Files @ 08c52ee196d1
Branch filter:

Location: therm/libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_rcc.c

Ethan Zonca
Added cube, etc
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
/**
  ******************************************************************************
  * @file    stm32f0xx_rcc.c
  * @author  MCD Application Team
  * @version V1.4.0
  * @date    24-July-2014
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Reset and clock control (RCC) peripheral:
  *           + Internal/external clocks, PLL, CSS and MCO configuration
  *           + System, AHB and APB busses clocks configuration
  *           + Peripheral clocks configuration
  *           + Interrupts and flags management
  *
 @verbatim

 ===============================================================================
                        ##### RCC specific features #####
 ===============================================================================
    [..] After reset the device is running from HSI (8 MHz) with Flash 0 WS, 
         all peripherals are off except internal SRAM, Flash and SWD.
         (#) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
             all peripherals mapped on these busses are running at HSI speed.
         (#) The clock for all peripherals is switched off, except the SRAM and FLASH.
         (#) All GPIOs are in input floating state, except the SWD pins which
             are assigned to be used for debug purpose.
    [..] Once the device started from reset, the user application has to:
         (#) Configure the clock source to be used to drive the System clock
             (if the application needs higher frequency/performance)
         (#) Configure the System clock frequency and Flash settings
         (#) Configure the AHB and APB busses prescalers
         (#) Enable the clock for the peripheral(s) to be used
         (#) Configure the clock source(s) for peripherals which clocks are not
             derived from the System clock (ADC, CEC, I2C, USART, RTC and IWDG)

 @endverbatim
  
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_rcc.h"

/** @addtogroup STM32F0xx_StdPeriph_Driver
  * @{
  */

/** @defgroup RCC 
  * @brief RCC driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* ---------------------- RCC registers mask -------------------------------- */
/* RCC Flag Mask */
#define FLAG_MASK                 ((uint8_t)0x1F)

/* CR register byte 2 (Bits[23:16]) base address */
#define CR_BYTE2_ADDRESS          ((uint32_t)0x40021002)

/* CFGR register byte 3 (Bits[31:23]) base address */
#define CFGR_BYTE3_ADDRESS        ((uint32_t)0x40021007)

/* CIR register byte 1 (Bits[15:8]) base address */
#define CIR_BYTE1_ADDRESS         ((uint32_t)0x40021009)

/* CIR register byte 2 (Bits[23:16]) base address */
#define CIR_BYTE2_ADDRESS         ((uint32_t)0x4002100A)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};

/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup RCC_Private_Functions
  * @{
  */

/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
 *  @brief   Internal and external clocks, PLL, CSS and MCO configuration functions 
 *
@verbatim
 ===============================================================================
 ##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
 ===============================================================================
    [..] This section provides functions allowing to configure the internal/external clocks,
         PLL, CSS and MCO.
         (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly 
             or through the PLL as System clock source.
             The HSI clock can be used also to clock the USART, I2C and CEC peripherals.
         (#) HSI14 (high-speed internal for ADC), 14 MHz factory-trimmed RC used to clock
             the ADC peripheral.
         (#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
             clock source.
         (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
             through the PLL as System clock source. Can be used also as RTC clock source.
         (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. 
             LSE can be used also to clock the USART and CEC peripherals.   
         (#) PLL (clocked by HSI or HSE), for System clock.
         (#) CSS (Clock security system), once enabled and if a HSE clock failure occurs 
             (HSE used directly or through PLL as System clock source), the System clock
             is automatically switched to HSI and an interrupt is generated if enabled. 
             The interrupt is linked to the Cortex-M0 NMI (Non-Maskable Interrupt) 
             exception vector.   
         (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSI14, LSI,
             HSE, LSE or PLL (divided by 2) clock on PA8 pin.

@endverbatim
  * @{
  */

/**
  * @brief  Resets the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  * @note      HSI ON and used as system clock source 
  * @note      HSI14, HSE and PLL OFF
  * @note      AHB, APB prescaler set to 1.
  * @note      CSS and MCO OFF
  * @note      All interrupts disabled
  * @note   However, this function doesn't modify the configuration of the
  * @note      Peripheral clocks
  * @note      LSI, LSE and RTC clocks
  * @param  None
  * @retval None
  */
void RCC_DeInit(void)
{
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

#if defined (STM32F051)
  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
  RCC->CFGR &= (uint32_t)0xF8FFB80C;
#else
  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0] and PLLNODIV bits */
  RCC->CFGR &= (uint32_t)0x08FFB80C;
#endif /* STM32F051 */
  
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
  RCC->CFGR &= (uint32_t)0xFFC0FFFF;

  /* Reset PREDIV1[3:0] bits */
  RCC->CFGR2 &= (uint32_t)0xFFFFFFF0;

  /* Reset USARTSW[1:0], I2CSW, CECSW and ADCSW bits */
  RCC->CFGR3 &= (uint32_t)0xFFF0FEAC;
  
  /* Reset HSI14 bit */
  RCC->CR2 &= (uint32_t)0xFFFFFFFE;

  /* Disable all interrupts */
  RCC->CIR = 0x00000000;
}

/**
  * @brief  Configures the External High Speed oscillator (HSE).
  * @note   After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
  *         software should wait on HSERDY flag to be set indicating that HSE clock
  *         is stable and can be used to clock the PLL and/or system clock.
  * @note   HSE state can not be changed if it is used directly or through the
  *         PLL as system clock. In this case, you have to select another source
  *         of the system clock then change the HSE state (ex. disable it).
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.
  * @note   This function resets the CSSON bit, so if the Clock security system(CSS)
  *         was previously enabled you have to enable it again after calling this
  *         function.
  * @param  RCC_HSE: specifies the new state of the HSE.
  *          This parameter can be one of the following values:
  *            @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
  *                              6 HSE oscillator clock cycles.
  *            @arg RCC_HSE_ON: turn ON the HSE oscillator
  *            @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_HSEConfig(uint8_t RCC_HSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_HSE(RCC_HSE));

  /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE_OFF;

  /* Set the new HSE configuration -------------------------------------------*/
  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE;

