Changeset - 2025413db759
[Not reviewed]
cortex-f0
0 1 0
Ethan Zonca - 9 years ago 2015-06-01 17:21:22
ez@ethanzonca.com
Bump version
1 file changed with 1 insertions and 1 deletions:
main.c
1
1
0 comments (0 inline, 0 general)
main.c
Show inline comments
 
#include "stm32f0xx_hal.h"
 
 
#include "config.h"
 
#include "states.h"
 
#include "ssd1306.h"
 
#include "eeprom_min.h"
 
#include "gpio.h"
 
#include "spi.h"
 
#include "stringhelpers.h"
 
#include "display.h"
 
 
#include "usb_device.h"
 
#include "usbd_cdc_if.h"
 
 
 
// Prototypes
 
// Move to header file
 
void process();
 
void restore_settings();
 
void save_settings();
 
void save_setpoints();
 
void SystemClock_Config(void);
 
 
therm_settings_t set;
 
therm_status_t status;
 
 
 
// Globalish setting vars
 
SPI_HandleTypeDef hspi1;
 
static __IO uint32_t TimingDelay;
 
 
void deinit(void)
 
{
 
    HAL_DeInit();
 
}
 
 
volatile int i=0;
 
int main(void)
 
{
 
 
    /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 
    HAL_Init();
 
 
    /* Configure the system clock */
 
    SystemClock_Config();
 
 
    /* Unset bootloader option bytes (if set) */
 
    void bootloader_unset(void);
 
 
    /* Initialize all configured peripherals */
 
    init_gpio();
 
    MX_USB_DEVICE_Init();
 
 
    // USB startup delay
 
    HAL_Delay(1000);
 
    HAL_GPIO_WritePin(LED_POWER, 1);
 
 
    // TODO: Awesome pwm of power LED 
 
 
    // Configure 1ms SysTick (change if more temporal resolution needed) 
 
    //RCC_ClocksTypeDef RCC_Clocks;
 
    //RCC_GetClocksFreq(&RCC_Clocks);
 
    //SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
 
 
    // Init SPI busses
 
    init_spi();
 
 
    // Init OLED over SPI
 
    ssd1306_Init();
 
    ssd1306_clearscreen();
 
   
 
    // Default settings 
 
    set.boottobrew = 0;
 
    set.temp_units = TEMP_UNITS_CELSIUS;
 
    set.windup_guard = 1;
 
    set.k_p = 1;
 
    set.k_i = 1;
 
    set.k_d = 1;
 
    set.ignore_tc_error = 0;
 
    set.setpoint_brew = 0;
 
    set.setpoint_steam = 0;
 
 
    // Default status
 
    status.temp = 0;
 
    status.temp_frac = 0;
 
    status.state_resume = 0;
 
    status.state = STATE_IDLE;
 
    status.setpoint = 0;
 
    status.pid_enabled = 0;
 
 
    // Load settings (if any) from EEPROM
 
    restore_settings();
 
 
    if(set.boottobrew)
 
      status.state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly
 
 
    // Startup screen 
 
    ssd1306_DrawString("therm v0.1", 1, 40);
 
    ssd1306_DrawString("therm v0.2", 1, 40);
 
    ssd1306_DrawString("protofusion.org/therm", 3, 0);
 
 
    HAL_Delay(1500);
 
    ssd1306_clearscreen();
 
 
 
    // Main loop
 
    while(1)
 
    {
 
        // Process sensor inputs
 
        process();
 
 
        // Run state machine
 
        display_process(&set, &status); 
 
    }
 
 
}
 
 
/** System Clock Configuration
 
*/
 
void SystemClock_Config(void)
 
{
 
 
  RCC_OscInitTypeDef RCC_OscInitStruct;
 
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
 
  RCC_PeriphCLKInitTypeDef PeriphClkInit;
 
 
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
 
  RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
 
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 
  HAL_RCC_OscConfig(&RCC_OscInitStruct);
 
 
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
 
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
 
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);
 
 
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
 
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;
 
