Changeset - 8f02a0213d08
[Not reviewed]
cortex-f0
0 3 2
Ethan Zonca - 10 years ago 2015-01-03 14:36:21
ez@ethanzonca.com
Added gpio, spi, and clock init. May need to swap stdperiph to the one thrown out by the cube
5 files changed with 168 insertions and 105 deletions:
clock.c
26
gpio.c
102
101
main.c
12
2
spi.c
22
2
0 comments (0 inline, 0 general)
clock.c
Show inline comments
 
new file 100644
 

	
 
void SystemClock_Config(void)
 
{
 

	
 
  RCC_OscInitTypeDef RCC_OscInitStruct;
 
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
 
  RCC_PeriphCLKInitTypeDef PeriphClkInit;
 

	
 
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
 
  RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
 
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 
  HAL_RCC_OscConfig(&RCC_OscInitStruct);
 

	
 
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
 
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
 
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);
 

	
 
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
 
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;
 
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
 

	
 
  __SYSCFG_CLK_ENABLE();
 

	
 
}
clock.h
Show inline comments
 
new file 100644
 
#ifndef CLOCK_H
 
#define CLOCK_H
 

	
 
void SystemClock_Config(void);
 

	
 
#endif
gpio.c
Show inline comments
 
#include "gpio.h"
 
#include "config.h"
 

	
 
extern volatile uint32_t ticks;
 

	
 
// Increase on each press, and increase at a fast rate after duration elapsed of continuously holding down... somehow...
 
uint32_t change_time_reset = 0;
 

	
 
void user_input(uint16_t* to_modify)
 
{
 
    if(CHANGE_ELAPSED) {
 
        if(!GPIO_ReadInputDataBit(SW_UP) ) {
 
            CHANGE_RESET;
 
            (*to_modify)++;
 
        }
 
        else if(!GPIO_ReadInputDataBit(SW_DOWN) && (*to_modify) > 0) {
 
            CHANGE_RESET;
 
            (*to_modify)--;
 
        }
 
    }
 
}
 

	
 

	
 
void init_gpio(void) {
 

	
 
  GPIO_InitTypeDef GPIO_InitStruct;
 

	
 
  // Enable SPI clocks
 
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
 
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
 

	
 
  // Enable GPIO clocks
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC|RCC_AHBPeriph_GPIOB|RCC_AHBPeriph_GPIOA, ENABLE);
 

	
 
  // Enable DMA clocks (Is AHB even the right thing???)
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // EMZ TODO get the right ones
 

	
 
  /*Configure GPIO pin : PC */
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
 
  GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz;
 
  GPIO_Init(GPIOC, &GPIO_InitStruct);
 
    /* GPIO Ports Clock Enable */
 
  __GPIOF_CLK_ENABLE();
 
  __GPIOA_CLK_ENABLE();
 
  __GPIOB_CLK_ENABLE();
 

	
 
  /*Configure GPIO pin : PB */
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_10|GPIO_Pin_12 
 
                          |GPIO_Pin_9;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
 
  GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz;
 
  GPIO_Init(GPIOB, &GPIO_InitStruct);
 

	
 
  /*Configure GPIO pin : PA */
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
 
  GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_400KHz;
 
  GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  /*Configure GPIO pin : PB */
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6 
 
                          |GPIO_Pin_7;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;
 
  GPIO_Init(GPIOB, &GPIO_InitStruct);
 
  //////////////////
 
  // PORT F       //
 
  //////////////////  
 

	
 
  /** SPI1 GPIO Configuration  
 
  PA5   ------> SPI1_SCK
 
  PA7   ------> SPI1_MOSI
 
  */
 

	
 
  /*Enable or disable the AHB peripheral clock */
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
 

	
 
  /*Configure GPIO pin : PA: MOSI,SCK */
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5|GPIO_Pin_7;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz;
 
  GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  /*Configure GPIO pin alternate function */
 
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);
 

	
 
  /*Configure GPIO pin alternate function */
 
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1);
 
  // PORTF OUTPUT
 
  // Configure GPIO pin : PF0
 
  GPIO_InitStruct.Pin = GPIO_PIN_0;
 
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 
  GPIO_InitStruct.Pull = GPIO_NOPULL;
 
  GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
 
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
 

	
 
  /** SPI2 GPIO Configuration  
 
  PB13   ------> SPI2_SCK
 
  PB14   ------> SPI2_MISO
 
  PB15   ------> SPI2_MOSI
 
  */
 

	
 
  /*Enable or disable the AHB peripheral clock */
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
 

	
 
  // SPI PINSSS
 

	
 
  /*Configure GPIO pin : PB, MOSI, SCK */
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_15;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz;
 
  GPIO_Init(GPIOB, &GPIO_InitStruct);
 