}

/**
  * @brief  Waits for HSE start-up.
  * @note   This function waits on HSERDY flag to be set and return SUCCESS if 
  *         this flag is set, otherwise returns ERROR if the timeout is reached 
  *         and this flag is not set. The timeout value is defined by the constant
  *         HSE_STARTUP_TIMEOUT in stm32f0xx.h file. You can tailor it depending
  *         on the HSE crystal used in your application.
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.
  * @param  None
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: HSE oscillator is stable and ready to use
  *          - ERROR: HSE oscillator not yet ready
  */
ErrorStatus RCC_WaitForHSEStartUp(void)
{
  __IO uint32_t StartUpCounter = 0;
  ErrorStatus status = ERROR;
  FlagStatus HSEStatus = RESET;
  
  /* Wait till HSE is ready and if timeout is reached exit */
  do
  {
    HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
    StartUpCounter++;  
  } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
  
  if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
  {
    status = SUCCESS;
  }
  else
  {
    status = ERROR;
  }  
  return (status);
}

/**
  * @brief  Adjusts the Internal High Speed oscillator (HSI) calibration value.
  * @note   The calibration is used to compensate for the variations in voltage
  *         and temperature that influence the frequency of the internal HSI RC.
  *         Refer to the Application Note AN4067 for more details on how to  
  *         calibrate the HSI.
  * @param  HSICalibrationValue: specifies the HSI calibration trimming value.
  *          This parameter must be a number between 0 and 0x1F.
  * @retval None
  */
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
  
  tmpreg = RCC->CR;
  
  /* Clear HSITRIM[4:0] bits */
  tmpreg &= ~RCC_CR_HSITRIM;
  
  /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
  tmpreg |= (uint32_t)HSICalibrationValue << 3;

  /* Store the new value */
  RCC->CR = tmpreg;
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator (HSI).
  * @note   After enabling the HSI, the application software should wait on 
  *         HSIRDY flag to be set indicating that HSI clock is stable and can
  *         be used to clock the PLL and/or system clock.
  * @note   HSI can not be stopped if it is used directly or through the PLL
  *         as system clock. In this case, you have to select another source 
  *         of the system clock then stop the HSI.
  * @note   The HSI is stopped by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the HSI.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
  *         clock cycles.
  * @retval None
  */
void RCC_HSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CR |= RCC_CR_HSION;
  }
  else
  {
    RCC->CR &= ~RCC_CR_HSION;
  }
}

/**
  * @brief  Adjusts the Internal High Speed oscillator for ADC (HSI14) 
  *         calibration value.
  * @note   The calibration is used to compensate for the variations in voltage
  *         and temperature that influence the frequency of the internal HSI RC.
  *         Refer to the Application Note AN4067  for more details on how to  
  *         calibrate the HSI14.
  * @param  HSI14CalibrationValue: specifies the HSI14 calibration trimming value.
  *          This parameter must be a number between 0 and 0x1F.
  * @retval None
  */
void RCC_AdjustHSI14CalibrationValue(uint8_t HSI14CalibrationValue)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_HSI14_CALIBRATION_VALUE(HSI14CalibrationValue));
  
  tmpreg = RCC->CR2;
  
  /* Clear HSI14TRIM[4:0] bits */
  tmpreg &= ~RCC_CR2_HSI14TRIM;
  
  /* Set the HSITRIM14[4:0] bits according to HSI14CalibrationValue value */
  tmpreg |= (uint32_t)HSI14CalibrationValue << 3;

  /* Store the new value */
  RCC->CR2 = tmpreg;
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator for ADC (HSI14).
  * @note   After enabling the HSI14, the application software should wait on 
  *         HSIRDY flag to be set indicating that HSI clock is stable and can
  *         be used to clock the ADC.
  * @note   The HSI14 is stopped by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the HSI14.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the HSI14 is stopped, HSI14RDY flag goes low after 6 HSI14 oscillator
  *         clock cycles.
  * @retval None
  */
void RCC_HSI14Cmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CR2 |= RCC_CR2_HSI14ON;
  }
  else
  {
    RCC->CR2 &= ~RCC_CR2_HSI14ON;
  }
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator request from ADC.
  * @param  NewState: new state of the HSI14 ADC request.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_HSI14ADCRequestCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CR2 &= ~RCC_CR2_HSI14DIS;
  }
  else
  {
    RCC->CR2 |= RCC_CR2_HSI14DIS;
  }
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE).
  * @note   As the LSE is in the Backup domain and write access is denied to this
  *         domain after reset, you have to enable write access using 
  *         PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
  *         (to be done once after reset).
  * @note   After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
  *         software should wait on LSERDY flag to be set indicating that LSE clock
  *         is stable and can be used to clock the RTC.
  * @param  RCC_LSE: specifies the new state of the LSE.
  *          This parameter can be one of the following values:
  *            @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
  *                              6 LSE oscillator clock cycles.
  *            @arg RCC_LSE_ON: turn ON the LSE oscillator
  *            @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_LSEConfig(uint32_t RCC_LSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE(RCC_LSE));

  /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
  /* Reset LSEON bit */
  RCC->BDCR &= ~(RCC_BDCR_LSEON);

  /* Reset LSEBYP bit */
  RCC->BDCR &= ~(RCC_BDCR_LSEBYP);

  /* Configure LSE */
  RCC->BDCR |= RCC_LSE;
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE) drive capability.
  * @param  RCC_LSEDrive: specifies the new state of the LSE drive capability.
  *          This parameter can be one of the following values:
  *            @arg RCC_LSEDrive_Low: LSE oscillator low drive capability.
  *            @arg RCC_LSEDrive_MediumLow: LSE oscillator medium low drive capability.
  *            @arg RCC_LSEDrive_MediumHigh: LSE oscillator medium high drive capability.
  *            @arg RCC_LSEDrive_High: LSE oscillator high drive capability.
  * @retval None
  */
void RCC_LSEDriveConfig(uint32_t RCC_LSEDrive)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE_DRIVE(RCC_LSEDrive));
  
  /* Clear LSEDRV[1:0] bits */
  RCC->BDCR &= ~(RCC_BDCR_LSEDRV);

  /* Set the LSE Drive */
  RCC->BDCR |= RCC_LSEDrive;
}

/**
  * @brief  Enables or disables the Internal Low Speed oscillator (LSI).
  * @note   After enabling the LSI, the application software should wait on 
  *         LSIRDY flag to be set indicating that LSI clock is stable and can
  *         be used to clock the IWDG and/or the RTC.
  * @note   LSI can not be disabled if the IWDG is running.
  * @param  NewState: new state of the LSI.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
  *         clock cycles.
  * @retval None
  */
void RCC_LSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CSR |= RCC_CSR_LSION;
  }
  else
  {
    RCC->CSR &= ~RCC_CSR_LSION;
  }
}