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
 
 
  __SYSCFG_CLK_ENABLE();
 
 
}
 
 
 
 
void update_temp() {
 
 
    // Assert CS
 
    HAL_GPIO_WritePin(MAX_CS, 0);
 
 
    uint8_t rxdatah[1] = {0x00};
 
    uint8_t rxdatal[1] = {0x00};
 
 
    HAL_SPI_Receive(&hspi1, rxdatah, 1, 100);
 
    HAL_SPI_Receive(&hspi1, rxdatal, 1, 100);
 
 
    // Release CS
 
    HAL_GPIO_WritePin(MAX_CS, 1);
 
 
    // Assemble data array into one var
 
    uint16_t temp_pre = rxdatal[0] | (rxdatah[0]<<8);
 
 
    if(temp_pre & 0b0000000000000010) {
 
        ssd1306_clearscreen();
 
        HAL_Delay(100); // FIXME: remove?
 
        status.tc_errno = 4;
 
        status.state = STATE_TC_ERROR;
 
        status.temp = 0;
 
        status.temp_frac = 0;
 
    }
 
    else if(temp_pre & 0b0000000000000001 && !set.ignore_tc_error) {
 
        status.tc_errno = 1;
 
        HAL_Delay(100); // FIXME: remove?
 
        status.state_resume = status.state;
 
        status.state = STATE_TC_ERROR;
 
        status.temp = 0;
 
        status.temp_frac = 0;
 
    }
 
    else 
 
    {
 
        if(status.state == STATE_TC_ERROR)
 
        {
 
            status.state = status.state_resume;
 
            ssd1306_clearscreen();
 
        }
 
 
        uint8_t sign = status.temp >> 15;// top bit is sign
 
 
        temp_pre = temp_pre >> 2; // Drop 2 lowest bits
 
        status.temp_frac = temp_pre & 0b11; // get fractional part
 
        status.temp_frac *= 25; // each bit is .25 a degree, up to fixed point
 
        temp_pre = temp_pre >> 2; // Drop 2 fractional bits 
 
 
        int8_t signint;
 
 
        if(sign) {
 
            signint = -1;
 
        }
 
        else {
 
            signint = 1;
 
        }
 
 
        // Convert to Fahrenheit
 
        if(set.temp_units == TEMP_UNITS_FAHRENHEIT)
 
        {
 
            status.temp = signint * ((temp_pre*100) + status.temp_frac);
 
            status.temp = status.temp * 1.8;
 
            status.temp += 3200;
 
            status.temp_frac = status.temp % 100;
 
            status.temp /= 100;
 
            status.temp += set.temp_offset;
 
        }
 
 
        // Use Celsius values
 
        else
 
        {
 
            status.temp = temp_pre * signint;
 
            status.temp += set.temp_offset;
 
        }
 
    }
 
}
 
 
 
// PID implementation
 
// TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe.
 
int16_t last_pid_temp = 0;
 
uint8_t last_pid_temp_frac = 0;
 
int16_t i_state = 0;
 
 
int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint) 
 
{
 
  // Calculate instantaneous error
 
  int16_t error = (int16_t)setpoint - (int16_t)temp; // TODO: Use fixed point fraction
 
 
  // Proportional component
 
  int16_t p_term = k_p * error;
 
 
  // Error accumulator (integrator)
 
  i_state += error;
 
 
  // to prevent the iTerm getting huge despite lots of 
 
  //  error, we use a "windup guard" 
 
  // (this happens when the machine is first turned on and
 
  // it cant help be cold despite its best efforts)
 
  // not necessary, but this makes windup guard values 
 
  // relative to the current iGain
 
  int16_t windup_guard_res = set.windup_guard / k_i;  
 
 
  // Calculate integral term with windup guard 
 
  if (i_state > windup_guard_res) 
 
    i_state = windup_guard_res;
 
  else if (i_state < -windup_guard_res) 
 
    i_state = -windup_guard_res;
 
  int16_t i_term = k_i * i_state;
 
 
  // Calculate differential term (slope since last iteration)
 
  int16_t d_term = (k_d * (status.temp - last_pid_temp));
 
