Changeset - 920a71bf7d87
[Not reviewed]
default
0 5 0
ethanzonca@CL-ENS241-08.cedarville.edu - 12 years ago 2013-02-12 16:02:54
ethanzonca@CL-ENS241-08.cedarville.edu
GPS latitude is now handled in a more robust manner, least 3 significant digits of current position are included in the comment field.
5 files changed with 34 insertions and 14 deletions:
0 comments (0 inline, 0 general)
master/master/lib/aprs.c
Show inline comments
 
/*
 
 * Master Firmware: APRS
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
#include "../config.h"
 
#include "aprs.h"
 
#include "ax25.h"
 
#include "gps.h"
 
#include "sensordata.h"
 
#include <stdio.h>
 

	
 
float meters_to_feet(float m)
 
{
 
  // 10000 ft = 3048 m
 
  return m / 0.3048;
 
}
 

	
 
void aprs_send()
 
{
 
  const struct s_address addresses[] = { 
 
    {D_CALLSIGN, D_CALLSIGN_ID},  // Destination callsign
 
    {S_CALLSIGN, S_CALLSIGN_ID},  // Source callsign (-11 = balloon, -9 = car)
 
#ifdef DIGI_PATH1
 
    {DIGI_PATH1, DIGI_PATH1_TTL}, // Digi1 (first digi in the chain)
 
#endif
 
#ifdef DIGI_PATH2
 
    {DIGI_PATH2, DIGI_PATH2_TTL}, // Digi2 (second digi in the chain)
 
#endif
 
  };
 

	
 
	// emz: modified this to get the size of the first address rather than the size of the struct itself, which fails
 
  ax25_send_header(addresses, sizeof(addresses)/sizeof(addresses[0]));
 
  ax25_send_byte('/');                // Report w/ timestamp, no APRS messaging. $ = NMEA raw data
 
  // ax25_send_string("021709z");     // 021709z = 2nd day of the month, 17:09 zulu (UTC/GMT)
 
  ax25_send_string(get_dayofmonth()); ///! Needs to be day hour minute        // 170915 = 17h:09m:15s zulu (not allowed in Status Reports)
 
  ax25_send_string(get_timestamp()); 
 
  ax25_send_byte('z'); // zulu time. h for nonzulu
 
  ax25_send_string(get_latitude());     // Lat: 38deg and 22.20 min (.20 are NOT seconds, but 1/100th of minutes)
 
  ax25_send_string(get_latitudeTrimmed());     // Lat: 38deg and 22.20 min (.20 are NOT seconds, but 1/100th of minutes)
 
  ax25_send_byte('N');
 
  ax25_send_byte('/');                // Symbol table
 
  ax25_send_string(get_longitude());     // Lon: 000deg and 25.80 min
 
  ax25_send_string(get_longitudeTrimmed());     // Lon: 000deg and 25.80 min
 
  ax25_send_byte('W');
 
  ax25_send_byte('O');                // Symbol: O=balloon, -=QTH
 
  
 
  //snprintf(temp, 4, "%03d", (int)(get_course() + 0.5));  
 
  // !!!TODO: ENSURE THAT THE COURSE IS FORMATTED CORRECTLY!
 
  ax25_send_string(get_course());             // Course (degrees)
 
  
 
  ax25_send_byte('/');                // and
 
  
 
  // !!!TODO: Check the speed!
 
  //snprintf(temp, 4, "%03d", (int)(gps_speed + 0.5));
 
  ax25_send_string(get_speedKnots());             // speed (knots)
 
  
 
  /*
 
  ax25_send_string("/A=");            // Altitude (feet). Goes anywhere in the comment area
 
  snprintf(temp, 7, "%06ld", (long)(meters_to_feet(gps_altitude) + 0.5));
 
  ax25_send_string(temp);
 
  ax25_send_string("/Ti=");
 
  snprintf(temp, 6, "%d", 122);//sensors_int_lm60()); -- PUT SENSOR DATA HERE
 
  ax25_send_string(temp);
 
  ax25_send_string("/Te=");
 
  snprintf(temp, 6, "%d", 123);//sensors_ext_lm60());
 
  ax25_send_string(temp);
 
  ax25_send_string("/V=");
 
  snprintf(temp, 6, "%d", 123);//sensors_vin());
 
  ax25_send_string(temp);
 
  */
 
  
 
  ax25_send_byte(' ');
 
  ax25_send_string(slavesensors_getAPRScomment());
 
  ax25_send_footer();
 
  ax25_flush_frame();                 // Tell the modem to go
 
}
master/master/lib/gps.c
Show inline comments
 
/*
 
 * Master Firmware: NMEA Parser
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
#include <stdbool.h>
 
#include <string.h>
 
#include <stdio.h>
 
#include <avr/io.h>
 
#include <avr/interrupt.h>
 
#include "gps.h"
 
#include "serial.h"
 
#include "../config.h"
 
#include "led.h"
 
 
// Circular buffer for incoming data
 
uint8_t nmeaBuffer[NMEABUFFER_SIZE];
 
 
// Location of parser in the buffer
 
uint8_t nmeaBufferParsePosition = 0;
 
 
// Location of receive byte interrupt in the buffer
 
volatile uint16_t nmeaBufferDataPosition = 0;
 

	
 