/**
  * @brief  Configures the PLL clock source and multiplication factor.
  * @note   This function must be used only when the PLL is disabled.
  *
  * @param  RCC_PLLSource: specifies the PLL entry clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock selected as PLL clock source
  *            @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock entry
  *            @arg RCC_PLLSource_HSI48 HSI48 oscillator clock selected as PLL clock source, applicable only for STM32F072 devices
  *            @arg RCC_PLLSource_HSI: HSI clock selected as PLL clock entry, applicable only for STM32F072 devices
  * @note   The minimum input clock frequency for PLL is 2 MHz (when using HSE as
  *         PLL source).
  *
  * @param  RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
  *          This parameter can be RCC_PLLMul_x where x:[2,16] 
  *
  * @retval None
  */
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
  assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));

  /* Clear PLL Source [16] and Multiplier [21:18] bits */
  RCC->CFGR &= ~(RCC_CFGR_PLLMULL | RCC_CFGR_PLLSRC);

  /* Set the PLL Source and Multiplier */
  RCC->CFGR |= (uint32_t)(RCC_PLLSource | RCC_PLLMul);
}

/**
  * @brief  Enables or disables the PLL.
  * @note   After enabling the PLL, the application software should wait on 
  *         PLLRDY flag to be set indicating that PLL clock is stable and can
  *         be used as system clock source.
  * @note   The PLL can not be disabled if it is used as system clock source
  * @note   The PLL is disabled by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the PLL.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_PLLCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CR |= RCC_CR_PLLON;
  }
  else
  {
    RCC->CR &= ~RCC_CR_PLLON;
  }
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator for USB (HSI48).
  *         This function is only applicable for STM32F072 devices.  
  * @note   After enabling the HSI48, the application software should wait on 
  *         HSI48RDY flag to be set indicating that HSI48 clock is stable and can
  *         be used to clock the USB.
  * @note   The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the HSI48.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_HSI48Cmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CR2 |= RCC_CR2_HSI48ON;
  }
  else
  {
    RCC->CR2 &= ~RCC_CR2_HSI48ON;
  }
}

/**
  * @brief  Configures the PREDIV1 division factor.
  * @note   This function must be used only when the PLL is disabled.
  * @param  RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
  *          This parameter can be RCC_PREDIV1_Divx where x:[1,16]
  * @retval None
  */
void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Div)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));

  tmpreg = RCC->CFGR2;
  /* Clear PREDIV1[3:0] bits */
  tmpreg &= ~(RCC_CFGR2_PREDIV1);
  /* Set the PREDIV1 division factor */
  tmpreg |= RCC_PREDIV1_Div;
  /* Store the new value */
  RCC->CFGR2 = tmpreg;
}

/**
  * @brief  Enables or disables the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to 
  *         the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
  * @param  NewState: new state of the Clock Security System.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->CR |= RCC_CR_CSSON;
  }
  else
  {
    RCC->CR &= ~RCC_CR_CSSON;
  }
}

#ifdef STM32F051
/**
  * @brief  Selects the clock source to output on MCO pin (PA8).
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCOSource: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOSource_NoClock: No clock selected.
  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
  * @retval None
  */
void RCC_MCOConfig(uint8_t RCC_MCOSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));

  /* Select MCO clock source and prescaler */
  *(__IO uint8_t *) CFGR_BYTE3_ADDRESS =  RCC_MCOSource;
}
#else

/**
  * @brief  Selects the clock source to output on MCO pin (PA8) and the corresponding
  *         prescsaler.
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCOSource: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOSource_NoClock: No clock selected.
  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
  *            @arg RCC_MCOSource_PLLCLK: PLL clock selected.
  *            @arg RCC_MCOSource_HSI48: HSI48 clock selected.
  * @param  RCC_MCOPrescaler: specifies the prescaler on MCO pin.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOPrescaler_1: MCO clock is divided by 1.
  *            @arg RCC_MCOPrescaler_2: MCO clock is divided by 2.
  *            @arg RCC_MCOPrescaler_4: MCO clock is divided by 4.
  *            @arg RCC_MCOPrescaler_8: MCO clock is divided by 8.
  *            @arg RCC_MCOPrescaler_16: MCO clock is divided by 16.
  *            @arg RCC_MCOPrescaler_32: MCO clock is divided by 32.
  *            @arg RCC_MCOPrescaler_64: MCO clock is divided by 64.
  *            @arg RCC_MCOPrescaler_128: MCO clock is divided by 128.    
  * @retval None
  */
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint32_t RCC_MCOPrescaler)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
  assert_param(IS_RCC_MCO_PRESCALER(RCC_MCOPrescaler));
    
  /* Get CFGR value */  
  tmpreg = RCC->CFGR;
  /* Clear MCOPRE[2:0] bits */
  tmpreg &= ~(RCC_CFGR_MCO_PRE | RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
  /* Set the RCC_MCOSource and RCC_MCOPrescaler */
  tmpreg |= (RCC_MCOPrescaler | ((uint32_t)RCC_MCOSource<<24));
  /* Store the new value */
  RCC->CFGR = tmpreg;
}
#endif /* STM32F072 */

/**
  * @}
  */

/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
 *  @brief   System, AHB and APB busses clocks configuration functions
 *
@verbatim
 ===============================================================================
     ##### System, AHB and APB busses clocks configuration functions #####
 ===============================================================================

    [..] This section provide functions allowing to configure the System, AHB and 
         APB busses clocks.
         (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
             HSE and PLL.
             The AHB clock (HCLK) is derived from System clock through configurable prescaler
             and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA and GPIO).
             and APB (PCLK) clocks are derived from AHB clock through 
             configurable prescalers and used to clock the peripherals mapped on these busses.
             You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.

