flags in ESR register */ #define CAN_FLAGS_ESR ((uint32_t)0x00F00000) /* Mailboxes definition */ #define CAN_TXMAILBOX_0 ((uint8_t)0x00) #define CAN_TXMAILBOX_1 ((uint8_t)0x01) #define CAN_TXMAILBOX_2 ((uint8_t)0x02) #define CAN_MODE_MASK ((uint32_t) 0x00000003) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit); /** @defgroup CAN_Private_Functions * @{ */ /** @defgroup CAN_Group1 Initialization and Configuration functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and Configuration functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Initialize the CAN peripherals : Prescaler, operating mode, the maximum number of time quanta to perform resynchronization, the number of time quanta in Bit Segment 1 and 2 and many other modes. (+) Configure the CAN reception filter. (+) Select the start bank filter for slave CAN. (+) Enable or disable the Debug Freeze mode for CAN. (+) Enable or disable the CAN Time Trigger Operation communication mode. @endverbatim * @{ */ /** * @brief Deinitializes the CAN peripheral registers to their default reset values. * @param CANx: where x can be 1 to select the CAN peripheral. * @retval None. */ void CAN_DeInit(CAN_TypeDef* CANx) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); /* Enable CAN reset state */ RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN, ENABLE); /* Release CAN from reset state */ RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN, DISABLE); } /** * @brief Initializes the CAN peripheral according to the specified * parameters in the CAN_InitStruct. * @param CANx: where x can be 1 to select the CAN peripheral. * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that contains * the configuration information for the CAN peripheral. * @retval Constant indicates initialization succeed which will be * CAN_InitStatus_Failed or CAN_InitStatus_Success. */ uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct) { uint8_t InitStatus = CAN_InitStatus_Failed; uint32_t wait_ack = 0x00000000; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM)); assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM)); assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM)); assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART)); assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM)); assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP)); assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode)); assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW)); assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1)); assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2)); assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler)); /* Exit from sleep mode */ CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP); /* Request initialisation */ CANx->MCR |= CAN_MCR_INRQ ; /* Wait the acknowledge */ while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT)) { wait_ack++; } /* Check acknowledge */ if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) { InitStatus = CAN_InitStatus_Failed; } else { /* Set the time triggered communication mode */ if (CAN_InitStruct->CAN_TTCM == ENABLE) { CANx->MCR |= CAN_MCR_TTCM; } else { CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM; } /* Set the automatic bus-off management */ if (CAN_InitStruct->CAN_ABOM == ENABLE) { CANx->MCR |= CAN_MCR_ABOM; } else { CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM; } /* Set the automatic wake-up mode */ if (CAN_InitStruct->CAN_AWUM == ENABLE) { CANx->MCR |= CAN_MCR_AWUM; } else { CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM; } /* Set the no automatic retransmission */ if (CAN_InitStruct->CAN_NART == ENABLE) { CANx->MCR |= CAN_MCR_NART; } else { CANx->MCR &= ~(uint32_t)CAN_MCR_NART; } /* Set the receive FIFO locked mode */ if (CAN_InitStruct->CAN_RFLM == ENABLE) { CANx->MCR |= CAN_MCR_RFLM; } else { CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM; } /* Set the transmit FIFO priority */ if (CAN_InitStruct->CAN_TXFP == ENABLE) { CANx->MCR |= CAN_MCR_TXFP; } else { CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP; } /* Set the bit timing register */ CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \ ((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \ ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \ ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \ ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1); /* Request leave initialisation */ CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ; /* Wait the acknowledge */ wait_ack = 0; while (((CANx->MSR & CAN_MSR_INAK) == (uint16_t)CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT)) { wait_ack++; } /* ...and check acknowledged */ if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) { InitStatus = CAN_InitStatus_Failed; } else { InitStatus = CAN_InitStatus_Success ; } } /* At this step, return the status of initialization */ return InitStatus; } /** * @brief Configures the CAN reception filter according to the specified * parameters in the CAN_FilterInitStruct. * @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef structure that * contains the configuration information. * @retval None */ void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct) { uint32_t