// holds the byte ALREADY PARSED. includes starting character
 
int bytesReceived = 0;
 

	
 
//data (and checksum) of most recent transmission
 
char data[16];
 

	
 
//used to skip over bytes during parse
 
int skipBytes = 0;
 

	
 
//used to index data arrays during data collection
 
int numBytes = 0;
 

	
 
//variables to store data from transmission
 
//least significant digit is stored at location 0 of arrays
 
char tramsmissionType[7];
 

	
 
char timestamp[12];	//hhmmss.ss
 
char* get_timestamp() 
 
{
 
	return timestamp;
 
}
 
	
 
char latitude[14];	//lllll.lla
 
char* get_latitude() 
 
char latitudeTmp[8];
 
char* get_latitudeTrimmed() 
 
{
 
	return latitude;
 
	strncpy(latitudeTmp, &latitude[0], 7);
 
	latitudeTmp[7] = 0x00;
 
	return latitudeTmp;
 
}
 
char* get_latitudeLSBs()
 
{
 
	strncpy(latitudeTmp, &latitude[7], 3);
 
	latitudeTmp[3] = 0x00;
 
	return latitudeTmp;
 
}
 

	
 
char longitude[14];	//yyyyy.yyb
 
char* get_longitude() 
 
char longitudeTmp[9];
 

	
 
char* get_longitudeTrimmed() 
 
{
 
	return longitude;
 
	strncpy(longitudeTmp, &longitude[0], 8);
 
	longitudeTmp[8] = 0x00;
 
	return longitudeTmp;
 
}
 

	
 
char* get_longitudeLSBs()
 
{
 
	strncpy(longitudeTmp, &longitude[8], 3);
 
	longitudeTmp[3] = 0x00;
 
	return longitudeTmp;
 
}
 

	
 
char quality;		//quality for GGA and validity for RMC
 
char numSatellites[4];
 
char* get_sv() 
 
{
 
	return numSatellites;
 
}
 

	
 
char hdop[6];		//xx.x
 
char* get_hdop() 
 
{
 
	return hdop;
 
}
 

	
 
char altitude[10];	//xxxxxx.x
 
char wgs84Height[8];	//sxxx.x
 
char lastUpdated[8];	//blank - included for testing
 
char stationID[8];	//blank - included for testing
 
char checksum[3];	//xx
 

	
 
char knots[8];		//xxx.xx
 
char* get_speedKnots() 
 
{
 
	return knots;
 
}
 

	
 
char course[8];		//xxx.x
 
char* get_course() 
 
{
 
	return course;
 
}
 
	
 
char dayofmonth[9];	//ddmmyy
 
char* get_dayofmonth() 
 
{
 
	return dayofmonth;
 
}
 

	
 
bool gps_hasfix() 
 
{
 
	return strcmp("99.99", get_hdop());
 
}
 

	
 
char variation[9];	//xxx.xb
 
int calculatedChecksum;
 
int receivedChecksum;
 

	
 
// transmission state machine
 
enum decodeState {
 
	//shared fields
 
	INITIALIZE=0,
 
	GET_TYPE,
 
	GPS_CHECKSUM,	//XOR of all the bytes between the $ and the * (not including the delimiters themselves), written in hexadecimal
 
	//GGA data fields
 
	GGA_TIME,
 
	GGA_LATITUDE,
 
	GGA_LONGITUDE,
 
	GGA_QUALITY,
 
	GGA_SATELLITES,
 
	GGA_HDOP,
 
	GGA_ALTITUDE,
 
	GGA_WGS84,
 
	GGA_LAST_UPDATE,
 
	GGA_STATION_ID,
 
	//RMC data fields
 
	RMC_TIME,
 
	RMC_VALIDITY,
 
	RMC_LATITUDE,
 
	RMC_LONGITUDE,
 
	RMC_KNOTS,
 
	RMC_COURSE,
 
	RMC_DATE,
 
	RMC_MAG_VARIATION,
 
	
 
}decodeState;
 

	
 

	
 
ISR(USART1_RX_vect)
 
{
 
	nmeaBuffer[nmeaBufferDataPosition % NMEABUFFER_SIZE] = UDR1;
 
	nmeaBufferDataPosition = (nmeaBufferDataPosition + 1) % NMEABUFFER_SIZE;
 
}
 

	
 
void gps_setup() 
 
{
 
	snprintf(timestamp,2, "0");
 
	snprintf(latitude,2, "0");
 
	snprintf(longitude,2, "0");
 
	snprintf(numSatellites,2, "0");
 
	snprintf(hdop,2, "0");
 
	snprintf(knots,2, "0");
 
	snprintf(course,2, "0");
 
	snprintf(dayofmonth,2, "0");
 
}
 

	
 

	
 
// Could inline if program space available
 
static void setParserState(uint8_t state)
 
{
 
	decodeState = state;
 
 
	
 
	// If resetting, clear vars
 
	if(state == INITIALIZE)
 
	{
 
		calculatedChecksum = 0;
 
	}
 
	
 
	// Every time we change state, we have parsed a byte
 
	nmeaBufferParsePosition = (nmeaBufferParsePosition + 1) % NMEABUFFER_SIZE;
 
}
 

	
 

	
 

	
 
//// MKa GPS transmission parser START
 
void parse_gps_transmission(void){
 
	
 
	// Pull byte off of the buffer
 
	char byte;
 