	
 
  GPIO_InitTypeDef GPIO_InitStruct2;
 
  // MISO
 
  GPIO_InitStruct2.GPIO_Pin = GPIO_Pin_14;
 
  GPIO_InitStruct2.GPIO_Mode = GPIO_Mode_AF;
 
  GPIO_InitStruct2.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct2.GPIO_Speed = GPIO_Speed_10MHz;
 
  GPIO_Init(GPIOB, &GPIO_InitStruct2);
 
  // PORTF UNUSED
 
  // Configure GPIO pin : PF1
 
  GPIO_InitStruct.Pin = GPIO_PIN_1;
 
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
 
  GPIO_InitStruct.Pull = GPIO_NOPULL;
 
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
 

	
 

	
 
  //Configure GPIO pin alternate function 
 
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource13, GPIO_AF_SPI2);
 
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource14, GPIO_AF_SPI2);
 
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource15, GPIO_AF_SPI2);
 
  //////////////////
 
  // PORT A       //
 
  //////////////////
 
  
 
  // PORT A OUTPUT
 
  // Configure GPIO pins : PA1 PA2 PA3 PA4
 
  GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4;
 
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 
  GPIO_InitStruct.Pull = GPIO_NOPULL;
 
  GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 
  
 
  // PORTA INPUT
 
  // Configure GPIO pin : PA15 
 
  GPIO_InitStruct.Pin = GPIO_PIN_15;
 
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 
  GPIO_InitStruct.Pull = GPIO_PULLUP;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  // PORTA UNUSED
 
  // Configure GPIO pins : PA0 PA8
 
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_8;
 
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
 
  GPIO_InitStruct.Pull = GPIO_NOPULL;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  // USART1 [PORTA]
 
  // Configure GPIO pins : PA9 PA10
 
  GPIO_InitStruct.Pin = GPIO_PIN_9|GPIO_PIN_10;
 
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
 
  GPIO_InitStruct.Pull = GPIO_NOPULL;
 
  GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
 
  GPIO_InitStruct.Alternate = GPIO_AF1_USART1;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  // SPI1 [PORTA]
 
  // Configure GPIO pin : PA, MOSI, SCK 
 
  GPIO_InitStruct.GPIO_Pin = GPIO_PIN_7|GPIO_PIN_5;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_MODE_AF_PP;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_SPEED_HIGH;
 
  GPIO_InitStruct.Alternate = GPIO_AF1_SPI1;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 
  
 
  // Configure GPIO pin: PA, MISO
 
  GPIO_InitStruct.GPIO_Pin = GPIO_PIN_6;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_MODE_AF_PP;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_SPEED_HIGH;
 
  GPIO_InitStruct.Alternate = GPIO_AF1_SPI1;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  // USB [PORTA]
 

	
 
  /** USB GPIO Configuration  
 
  PA11   ------> USB_DM
 
  PA12   ------> USB_DP
 
  */
 
  // Configure GPIO pin : PA, D+, D-
 
  GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11|GPIO_Pin_12;
 
  GPIO_InitStruct.GPIO_Mode = GPIO_MODE_AF_PP;
 
  GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz;
 
  GPIO_InitStruct.Alternate = GPIO_AF1_USB;
 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 

	
 
  /*Enable or disable the AHB peripheral clock */
 
  //RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
 

	
 
  //GPIO_InitTypeDef GPIO_InitStruct3;
 
  //////////////////
 
  // PORT B       //
 
  //////////////////
 
  
 
  /*Configure GPIO pin : PA */
 
  //GPIO_InitStruct3.GPIO_Pin = GPIO_Pin_11|GPIO_Pin_12;
 
  //GPIO_InitStruct3.GPIO_Mode = GPIO_Mode_AF;
 
  //GPIO_InitStruct3.GPIO_PuPd = GPIO_PuPd_NOPULL;
 
  //GPIO_InitStruct3.GPIO_Speed = GPIO_Speed_10MHz;
 
  //GPIO_InitStruct3.GPIO_OType = GPIO_OType_PP;
 
  //GPIO_Init(GPIOA, &GPIO_InitStruct3);
 
  //GPIO_SetBits(GPIOA, GPIO_Pin_12); // emz test
 
  //GPIO_PinAFConfig(GPIOA, GPIO_PinSource11, GPIO_AF_USB);
 
  //GPIO_PinAFConfig(GPIOA, GPIO_PinSource12, GPIO_AF_USB);
 
  // PORT B UNUSED
 
  // Configure GPIO pins : PB0 PB1 PB8 
 
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8;
 
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
 
  GPIO_InitStruct.Pull = GPIO_NOPULL;
 
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
 

	
 
  // PORT B INPUT
 
  // Configure GPIO pins : PB3 PB4 PB5 PB6 PB7
 
  GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6 
 
                          |GPIO_PIN_7;
 
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 
  GPIO_InitStruct.Pull = GPIO_PULLUP;
 
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);  
 
  
 
  
 
  // Enable DMA clocks (Is AHB even the right thing???)
 
