#include "main.h" #include "stm32l100c_discovery.h" #include "ssd1306.h" // USB includes #include "hw_config.h" #include "usb_lib.h" #include "usb_desc.h" #include "usb_pwr.h" #define LED_POWER GPIOB,GPIO_Pin_9 #define LED_STAT GPIOA,GPIO_Pin_15 #define MAX_CS GPIOB,GPIO_Pin_12 // TODO: Grab buttonpresses with interrupts #define SW_BTN GPIOB, GPIO_Pin_3 #define SW_UP GPIOB, GPIO_Pin_7 #define SW_DOWN GPIOB, GPIO_Pin_6 #define SW_LEFT GPIOB, GPIO_Pin_5 #define SW_RIGHT GPIOB, GPIO_Pin_4 // USB Supporting Vars extern __IO uint8_t Receive_Buffer[64]; extern __IO uint32_t Receive_length ; extern __IO uint32_t length ; uint8_t Send_Buffer[64]; uint32_t packet_sent=1; uint32_t packet_receive=1; char* itoa(int32_t i, char b[]){ char const digit[] = "0123456789"; char* p = b; if(i<0){ *p++ = '-'; i *= -1; } int shifter = i; do{ //Move to where representation ends ++p; shifter = shifter/10; }while(shifter); *p = '\0'; do{ //Move back, inserting digits as you go *--p = digit[i%10]; i = i/10; }while(i); return b; } int32_t round(double x) { if (x >= 0) return (long) (x+0.5); return (long) (x-0.5); } static __IO uint32_t TimingDelay; // Move to header file void init_gpio(); void init_spi(); void process(); void machine(); int main(void) { // Init clocks SystemInit(); init_gpio(); // Init USB //Set_USBClock(); //USB_Interrupts_Config(); //USB_Init(); GPIO_SetBits(LED_POWER); RCC_ClocksTypeDef RCC_Clocks; // SysTick end of count event each 1ms RCC_GetClocksFreq(&RCC_Clocks); SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000); GPIO_ResetBits(LED_STAT); Delay(100); GPIO_SetBits(LED_POWER); Delay(500); GPIO_ResetBits(LED_POWER); init_spi(); ssd1306_Init(); ssd1306_block_write(); ssd1306_DrawString("therm 0.1", 0, 40); ssd1306_DrawString("Status: Idle", 2, 40); // ssd1306_block_write(); ssd1306_test(); uint8_t toggle = 0; int16_t temp = -231; while(1) { //ssd1306_block_write(); // Process sensor inputs [TODO: 5hz?] process(); // Run state machine [TODO: 50hz?] machine(); // probably just passed the actual port // TODO: Grab buttonpresses with interrupts uint8_t sw_btn = GPIO_ReadInputDataBit(SW_BTN); //uint8_t sw_up = GPIO_ReadInputDataBit(SW_UP); //uint8_t sw_down = GPIO_ReadInputDataBit(SW_DOWN); //uint8_t sw_left = GPIO_ReadInputDataBit(SW_LEFT); //uint8_t sw_right = GPIO_ReadInputDataBit(SW_RIGHT); if(!sw_btn) { GPIO_ToggleBits(LED_STAT); if(!toggle) { GPIO_SetBits(GPIOB, GPIO_Pin_13); toggle = ! toggle; } else { GPIO_ResetBits(GPIOB, GPIO_Pin_13); toggle = ! toggle; } } GPIO_SetBits(LED_POWER); Delay(50); GPIO_ResetBits(LED_POWER); Delay(50); } } int32_t temp = 0; int32_t setpoint = 0; int32_t p = 1; int32_t i = 1; int32_t d = 1; // Process things void process() { // Assert CS GPIO_ResetBits(MAX_CS); Delay(1); // This may not clock at all... might need to send 16 bits first SPI_I2S_SendData(SPI2, 0xAA); // send dummy data SPI_I2S_SendData(SPI2, 0xAA); // send dummy data uint16_t temp1 = SPI_I2S_ReceiveData(SPI2); // SPI_I2S_SendData(SPI2, 0xAA); // send dummy data // SPI_I2S_SendData(SPI2, 0xAA); // send dummy data uint16_t temp2 = 0;//SPI_I2S_ReceiveData(SPI2); // Deassert CS Delay(1); GPIO_SetBits(MAX_CS); int32_t temp = (temp1 << 16) | temp2; ////////////////////////// // Calc internal temp // ////////////////////////// /* temp = temp >> 4; // Drop last 4 bits, no need for them float internal_temp = temp & 0x7FF // Lower 11bits are internal temp // Check internal temp sign if(temp & 0x800) { // Convert to negative value by extending sign and casting to signed type. int16_t tmp = 0xF800 | (temp & 0x7FF); internal_temp = tmp; } internal_temp *= 0.0625; // LSB = 0.0625 degrees // Now we have a good internal temp! */ ////////////////////////// // Calc external temp // ////////////////////////// if(temp & 0x7) { // Something is wrong... ssd1306_DrawString("!TempCOMMS", 3, 35); } if(temp & 0x80000000) { // Negative value, drop the lower 18 bits and explicitly extend sign bits temp = 0xFFFFC000 | ((temp >> 18) & 0x00003FFFF); } else { // Positive value, just drop lower 18 temp >>= 18; } double temp_centigrade = temp; if(temp > 0) { GPIO_SetBits(LED_STAT); } char tempstr[9]; itoa(temp, tempstr); ssd1306_DrawString("Temp: ", 1, 40); ssd1306_DrawString(tempstr, 1, 70); /* if((!retval || (temp & 0x2) != 0)) { ssd1306_DrawString("!TempCOMMS", 3, 35); //return; // Comms error - this is happening right now } else if((temp & 0x4)!= 0) { ssd1306_DrawString("!OpenThermocouple", 3, 40); //return; // Open thermocouple } temp = (temp & 0x7FF8) >> 5; */ // TODO: Add calibration offset (linear) // Perform PID calculations // Write output to SSR } enum state { STATE_IDLE = 0, STATE_SETP, STATE_SETI, STATE_SETD, STATE_PREHEAT_BREW, STATE_MAINTAIN_BREW, STATE_PREHEAT_STEAM, STATE_MAINTAIN_STEAM, }; uint8_t state = STATE_IDLE; // State machine void machine() { switch(state) { // Idle state case STATE_IDLE: { // Write text to OLED // [ therm :: idle ] ssd1306_DrawString("therm :: idle ", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_SETP; } // Event Handler // N/A } break; case STATE_SETP: { // Write text to OLED // [ therm :: set p ] // [ p = 12 ] ssd1306_DrawString("therm :: set p", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_SETI; } // Event Handler // N/A } break; case STATE_SETI: { // Write text to OLED // [ therm :: set i ] // [ i = 12 ] ssd1306_DrawString("therm :: set i", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_SETD; } // Event Handler // N/A } break; case STATE_SETD: { // Write text to OLED // [ therm :: set d ] // [ d = 12 ] ssd1306_DrawString("therm :: set d", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_IDLE; } // Event Handler // N/A } break; case STATE_PREHEAT_BREW: { // Write text to OLED // [ therm : preheating brew ] // [ 30 => 120 C ] ssd1306_DrawString("therm :: Bpreheat", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_IDLE; } // Event Handler if(temp >= setpoint) { state = STATE_MAINTAIN_BREW; } } break; case STATE_MAINTAIN_BREW: { // Write text to OLED // [ therm : ready to brew ] // [ 30 => 120 C ] ssd1306_DrawString("therm :: Bready", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_IDLE; } // Event Handler // N/A } break; case STATE_PREHEAT_STEAM: { // Write text to OLED // [ therm : preheating steam ] // [ 30 => 120 C ] ssd1306_DrawString("therm :: Spreheat", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_IDLE; } // Event Handler if(temp >= setpoint) { state = STATE_MAINTAIN_STEAM; } } break; case STATE_MAINTAIN_STEAM: { // Write text to OLED // [ therm : ready to steam ] // [ 30 => 120 C ] ssd1306_DrawString("therm :: Sready", 0, 40); // Button handler if(!GPIO_ReadInputDataBit(SW_BTN)) { state = STATE_IDLE; } // Event Handler // N/A } break; // Something is terribly wrong default: { ssd1306_DrawString("therm :: BAD BAD", 0, 40); state = STATE_IDLE; } break; } } /** * @brief Inserts a delay time. * @param nTime: specifies the delay time length, in 1 ms. * @retval None */ void Delay(__IO uint32_t nTime) { TimingDelay = nTime; while(TimingDelay != 0); } /** * @brief Decrements the TimingDelay variable. * @param None * @retval None */ void TimingDelay_Decrement(void) { if (TimingDelay != 0x00) { TimingDelay--; } } void init_spi(void) { SPI_InitTypeDef SPI_InitStructure; // OLED IC SPI_Cmd(SPI1, DISABLE); SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI1, &SPI_InitStructure); SPI_Cmd(SPI1, ENABLE); /* Enable the SPI */ // MAX IC SPI_Cmd(SPI2, DISABLE); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; // Andysworkshop SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; // From andysworkshop SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; // same SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI2, &SPI_InitStructure); SPI_Cmd(SPI2, ENABLE); /* Enable the SPI */ } void init_gpio(void) { GPIO_InitTypeDef GPIO_InitStruct; // Enable SPI clocks RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); // Enable GPIO clocks RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC|RCC_AHBPeriph_GPIOB|RCC_AHBPeriph_GPIOA, ENABLE); // Enable DMA clocks (Is AHB even the right thing???) RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // EMZ TODO get the right ones /*Configure GPIO pin : PC */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PB */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_10|GPIO_Pin_12 |GPIO_Pin_9; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PA */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PB */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6 |GPIO_Pin_7; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOB, &GPIO_InitStruct); /** SPI1 GPIO Configuration PA5 ------> SPI1_SCK PA7 ------> SPI1_MOSI */ /*Enable or disable the AHB peripheral clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); /*Configure GPIO pin : PA: MOSI,SCK */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5|GPIO_Pin_7; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin alternate function */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1); /*Configure GPIO pin alternate function */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1); /** SPI2 GPIO Configuration PB13 ------> SPI2_SCK PB14 ------> SPI2_MISO PB15 ------> SPI2_MOSI */ /*Enable or disable the AHB peripheral clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE); // SPI PINSSS /*Configure GPIO pin : PB, MOSI, SCK */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_15; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitTypeDef GPIO_InitStruct2; // MISO GPIO_InitStruct2.GPIO_Pin = GPIO_Pin_14; GPIO_InitStruct2.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct2.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct2.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(GPIOB, &GPIO_InitStruct2); //Configure GPIO pin alternate function GPIO_PinAFConfig(GPIOB, GPIO_PinSource13, GPIO_AF_SPI2); GPIO_PinAFConfig(GPIOB, GPIO_PinSource14, GPIO_AF_SPI2); GPIO_PinAFConfig(GPIOB, GPIO_PinSource15, GPIO_AF_SPI2); /** USB GPIO Configuration PA11 ------> USB_DM PA12 ------> USB_DP */ /*Enable or disable the AHB peripheral clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); /*Configure GPIO pin : PA */ GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11|GPIO_Pin_12; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz; GPIO_Init(GPIOA, &GPIO_InitStruct); } // vim:softtabstop=4 shiftwidth=4 expandtab