	
 
	
 
	
 
	while(nmeaBufferDataPosition != nmeaBufferParsePosition) 
 
	{
 
		led_on(LED_ACTIVITY);
 
		
 
		byte = nmeaBuffer[nmeaBufferParsePosition];
 
		
 
		if(decodeState == INITIALIZE) //start of transmission sentence
 
		{
 
			if(byte == '$') 
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found $\r\n");
 
				#endif
 
				
 
				setParserState(GET_TYPE);
 
				numBytes = 0; //prep for next phases
 
				skipBytes = 0;
 
				calculatedChecksum = 0;
 
			}		
 
			
 
			else 
 
			{
 
				setParserState(INITIALIZE);
 
			}
 
		}
 
	
 
		//parse transmission type
 
		else if (decodeState == GET_TYPE)
 
		{
 
			tramsmissionType[numBytes] = byte;
 
			numBytes++;
 
			
 
			#ifdef DEBUG_NMEA
 
			serial0_sendString("stored a type byte\r\n");
 
			#endif
 
			
 
			if(byte == ',') //end of this data type
 
			{
 
				tramsmissionType[5] = 0x00;
 
				
 
				if (tramsmissionType[2] == 'G' &&
 
				tramsmissionType[3] == 'G' &&
 
				tramsmissionType[4] == 'A')
 
				{
 
					setParserState(GGA_TIME);
 
					numBytes = 0;
 
				}
 
				else if (tramsmissionType[2] == 'R' &&
 
				tramsmissionType[3] == 'M' &&
 
				tramsmissionType[4] == 'C')
 
				{
 
					setParserState(RMC_TIME);
 
					numBytes = 0;
 
				}
 
				else //this is an invalid transmission type
 
				{
 
					setParserState(INITIALIZE);
 
				}
 
			}
 
			else {
 
				// continue
 
				setParserState(GET_TYPE);
 
			}
 
			
 
		}
 
	
 
		///parses GGA transmissions START
 
		/// $--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*xx
 
		//timestamp
 
		else if (decodeState == GGA_TIME)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				timestamp[4] = 0x00; // Cut off at 4 (no seconds) for APRS
 
				setParserState(GGA_LATITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found GGA time byte\r\n");
 
				#endif
 
				
 
				setParserState(GGA_TIME);
 
				timestamp[numBytes] = byte; //byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//latitude
 
		else if (decodeState == GGA_LATITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat skip byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1;
 
				setParserState(GGA_LATITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				
 
				latitude[7] = 0x00; // null terminate
 
				latitude[numBytes] = 0x00; // null terminate
 
				
 
				setParserState(GGA_LONGITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat byte\r\n");
 
				#endif
 
				
 
				latitude[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_LATITUDE);
 
			}
 
		}
 
	
 
		//longitude
 
		else if (decodeState == GGA_LONGITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long skip byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1;
 
				setParserState(GGA_LONGITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				longitude[8] = 0x00;
 
				longitude[numBytes] = 0x00;
 
				setParserState(GGA_QUALITY);
 
				numBytes = 0; //prep for next phase of parse
 
				skipBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long byte\r\n");
 
				#endif
 
				
 
				longitude[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_LONGITUDE);
 
			}
 
		}
 
	
 
		//GGA quality
 
		else if (decodeState == GGA_QUALITY)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				setParserState(GGA_SATELLITES);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found quality byte\r\n");
 
				#endif
 
				
 
				quality = byte; //maybe reset if invalid data ??
 
				setParserState(GGA_QUALITY);
 
			}
 
		}
 
	
 
		//number of satellites
 
		else if (decodeState == GGA_SATELLITES)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				numSatellites[numBytes] = 0x00;
 
				setParserState(GGA_HDOP);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				numSatellites[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_SATELLITES);
 
			}
 
		}
 
	
 
		//HDOP
 
		else if (decodeState == GGA_HDOP)
 
		{
 
			if (byte == ',' ) //end of this data type
 
			{
 
				hdop[numBytes] = 0x00;
 
				setParserState(GGA_ALTITUDE);
 
				numBytes = 0; //prep for next phase of parse
 
				skipBytes = 0;
 
			}
 
			else //store data
 
			{
 
				hdop[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_HDOP);
 
			}
 
		}
 
	
 
		//altitude
 
		else if (decodeState == GGA_ALTITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				skipBytes = 1;
 
				setParserState(GGA_ALTITUDE);
 
			}
 
			else if(byte == ',') //end of this data type
 
			{
 
				altitude[numBytes] = 0x00;
 
				setParserState(GGA_WGS84);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				altitude[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_ALTITUDE);
 
			}
 
		}
 
	
 
		//WGS84 Height
 
		else if (decodeState == GGA_WGS84)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				skipBytes = 1;
 
				setParserState(GGA_WGS84);
 
			}
 
			else if(byte == ',') //end of this data type
 
			{
 
				wgs84Height[numBytes] = 0x00;
 
				setParserState(GGA_LAST_UPDATE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				wgs84Height[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_WGS84);
 
			}
 
		}
 
	
 
		//last GGA DGPS update
 
		else if (decodeState == GGA_LAST_UPDATE)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				lastUpdated[numBytes] = 0x00;
 
				setParserState(GGA_STATION_ID);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data - this should be blank
 