  //RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // EMZ TODO get the right ones
 

	
 

	
 
}
 

	
 
// vim:softtabstop=4 shiftwidth=4 expandtab 
main.c
Show inline comments
 
#include "main.h"
 
#include "stm32f0xx_conf.h"
 
#include "stm32f0xx_hal.h"
 
#include "usb_device.h"
 
#include "ssd1306.h"
 
#include "config.h"
 
#include "eeprom_min.h"
 
#include "gpio.h"
 
#include "spi.h"
 
#include "clock.h"
 
 
// USB includes
 
//#include "hw_config.h"
 
//#include "usb_lib.h"
 
//#include "usb_desc.h"
 
//#include "usb_pwr.h"
 
//#include "stringhelpers.h"
 
 
// TODO: Grab buttonpresses with interrupts
 
 
// USB Supporting Vars
 
extern __IO uint8_t Receive_Buffer[64];
 
extern __IO  uint32_t Receive_length ;
 
extern __IO  uint32_t length ;
 
uint8_t Send_Buffer[64];
 
uint32_t packet_sent=1;
 
uint32_t packet_receive=1;
 
 
enum tempunits {
 
    TEMP_UNITS_CELSIUS = 0,
 
    TEMP_UNITS_FAHRENHEIT,
 
};
 
 
// Globalish setting vars
 
uint8_t boottobrew = 0;
 
uint8_t temp_units = TEMP_UNITS_CELSIUS;
 
uint16_t windup_guard = 1;
 
uint16_t k_p = 1;
 
uint16_t k_i = 1;
 
uint16_t k_d = 1;
 
 
uint8_t ignore_tc_error  = 0;
 
 
// ISR ticks var
 
volatile uint32_t ticks = 0;
 
 
int16_t setpoint_brew = 0;
 
int16_t setpoint_steam = 0;
 
 
// HAL Variables
 
SPI_HandleTypeDef hspi1;
 
 
 
// State definition
 
enum state {
 
    STATE_IDLE = 0,
 
 
    STATE_SETP,
 
    STATE_SETI,
 
    STATE_SETD,
 
    STATE_SETSTEPS,
 
    STATE_SETWINDUP,
 
    STATE_SETBOOTTOBREW,
 
    STATE_SETUNITS,
 
 
    STATE_PREHEAT_BREW,
 
    STATE_MAINTAIN_BREW,
 
    STATE_PREHEAT_STEAM,
 
    STATE_MAINTAIN_STEAM,
 
 
    STATE_TC_ERROR
 
};
 
 
uint8_t state = STATE_IDLE;
 
 
static __IO uint32_t TimingDelay;
 
 
// Move to header file
 
void process();
 
void machine();
 
 
void restore_settings();
 
void save_settings();
 
void save_setpoints();
 
 
int main(void)
 
{
 
    // Init clocks
 
    SystemInit();
 
    HAL_Init();
 
    SystemClock_Config();
 
 
    // Init GPIO
 
    init_gpio();
 
 
    // Turn on power LED
 
    GPIO_SetBits(LED_POWER);
 
 
    // TODO: Awesome pwm of power LED (TIM4_CH4 or TIM11_CH1)
 
 
    // Configure 1ms SysTick (change if more temporal resolution needed) 
 
    RCC_ClocksTypeDef RCC_Clocks;
 
    RCC_GetClocksFreq(&RCC_Clocks);
 
    SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
 
 
    // Init SPI busses
 
    init_spi();
 
 
    // Init USB 
 
    init_usb();
 
    
 
    // Init OLED over SPI
 
    ssd1306_Init();
 
    ssd1306_clearscreen();
 
 
    // Check for problems on startup
 
    uint8_t clock_fail = 0; // FIXME implement in system
 
    if(clock_fail) {
 
        //ssd1306_DrawStringBig("ERROR: Check Xtal", 2, 0);
 
        ssd1306_DrawStringBig("NO XTAL", 2, 0);
 
        delay(1000);
 
        ssd1306_clearscreen();
 
    }
 
 
    // Init USB
 
    //Set_System(); // hw_config.h
 
    //Set_USBClock();
 
    //SB_Interrupts_Config();
 
    //SB_Init();
 
    //SYSCFG_USBPuCmd(ENABLE);
 
    //PowerOn();
 
 
    // Startup screen 
 
    ssd1306_DrawString("therm v0.1", 1, 40);
 
    ssd1306_DrawString("protofusion.org/therm", 3, 0);
 
 
    delay(1500);
 
    ssd1306_clearscreen();
 