         -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
             (+@) The ADC clock which is derived from HSI14 or APB (APB divided by a
                  programmable prescaler: 2 or 4).
             (+@) The CEC clock which is derived from LSE or HSI divided by 244.
             (+@) The I2C clock which is derived from HSI or system clock (SYSCLK).
             (+@) The USART clock which is derived from HSI, system clock (SYSCLK), APB or LSE.
             (+@) The RTC/LCD clock which is derived from the LSE, LSI or 2 MHz HSE_RTC (HSE
                  divided by a programmable prescaler).
                  The System clock (SYSCLK) frequency must be higher or equal to the RTC/LCD
                  clock frequency.
             (+@) IWDG clock which is always the LSI clock.
       
         (#) The maximum frequency of the SYSCLK, HCLK and PCLK is 48 MHz.
             Depending on the maximum frequency, the FLASH wait states (WS) should be 
             adapted accordingly:
        +--------------------------------------------- +
        |  Wait states  |   HCLK clock frequency (MHz) |
        |---------------|------------------------------|
        |0WS(1CPU cycle)|       0 < HCLK <= 24         |
        |---------------|------------------------------|
        |1WS(2CPU cycle)|       24 < HCLK <= 48        |
        +----------------------------------------------+

         (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and 
             prefetch is disabled.
  
    [..] It is recommended to use the following software sequences to tune the number
         of wait states needed to access the Flash memory with the CPU frequency (HCLK).
         (+) Increasing the CPU frequency
         (++) Program the Flash Prefetch buffer, using "FLASH_PrefetchBufferCmd(ENABLE)" 
              function
         (++) Check that Flash Prefetch buffer activation is taken into account by 
              reading FLASH_ACR using the FLASH_GetPrefetchBufferStatus() function
         (++) Program Flash WS to 1, using "FLASH_SetLatency(FLASH_Latency_1)" function
         (++) Check that the new number of WS is taken into account by reading FLASH_ACR
         (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
         (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
         (++) Check that the new CPU clock source is taken into account by reading 
              the clock source status, using "RCC_GetSYSCLKSource()" function 
         (+) Decreasing the CPU frequency
         (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
         (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
         (++) Check that the new CPU clock source is taken into account by reading 
              the clock source status, using "RCC_GetSYSCLKSource()" function
         (++) Program the new number of WS, using "FLASH_SetLatency()" function
         (++) Check that the new number of WS is taken into account by reading FLASH_ACR
         (++) Disable the Flash Prefetch buffer using "FLASH_PrefetchBufferCmd(DISABLE)" 
              function
         (++) Check that Flash Prefetch buffer deactivation is taken into account by reading FLASH_ACR
              using the FLASH_GetPrefetchBufferStatus() function.

@endverbatim
  * @{
  */

/**
  * @brief  Configures the system clock (SYSCLK).
  * @note   The HSI is used (enabled by hardware) as system clock source after
  *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
  *         of failure of the HSE used directly or indirectly as system clock
  *         (if the Clock Security System CSS is enabled).
  * @note   A switch from one clock source to another occurs only if the target
  *         clock source is ready (clock stable after startup delay or PLL locked). 
  *         If a clock source which is not yet ready is selected, the switch will
  *         occur when the clock source will be ready. 
  *         You can use RCC_GetSYSCLKSource() function to know which clock is
  *         currently used as system clock source.  
  * @param  RCC_SYSCLKSource: specifies the clock source used as system clock source 
  *          This parameter can be one of the following values:
  *            @arg RCC_SYSCLKSource_HSI:    HSI selected as system clock source
  *            @arg RCC_SYSCLKSource_HSE:    HSE selected as system clock source
  *            @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
  *            @arg RCC_SYSCLKSource_HSI48:  HSI48 selected as system clock source, applicable only for STM32F072 devices  
  * @retval None
  */
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
  
  tmpreg = RCC->CFGR;
  
  /* Clear SW[1:0] bits */
  tmpreg &= ~RCC_CFGR_SW;
  
  /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
  tmpreg |= RCC_SYSCLKSource;
  
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Returns the clock source used as system clock.
  * @param  None
  * @retval The clock source used as system clock. The returned value can be one 
  *         of the following values:
  *           - 0x00: HSI used as system clock
  *           - 0x04: HSE used as system clock  
  *           - 0x08: PLL used as system clock
  *           - 0x0C: HSI48 used as system clock, applicable only for STM32F072 devices  
  */
uint8_t RCC_GetSYSCLKSource(void)
{
  return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}

/**
  * @brief  Configures the AHB clock (HCLK).
  * @param  RCC_SYSCLK: defines the AHB clock divider. This clock is derived from 
  *         the system clock (SYSCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_SYSCLK_Div1:   AHB clock = SYSCLK
  *            @arg RCC_SYSCLK_Div2:   AHB clock = SYSCLK/2
  *            @arg RCC_SYSCLK_Div4:   AHB clock = SYSCLK/4
  *            @arg RCC_SYSCLK_Div8:   AHB clock = SYSCLK/8
  *            @arg RCC_SYSCLK_Div16:  AHB clock = SYSCLK/16
  *            @arg RCC_SYSCLK_Div64:  AHB clock = SYSCLK/64
  *            @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
  *            @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
  *            @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
  * @retval None
  */
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_HCLK(RCC_SYSCLK));
  
  tmpreg = RCC->CFGR;
  
  /* Clear HPRE[3:0] bits */
  tmpreg &= ~RCC_CFGR_HPRE;
  
  /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
  tmpreg |= RCC_SYSCLK;
  
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the APB clock (PCLK).
  * @param  RCC_HCLK: defines the APB clock divider. This clock is derived from 
  *         the AHB clock (HCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_HCLK_Div1: APB clock = HCLK
  *            @arg RCC_HCLK_Div2: APB clock = HCLK/2
  *            @arg RCC_HCLK_Div4: APB clock = HCLK/4
  *            @arg RCC_HCLK_Div8: APB clock = HCLK/8
  *            @arg RCC_HCLK_Div16: APB clock = HCLK/16
  * @retval None
  */
void RCC_PCLKConfig(uint32_t RCC_HCLK)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PCLK(RCC_HCLK));
  
  tmpreg = RCC->CFGR;
  
  /* Clear PPRE[2:0] bits */
  tmpreg &= ~RCC_CFGR_PPRE;
  
  /* Set PPRE[2:0] bits according to RCC_HCLK value */
  tmpreg |= RCC_HCLK;
  