filter_number_bit_pos = 0; /* Check the parameters */ assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber)); assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode)); assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale)); assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment)); assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation)); filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber; /* Initialisation mode for the filter */ CAN->FMR |= FMR_FINIT; /* Filter Deactivation */ CAN->FA1R &= ~(uint32_t)filter_number_bit_pos; /* Filter Scale */ if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit) { /* 16-bit scale for the filter */ CAN->FS1R &= ~(uint32_t)filter_number_bit_pos; /* First 16-bit identifier and First 16-bit mask */ /* Or First 16-bit identifier and Second 16-bit identifier */ CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) | (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow); /* Second 16-bit identifier and Second 16-bit mask */ /* Or Third 16-bit identifier and Fourth 16-bit identifier */ CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 = ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) | (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh); } if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit) { /* 32-bit scale for the filter */ CAN->FS1R |= filter_number_bit_pos; /* 32-bit identifier or First 32-bit identifier */ CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) | (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow); /* 32-bit mask or Second 32-bit identifier */ CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 = ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) | (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow); } /* Filter Mode */ if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask) { /*Id/Mask mode for the filter*/ CAN->FM1R &= ~(uint32_t)filter_number_bit_pos; } else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */ { /*Identifier list mode for the filter*/ CAN->FM1R |= (uint32_t)filter_number_bit_pos; } /* Filter FIFO assignment */ if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0) { /* FIFO 0 assignation for the filter */ CAN->FFA1R &= ~(uint32_t)filter_number_bit_pos; } if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1) { /* FIFO 1 assignation for the filter */ CAN->FFA1R |= (uint32_t)filter_number_bit_pos; } /* Filter activation */ if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE) { CAN->FA1R |= filter_number_bit_pos; } /* Leave the initialisation mode for the filter */ CAN->FMR &= ~FMR_FINIT; } /** * @brief Fills each CAN_InitStruct member with its default value. * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which ill be initialized. * @retval None */ void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct) { /* Reset CAN init structure parameters values */ /* Initialize the time triggered communication mode */ CAN_InitStruct->CAN_TTCM = DISABLE; /* Initialize the automatic bus-off management */ CAN_InitStruct->CAN_ABOM = DISABLE; /* Initialize the automatic wake-up mode */ CAN_InitStruct->CAN_AWUM = DISABLE; /* Initialize the no automatic retransmission */ CAN_InitStruct->CAN_NART = DISABLE; /* Initialize the receive FIFO locked mode */ CAN_InitStruct->CAN_RFLM = DISABLE; /* Initialize the transmit FIFO priority */ CAN_InitStruct->CAN_TXFP = DISABLE; /* Initialize the CAN_Mode member */ CAN_InitStruct->CAN_Mode = CAN_Mode_Normal; /* Initialize the CAN_SJW member */ CAN_InitStruct->CAN_SJW = CAN_SJW_1tq; /* Initialize the CAN_BS1 member */ CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq; /* Initialize the CAN_BS2 member */ CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq; /* Initialize the CAN_Prescaler member */ CAN_InitStruct->CAN_Prescaler = 1; } /** * @brief Select the start bank filter for slave CAN. * @param CAN_BankNumber: Select the start slave bank filter from 1..27. * @retval None */ void CAN_SlaveStartBank(uint8_t CAN_BankNumber) { /* Check the parameters */ assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber)); /* Enter Initialisation mode for the filter */ CAN->FMR |= FMR_FINIT; /* Select the start slave bank */ CAN->FMR &= (uint32_t)0xFFFFC0F1 ; CAN->FMR |= (uint32_t)(CAN_BankNumber)<<8; /* Leave Initialisation mode for the filter */ CAN->FMR &= ~FMR_FINIT; } /** * @brief Enables or disables the DBG Freeze for CAN. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param NewState: new state of the CAN peripheral. * This parameter can be: ENABLE (CAN reception/transmission is frozen * during debug. Reception FIFOs can still be accessed/controlled normally) * or DISABLE (CAN is working during debug). * @retval None */ void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable Debug Freeze */ CANx->MCR |= MCR_DBF; } else { /* Disable Debug Freeze */ CANx->MCR &= ~MCR_DBF; } } /** * @brief Enables or disables the CAN Time TriggerOperation communication mode. * @note DLC must be programmed as 8 in order Time Stamp (2 bytes) to be * sent over the CAN bus. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param NewState: Mode new state. This parameter can be: ENABLE or DISABLE. * When enabled, Time stamp (TIME[15:0]) value is sent in the last two * data bytes of the 8-byte message: TIME[7:0] in data byte 6 and TIME[15:8] * in data byte 7. * @retval None */ void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the TTCM mode */ CANx->MCR |= CAN_MCR_TTCM; /* Set TGT bits */ CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT); CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT); CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT); } else { /* Disable the TTCM mode */ CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM); /* Reset TGT bits */ CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT); CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT); CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT); } } /** * @} */ /** @defgroup CAN_Group2 CAN Frames Transmission functions * @brief CAN Frames Transmission functions * @verbatim =============================================================================== ##### CAN Frames Transmission functions ##### =============================================================================== [..] This section provides functions allowing to (+) Initiate and transmit a CAN frame message (if there is an empty mailbox). (+) Check the transmission status of a CAN Frame. (+) Cancel a transmit request. @endverbatim * @{ */ /** * @brief Initiates and transmits a CAN frame message. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param TxMessage: pointer to a structure which contains CAN Id, CAN DLC and CAN data. * @retval The number of the mailbox that is used for transmission or * CAN_TxStatus_NoMailBox if there is no empty mailbox. */ uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage) { uint8_t transmit_mailbox = 0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_IDTYPE(TxMessage->IDE)); assert_param(IS_CAN_RTR(TxMessage->RTR)); assert_param(IS_CAN_DLC(TxMessage->DLC)); /* Select one empty transmit mailbox */ if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) { transmit_mailbox = 0; } else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) { transmit_mailbox = 1; } else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2) { transmit_mailbox = 2; } else { transmit_mailbox = CAN_TxStatus_NoMailBox; } if (transmit_mailbox != CAN_TxStatus_NoMailBox) { /* Set up the Id */ CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ; if (TxMessage->IDE == CAN_Id_Standard) { assert_param(IS_CAN_STDID(TxMessage->StdId)); CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \ TxMessage->RTR); } else { assert_param(IS_CAN_EXTID(TxMessage->ExtId)); CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \ TxMessage->IDE | \ TxMessage->RTR); } /* Set up the DLC */ TxMessage->DLC &= (uint8_t)0x0000000F; CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0; CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC; /* Set up the data field */ CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) | ((uint32_t)TxMessage->Data[2] << 16) | ((uint32_t)TxMessage->Data[1] << 8) | ((uint32_t)TxMessage->Data[0])); CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) | ((uint32_t)TxMessage->Data[6] << 16) | ((uint32_t)TxMessage->Data[5] << 8) | ((uint32_t)TxMessage->Data[4])); /* Request transmission */ CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ; } return transmit_mailbox; } /** * @brief Checks the transmission status of a CAN Frame. * @param CANx: where x can be 1 to select the CAN peripheral. * @param TransmitMailbox: the number of the mailbox that is used for transmission. * @retval CAN_TxStatus_Ok if the CAN driver transmits the message, * CAN_TxStatus_Failed in an other case. */ uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox) { uint32_t state = 0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox)); switch (TransmitMailbox) { case (CAN_TXMAILBOX_0): state = CANx->TSR & (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0); break; case (CAN_TXMAILBOX_1): state = CANx->TSR & (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1); break; case (CAN_TXMAILBOX_2): state = CANx->TSR & (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2); break; default: state = CAN_TxStatus_Failed; break; } switch (state) { /* transmit pending */ case (0x0): state = CAN_TxStatus_Pending; break; /* transmit failed */ case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed; break; case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed; break; case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed; break; /* transmit succeeded */ case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok; break; case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok; break; case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok; break; default: state = CAN_TxStatus_Failed; break; } return (uint8_t) state; } /** * @brief Cancels a transmit request. * @param CANx: where x can be 1 to select the CAN peripheral. * @param Mailbox: Mailbox number. * @retval None */ void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox)); /* abort transmission */ switch (Mailbox) { case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0; break; case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1; break; case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2; break; default: break; } } /** * @} */ /** @defgroup CAN_Group3 CAN Frames Reception functions * @brief CAN Frames Reception functions * @verbatim =============================================================================== ##### CAN Frames Reception functions ##### =============================================================================== [..] This section provides functions allowing to (+) Receive a correct CAN frame. (+) Release a specified receive FIFO (2 FIFOs are available). (+) Return the number of the pending received CAN frames. @endverbatim * @{ */ /** * @brief Receives a correct CAN frame. * @param CANx: where x can be 1 to select the CAN peripheral. * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1. * @param RxMessage: pointer to a structure receive frame which contains CAN Id, * CAN DLC, CAN data and FMI number. * @retval None */ void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_FIFO(FIFONumber)); /* Get the Id */ RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR; if (RxMessage->IDE == CAN_Id_Standard) { RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21); } else { RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3); } RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR; /* Get the DLC */ RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR; /* Get the FMI */ RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8); /* Get the data field */ RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR; RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8); RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16); RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24); RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR; RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8); RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16); RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24); /* Release the FIFO */ /* Release FIFO0 */ if (FIFONumber == CAN_FIFO0) { CANx->RF0R |= CAN_RF0R_RFOM0; } /* Release FIFO1 */ else /* FIFONumber == CAN_FIFO1 */ { CANx->RF1R |= CAN_RF1R_RFOM1; } } /** * @brief Releases the specified receive FIFO. * @param CANx: where x can be 1 to select the CAN peripheral. * @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1. * @retval None */ void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_FIFO(FIFONumber)); /* Release FIFO0 */ if (FIFONumber == CAN_FIFO0) { CANx->RF0R |= CAN_RF0R_RFOM0; } /* Release FIFO1 */ else /* FIFONumber == CAN_FIFO1 */ { CANx->RF1R |= CAN_RF1R_RFOM1; } } /** * @brief Returns the number of pending received messages. * @param CANx: where x can be 1 to select the CAN peripheral. * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1. * @retval NbMessage : which is the number of pending message. */ uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber) { uint8_t message_pending=0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_FIFO(FIFONumber)); if (FIFONumber == CAN_FIFO0) { message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03); } else if (FIFONumber == CAN_FIFO1) { message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03); } else { message_pending = 0; } return message_pending; } /** * @} */ /** @defgroup CAN_Group4 CAN Operation modes functions * @brief CAN Operation modes functions * @verbatim =============================================================================== ##### CAN Operation modes functions ##### =============================================================================== [..] This section provides functions allowing to select the CAN Operation modes: (+) sleep mode. (+) normal mode. (+) initialization mode. @endverbatim * @{ */ /** * @brief Selects the CAN Operation mode. * @param CAN_OperatingMode: CAN Operating Mode. * This parameter can be one of @ref CAN_OperatingMode_TypeDef enumeration. * @retval status of the requested mode which can be: * - CAN_ModeStatus_Failed: CAN failed entering the specific mode * - CAN_ModeStatus_Success: CAN Succeed entering the specific mode */ uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode) { uint8_t status = CAN_ModeStatus_Failed; /* Timeout for INAK or also for SLAK bits*/ uint32_t timeout = INAK_TIMEOUT; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode)); if (CAN_OperatingMode == CAN_OperatingMode_Initialization) { /* Request initialisation */ CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ); /* Wait the acknowledge */ while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0)) { timeout--; } if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) { status = CAN_ModeStatus_Failed; } else { status = CAN_ModeStatus_Success; } } else if (CAN_OperatingMode == CAN_OperatingMode_Normal) { /* Request leave initialisation and sleep mode and enter Normal mode */ CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ)); /* Wait the acknowledge */ while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0)) { timeout--; } if ((CANx->MSR & CAN_MODE_MASK) != 0) { status = CAN_ModeStatus_Failed; } else { status = CAN_ModeStatus_Success; } } else if (CAN_OperatingMode == CAN_OperatingMode_Sleep) { /* Request