    
 
    restore_settings();
 
    if(boottobrew)
 
      state = STATE_PREHEAT_BREW; // Go to brew instead of idle if configured thusly
 
 
    GPIO_ResetBits(LED_STAT);
 
 
    // Main loop
 
    while(1)
 
    {
 
        // Process sensor inputs
 
        process();
 
 
        // Run state machine
 
        machine(); 
 
    }
 
}
 
 
// Read temperature and update global temp vars
 
int32_t temp = 0;
 
uint8_t temp_frac = 0;
 
uint8_t state_resume = 0;
 
 
void update_temp() {
 
    // Assert CS
 
    GPIO_ResetBits(MAX_CS);
 
    delay(1);
 
 
    // This may not clock at all... might need to send 16 bits first
 
    SPI_I2S_SendData(SPI2, 0xAAAA); // send dummy data
 
    //SPI_I2S_SendData(SPI2, 0xAA); // send dummy data
 
    uint16_t temp_pre = SPI_I2S_ReceiveData(SPI2);
 
 
    if(temp_pre & 0b0000000000000010) {
 
        ssd1306_DrawString("Fatal Error", 3, 35);
 
        state = STATE_TC_ERROR;
 
    }
 
    else if(temp_pre & 0b0000000000000001 && !ignore_tc_error) {
 
        state_resume = state;
 
        state = STATE_TC_ERROR;
 
        temp = 0;
 
        temp_frac = 0;
 
    }
 
    else 
 
    {
 
        if(state == STATE_TC_ERROR)
 
        {
 
            state = state_resume;
 
            ssd1306_clearscreen();
 
        }
 
 
        uint8_t sign = temp >> 15;// top bit is sign
 
 
        temp_pre = temp_pre >> 2; // Drop 2 lowest bits
 
        temp_frac = temp_pre & 0b11; // get fractional part
 
        temp_frac *= 25; // each bit is .25 a degree, up to fixed point
 
        temp_pre = temp_pre >> 2; // Drop 2 fractional bits 
 
 
        if(sign) {
 
            temp = -temp_pre;
 
        }
 
        else {
 
            temp = temp_pre;
 
        }
 
 
        if(temp_units == TEMP_UNITS_FAHRENHEIT) {
 
            temp *= 9; // fixed point mul by 1.8
 
            temp /= 5;
 
            temp += 32;
 
 
            temp_frac *= 9;
 
            temp_frac /= 5;
 
            temp_frac += 32;
 
            temp += temp_frac/100; // add overflow to above
 
            temp_frac %= 100;
 
        }
 
    }
 
 
    // Deassert CS
 
    delay(1);
 
    GPIO_SetBits(MAX_CS);
 
}
 
 
 
// PID implementation
 
// TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe.
 
int16_t last_pid_temp = 0;
 
uint8_t last_pid_temp_frac = 0;
 
int16_t i_state = 0;
 
 
int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint) 
 
{
 
  // Calculate instantaneous error
 
  int16_t error = (int16_t)setpoint - (int16_t)temp; // TODO: Use fixed point fraction
 
 
  // Proportional component
 
  int16_t p_term = k_p * error;
 
 
  // Error accumulator (integrator)
 
  i_state += error;
 
 
  // to prevent the iTerm getting huge despite lots of 
 
  //  error, we use a "windup guard" 
 
  // (this happens when the machine is first turned on and
 
  // it cant help be cold despite its best efforts)
 
  // not necessary, but this makes windup guard values 
 
  // relative to the current iGain
 
  int16_t windup_guard_res = windup_guard / k_i;  
 
 
  // Calculate integral term with windup guard 
 
  if (i_state > windup_guard_res) 
 
    i_state = windup_guard_res;
 
  else if (i_state < -windup_guard_res) 
 
    i_state = -windup_guard_res;
 
  int16_t i_term = k_i * i_state;
 
 
  // Calculate differential term (slope since last iteration)
 
  int16_t d_term = (k_d * (temp - last_pid_temp));
 
 
  // Save temperature for next iteration
 
  last_pid_temp = temp;
 
  last_pid_temp_frac = temp_frac;
 
 
  int16_t result = p_term + i_term - d_term;
 
 
  // Put out tenths of percent, 0-1000. 
 
  if(result > 1000)
 
    result = 1000;
 
  else if(result < -1000)
 
    result = -1000;
 
 
  // Return feedback
 
  return result;
 
}
 
 
 
uint32_t last_ssr_on = 0;
 
uint32_t last_led = 0;
 
int32_t setpoint = 0;
 
int16_t ssr_output = 0; // Duty cycle of ssr, 0 to SSR_PERIOD 
 
uint8_t pid_enabled = 0;
 