 
  // Save temperature for next iteration
 
  last_pid_temp = status.temp;
 
  last_pid_temp_frac = status.temp_frac;
 
 
  int16_t result = p_term + i_term - d_term;
 
 
  // Put out tenths of percent, 0-1000. 
 
  if(result > 1000)
 
    result = 1000;
 
  else if(result < -1000)
 
    result = -1000;
 
 
  // Return feedback
 
  return result;
 
}
 
 
 
uint32_t last_ssr_on = 0;
 
uint32_t last_vcp_tx = 0;
 
uint32_t last_led = 0;
 
int16_t ssr_output = 0; // Duty cycle of ssr, 0 to SSR_PERIOD 
 
 
// Process things
 
void process()
 
{
 
    update_temp(); // Read MAX31855
 
 
    // TODO: Add calibration offset (linear)
 
    uint32_t ticks = HAL_GetTick();
 
 
    if(ticks - last_led > 400) 
 
    {
 
        HAL_GPIO_TogglePin(LED_POWER);
 
        last_led = ticks;
 
    }
 
 
    // Every 200ms, set the SSR on unless output is 0
 
    if((ticks - last_ssr_on > SSR_PERIOD))
 
    {
 
        if(status.pid_enabled) 
 
        {
 
            // Get ssr output for next time
 
            int16_t power_percent = update_pid(set.k_p, set.k_i, set.k_d, status.temp, status.temp_frac, status.setpoint);
 
            //power-percent is 0-1000
 
            ssr_output = power_percent; //(((uint32_t)SSR_PERIOD * (uint32_t)10 * (uint32_t)100) * power_percent) / (uint32_t)1000000;
 
        }
 
        else 
 
        {
 
            ssr_output = 0;
 
        }
 
 
        // Only support heating (ssr_output > 0) right now
 
        if(ssr_output > 0) {
 
 
            char tempstr[6];
 
            itoa(ssr_output, tempstr, 10);
 
            ssd1306_DrawString(tempstr, 0, 90);
 
 
            HAL_GPIO_WritePin(SSR_PIN, 1);
 
            last_ssr_on = ticks;
 
        }
 
    }
 
    
 
    // Kill SSR after elapsed period less than SSR_PERIOD 
 
    if(ticks - last_ssr_on > ssr_output || ssr_output == 0)
 
    {
 
        HAL_GPIO_WritePin(SSR_PIN, 0);
 
    }
 
 
    if(ticks - last_vcp_tx > VCP_TX_FREQ)
 
    {
 
        // Print temp to cdc
 
        char tempstr[16];
 
        itoa_fp(status.temp, status.temp_frac, tempstr);
 
        uint8_t numlen = strlen(tempstr);
 
        tempstr[numlen] = '\r';
 
        tempstr[numlen+1] = '\n';
 
 
        CDC_Transmit_FS(tempstr, numlen+2);
 
       // while(CDC_Transmit_FS("\r\n", 2) == USBD_BUSY);
 
 
        last_vcp_tx = ticks;
 
    }
 
}
 
 
void save_settings()
 
{
 
/*
 
   Minimal_EEPROM_Unlock();
 
    // Try programming a word at an address divisible by 4
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW, boottobrew);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD, windup_guard);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P, k_p);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I, k_i);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D, k_d);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS, temp_units);
 
    Minimal_EEPROM_Lock();
 
*/
 
}
 
 
void save_setpoints()
 
{
 
/*
 
 
    Minimal_EEPROM_Unlock();
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP, setpoint_brew);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP, setpoint_steam); 
 
    Minimal_EEPROM_Lock();
 
*/
 
}
 
 
 
// TODO: Make a struct that has all settings in it. Pass by ref to this func in a library.
 
void restore_settings()
 
{
 
/*    Minimal_EEPROM_Unlock();
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    boottobrew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    windup_guard = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_p = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_i = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_d = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    setpoint_brew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    setpoint_steam = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP));    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    temp_units = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS));    
 
 
    Minimal_EEPROM_Lock(); */
 
}
 
 
 
 
 
 
// vim:softtabstop=4 shiftwidth=4 expandtab 
0 comments (0 inline, 0 general)