			{
 
				lastUpdated[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_LAST_UPDATE);
 
			}
 
		}
 
	
 
		//GGA DGPS station ID
 
		else if (decodeState == GGA_STATION_ID)
 
		{
 
			if (byte == ',' || byte == '*') //end of this data type
 
			{
 
				stationID[numBytes] = 0x00;
 
				setParserState(GPS_CHECKSUM);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data - this should be blank
 
			{
 
				stationID[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(GGA_STATION_ID);
 
			}
 
		}
 
		///parses GGA transmissions END
 
	
 
		/// $GPRMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,ddmmyy,x.x,a*hh
 
		///parses RMC transmissions
 
		//time
 
		// emz: commented setter, GMC time better?
 
		else if(decodeState == RMC_TIME)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				//timestamp[numBytes] = 0x00;
 
				setParserState(RMC_VALIDITY);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found time byte\r\n");
 
				#endif
 
				
 
				//timestamp[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(RMC_TIME);
 
			}
 
		}
 
	
 
		//validity
 
		// not needed? dupe gga
 
		else if(decodeState == RMC_VALIDITY)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				setParserState(RMC_LATITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found valid byte\r\n");
 
				#endif
 
				
 
				//quality = byte;
 
				numBytes++;
 
				setParserState(RMC_VALIDITY);
 
			}
 
		}
 
	
 
		//latitude RMC (we don't need this, commented out setter)
 
		else if(decodeState == RMC_LATITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat skip byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1; 
 
				setParserState(RMC_LATITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				setParserState(RMC_LONGITUDE);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found lat byte\r\n");
 
				#endif
 
				
 
				//latitude[numBytes]= byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(RMC_LATITUDE);
 
			}
 
		}
 
	
 
		//longitude RMC (we don't need this, commented out setter)
 
		else if(decodeState == RMC_LONGITUDE)
 
		{
 
			if (byte == ',' && skipBytes == 0) //discard this byte
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long byte\r\n");
 
				#endif
 
				
 
				skipBytes = 1; 
 
				setParserState(RMC_LONGITUDE);
 
			}
 
			else if (byte == ',') //end of this data type
 
			{
 
				setParserState(RMC_KNOTS);
 
				skipBytes = 0;
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("found long byte\r\n");
 
				#endif
 
				
 
				//longitude[numBytes]= byte; //adjust number of bytes to fit array
 
				numBytes++;
 
				setParserState(RMC_LONGITUDE);
 
			}
 
		}
 
	
 
		//knots
 
		else if(decodeState == RMC_KNOTS)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				knots[numBytes] = 0x00;
 
				setParserState(RMC_COURSE);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_KNOTS);
 
				knots[numBytes]= byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//course
 
		else if(decodeState == RMC_COURSE)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				course[numBytes] = 0x00;
 
				setParserState(RMC_DATE);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_COURSE);
 
				course[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//date
 
		else if(decodeState == RMC_DATE)
 
		{
 
			if (byte == ',') //end of this data type
 
			{
 
				// Cut it off at day of month. Also has month and year if we ever need it.
 
				dayofmonth[2] = 0x00;
 
				setParserState(RMC_MAG_VARIATION);
 
				skipBytes = 0; //prep for next phase of parse
 
				numBytes = 0;
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_DATE);
 
				dayofmonth[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
	
 
		//magnetic variation
 
		else if(decodeState == RMC_MAG_VARIATION)
 
		{
 
			if (byte == '*') //end of this data type
 
			{
 
				variation[numBytes] = 0x00;
 
				setParserState(GPS_CHECKSUM);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(RMC_MAG_VARIATION);
 
				variation[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
		///parses RMC transmissions END
 
	
 
	
 
		//checksum
 
		else if (decodeState == GPS_CHECKSUM)
 
		{
 
			if (numBytes == 2) //end of data - terminating character ??
 
			{
 
				//checksum calculator for testing http://www.hhhh.org/wiml/proj/nmeaxor.html
 
				//TODO: must determine what to do with correct and incorrect messages
 
				receivedChecksum = checksum[0] + (checksum[1]*16);	//convert bytes to int
 
				if(calculatedChecksum==receivedChecksum)
 
				{
 
				
 
				}
 
				else
 
				{
 
				
 
				}
 
				#ifdef DEBUG_NMEA
 
				serial0_sendString("OMG GOT TO CHECKSUM!\r\n");
 
				#endif
 
				
 
				setParserState(INITIALIZE);
 
				numBytes = 0; //prep for next phase of parse
 
			}
 
			else //store data
 
			{
 
				setParserState(GPS_CHECKSUM);
 
				checksum[numBytes] = byte; //adjust number of bytes to fit array
 
				numBytes++;
 
			}
 
		}
 
		else {
 
			setParserState(INITIALIZE);
 
		}
 
	
 
		if (decodeState!=GPS_CHECKSUM && decodeState!=INITIALIZE)	//want bytes between '$' and '*'
 
		{
 
			//input byte into running checksum
 
			XORbyteWithChecksum(byte);
 
		}
 
		led_off(LED_ACTIVITY);
 
	}	
 
	
 

	
 
}
 
/// MKa GPS transmission parser END
 

	
 
void XORbyteWithChecksum(uint8_t byte)
 