 
// Process things
 
void process()
 
{
 
    update_temp(); // Read MAX31855
 
 
    // TODO: Add calibration offset (linear)
 
 
    if(ticks - last_led > 400) 
 
    {
 
        GPIO_ToggleBits(LED_POWER);
 
        last_led = ticks;
 
    }
 
 
    // Every 200ms, set the SSR on unless output is 0
 
    if((ticks - last_ssr_on > SSR_PERIOD))
 
    {
 
        if(pid_enabled) 
 
        {
 
            // Get ssr output for next time
 
            int16_t power_percent = update_pid(k_p, k_i, k_d, temp, temp_frac, setpoint);
 
            //power-percent is 0-1000
 
            ssr_output = power_percent; //(((uint32_t)SSR_PERIOD * (uint32_t)10 * (uint32_t)100) * power_percent) / (uint32_t)1000000;
 
        }
 
        else 
 
        {
 
            ssr_output = 0;
 
        }
 
 
        // Only support heating (ssr_output > 0) right now
 
        if(ssr_output > 0) {
 
 
            char tempstr[6];
 
            itoa(ssr_output, tempstr);
 
            ssd1306_DrawString(tempstr, 0, 90);
 
 
            GPIO_SetBits(LED_STAT);
 
            GPIO_SetBits(SSR_PIN);
 
            last_ssr_on = ticks;
 
        }
 
    }
 
    
 
    // Kill SSR after elapsed period less than SSR_PERIOD 
 
    if(ticks - last_ssr_on > ssr_output || ssr_output == 0)
 
    {
 
        GPIO_ResetBits(LED_STAT);
 
        GPIO_ResetBits(SSR_PIN);
 
    }
 
}
 
 
void draw_setpoint() {
 
    char tempstr[3];
 
    itoa_fp(temp, temp_frac, tempstr);
 
    ssd1306_DrawStringBig("      ", 3, 0);
 
    ssd1306_DrawStringBig(tempstr, 3, 0);
 
    ssd1306_DrawStringBig(">", 3, 74);
 
    itoa(setpoint, tempstr);
 
    ssd1306_DrawStringBig("    ", 3, 90);
 
    ssd1306_DrawStringBig(tempstr, 3, 90);
 
}
 
 
uint8_t goto_mode = 2;
 
 
// State machine
 
uint8_t sw_btn_last = 0;
 
uint8_t sw_up_last = 0;
 
uint8_t sw_down_last = 0;
 
uint8_t sw_left_last = 0;
 
uint8_t sw_right_last = 0;
 
 
#define SW_BTN_PRESSED (sw_btn_last == 0 && sw_btn == 1) // rising edge on buttonpress
 
#define SW_UP_PRESSED (sw_up_last == 0 && sw_up == 1)
 
#define SW_DOWN_PRESSED (sw_down_last == 0 && sw_down == 1)
 
#define SW_LEFT_PRESSED (sw_left_last == 0 && sw_left == 1)
 
#define SW_RIGHT_PRESSED (sw_right_last == 0 && sw_right == 1)
 
 
void save_settings()
 
{
 
/*
 
   Minimal_EEPROM_Unlock();
 
    // Try programming a word at an address divisible by 4
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW, boottobrew);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD, windup_guard);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P, k_p);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I, k_i);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D, k_d);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS, temp_units);
 
    Minimal_EEPROM_Lock();
 
*/
 
}
 
 
void save_setpoints()
 
{
 
/*
 
 
    Minimal_EEPROM_Unlock();
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP, setpoint_brew);
 
    Minimal_EEPROM_ProgramWord(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP, setpoint_steam); 
 
    Minimal_EEPROM_Lock();
 
*/
 
}
 
 
 
// TODO: Make a struct that has all settings in it. Pass by ref to this func in a library.
 
void restore_settings()
 
{
 
/*    Minimal_EEPROM_Unlock();
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    boottobrew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BOOTTOBREW));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    windup_guard = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_WINDUP_GUARD));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_p = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_P));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_i = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_I));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    k_d = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_K_D));
 
    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    setpoint_brew = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_BREWTEMP));
 
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    setpoint_steam = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_STEAMTEMP));    
 
    while(Minimal_FLASH_GetStatus()==FLASH_BUSY);
 
    temp_units = (*(__IO uint32_t*)(EEPROM_BASE_ADDR + EEPROM_ADDR_UNITS));    
 
 
    Minimal_EEPROM_Lock(); */
 
}
 
 
int16_t last_temp = 21245;
 
 
 
///////////////////////////////////////////////////////////////////////////////////////
 
/// freaking multiple setpoint support ///
 
uint8_t step_duration[10] = {0,0,0,0,0,0,0,0,0,0};
 
int16_t step_setpoint[10] = {0,0,0,0,0,0,0,0,0,0};
 
uint8_t final_setpoint = 0;
 