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the ADC clock (ADCCLK).
  * @note   This function is obsolete.
  *         For proper ADC clock selection, refer to ADC_ClockModeConfig() in the ADC driver
  * @param  RCC_ADCCLK: defines the ADC clock source. This clock is derived 
  *         from the HSI14 or APB clock (PCLK).
  *          This parameter can be one of the following values:
  *             @arg RCC_ADCCLK_HSI14: ADC clock = HSI14 (14MHz)
  *             @arg RCC_ADCCLK_PCLK_Div2: ADC clock = PCLK/2
  *             @arg RCC_ADCCLK_PCLK_Div4: ADC clock = PCLK/4  
  * @retval None
  */
void RCC_ADCCLKConfig(uint32_t RCC_ADCCLK)
{ 
  /* Check the parameters */
  assert_param(IS_RCC_ADCCLK(RCC_ADCCLK));

  /* Clear ADCPRE bit */
  RCC->CFGR &= ~RCC_CFGR_ADCPRE;
  /* Set ADCPRE bits according to RCC_PCLK value */
  RCC->CFGR |= RCC_ADCCLK & 0xFFFF;

  /* Clear ADCSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_ADCSW; 
  /* Set ADCSW bits according to RCC_ADCCLK value */
  RCC->CFGR3 |= RCC_ADCCLK >> 16;  
}

/**
  * @brief  Configures the CEC clock (CECCLK).
  * @param  RCC_CECCLK: defines the CEC clock source. This clock is derived 
  *         from the HSI or LSE clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_CECCLK_HSI_Div244: CEC clock = HSI/244 (32768Hz)
  *             @arg RCC_CECCLK_LSE: CEC clock = LSE
  * @retval None
  */
void RCC_CECCLKConfig(uint32_t RCC_CECCLK)
{ 
  /* Check the parameters */
  assert_param(IS_RCC_CECCLK(RCC_CECCLK));

  /* Clear CECSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_CECSW;
  /* Set CECSW bits according to RCC_CECCLK value */
  RCC->CFGR3 |= RCC_CECCLK;
}

/**
  * @brief  Configures the I2C1 clock (I2C1CLK).
  * @param  RCC_I2CCLK: defines the I2C1 clock source. This clock is derived 
  *         from the HSI or System clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_I2C1CLK_HSI: I2C1 clock = HSI
  *             @arg RCC_I2C1CLK_SYSCLK: I2C1 clock = System Clock
  * @retval None
  */
void RCC_I2CCLKConfig(uint32_t RCC_I2CCLK)
{ 
  /* Check the parameters */
  assert_param(IS_RCC_I2CCLK(RCC_I2CCLK));

  /* Clear I2CSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_I2C1SW;
  /* Set I2CSW bits according to RCC_I2CCLK value */
  RCC->CFGR3 |= RCC_I2CCLK;
}

/**
  * @brief  Configures the USART1 clock (USART1CLK).
  * @param  RCC_USARTCLK: defines the USART clock source. This clock is derived 
  *         from the HSI or System clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_USART1CLK_PCLK: USART1 clock = APB Clock (PCLK)
  *             @arg RCC_USART1CLK_SYSCLK: USART1 clock = System Clock
  *             @arg RCC_USART1CLK_LSE: USART1 clock = LSE Clock
  *             @arg RCC_USART1CLK_HSI: USART1 clock = HSI Clock
  *             @arg RCC_USART2CLK_PCLK: USART2 clock = APB Clock (PCLK), applicable only for STM32F072 and STM32F091 devices
  *             @arg RCC_USART2CLK_SYSCLK: USART2 clock = System Clock, applicable only for STM32F072 and STM32F091 devices
  *             @arg RCC_USART2CLK_LSE: USART2 clock = LSE Clock, applicable only for STM32F072 and STM32F091 devices
  *             @arg RCC_USART2CLK_HSI: USART2 clock = HSI Clock, applicable only for STM32F072 and STM32F091 devices  
  *             @arg RCC_USART3CLK_PCLK: USART3 clock = APB Clock (PCLK), applicable only for STM32F091 devices
  *             @arg RCC_USART3CLK_SYSCLK: USART3 clock = System Clock, applicable only for STM32F091 devices
  *             @arg RCC_USART3CLK_LSE: USART3 clock = LSE Clock, applicable only for STM32F091 devices
  *             @arg RCC_USART3CLK_HSI: USART3 clock = HSI Clock, applicable only for STM32F091 devices   
  * @retval None
  */
void RCC_USARTCLKConfig(uint32_t RCC_USARTCLK)
{ 
  uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_USARTCLK(RCC_USARTCLK));

  /* Get USART index */
  tmp = (RCC_USARTCLK >> 28);

  /* Clear USARTSW[1:0] bit */
  if (tmp == (uint32_t)0x00000001)
  {
    /* Clear USART1SW[1:0] bit */  
    RCC->CFGR3 &= ~RCC_CFGR3_USART1SW;
  }
  else if (tmp == (uint32_t)0x00000002)
  {
    /* Clear USART2SW[1:0] bit */
    RCC->CFGR3 &= ~RCC_CFGR3_USART2SW;
  }
  else 
  {
    /* Clear USART3SW[1:0] bit */
    RCC->CFGR3 &= ~RCC_CFGR3_USART3SW;
  }

  /* Set USARTxSW bits according to RCC_USARTCLK value */
  RCC->CFGR3 |= RCC_USARTCLK;
}

/**
  * @brief  Configures the USB clock (USBCLK).
  *         This function is only applicable for STM32F072 devices.  
  * @param  RCC_USBCLK: defines the USB clock source. This clock is derived 
  *         from the HSI48 or system clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_USBCLK_HSI48: USB clock = HSI48
  *             @arg RCC_USBCLK_PLLCLK: USB clock = PLL clock
  * @retval None
  */
void RCC_USBCLKConfig(uint32_t RCC_USBCLK)
{ 
  /* Check the parameters */
  assert_param(IS_RCC_USBCLK(RCC_USBCLK));

  /* Clear USBSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_USBSW;
  /* Set USBSW bits according to RCC_USBCLK value */
  RCC->CFGR3 |= RCC_USBCLK;
}