{
 
	calculatedChecksum ^= (int)byte; //this may need to be re-coded
 
}
 

	
master/master/lib/gps.h
Show inline comments
 
/*
 
 * Master Firmware: NMEA Parser
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 
 
 
#ifndef GPSMKA_H_
 
#define GPSMKA_H_
 
 
#include <stdbool.h>
 
 
#define GGA_MESSAGE
 
#define RMC_MESSAGE
 
#define UKN_MESSAGE
 
 
void gps_setup();
 
char* get_longitude();
 
char* get_latitude();
 
char* get_longitudeTrimmed();
 
char* get_longitudeLSBs();
 
char* get_latitudeTrimmed();
 
char* get_latitudeLSBs();
 
char* get_timestamp();
 
char* get_speedKnots();
 
char* get_course();
 
char* get_hdop();
 
char* get_sv();
 
char* get_dayofmonth();
 
bool gps_hasfix();
 
void parse_gps_transmission(void);
 
void XORbyteWithChecksum(uint8_t byte);
 
 
#endif /* GPSMKA_H_ */
 
\ No newline at end of file
master/master/lib/sensordata.c
Show inline comments
 
/*
 
 * Master Firmware: Sensor Data
 
 *
 
 * Wireless Observational Modular Aerial Network
 
 * 
 
 * Ethan Zonca
 
 * Matthew Kanning
 
 * Kyle Ripperger
 
 * Matthew Kroening
 
 *
 
 */
 

	
 
#include "../config.h"
 
#include <stdio.h>
 
#include <stdbool.h>
 
#include <string.h>
 
#include "sensordata.h"
 
#include "slavesensors.h"
 
#include "boardtemp.h"
 
#include "looptime.h"
 
#include "gps.h"
 
#include "logger.h"
 

	
 
// Slave sensor reading storage
 
int32_t slaves[MAX_NUM_SLAVES][MAX_NUM_SENSORS];
 

	
 
void sensordata_setup() 
 
{
 
	for(int i=0; i<MAX_NUM_SLAVES; i++) 
 
	{
 
		for(int j=0; j<MAX_NUM_SENSORS; j++) 
 
		{
 
			slaves[i][j] = -2111111111; // minimum value of 16 bit integer
 
		}
 
	}
 
}
 
 
// Store a sensor value in memory
 
void sensordata_set(uint8_t nodeID, uint8_t type, int32_t value)
 
{
 
	if(nodeID < MAX_NUM_SLAVES) 
 
	{
 
		slaves[nodeID][type] = value;
 
	}	
 
}
 
 
// Retrieve a sensor value from memory
 
int32_t sensordata_get(uint8_t nodeID, uint8_t type) 
 
{
 
	// Avoid reading out of bad places!
 
	if(nodeID < MAX_NUM_SLAVES) 
 
	{
 
		return slaves[nodeID][type];
 
	}
 
	else 
 
	{
 
		return 0;
 
	}
 
}
 
 
 
// Generate APRS comment
 
// TODO: Can we move this buffer to a local scope of this function?
 
char commentBuffer[128];
 
char* slavesensors_getAPRScomment() 
 
{
 
	snprintf(commentBuffer,128, "T%d S%s V%s H%s", sensors_getBoardTemp(), get_sv(), get_speedKnots(), get_hdop());
 
	snprintf(commentBuffer,128, "T%d S%s V%s H%s _%s |%s", sensors_getBoardTemp(), get_sv(), get_speedKnots(), get_hdop(), get_latitudeLSBs(), get_longitudeLSBs());
 
	return commentBuffer;
 
}
 
 
 
// Generates CSV headers on first run and logs values to the SD card (if data available)
 
bool dataWasReady = false;
 
void sensordata_logvalues() 
 
{
 
	// Generate CSV header after we have queried all slaves once
 
	if(slavesensors_dataReady()) 
 
	{
 
	
 
		// Only generate/write header the first time data is ready
 
		if(!dataWasReady) 
 
		{
 
			#define CSV_HEADER_SIZE 512
 
			char csvHeader[CSV_HEADER_SIZE];
 
			csvHeader[0] = 0x00;
 
		
 
			// Add master data headers
 
			snprintf(csvHeader, CSV_HEADER_SIZE, "Time,BoardTemp,GPSTime,GPSLat,GPSLon,GPSSpeed,GPSHDOP,GPSCourse,GPSSV,");
 
		
 
			// Add slave data headers
 
			for(uint8_t i=0; i<MAX_NUM_SLAVES; i++) 
 
			{
 
				for(uint8_t j=0; j<MAX_NUM_SENSORS; j++) 
 
				{
 
					int32_t tmp = sensordata_get(i, j);
 
					
 
					// If a sensor value exists, write a header for it
 
					if(tmp != -2111111111) 
 
					{
 
						snprintf(csvHeader + strlen(csvHeader), CSV_HEADER_SIZE-strlen(csvHeader),"%s-%s,", slavesensors_slavename(i), slavesensors_getLabel(j));
 
					}
 
				}
 
			}
 
		
 
			// End line and write to SD card
 
			snprintf(csvHeader + strlen(csvHeader), CSV_HEADER_SIZE-strlen(csvHeader),"\r\n");
 
			logger_log(csvHeader);
 
			dataWasReady = true;
 
		}
 
	
 