Sleep mode */ CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP); /* Wait the acknowledge */ while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0)) { timeout--; } if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) { status = CAN_ModeStatus_Failed; } else { status = CAN_ModeStatus_Success; } } else { status = CAN_ModeStatus_Failed; } return (uint8_t) status; } /** * @brief Enters the Sleep (low power) mode. * @param CANx: where x can be 1 to select the CAN peripheral. * @retval CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed otherwise. */ uint8_t CAN_Sleep(CAN_TypeDef* CANx) { uint8_t sleepstatus = CAN_Sleep_Failed; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); /* Request Sleep mode */ CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP); /* Sleep mode status */ if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK) { /* Sleep mode not entered */ sleepstatus = CAN_Sleep_Ok; } /* return sleep mode status */ return (uint8_t)sleepstatus; } /** * @brief Wakes up the CAN peripheral from sleep mode . * @param CANx: where x can be 1 to select the CAN peripheral. * @retval CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed otherwise. */ uint8_t CAN_WakeUp(CAN_TypeDef* CANx) { uint32_t wait_slak = SLAK_TIMEOUT; uint8_t wakeupstatus = CAN_WakeUp_Failed; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); /* Wake up request */ CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP; /* Sleep mode status */ while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00)) { wait_slak--; } if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK) { /* wake up done : Sleep mode exited */ wakeupstatus = CAN_WakeUp_Ok; } /* return wakeup status */ return (uint8_t)wakeupstatus; } /** * @} */ /** @defgroup CAN_Group5 CAN Bus Error management functions * @brief CAN Bus Error management functions * @verbatim =============================================================================== ##### CAN Bus Error management functions ##### =============================================================================== [..] This section provides functions allowing to (+) Return the CANx's last error code (LEC). (+) Return the CANx Receive Error Counter (REC). (+) Return the LSB of the 9-bit CANx Transmit Error Counter(TEC). [..] (@) If TEC is greater than 255, The CAN is in bus-off state. (@) If REC or TEC are greater than 96, an Error warning flag occurs. (@) If REC or TEC are greater than 127, an Error Passive Flag occurs. @endverbatim * @{ */ /** * @brief Returns the CANx's last error code (LEC). * @param CANx: where x can be 1 to select the CAN peripheral. * @retval Error code: * - CAN_ERRORCODE_NoErr: No Error * - CAN_ERRORCODE_StuffErr: Stuff Error * - CAN_ERRORCODE_FormErr: Form Error * - CAN_ERRORCODE_ACKErr : Acknowledgment Error * - CAN_ERRORCODE_BitRecessiveErr: Bit Recessive Error * - CAN_ERRORCODE_BitDominantErr: Bit Dominant Error * - CAN_ERRORCODE_CRCErr: CRC Error * - CAN_ERRORCODE_SoftwareSetErr: Software Set Error */ uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx) { uint8_t errorcode=0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); /* Get the error code*/ errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC); /* Return the error code*/ return errorcode; } /** * @brief Returns the CANx Receive Error Counter (REC). * @note In case of an error during reception, this counter is incremented * by 1 or by 8 depending on the error condition as defined by the CAN * standard. After every successful reception, the counter is * decremented by 1 or reset to 120 if its value was higher than 128. * When the counter value exceeds 127, the CAN controller enters the * error passive state. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @retval CAN Receive Error Counter. */ uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx) { uint8_t counter=0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); /* Get the Receive Error Counter*/ counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24); /* Return the Receive Error Counter*/ return counter; } /** * @brief Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC). * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @retval LSB of the 9-bit CAN Transmit Error Counter. */ uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx) { uint8_t counter=0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); /* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */ counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16); /* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */ return counter; } /** * @} */ /** @defgroup CAN_Group6 Interrupts and flags management functions * @brief Interrupts and flags management functions * @verbatim =============================================================================== ##### Interrupts and flags management functions ##### =============================================================================== [..] This section provides functions allowing to configure the CAN Interrupts and to get the status and clear flags and Interrupts pending bits. [..] The CAN provides 14 Interrupts sources and 15 Flags: *** Flags *** ============= [..] The 15 flags can