Files @ 2025413db759
Branch filter:

Location: therm/main.c

Ethan Zonca
Bump version
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#include "stm32f0xx_hal.h"

#include "config.h"
#include "states.h"
#include "ssd1306.h"
#include "eeprom_min.h"
#include "gpio.h"
#include "spi.h"
#include "stringhelpers.h"
#include "display.h"

#include "usb_device.h"
#include "usbd_cdc_if.h"


// Prototypes
// Move to header file
void process();
void restore_settings();
void save_settings();
void save_setpoints();
void SystemClock_Config(void);

therm_settings_t set;
therm_status_t status;


// Globalish setting vars
SPI_HandleTypeDef hspi1;
static __IO uint32_t TimingDelay;

void deinit(void)
{
    HAL_DeInit();
}

volatile int i=0;
int main(void)
{

    /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
    HAL_Init();

    /* Configure the system clock */
    SystemClock_Config();

    /* Unset bootloader option bytes (if set) */
    void bootloader_unset(void);

    /* Initialize all configured peripherals */
    init_gpio();
    MX_USB_DEVICE_Init();

    // USB startup delay
    HAL_Delay(1000);
    HAL_GPIO_WritePin(LED_POWER, 1);

    // TODO: Awesome pwm of power LED 

    // Configure 1ms SysTick (change if more temporal resolution needed) 
    //RCC_ClocksTypeDef RCC_Clocks;
    //RCC_GetClocksFreq(&RCC_Clocks);
    //SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);

    // Init SPI busses
    init_spi();

    // Init OLED over SPI
    ssd1306_Init();
    ssd1306_clearscreen();
   
    // Default settings 
    set.boottobrew = 0;
    set.temp_units = TEMP_UNITS_CELSIUS;
    set.windup_guard = 1;
    set.k_p = 1;
    set.k_i = 1;
    set.k_d = 1;
    set.ignore_tc_error = 0;
    set.setpoint_brew = 0;
    set.setpoint_steam = 0;

    // Default status
    status.temp = 0;
    status.temp_frac = 0;
    status.state_resume = 0;
    status.state = STATE_IDLE;
    status.setpoint = 0;
    status.pid_enabled = 0;

    // Load settings (if any) from EEPROM
    restore_settings();

    if(set.boottobrew)
      status.state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly

    // Startup screen 
    ssd1306_DrawString("therm v0.2", 1, 40);
    ssd1306_DrawString("protofusion.org/therm", 3, 0);

    HAL_Delay(1500);
    ssd1306_clearscreen();
 
    // Main loop
    while(1)
    {
        // Process sensor inputs
        process();

        // Run state machine
        display_process(&set, &status); 
    }

}

/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInit;

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
  RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);

  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

  __SYSCFG_CLK_ENABLE();

}



void update_temp() {

    // Assert CS
    HAL_GPIO_WritePin(MAX_CS, 0);

    uint8_t rxdatah[1] = {0x00};
    uint8_t rxdatal[1] = {0x00};

    HAL_SPI_Receive(&hspi1, rxdatah, 1, 100);
    HAL_SPI_Receive(&hspi1, rxdatal, 1, 100);

    // Release CS
    HAL_GPIO_WritePin(MAX_CS, 1);

    // Assemble data array into one var
    uint16_t temp_pre = rxdatal[0] | (rxdatah[0]<<8);

    if(temp_pre & 0b0000000000000010) {
        ssd1306_clearscreen();
        HAL_Delay(100); // FIXME: remove?
        status.tc_errno = 4;
        status.state = STATE_TC_ERROR;
        status.temp = 0;
        status.temp_frac = 0;
    }
    else if(temp_pre & 0b0000000000000001 && !set.ignore_tc_error) {
        status.tc_errno = 1;
        HAL_Delay(100); // FIXME: remove?
        status.state_resume = status.state;
        status.state = STATE_TC_ERROR;
        status.temp = 0;
        status.temp_frac = 0;
    }
    else 
    {
        if(status.state == STATE_TC_ERROR)
        {
            status.state = status.state_resume;
            ssd1306_clearscreen();
        }

        uint8_t sign = status.temp >> 15;// top bit is sign

        temp_pre = temp_pre >> 2; // Drop 2 lowest bits
        status.temp_frac = temp_pre & 0b11; // get fractional part
        status.temp_frac *= 25; // each bit is .25 a degree, up to fixed point
        temp_pre = temp_pre >> 2; // Drop 2 fractional bits 

        int8_t signint;

        if(sign) {
            signint = -1;
        }
        else {
            signint = 1;
        }

        // Convert to Fahrenheit
        if(set.temp_units == TEMP_UNITS_FAHRENHEIT)
        {
            status.temp = signint * ((temp_pre*100) + status.temp_frac);
            status.temp = status.temp * 1.8;
            status.temp += 3200;
            status.temp_frac = status.temp % 100;
            status.temp /= 100;
            status.temp += set.temp_offset;
        }