 
// Multiple screens to set setpoint and duration on each screen
 
// press center to go to the next one, and press left or right or something to confirm
 
 
// When executing, complete on time AND(?) temperature. Maybe allow switching to OR via settings
 
 
////////////////////////////////////////////////////////////////////////////////////////////////
 
 
void machine()
 
{
 
    uint8_t last_state = state;
 
    
 
    uint8_t temp_changed = temp != last_temp;
 
    last_temp = temp;
 
 
    uint8_t sw_btn = !GPIO_ReadInputDataBit(SW_BTN);
 
    uint8_t sw_up = !GPIO_ReadInputDataBit(SW_UP);
 
    uint8_t sw_down = !GPIO_ReadInputDataBit(SW_DOWN);
 
    uint8_t sw_left = !GPIO_ReadInputDataBit(SW_LEFT);
 
    uint8_t sw_right = !GPIO_ReadInputDataBit(SW_RIGHT);
 
 
    switch(state)
 
    {
 
        // Idle state
 
        case STATE_IDLE:
 
        {
 
            // Write text to OLED
 
            // [ therm :: idle ]
 
            ssd1306_DrawString("therm :: idle ", 0, 40);
 
            pid_enabled = 0;
 
 
            if(temp_changed) {
 
                char tempstr[6];
 
                itoa_fp(temp, temp_frac, tempstr);
 
                ssd1306_DrawString("Temp: ", 3, 40);
 
                ssd1306_DrawString("    ", 3, 72);
 
                ssd1306_DrawString(tempstr, 3, 72);
 
            }
 
 
            ssd1306_drawlogo();
 
 
            switch(goto_mode) {
 
                case 2:
 
                {
 
                    ssd1306_DrawString("-> heat     ", 1, 40);
 
                } break;
 
 
                case 1:
 
                {
 
                    ssd1306_DrawString("-> setup    ", 1, 40);
 
                } break;
 
 
                case 0:
 
                {
 
                    ssd1306_DrawString("-> reset    ", 1, 40);
 
                } break;
 
            }
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                switch(goto_mode) {
 
                    case 2:
 
                        state = STATE_PREHEAT_BREW;
 
                        break;
 
                    case 1:
 
                        state = STATE_SETP;
 
                        break;
 
                    case 0:
 
                        state = STATE_IDLE;
 
                        break;
 
                    default:
 
                        state = STATE_PREHEAT_BREW;
 
                }
 
            }
 
            else if(SW_UP_PRESSED && goto_mode < 2) {
 
                goto_mode++;
 
            }
 
            else if(SW_DOWN_PRESSED && goto_mode > 0) {
 
                goto_mode--;
 
            }
 
 
 
            // Event Handler
 
            // N/A
 
 
        } break;
 
 
        case STATE_SETP:
 
        {
 
            // Write text to OLED
 
            // [ therm :: set p ]
 
            // [ p = 12         ]
 
            ssd1306_DrawString("Proportional", 0, 40);
 
            ssd1306_drawlogo();
 
 
            char tempstr[6];
 
            itoa(k_p, tempstr);
 
            ssd1306_DrawString("P=", 1, 45);
 
            ssd1306_DrawString("    ", 1, 57);
 
            ssd1306_DrawString(tempstr, 1, 57);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
            
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_SETI;
 
            }
 
            else {
 
                user_input(&k_p);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_SETI:
 
        {
 
            // Write text to OLED
 
            // [ therm :: set i ]
 
            // [ i = 12         ]
 
            ssd1306_DrawString("Integral", 0, 40);
 
            ssd1306_drawlogo();
 
 
            char tempstr[6];
 
            itoa(k_i, tempstr);
 
            ssd1306_DrawString("I=", 1, 45);
 
            ssd1306_DrawString("    ", 1, 57);
 
            ssd1306_DrawString(tempstr, 1, 57);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
            
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_SETD;
 
            }
 
            else {
 
                user_input(&k_i);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_SETD:
 
        {
 
            // Write text to OLED
 
            // [ therm :: set d ]
 
            // [ d = 12         ]
 
            ssd1306_DrawString("Derivative", 0, 40);
 
            ssd1306_drawlogo();
 
 
            char tempstr[6];
 
            itoa(k_d, tempstr);
 
            ssd1306_DrawString("D=", 1, 45);
 
            ssd1306_DrawString("    ", 1, 57);
 
            ssd1306_DrawString(tempstr, 1, 57);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_SETWINDUP;
 
            }
 
            else {
 
                user_input(&k_d);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_SETSTEPS:
 
        {
 
            // Write text to OLED
 
            // [ step #1:: Duration: ### ]
 