be divided on 4 groups: (+) Transmit Flags: (++) CAN_FLAG_RQCP0. (++) CAN_FLAG_RQCP1. (++) CAN_FLAG_RQCP2: Request completed MailBoxes 0, 1 and 2 Flags Set when when the last request (transmit or abort) has been performed. (+) Receive Flags: (++) CAN_FLAG_FMP0. (++) CAN_FLAG_FMP1: FIFO 0 and 1 Message Pending Flags; Set to signal that messages are pending in the receive FIFO. These Flags are cleared only by hardware. (++) CAN_FLAG_FF0. (++) CAN_FLAG_FF1: FIFO 0 and 1 Full Flags; Set when three messages are stored in the selected FIFO. (++) CAN_FLAG_FOV0. (++) CAN_FLAG_FOV1: FIFO 0 and 1 Overrun Flags; Set when a new message has been received and passed the filter while the FIFO was full. (+) Operating Mode Flags: (++) CAN_FLAG_WKU: Wake up Flag; Set to signal that a SOF bit has been detected while the CAN hardware was in Sleep mode. (++) CAN_FLAG_SLAK: Sleep acknowledge Flag; Set to signal that the CAN has entered Sleep Mode. (+) Error Flags: (++) CAN_FLAG_EWG: Error Warning Flag; Set when the warning limit has been reached (Receive Error Counter or Transmit Error Counter greater than 96). This Flag is cleared only by hardware. (++) CAN_FLAG_EPV: Error Passive Flag; Set when the Error Passive limit has been reached (Receive Error Counter or Transmit Error Counter greater than 127). This Flag is cleared only by hardware. (++) CAN_FLAG_BOF: Bus-Off Flag; Set when CAN enters the bus-off state. The bus-off state is entered on TEC overflow, greater than 255. This Flag is cleared only by hardware. (++) CAN_FLAG_LEC: Last error code Flag; Set If a message has been transferred (reception or transmission) with error, and the error code is hold. *** Interrupts *** ================== [..] The 14 interrupts can be divided on 4 groups: (+) Transmit interrupt: (++) CAN_IT_TME: Transmit mailbox empty Interrupt; If enabled, this interrupt source is pending when no transmit request are pending for Tx mailboxes. (+) Receive Interrupts: (++) CAN_IT_FMP0. (++) CAN_IT_FMP1: FIFO 0 and FIFO1 message pending Interrupts; If enabled, these interrupt sources are pending when messages are pending in the receive FIFO. The corresponding interrupt pending bits are cleared only by hardware. (++) CAN_IT_FF0. (++) CAN_IT_FF1: FIFO 0 and FIFO1 full Interrupts; If enabled, these interrupt sources are pending when three messages are stored in the selected FIFO. (++) CAN_IT_FOV0. (++) CAN_IT_FOV1: FIFO 0 and FIFO1 overrun Interrupts; If enabled, these interrupt sources are pending when a new message has been received and passed the filter while the FIFO was full. (+) Operating Mode Interrupts: (++) CAN_IT_WKU: Wake-up Interrupt; If enabled, this interrupt source is pending when a SOF bit has been detected while the CAN hardware was in Sleep mode. (++) CAN_IT_SLK: Sleep acknowledge Interrupt: If enabled, this interrupt source is pending when the CAN has entered Sleep Mode. (+) Error Interrupts: (++) CAN_IT_EWG: Error warning Interrupt; If enabled, this interrupt source is pending when the warning limit has been reached (Receive Error Counter or Transmit Error Counter=96). (++) CAN_IT_EPV: Error passive Interrupt; If enabled, this interrupt source is pending when the Error Passive limit has been reached (Receive Error Counter or Transmit Error Counter>127). (++) CAN_IT_BOF: Bus-off Interrupt; If enabled, this interrupt source is pending when CAN enters the bus-off state. The bus-off state is entered on TEC overflow, greater than 255. This Flag is cleared only by hardware. (++) CAN_IT_LEC: Last error code Interrupt; If enabled, this interrupt source is pending when a message has been transferred (reception or transmission) with error and the error code is hold. (++) CAN_IT_ERR: Error Interrupt; If enabled, this interrupt source is pending when an error condition is pending. [..] Managing the CAN controller events: The user should identify which mode will be used in his application to manage the CAN controller events: Polling mode or Interrupt mode. (+) In the Polling Mode it is advised to use the following functions: (++) CAN_GetFlagStatus() : to check if flags events occur. (++) CAN_ClearFlag() : to clear the flags events. (+) In the Interrupt Mode it is advised to use the following functions: (++) CAN_ITConfig() : to enable or disable the interrupt source. (++) CAN_GetITStatus() : to check if Interrupt occurs. (++) CAN_ClearITPendingBit() : to clear the Interrupt pending Bit (corresponding Flag). This function has no impact on CAN_IT_FMP0 and CAN_IT_FMP1 Interrupts pending bits since there are cleared only by hardware. @endverbatim * @{ */ /** * @brief Enables or disables the specified CANx interrupts. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled. * This parameter can be: * @arg CAN_IT_TME: Transmit mailbox empty Interrupt * @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt * @arg CAN_IT_FF0: FIFO 0 full Interrupt * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt * @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt * @arg CAN_IT_FF1: FIFO 1 full Interrupt * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt * @arg CAN_IT_WKU: Wake-up Interrupt * @arg CAN_IT_SLK: Sleep acknowledge Interrupt * @arg CAN_IT_EWG: Error warning Interrupt * @arg CAN_IT_EPV: Error passive Interrupt * @arg CAN_IT_BOF: Bus-off Interrupt * @arg CAN_IT_LEC: Last error code Interrupt * @arg CAN_IT_ERR: Error Interrupt * @param NewState: new state of the CAN interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_IT(CAN_IT)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected CANx interrupt */ CANx->IER |= CAN_IT; } else { /* Disable the selected CANx interrupt */ CANx->IER &= ~CAN_IT; } } /** * @brief Checks whether the specified CAN flag is set or not. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param CAN_FLAG: specifies the flag to check. * This parameter can be one of the following values: * @arg CAN_FLAG_RQCP0: Request MailBox0 Flag * @arg CAN_FLAG_RQCP1: Request MailBox1 Flag * @arg CAN_FLAG_RQCP2: Request MailBox2 Flag * @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag * @arg CAN_FLAG_FF0: FIFO 0 Full Flag * @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag * @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag * @arg CAN_FLAG_FF1: FIFO 1 Full Flag * @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag * @arg CAN_FLAG_WKU: Wake up Flag * @arg CAN_FLAG_SLAK: Sleep acknowledge Flag * @arg CAN_FLAG_EWG: Error Warning Flag * @arg CAN_FLAG_EPV: Error Passive Flag * @arg CAN_FLAG_BOF: Bus-Off Flag * @arg CAN_FLAG_LEC: Last error code Flag * @retval The new state of CAN_FLAG (SET or RESET). */ FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG) { FlagStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_GET_FLAG(CAN_FLAG)); if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET) { /* Check the status of the specified CAN flag */ if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET) { /* CAN_FLAG is set */ bitstatus = SET; } else { /* CAN_FLAG is reset */ bitstatus = RESET; } } else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET) { /* Check the status of the specified CAN flag */ if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET) { /* CAN_FLAG is set */ bitstatus = SET; } else { /* CAN_FLAG is reset */ bitstatus = RESET; } } else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET) { /* Check the status of the specified CAN flag */ if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET) { /* CAN_FLAG is set */ bitstatus = SET; } else { /* CAN_FLAG is reset */ bitstatus = RESET; } } else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET) { /* Check the status of the specified CAN flag */ if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET) { /* CAN_FLAG is set */ bitstatus = SET; } else { /* CAN_FLAG is reset */ bitstatus = RESET; } } else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */ { /* Check the status of the specified CAN flag */ if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET) { /* CAN_FLAG is set */ bitstatus = SET; } else { /* CAN_FLAG is reset */ bitstatus = RESET; } } /* Return the CAN_FLAG status */ return bitstatus; } /** * @brief Clears the CAN's pending flags. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param CAN_FLAG: specifies the flag to clear. * This parameter can be one of the following values: * @arg CAN_FLAG_RQCP0: Request MailBox0 Flag * @arg CAN_FLAG_RQCP1: Request MailBox1 Flag * @arg CAN_FLAG_RQCP2: Request MailBox2 Flag * @arg CAN_FLAG_FF0: FIFO 0 Full Flag * @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag * @arg CAN_FLAG_FF1: FIFO 1 Full Flag * @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag * @arg CAN_FLAG_WKU: Wake up Flag * @arg CAN_FLAG_SLAK: Sleep acknowledge Flag * @arg CAN_FLAG_LEC: Last error code Flag * @retval None */ void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG) { uint32_t flagtmp=0; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG)); if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */ { /* Clear the selected CAN flags */ CANx->ESR = (uint32_t)RESET; } else /* MSR or TSR or RF0R or RF1R */ { flagtmp = CAN_FLAG & 0x000FFFFF; if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET) { /* Receive Flags */ CANx->RF0R = (uint32_t)(flagtmp); } else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET) { /* Receive Flags */ CANx->RF1R = (uint32_t)(flagtmp); } else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET) { /* Transmit Flags */ CANx->TSR = (uint32_t)(flagtmp); } else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */ { /* Operating mode Flags */ CANx->MSR = (uint32_t)(flagtmp); } } } /** * @brief Checks whether the specified CANx interrupt has occurred or not. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param CAN_IT: specifies the CAN interrupt source to check. * This parameter can be one of the following values: * @arg CAN_IT_TME: Transmit mailbox empty Interrupt * @arg CAN_IT_FMP0: FIFO 0 message pending Interrupt * @arg CAN_IT_FF0: FIFO 0 full Interrupt * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt * @arg CAN_IT_FMP1: FIFO 1 message pending Interrupt * @arg CAN_IT_FF1: FIFO 1 full Interrupt * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt * @arg CAN_IT_WKU: Wake-up Interrupt * @arg CAN_IT_SLK: Sleep acknowledge Interrupt * @arg CAN_IT_EWG: Error warning Interrupt * @arg CAN_IT_EPV: Error passive Interrupt * @arg CAN_IT_BOF: Bus-off Interrupt * @arg CAN_IT_LEC: Last error code Interrupt * @arg CAN_IT_ERR: Error Interrupt * @retval The current state of CAN_IT (SET or RESET). */ ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT) { ITStatus itstatus = RESET; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_IT(CAN_IT)); /* check the interrupt enable bit */ if((CANx->IER & CAN_IT) != RESET) { /* in case the Interrupt is enabled, .... */ switch (CAN_IT) { case CAN_IT_TME: /* Check CAN_TSR_RQCPx bits */ itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2); break; case CAN_IT_FMP0: /* Check CAN_RF0R_FMP0 bit */ itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0); break; case CAN_IT_FF0: /* Check CAN_RF0R_FULL0 bit */ itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0); break; case CAN_IT_FOV0: /* Check CAN_RF0R_FOVR0 bit */ itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0); break; case CAN_IT_FMP1: /* Check CAN_RF1R_FMP1 bit */ itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1); break; case CAN_IT_FF1: /* Check CAN_RF1R_FULL1 bit */ itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1); break; case CAN_IT_FOV1: /* Check CAN_RF1R_FOVR1 bit */ itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1); break; case CAN_IT_WKU: /* Check CAN_MSR_WKUI bit */ itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI); break; case CAN_IT_SLK: /* Check CAN_MSR_SLAKI bit */ itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI); break; case CAN_IT_EWG: /* Check CAN_ESR_EWGF bit */ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF); break; case CAN_IT_EPV: /* Check CAN_ESR_EPVF bit */ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF); break; case CAN_IT_BOF: /* Check CAN_ESR_BOFF bit */ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF); break; case CAN_IT_LEC: /* Check CAN_ESR_LEC bit */ itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC); break; case CAN_IT_ERR: /* Check CAN_MSR_ERRI bit */ itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI); break; default: /* in case of error, return RESET */ itstatus = RESET; break; } } else { /* in case the Interrupt is not enabled, return RESET */ itstatus = RESET; } /* Return the CAN_IT status */ return itstatus; } /** * @brief Clears the CANx's interrupt pending bits. * @param CANx: where x can be 1 or 2 to to select the CAN peripheral. * @param CAN_IT: specifies the interrupt pending bit to clear. * This parameter can be one of the following values: * @arg CAN_IT_TME: Transmit mailbox empty Interrupt * @arg CAN_IT_FF0: FIFO 0 full Interrupt * @arg CAN_IT_FOV0: FIFO 0 overrun Interrupt * @arg CAN_IT_FF1: FIFO 1 full Interrupt * @arg CAN_IT_FOV1: FIFO 1 overrun Interrupt * @arg CAN_IT_WKU: Wake-up Interrupt * @arg CAN_IT_SLK: Sleep acknowledge Interrupt * @arg CAN_IT_EWG: Error warning Interrupt * @arg CAN_IT_EPV: Error passive Interrupt * @arg CAN_IT_BOF: Bus-off Interrupt * @arg CAN_IT_LEC: Last error code Interrupt * @arg CAN_IT_ERR: Error Interrupt * @retval None */ void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT) { /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_CLEAR_IT(CAN_IT)); switch (CAN_IT) { case CAN_IT_TME: /* Clear CAN_TSR_RQCPx (rc_w1)*/ CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2; break; case CAN_IT_FF0: /* Clear CAN_RF0R_FULL0 (rc_w1)*/ CANx->RF0R = CAN_RF0R_FULL0; break; case CAN_IT_FOV0: /* Clear CAN_RF0R_FOVR0 (rc_w1)*/ CANx->RF0R = CAN_RF0R_FOVR0; break; case CAN_IT_FF1: /* Clear CAN_RF1R_FULL1 (rc_w1)*/ CANx->RF1R = CAN_RF1R_FULL1; break; case CAN_IT_FOV1: /* Clear CAN_RF1R_FOVR1 (rc_w1)*/ CANx->RF1R = CAN_RF1R_FOVR1; break; case CAN_IT_WKU: /* Clear CAN_MSR_WKUI (rc_w1)*/ CANx->MSR = CAN_MSR_WKUI; break; case CAN_IT_SLK: /* Clear CAN_MSR_SLAKI (rc_w1)*/ CANx->MSR = CAN_MSR_SLAKI; break; case CAN_IT_EWG: /* Clear CAN_MSR_ERRI (rc_w1) */ CANx->MSR = CAN_MSR_ERRI; /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/ break; case CAN_IT_EPV: /* Clear CAN_MSR_ERRI (rc_w1) */ CANx->MSR = CAN_MSR_ERRI; /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/ break; case CAN_IT_BOF: /* Clear CAN_MSR_ERRI (rc_w1) */ CANx->MSR = CAN_MSR_ERRI; /* @note the corresponding Flag is cleared by hardware depending on the CAN Bus status*/ break; case CAN_IT_LEC: /* Clear LEC bits */ CANx->ESR = RESET; /* Clear CAN_MSR_ERRI (rc_w1) */ CANx->MSR = CAN_MSR_ERRI; break; case CAN_IT_ERR: /*Clear LEC bits */ CANx->ESR = RESET; /* Clear CAN_MSR_ERRI (rc_w1) */ CANx->MSR = CAN_MSR_ERRI; /* @note BOFF, EPVF and EWGF Flags are cleared by hardware depending on the CAN Bus status*/ break; default: break; } } /** * @} */ /** * @brief Checks whether the CAN interrupt has occurred or not. * @param CAN_Reg: specifies the CAN interrupt register to check. * @param It_Bit: specifies the interrupt source bit to check. * @retval The new state of the CAN Interrupt (SET or RESET). */ static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit) { ITStatus pendingbitstatus = RESET; if ((CAN_Reg & It_Bit) != (uint32_t)RESET) { /* CAN_IT is set */ pendingbitstatus = SET; } else { /* CAN_IT is reset */ pendingbitstatus = RESET; } return pendingbitstatus; } /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/