/**
  * @brief  Returns the frequencies of the System, AHB and APB busses clocks.
  * @note    The frequency returned by this function is not the real frequency
  *           in the chip. It is calculated based on the predefined constant and
  *           the source selected by RCC_SYSCLKConfig():
  *                                              
  * @note     If SYSCLK source is HSI, function returns constant HSI_VALUE(*)
  *                                              
  * @note     If SYSCLK source is HSE, function returns constant HSE_VALUE(**)
  *                          
  * @note     If SYSCLK source is PLL, function returns constant HSE_VALUE(**) 
  *             or HSI_VALUE(*) multiplied by the PLL factors.
  *               
  * @note     If SYSCLK source is HSI48, function returns constant HSI48_VALUE(***) 
  *             
  * @note     (*) HSI_VALUE is a constant defined in stm32f0xx.h file (default value
  *               8 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().   
  *    
  * @note     (**) HSE_VALUE is a constant defined in stm32f0xx.h file (default value
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                return wrong result.
  *
  * @note     (***) HSI48_VALUE is a constant defined in stm32f0xx.h file (default value
  *                 48 MHz) but the real value may vary depending on the variations
  *                 in voltage and temperature.
  *                                   
  * @note   The result of this function could be not correct when using fractional
  *         value for HSE crystal.   
  *             
  * @param  RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold 
  *         the clocks frequencies. 
  *     
  * @note   This function can be used by the user application to compute the 
  *         baudrate for the communication peripherals or configure other parameters.
  * @note   Each time SYSCLK, HCLK and/or PCLK clock changes, this function
  *         must be called to update the structure's field. Otherwise, any
  *         configuration based on this function will be incorrect.
  *    
  * @retval None
  */
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
  uint32_t tmp = 0, pllmull = 0, pllsource = 0, prediv1factor = 0, presc = 0, pllclk = 0;

  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;
  
  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock */
      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
      pllmull = ( pllmull >> 18) + 2;
      
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        pllclk = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {
        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
        /* HSE oscillator clock selected as PREDIV1 clock entry */
        pllclk = (HSE_VALUE / prediv1factor) * pllmull; 
      }
      RCC_Clocks->SYSCLK_Frequency = pllclk;      
      break;
    case 0x0C:  /* HSI48 used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI48_VALUE;
      break;
    default: /* HSI used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
  }
  /* Compute HCLK, PCLK clocks frequencies -----------------------------------*/
  /* Get HCLK prescaler */
  tmp = RCC->CFGR & RCC_CFGR_HPRE;
  tmp = tmp >> 4;
  presc = APBAHBPrescTable[tmp]; 
  /* HCLK clock frequency */
  RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;

  /* Get PCLK prescaler */
  tmp = RCC->CFGR & RCC_CFGR_PPRE;
  tmp = tmp >> 8;
  presc = APBAHBPrescTable[tmp];
  /* PCLK clock frequency */
  RCC_Clocks->PCLK_Frequency = RCC_Clocks->HCLK_Frequency >> presc;

  /* ADCCLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_ADCSW) != RCC_CFGR3_ADCSW)
  {
    /* ADC Clock is HSI14 Osc. */
    RCC_Clocks->ADCCLK_Frequency = HSI14_VALUE;
  }
  else
  {
    if((RCC->CFGR & RCC_CFGR_ADCPRE) != RCC_CFGR_ADCPRE)
    {
      /* ADC Clock is derived from PCLK/2 */
      RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK_Frequency >> 1;
    }
    else
    {
      /* ADC Clock is derived from PCLK/4 */
      RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK_Frequency >> 2;
    }
    
  }

  /* CECCLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_CECSW) != RCC_CFGR3_CECSW)
  {
    /* CEC Clock is HSI/244 */
    RCC_Clocks->CECCLK_Frequency = HSI_VALUE / 244;
  }
  else
  {
    /* CECC Clock is LSE Osc. */
    RCC_Clocks->CECCLK_Frequency = LSE_VALUE;
  }

  /* I2C1CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_I2C1SW) != RCC_CFGR3_I2C1SW)
  {
    /* I2C1 Clock is HSI Osc. */
    RCC_Clocks->I2C1CLK_Frequency = HSI_VALUE;
  }
  else
  {
    /* I2C1 Clock is System Clock */
    RCC_Clocks->I2C1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }

  /* USART1CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == 0x0)
  {
    /* USART1 Clock is PCLK */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_0)
  {
    /* USART1 Clock is System Clock */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_1)
  {
    /* USART1 Clock is LSE Osc. */
    RCC_Clocks->USART1CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW)
  {
    /* USART1 Clock is HSI Osc. */
    RCC_Clocks->USART1CLK_Frequency = HSI_VALUE;
  }
  
  /* USART2CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == 0x0)
  {
    /* USART Clock is PCLK */
    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->PCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->USART2CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->USART2CLK_Frequency = HSI_VALUE;
  }
  
  /* USART3CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == 0x0)
  {
    /* USART Clock is PCLK */
    RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->PCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_0)
  {
    /* USART Clock is System Clock */
    RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_1)
  {
    /* USART Clock is LSE Osc. */
    RCC_Clocks->USART3CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW)
  {
    /* USART Clock is HSI Osc. */
    RCC_Clocks->USART3CLK_Frequency = HSI_VALUE;
  }
  
  /* USBCLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USBSW) != RCC_CFGR3_USBSW)
  {
    /* USB Clock is HSI48 */
    RCC_Clocks->USBCLK_Frequency = HSI48_VALUE;
  }
  else
  {
    /* USB Clock is PLL clock */
    RCC_Clocks->USBCLK_Frequency = pllclk;
  }   
}

/**
  * @}
  */

/** @defgroup RCC_Group3 Peripheral clocks configuration functions
 *  @brief   Peripheral clocks configuration functions 
 *
@verbatim
 ===============================================================================
             #####Peripheral clocks configuration functions #####
 ===============================================================================  

    [..] This section provide functions allowing to configure the Peripheral clocks. 
         (#) The RTC clock which is derived from the LSE, LSI or  HSE_Div32 (HSE
             divided by 32).
         (#) After restart from Reset or wakeup from STANDBY, all peripherals are off
             except internal SRAM, Flash and SWD. Before to start using a peripheral you
             have to enable its interface clock. You can do this using RCC_AHBPeriphClockCmd(),
             RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions.
         (#) To reset the peripherals configuration (to the default state after device reset)
             you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and 
             RCC_APB1PeriphResetCmd() functions.