		// Write CSV sensor values to SD card
 
		char logbuf[256];
 
		logbuf[0] = 0x00;
 
		
 
		// Write master sensor values
 
		snprintf(logbuf, 256, "%lu,%d,%s,%s,%s,%s,%s,%s,%s,", time_millis(), sensors_getBoardTemp(),get_timestamp(),get_latitude(),get_longitude(),get_speedKnots(),get_hdop(), get_course(), get_sv());
 
		snprintf(logbuf, 256, "%lu,%d,%s,%s,%s,%s,%s,%s,%s,", time_millis(), sensors_getBoardTemp(),get_timestamp(),get_latitudeTrimmed(),get_longitudeTrimmed(),get_speedKnots(),get_hdop(), get_course(), get_sv());
 
		
 
		// Write slave sensor values
 
		for(int i=0; i<MAX_NUM_SLAVES; i++) 
 
		{
 
			for(int j=0; j<MAX_NUM_SENSORS; j++) 
 
			{
 
				int32_t tmp = sensordata_get(i, j);
 
				
 
				// If a sensor value exists, log the data
 
				if(tmp != -2111111111) 
 
				{
 
					snprintf(logbuf + strlen(logbuf),256-strlen(logbuf)," %ld,", tmp);
 
				}
 
			
 
			}
 
		}
 
		
 
		// End line and write to log
 
		snprintf(logbuf + strlen(logbuf),256-strlen(logbuf),"\r\n");
 
		logger_log(logbuf);
 
	}
 
}
 
\ No newline at end of file
master/master/lib/slavesensors.c
Show inline comments
 
@@ -107,461 +107,461 @@ void slavesensors_network_scan()
 
	_delay_ms(500); // xbee warmup
 
	_delay_ms(200); // xbee warmup
 
	wdt_reset();
 
	
 
	led_on(LED_ACTIVITY);
 
	atOK = slavesensors_enterAT();
 
	
 
	// wait for OK
 
	if(atOK == 0)
 
	{
 
		led_on(LED_CYCLE);
 
		serial0_sendString("ATND");
 
		serial0_sendChar(0x0D);
 
				
 
		// Scan data end when newline by itself ("")	
 
		int lineCount = 0;	
 
	
 
		while(1) 
 
		{
 
			// Wait for scan to complete. If we timeout, return.
 
			if(waitTimeout(7000)) 
 
			{
 
				return;
 
			}
 
			
 
			bufPtr = serial0_readLine();
 

	
 
			// If we're starting a new block but got a newline instead, we're done!
 
			if(lineCount == 0 && strcmp(bufPtr, "") == 0) 
 
			{
 
				break;			
 
			}
 
			
 
			if(lineCount == 1) 
 
			{
 
				strncpy(slaveAddressHigh[nodeCount],bufPtr, 9);
 
			}
 
			else if(lineCount == 2) 
 
			{
 
				strncpy(slaveAddressLow[nodeCount],bufPtr, 9);
 
			}
 
			else if(lineCount == 3) 
 
			{
 
				strncpy(slaveNames[nodeCount], bufPtr, 15);
 
			}
 
			
 
			// If we've finished one chunk (including the newline after it). Can't be else if because it controls increment.
 
			if(lineCount == 9) 
 
			{
 
				// bufPtr should be null at this point, because we read in a newline after one chunk
 
				nodeCount++;
 
				lineCount = 0;
 
			}
 
			else 
 
			{
 
				lineCount++;
 
			}
 

	
 
		}		
 

	
 
		slavesensors_exitAT();
 

	
 
	}
 
	
 

	
 
	// Display number of found nodes on spinning indicator
 
	led_off(LED_ACT0);
 
	led_off(LED_ACT1);
 
	led_off(LED_ACT2);
 
	led_off(LED_ACT3);
 
	
 
	switch(nodeCount) 
 
	{
 
		case 0:
 
			break;
 
		case 3:
 
			led_on(LED_ACT2);
 
			_delay_ms(100);
 
		case 2:
 
			led_on(LED_ACT1);
 
			_delay_ms(100);	
 
		case 1:
 
			led_on(LED_ACT0);
 
			_delay_ms(100);
 
	}
 
	_delay_ms(500);
 
	led_on(LED_SIDEBOARD);
 
	_delay_ms(500);
 
	led_off(LED_SIDEBOARD);
 

	
 
	#ifdef DEBUG_OUTPUT
 
	
 
	char debugBuf[64];
 
	serial0_sendString("Discovered: \r\n");
 
	for(int i=0; i<nodeCount; i++) 
 
	{
 
		snprintf(debugBuf, 64, "  %s - %s%s (%u)\r\n", slaveNames[i],slaveAddressHigh,slaveAddressLow[i], i);
 
		serial0_sendString(debugBuf);
 
	}
 
	serial0_sendString("\r\n");
 
	if(atOK != 0) 
 
	{
 
		serial0_sendString("AT mode failed \r\n");
 
	}
 
	
 
	#endif
 
	
 
	for(int i=0; i<nodeCount; i++) 
 
	{
 
		if(strcmp(slaveNames[i], XBEE_LOGDEST_NAME) == 0) 
 
		{
 
			loggerIndex = i;
 
		}
 
	}
 
	_delay_ms(100);
 
	
 
	slavesensors_selectlogger();
 
	
 
	serial0_ion();
 