            // [           Setpoint: ### ]
 
            char tempstr[6];
 
 
            itoa(final_setpoint, tempstr);
 
            ssd1306_DrawString("Step #", 0, 0);
 
            ssd1306_DrawString(tempstr, 0, 40);
 
 
            ssd1306_DrawString("Duration: ", 0, 5);
 
            itoa(step_duration[final_setpoint], tempstr);
 
            ssd1306_DrawString(tempstr, 0, 70);
 
 
            ssd1306_DrawString("Setpoint: ", 0, 0);
 
            itoa(step_setpoint[final_setpoint], tempstr);
 
            ssd1306_DrawString(tempstr, 0, 70);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
            
 
            // Button handler - TODO: increment max_step if pressed
 
            // return and go to next state otherwise
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_SETSTEPS;
 
                final_setpoint++;
 
            }
 
        //    else if(SW_LEFT_PRESSED) {
 
        //        state++; // go to next state or something
 
        //    }
 
            else {
 
                user_input(&k_p);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
        } break;
 
 
        case STATE_SETWINDUP:
 
        {
 
            // Write text to OLED
 
            // [ therm :: set windup ]
 
            // [ g = 12         ]
 
            ssd1306_DrawString("Windup Guard", 0, 40);
 
            ssd1306_drawlogo();
 
 
            char tempstr[6];
 
            itoa(windup_guard, tempstr);
 
            ssd1306_DrawString("G=", 1, 45);
 
            ssd1306_DrawString("    ", 1, 57);
 
            ssd1306_DrawString(tempstr, 1, 57);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_SETBOOTTOBREW;
 
            }
 
            else {
 
                user_input(&windup_guard);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_SETBOOTTOBREW:
 
        {
 
            // Write text to OLED
 
            // [ therm :: set windup ]
 
            // [ g = 12         ]
 
            ssd1306_DrawString("Start on Boot", 0, 40);
 
            ssd1306_drawlogo();
 
 
            ssd1306_DrawString("sob=", 1, 45);
 
            
 
            if(boottobrew)
 
                ssd1306_DrawString("Enabled ", 1, 70);
 
            else
 
                ssd1306_DrawString("Disabled", 1, 70);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_SETUNITS;
 
            }
 
            else if(!GPIO_ReadInputDataBit(SW_UP)) {
 
                boottobrew = 1;
 
            }
 
            else if(!GPIO_ReadInputDataBit(SW_DOWN)) {
 
                boottobrew = 0;
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_SETUNITS:
 
        {
 
            // Write text to OLED
 
            // [ therm :: set windup ]
 
            // [ g = 12         ]
 
            ssd1306_DrawString("Units: ", 0, 40);
 
            ssd1306_drawlogo();
 
 
            if(temp_units == TEMP_UNITS_FAHRENHEIT)
 
                ssd1306_DrawString("Fahrenheit", 1, 60);
 
            else
 
                ssd1306_DrawString("Celsius   ", 1, 60);
 
 
            ssd1306_DrawString("Press to accept", 3, 40);
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                save_settings();
 
                state = STATE_IDLE;
 
            }
 
            else if(!GPIO_ReadInputDataBit(SW_UP)) {
 
                temp_units = TEMP_UNITS_FAHRENHEIT;
 
            }
 
            else if(!GPIO_ReadInputDataBit(SW_DOWN)) {
 
                temp_units = TEMP_UNITS_CELSIUS;
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
 
        case STATE_PREHEAT_BREW:
 
        {
 
            // Write text to OLED
 
            // [ therm : preheating brew ]
 
            // [ 30 => 120 C             ]
 
            ssd1306_DrawString("Preheating...", 0, 0);
 
            //ssd1306_drawlogo();
 
            draw_setpoint();
 
            pid_enabled = 1;
 
	    setpoint = setpoint_brew;
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
		save_setpoints(); // TODO: Check for mod
 
                state = STATE_IDLE;
 
            }
 
            else {
 
                user_input(&setpoint_brew);
 
            }
 
 
            // Event Handler
 
            if(temp >= setpoint) {
 
                state = STATE_MAINTAIN_BREW;
 
            }
 
 
 
        } break;
 
 
        case STATE_MAINTAIN_BREW:
 
        {
 
            // Write text to OLED
 
            // [ therm : ready to brew ]
 
            // [ 30 => 120 C           ]
 
            ssd1306_DrawString("Preheated!", 0, 0);
 
            //ssd1306_drawlogo();
 
            draw_setpoint();
 
            pid_enabled = 1;
 
	    setpoint = setpoint_brew;
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
		save_setpoints(); // TODO: Check for mod
 
                state = STATE_IDLE;
 