@endverbatim
  * @{
  */

/**
  * @brief  Configures the RTC clock (RTCCLK).
  * @note   As the RTC clock configuration bits are in the Backup domain and write
  *         access is denied to this domain after reset, you have to enable write
  *         access using PWR_BackupAccessCmd(ENABLE) function before to configure
  *         the RTC clock source (to be done once after reset).    
  * @note   Once the RTC clock is configured it can't be changed unless the RTC
  *         is reset using RCC_BackupResetCmd function, or by a Power On Reset (POR)
  *             
  * @param  RCC_RTCCLKSource: specifies the RTC clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
  *            @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
  *            @arg RCC_RTCCLKSource_HSE_Div32: HSE divided by 32 selected as RTC clock
  *       
  * @note   If the LSE or LSI is used as RTC clock source, the RTC continues to
  *         work in STOP and STANDBY modes, and can be used as wakeup source.
  *         However, when the HSE clock is used as RTC clock source, the RTC
  *         cannot be used in STOP and STANDBY modes.
  *             
  * @note   The maximum input clock frequency for RTC is 2MHz (when using HSE as
  *         RTC clock source).
  *                          
  * @retval None
  */
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
  
  /* Select the RTC clock source */
  RCC->BDCR |= RCC_RTCCLKSource;
}

/**
  * @brief  Enables or disables the RTC clock.
  * @note   This function must be used only after the RTC clock source was selected
  *         using the RCC_RTCCLKConfig function.
  * @param  NewState: new state of the RTC clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_RTCCLKCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->BDCR |= RCC_BDCR_RTCEN;
  }
  else
  {
    RCC->BDCR &= ~RCC_BDCR_RTCEN;
  }
}

/**
  * @brief  Forces or releases the Backup domain reset.
  * @note   This function resets the RTC peripheral (including the backup registers)
  *         and the RTC clock source selection in RCC_BDCR register.
  * @param  NewState: new state of the Backup domain reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_BackupResetCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->BDCR |= RCC_BDCR_BDRST;
  }
  else
  {
    RCC->BDCR &= ~RCC_BDCR_BDRST;
  }
}

/**
  * @brief  Enables or disables the AHB peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.    
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_AHBPeriph_GPIOA: GPIOA clock
  *             @arg RCC_AHBPeriph_GPIOB: GPIOB clock
  *             @arg RCC_AHBPeriph_GPIOC: GPIOC clock
  *             @arg RCC_AHBPeriph_GPIOD: GPIOD clock
  *             @arg RCC_AHBPeriph_GPIOE: GPIOE clock, applicable only for STM32F072 devices  
  *             @arg RCC_AHBPeriph_GPIOF: GPIOF clock
  *             @arg RCC_AHBPeriph_TS:    TS clock
  *             @arg RCC_AHBPeriph_CRC:   CRC clock
  *             @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)  
  *             @arg RCC_AHBPeriph_SRAM:  SRAM clock
  *             @arg RCC_AHBPeriph_DMA1:  DMA1 clock
  *             @arg RCC_AHBPeriph_DMA2:  DMA2 clock  
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    RCC->AHBENR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBENR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Enables or disables the High Speed APB (APB2) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *             @arg RCC_APB2Periph_USART6: USART6 clock  
  *             @arg RCC_APB2Periph_USART7: USART7 clock
  *             @arg RCC_APB2Periph_USART8: USART8 clock   
  *             @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *             @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *             @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *             @arg RCC_APB2Periph_USART1: USART1 clock   
  *             @arg RCC_APB2Periph_TIM15:  TIM15 clock
  *             @arg RCC_APB2Periph_TIM16:  TIM16 clock
  *             @arg RCC_APB2Periph_TIM17:  TIM17 clock
  *             @arg RCC_APB2Periph_DBGMCU: DBGMCU clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2ENR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2ENR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Enables or disables the Low Speed APB (APB1) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *           @arg RCC_APB1Periph_TIM2:   TIM2 clock, applicable only for STM32F051 and STM32F072 devices
  *           @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *           @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *           @arg RCC_APB1Periph_TIM7:   TIM7 clock, applicable only for STM32F072 devices   
  *           @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *           @arg RCC_APB1Periph_WWDG:   WWDG clock
  *           @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *           @arg RCC_APB1Periph_USART2: USART2 clock
  *           @arg RCC_APB1Periph_USART3: USART3 clock, applicable only for STM32F072 and STM32F091 devices 
  *           @arg RCC_APB1Periph_USART4: USART4 clock, applicable only for STM32F072 and STM32F091 devices
  *           @arg RCC_APB1Periph_USART5: USART5 clock, applicable only for STM32F091 devices         
  *           @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *           @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *           @arg RCC_APB1Periph_USB:    USB clock, applicable only for STM32F042 and STM32F072 devices 
  *           @arg RCC_APB1Periph_CAN:    CAN clock, applicable only for STM32F042 and STM32F072 devices 
  *           @arg RCC_APB1Periph_CRS:    CRS clock , applicable only for STM32F042 and STM32F072 devices      
  *           @arg RCC_APB1Periph_PWR:    PWR clock
  *           @arg RCC_APB1Periph_DAC:    DAC clock, applicable only for STM32F051 and STM32F072 devices 
  *           @arg RCC_APB1Periph_CEC:    CEC clock, applicable only for STM32F051, STM32F042 and STM32F072 devices                               
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1ENR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1ENR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Forces or releases AHB peripheral reset.
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to reset.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_AHBPeriph_GPIOA: GPIOA clock
  *             @arg RCC_AHBPeriph_GPIOB: GPIOB clock
  *             @arg RCC_AHBPeriph_GPIOC: GPIOC clock
  *             @arg RCC_AHBPeriph_GPIOD: GPIOD clock
  *             @arg RCC_AHBPeriph_GPIOE: GPIOE clock, applicable only for STM32F072 devices  
  *             @arg RCC_AHBPeriph_GPIOF: GPIOF clock
  *             @arg RCC_AHBPeriph_TS:    TS clock
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHBRSTR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBRSTR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Forces or releases High Speed APB (APB2) peripheral reset.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *             @arg RCC_APB2Periph_USART6: USART6 clock  
  *             @arg RCC_APB2Periph_USART7: USART7 clock
  *             @arg RCC_APB2Periph_USART8: USART8 clock   
  *             @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *             @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *             @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *             @arg RCC_APB2Periph_USART1: USART1 clock
  *             @arg RCC_APB2Periph_TIM15:  TIM15 clock
  *             @arg RCC_APB2Periph_TIM16:  TIM16 clock
  *             @arg RCC_APB2Periph_TIM17:  TIM17 clock
  *             @arg RCC_APB2Periph_DBGMCU: DBGMCU clock
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2RSTR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2RSTR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Forces or releases Low Speed APB (APB1) peripheral reset.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *           @arg RCC_APB1Periph_TIM2:   TIM2 clock, applicable only for STM32F051 and STM32F072 devices
  *           @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *           @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *           @arg RCC_APB1Periph_TIM7:   TIM7 clock, applicable only for STM32F072 devices   
  *           @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *           @arg RCC_APB1Periph_WWDG:   WWDG clock
  *           @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *           @arg RCC_APB1Periph_USART2: USART2 clock
  *           @arg RCC_APB1Periph_USART3: USART3 clock, applicable only for STM32F072 and STM32F091 devices 
  *           @arg RCC_APB1Periph_USART4: USART4 clock, applicable only for STM32F072 and STM32F091 devices
  *           @arg RCC_APB1Periph_USART5: USART5 clock, applicable only for STM32F091 devices         
  *           @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *           @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *           @arg RCC_APB1Periph_USB:    USB clock, applicable only for STM32F042 and STM32F072 devices 
  *           @arg RCC_APB1Periph_CAN:    CAN clock, applicable only for STM32F042 and STM32F072 devices 
  *           @arg RCC_APB1Periph_CRS:    CRS clock , applicable only for STM32F042 and STM32F072 devices      
  *           @arg RCC_APB1Periph_PWR:    PWR clock
  *           @arg RCC_APB1Periph_DAC:    DAC clock, applicable only for STM32F051 and STM32F072 devices 
  *           @arg RCC_APB1Periph_CEC:    CEC clock, applicable only for STM32F051, STM32F042 and STM32F072 devices    
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1RSTR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1RSTR &= ~RCC_APB1Periph;
  }
}