        // Use Celsius values
        else
        {
            status.temp = temp_pre * signint;
            status.temp += set.temp_offset;
        }
    }
}


// PID implementation
// TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe.
int16_t last_pid_temp = 0;
uint8_t last_pid_temp_frac = 0;
int16_t i_state = 0;

int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint) 
{
  // Calculate instantaneous error
  int16_t error = (int16_t)setpoint - (int16_t)temp; // TODO: Use fixed point fraction

  // Proportional component
  int16_t p_term = k_p * error;

  // Error accumulator (integrator)
  i_state += error;

  // to prevent the iTerm getting huge despite lots of 
  //  error, we use a "windup guard" 
  // (this happens when the machine is first turned on and
  // it cant help be cold despite its best efforts)
  // not necessary, but this makes windup guard values 
  // relative to the current iGain
  int16_t windup_guard_res = set.windup_guard / k_i;  

  // Calculate integral term with windup guard 
  if (i_state > windup_guard_res) 
    i_state = windup_guard_res;
  else if (i_state < -windup_guard_res) 
    i_state = -windup_guard_res;
  int16_t i_term = k_i * i_state;

  // Calculate differential term (slope since last iteration)
  int16_t d_term = (k_d * (status.temp - last_pid_temp));

  // Save temperature for next iteration
  last_pid_temp = status.temp;
  last_pid_temp_frac = status.temp_frac;

  int16_t result = p_term + i_term - d_term;

  // Put out tenths of percent, 0-1000. 
  if(result > 1000)
    result = 1000;
  else if(result < -1000)
    result = -1000;

  // Return feedback
  return result;
}


uint32_t last_ssr_on = 0;
uint32_t last_vcp_tx = 0;
uint32_t last_led = 0;
int16_t ssr_output = 0; // Duty cycle of ssr, 0 to SSR_PERIOD 

// Process things
void process()
{
    update_temp(); // Read MAX31855

    // TODO: Add calibration offset (linear)
    uint32_t ticks = HAL_GetTick();

    if(ticks - last_led > 400) 
    {
        HAL_GPIO_TogglePin(LED_POWER);
        last_led = ticks;
    }

    // Every 200ms, set the SSR on unless output is 0
    if((ticks - last_ssr_on > SSR_PERIOD))
    {
        if(status.pid_enabled) 
        {
            // Get ssr output for next time
            int16_t power_percent = update_pid(set.k_p, set.k_i, set.k_d, status.temp, status.temp_frac, status.setpoint);
            //power-percent is 0-1000
            ssr_output = power_percent; //(((uint32_t)SSR_PERIOD * (uint32_t)10 * (uint32_t)100) * power_percent) / (uint32_t)1000000;
        }
        else 
        {
            ssr_output = 0;
        }

        // Only support heating (ssr_output > 0) right now
        if(ssr_output > 0) {

            char tempstr[6];
            itoa(ssr_output, tempstr, 10);
            ssd1306_DrawString(tempstr, 0, 90);

            HAL_GPIO_WritePin(SSR_PIN, 1);
            last_ssr_on = ticks;
        }
    }
    
    // Kill SSR after elapsed period less than SSR_PERIOD 
    if(ticks - last_ssr_on > ssr_output || ssr_output == 0)
    {
        HAL_GPIO_WritePin(SSR_PIN, 0);
    }

    if(ticks - last_vcp_tx > VCP_TX_FREQ)
    {
        // Print temp to cdc
        char tempstr[16];
        itoa_fp(status.temp, status.temp_frac, tempstr);
        uint8_t numlen = strlen(tempstr);
        tempstr[numlen] = '\r';
        tempstr[numlen+1] = '\n';

        CDC_Transmit_FS(tempstr, numlen+2);
       // while(CDC_Transmit_FS("\r\n", 2) == USBD_BUSY);

        last_vcp_tx = ticks;
    }
}

void save_settings()
{
/*
   Minimal_EEPROM_Unlock();
    // Try programming a word at an address divisible by 4
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW, boottobrew);
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD, windup_guard);
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P, k_p);
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I, k_i);
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D, k_d);
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS, temp_units);
    Minimal_EEPROM_Lock();
*/
}

void save_setpoints()
{
/*

    Minimal_EEPROM_Unlock();
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP, setpoint_brew);
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP, setpoint_steam); 
    Minimal_EEPROM_Lock();
*/
}


// TODO: Make a struct that has all settings in it. Pass by ref to this func in a library.
void restore_settings()
{
/*    Minimal_EEPROM_Unlock();
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    boottobrew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW));
    
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    windup_guard = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD));
    
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    k_p = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P));

    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    k_i = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I));

    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    k_d = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D));
    
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    setpoint_brew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP));

    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    setpoint_steam = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP));    
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
    temp_units = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS));    

    Minimal_EEPROM_Lock(); */
}





// vim:softtabstop=4 shiftwidth=4 expandtab