            }
 
            else {
 
                user_input(&setpoint_brew);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_PREHEAT_STEAM:
 
        {
 
            // Write text to OLED
 
            // [ therm : preheating steam ]
 
            // [ 30 => 120 C           ]
 
            ssd1306_DrawString("Preheating...", 0, 0);
 
            //ssd1306_drawlogo();
 
            draw_setpoint();
 
            pid_enabled = 1;
 
	    setpoint = setpoint_steam;
 
	    
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_IDLE;
 
		save_setpoints(); // TODO: Check for mod
 
            }
 
            else {
 
                user_input(&setpoint_steam);
 
            }
 
 
            // Event Handler
 
            if(temp >= setpoint) {
 
                state = STATE_MAINTAIN_STEAM;
 
            }
 
 
 
        } break;
 
 
        case STATE_MAINTAIN_STEAM:
 
        {
 
            // Write text to OLED
 
            // [ therm : ready to steam ]
 
            // [ 30 => 120 C            ]
 
            ssd1306_DrawString("Ready to Steam!", 0, 0);
 
            //ssd1306_drawlogo();
 
            draw_setpoint();
 
            pid_enabled = 1;
 
	    setpoint = setpoint_steam;
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_IDLE;
 
		save_setpoints(); // TODO: Check for mod
 
            }
 
            else {
 
                user_input(&setpoint_steam);
 
            }
 
 
            // Event Handler
 
            // N/A
 
 
 
        } break;
 
 
        case STATE_TC_ERROR:
 
        {
 
            // Write text to OLED
 
            // [ therm : ready to steam ]
 
            // [ 30 => 120 C            ]
 
            ssd1306_DrawString("Error:", 0, 0);
 
            ssd1306_DrawString("Connect thermocouple", 1, 0);
 
            ssd1306_DrawString("Press -> to ignore", 3, 0);
 
 
            // Button handler
 
            if(SW_BTN_PRESSED) {
 
                state = STATE_IDLE;
 
            }
 
            else if(SW_RIGHT_PRESSED) {
 
                ignore_tc_error = 1;
 
                state = STATE_IDLE;
 
            }
 
            // Event Handler
 
            // Maybe handle if TC is plugged in
 
            // N/A
 
 
 
        } break;
 
 
        // Something is terribly wrong
 
        default:
 
        {
 
            state = STATE_IDLE;
 
            pid_enabled = 0;
 
 
        } break;
 
            
 
    }
 
 
    if(last_state != state) {
 
        // Clear screen on state change
 
        goto_mode = 2;
 
        ssd1306_clearscreen();
 
    }
 
 
    // Last buttonpress
 
    sw_btn_last = sw_btn;
 
    sw_up_last = sw_up;
 
    sw_down_last = sw_down;
 
    sw_left_last = sw_left;
 
    sw_right_last = sw_right;
 
}
 
spi.c
Show inline comments
 

	
 
void init_spi(void)
 
{
 
  
 
    SPI_HandleTypeDef hspi1;
 
    
 
    hspi1.Instance = SPI1;
 
    hspi1.Init.Mode = SPI_MODE_MASTER;
 
    hspi1.Init.Direction = SPI_DIRECTION_2LINES;
 
    hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
 
    hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
 
    hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
 
    hspi1.Init.NSS = SPI_NSS_SOFT;
 
    hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
 
    hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
 
    hspi1.Init.TIMode = SPI_TIMODE_DISABLED;
 
    hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
 
    hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLED;
 
    HAL_SPI_Init(&hspi1);
 
    
 
    
 
    /* OLD:
 
    SPI_InitTypeDef  SPI_InitStructure;
 

	
 
    // OLED IC
 
    SPI_Cmd(SPI1, DISABLE); 
 
    SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx;
 
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
 
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
 
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
 
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
 
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
 
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
 
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
 
    SPI_InitStructure.SPI_CRCPolynomial = 7;
 
    SPI_Init(SPI1, &SPI_InitStructure);
 
    SPI_Cmd(SPI1, ENABLE);           /* Enable the SPI  */   
 
    SPI_Cmd(SPI1, ENABLE);          
 

	
 

	
 
    // MAX IC
 
    SPI_Cmd(SPI2, DISABLE); 
 
    SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
 
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
 
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; // Andysworkshop
 
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; // From andysworkshop
 
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; // same
 
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
 
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
 
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
 
    SPI_InitStructure.SPI_CRCPolynomial = 7;
 
    SPI_Init(SPI2, &SPI_InitStructure);
 
    SPI_Cmd(SPI2, ENABLE);           /* Enable the SPI */
 
    SPI_Cmd(SPI2, ENABLE);          
 
    */
 
}
 

	
 
// vim:softtabstop=4 shiftwidth=4 expandtab 
0 comments (0 inline, 0 general)