}
 
 
//#define DEBUG_CONTEXTSWITCH
 
//#define DEBUG_SELECTNODE
 
 
uint8_t selectedNode = 0;
 
uint8_t slavesensors_getselectednode() 
 
{
 
	return selectedNode;
 
}
 
 
void slavesensors_selectnode(uint8_t nodeIndex)
 
{
 
	if(selectedNode == nodeIndex) 
 
	{
 
		return;
 
	}
 
	serial0_ioff();
 
	
 
	#ifdef DEBUG_CONTEXTSWITCH
 
	uint32_t startTime = time_millis();
 
	#endif
 
	
 
	#ifdef DEBUG_SELECTNODE
 
	serial0_sendString("Switch to node ");
 
	serial0_sendChar(nodeIndex + 0x30);
 
	serial0_sendString("\r\n");
 
	#endif
 
	
 
	_delay_ms(20);
 
	char tmpBuf[23];
 
	
 
	// If we can get into AT mode
 
	if(slavesensors_enterAT() == 0) 
 
	{
 
		
 
		snprintf(tmpBuf, 23, "ATDH %s%c",slaveAddressHigh[nodeIndex], 0x0D);
 
		serial0_sendString(tmpBuf);
 
		
 
		if(xbeeIsOk() != 0) 
 
		{
 
			led_errorcode(ERROR_NOXBEE);
 
			return;
 
		}
 
		
 
		snprintf(tmpBuf, 23, "ATDL %s%c",slaveAddressLow[nodeIndex], 0x0D);
 
		serial0_sendString(tmpBuf);
 
		
 
		if(xbeeIsOk() != 0) 
 
		{
 
			led_errorcode(ERROR_NOXBEE);
 
			return;
 
		}
 
		
 
		slavesensors_exitAT();
 
		selectedNode = nodeIndex;
 
	}
 
	_delay_ms(2);
 
	
 
	#ifdef DEBUG_SELECTNODE
 
	serial0_sendString("Selected ");
 
	serial0_sendChar(nodeIndex + 0x30);
 
	serial0_sendString("\r\n");
 
	#endif
 
	
 
	#ifdef DEBUG_CONTEXTSWITCH
 
	uint32_t switchTime = time_millis() - startTime;
 
	char tmpB[32];
 
	snprintf(tmpB, 32, "CTXSW: %lu ms\r\n", switchTime);
 
	serial0_sendString(tmpB);
 
	#endif
 
	
 
	serial0_ion();
 
	return;
 
}
 
 
void slavesensors_selectlogger() 
 
{
 
	if(loggerIndex != 255) 
 
	{
 
		slavesensors_selectnode(loggerIndex);
 
	}	
 
}
 
 
void slavesensors_exitAT() 
 
{
 
	// Exit AT
 
	serial0_sendString("ATCN");
 
	serial0_sendChar(0x0D);
 
 
	if(waitTimeout(2000)) 
 
	{
 
		return;
 
	}
 
	
 
	xbeeIsOk();
 
}
 
 
bool waitTimeout(uint32_t timeout) {
 
	uint32_t scanStart = time_millis();
 
	uint32_t lastBlink = 0;
 
	while(!serial0_hasChar())
 
	{
 
		if(time_millis() - scanStart > timeout)
 
		{
 
			led_errorcode(ERROR_XBEETIMEOUT);
 
			return true;
 
		}
 
		if(time_millis() - lastBlink > 50)
 
		{
 
			led_spin();
 
			
 
			lastBlink = time_millis();
 
		}
 
		wdt_reset();
 
	}
 
	return false;
 
}
 
 
// Enter AT mode. Leaves "OK" on the buffer.
 
int slavesensors_enterAT() 
 
{
 
	// Delay guard time
 
	_delay_ms(2);
 
 
	serial0_ioff(); // interrupts MUST be off
 
	
 
	// Enter AT mode
 
	serial0_sendChar('+'); // Enter AT mode
 
	serial0_sendChar('+');
 
	serial0_sendChar('+');
 
 
	return xbeeIsOk();
 
}
 
 
int xbeeIsOk() 
 
{
 
	if(waitTimeout(2000)) {
 
		led_errorcode(ERROR_XBEETIMEOUT);
 
		return 1;
 
	}
 
	char* tmppntr = serial0_readLine();
 
	if(strcmp(tmppntr, "OK") == 0)
 
	{
 
		return 0;
 
	}
 
	else
 
	{
 
		led_errorcode(ERROR_NOXBEE);
 
		return 1;
 
	}
 
}
 
 
bool slavesensors_dataReady() 
 
{
 
	return dataReady;
 
}
 
 
bool slavesensors_isrequesting() 
 
{
 
	return requesting;	
 
}
 
 
void slavesensors_startprocess() 
 
{
 
	requesting = true;
 
	slavesensors_request();		
 
}
 
 
// TODO: inline. static.
 
uint32_t beginRequest = 0;
 
void slavesensors_request() 
 
{
 
	if(currentSlave == loggerIndex) 
 
	{
 
		currentSlave++;
 
		if(currentSlave >= (nodeCount)) 
 
		{
 
			slavesensors_selectlogger();
 
			return;
 
		}
 
	}
 
	slavesensors_selectnode(currentSlave);
 
	beginRequest = time_millis();
 
	serial_sendCommand("@"); // Request data!
 
}
 
 
 
uint8_t numReadingsToExpect = 0; // number of values that the slave is about to send
 
 
void gotoNextSlaveOrSensor(bool fail) {
 
	// If we finished all sensors for all slaves
 
	
 
	if(currentSlave >= (nodeCount-1) && currentSlaveSensor >= (numReadingsToExpect-1))
 
	{
 
		#ifdef DEBUG_GETSLAVEDATA
 
		serial0_sendString("We got all data for all slaves!\r\n");
 
		#endif
 
		
 
		dataReady = true;
 
		currentSlave = 0;
 
		currentSlaveSensor = 0;
 
		requesting = false;
 
		
 
		if(!fail) 
 
		{
 
			led_alert();	
 
		}
 
		
 
	}
 
	// If we finished up one slave, go to the next
 
	else if(currentSlaveSensor >= (numReadingsToExpect-1))
 
	{
 
		#ifdef DEBUG_GETSLAVEDATA
 
		serial0_sendString("Finished up one slave, go to another.\r\n");
 
		#endif
 
		
 
		currentSlave++;
 
		currentSlaveSensor = 0;
 
		requesting = true;
 
		
 
		if(currentSlave == loggerIndex)
 
		{
 
			if(currentSlave >= (nodeCount-1))
 
			{
 
				// We hit the last one, we're done.
 
				dataReady = true;
 
				currentSlave = 0;
 
				currentSlaveSensor = 0;
 
				requesting = false;
 
				led_alert();
 
				return;
 
			}
 
			else
 
			{
 
				currentSlave++; // increment to the next slave after the logger
 
			}
 
		}
 
		
 
		slavesensors_request();
 
	}
 
	// If we haven't finished a slave (or all of them), just get the next sensor of the current slave
 
	else
 
	{
 
		#ifdef DEBUG_GETSLAVEDATA
 
		serial0_sendString("Give me another sensor value...");
 
		#endif
 
		
 
		// request data for the current sensor of the current slave
 
		currentSlaveSensor++;
 
		requesting = true;
 
		//slavesensors_request();	 slaves now send all values at once, we don't need to keep requesting
 
	}
 
}
 
 
 
// TODO: needs to skip logger!
 
void slavesensors_process(uint8_t parseResult) 
 
{
 
	if(!requesting) 
 
	{
 
		// we got a command when we didn't request anything. probably skip it.
 
		return;
 
	}
 
	
 
	// TODO: timeout. If we're at NODATA for a long time and we are requesting, that's an issue.
 
	// TODO: If we time out, WE NEED TO RESET THE PARSER. It could be in a bad state.
 
	else if(parseResult == PARSERESULT_NODATA) 
 
	{
 
		// Wait for data
 
		if(requesting && time_millis() - beginRequest > 1000) {
 
			// if we're requesting, we have no data, and we're over the timeout, this is bad!
 
			// setParserState(STATE_RESET); - meh, can't do this because it freaking increments the cirbufptr
 
			gotoNextSlaveOrSensor(true);
 
		}
 
	}
 
	
 
	// Finished reception of a message (one sensor data value). If not finished, send out command to get the next one
 
	else if(parseResult == PARSERESULT_PARSEOK)
 
	{
 
		
 
		#ifdef DEBUG_GETSLAVEDATA
 
		char debug[50];
 
		snprintf(debug, 50, "Slave %u sensor %u of total nodes %u\r\n", currentSlave, currentSlaveSensor,nodeCount);
 
		serial0_sendString(debug);
 
		#endif
 
		
 
		// We got some data, let's handle it
 
		// ASCII payload
 
		uint8_t len = getPayloadLength();
 
		char* load = getPayload();
 
		uint8_t type = getPayloadType();
 
		int32_t parsedVal = strtol(load, NULL, 10);//atoi(load);
 

	
 
		// Special case for slave telling us how many things we're about to get		
 
		if(type + 0x30 == '@')
 
		{
 
			
 
			#ifdef DEBUG_GETSLAVEDATA
 
			serial0_sendString("Got an awesome count!\r\n");
 
			serial0_sendChar(parsedVal + 0x30);
 
			serial0_sendString("\r\n");
 
			#endif
 
			
 
			numReadingsToExpect = parsedVal;
 
			currentSlaveSensor = 0;
 
			requesting = true;
 
		}
 
		else 
 
		{
 
		
 
			// Store data in structure
 
			sensordata_set(currentSlave,type,parsedVal);
 
			
 
			#ifdef DEBUG_GETSLAVEDATA
 
			serial0_sendString("Stored some sexy data!\r\n");
 
			#endif 
 
			
 
			gotoNextSlaveOrSensor(false);
 
		}
 
	}
 
	
 
	// If fail, try retransmit. Or we could skip and hit it next time.
 
	// TODO: Maximum number of retransmissions
 
	else if(parseResult == PARSERESULT_FAIL) 
 
	{
 
		if(requesting) 
 
		{
 
			slavesensors_request();	// re-request
 
		}			
 
	}
 
	
 
	
 
	else if(parseResult == PARSERESULT_STILLPARSING)
 
	{
 
		return; // do nothing
 
	}
 
	else 
 
	{
 
		// something is terribly wrong!
 
		return;
 
	}
 
}		
 
\ No newline at end of file
0 comments (0 inline, 0 general)