/**
  * @}
  */

/** @defgroup RCC_Group4 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions 
 *
@verbatim
 ===============================================================================
             ##### Interrupts and flags management functions #####
 ===============================================================================
@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified RCC interrupts.
  * @note   The CSS interrupt doesn't have an enable bit; once the CSS is enabled
  *         and if the HSE clock fails, the CSS interrupt occurs and an NMI is
  *         automatically generated. The NMI will be executed indefinitely, and 
  *         since NMI has higher priority than any other IRQ (and main program)
  *         the application will be stacked in the NMI ISR unless the CSS interrupt
  *         pending bit is cleared.
  * @param  RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
  *          This parameter can be any combination of the following values:
  *              @arg RCC_IT_LSIRDY: LSI ready interrupt
  *              @arg RCC_IT_LSERDY: LSE ready interrupt
  *              @arg RCC_IT_HSIRDY: HSI ready interrupt
  *              @arg RCC_IT_HSERDY: HSE ready interrupt
  *              @arg RCC_IT_PLLRDY: PLL ready interrupt
  *              @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  *              @arg RCC_IT_HSI48RDY: HSI48 ready interrupt, applicable only for STM32F072 devices  
  * @param  NewState: new state of the specified RCC interrupts.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_IT(RCC_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE1_ADDRESS |= RCC_IT;
  }
  else
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE1_ADDRESS &= (uint8_t)~RCC_IT;
  }
}

/**
  * @brief  Checks whether the specified RCC flag is set or not.
  * @param  RCC_FLAG: specifies the flag to check.
  *          This parameter can be one of the following values:
  *             @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready  
  *             @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
  *             @arg RCC_FLAG_PLLRDY: PLL clock ready
  *             @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
  *             @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
  *             @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset 
  *             @arg RCC_FLAG_PINRST: Pin reset
  *             @arg RCC_FLAG_V18PWRRSTF:  V1.8 power domain reset  
  *             @arg RCC_FLAG_PORRST: POR/PDR reset
  *             @arg RCC_FLAG_SFTRST: Software reset
  *             @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
  *             @arg RCC_FLAG_WWDGRST: Window Watchdog reset
  *             @arg RCC_FLAG_LPWRRST: Low Power reset
  *             @arg RCC_FLAG_HSI14RDY: HSI14 oscillator clock ready
  *             @arg RCC_FLAG_HSI48RDY: HSI48 oscillator clock ready, applicable only for STM32F072 devices    
  * @retval The new state of RCC_FLAG (SET or RESET).
  */
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
  uint32_t tmp = 0;
  uint32_t statusreg = 0;
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_FLAG(RCC_FLAG));

  /* Get the RCC register index */
  tmp = RCC_FLAG >> 5;

  if (tmp == 0)               /* The flag to check is in CR register */
  {
    statusreg = RCC->CR;
  }
  else if (tmp == 1)          /* The flag to check is in BDCR register */
  {
    statusreg = RCC->BDCR;
  }
  else if (tmp == 2)          /* The flag to check is in CSR register */
  {
    statusreg = RCC->CSR;
  }
  else                        /* The flag to check is in CR2 register */
  {
    statusreg = RCC->CR2;
  }    

  /* Get the flag position */
  tmp = RCC_FLAG & FLAG_MASK;

  if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the RCC reset flags.
  *         The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_V18PWRRSTF,
  *         RCC_FLAG_PORRST, RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST,
  *         RCC_FLAG_LPWRRST.
  * @param  None
  * @retval None
  */
void RCC_ClearFlag(void)
{
  /* Set RMVF bit to clear the reset flags */
  RCC->CSR |= RCC_CSR_RMVF;
}

/**
  * @brief  Checks whether the specified RCC interrupt has occurred or not.
  * @param  RCC_IT: specifies the RCC interrupt source to check.
  *          This parameter can be one of the following values:
  *             @arg RCC_IT_LSIRDY: LSI ready interrupt
  *             @arg RCC_IT_LSERDY: LSE ready interrupt
  *             @arg RCC_IT_HSIRDY: HSI ready interrupt
  *             @arg RCC_IT_HSERDY: HSE ready interrupt
  *             @arg RCC_IT_PLLRDY: PLL ready interrupt
  *             @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  *             @arg RCC_IT_HSI48RDY: HSI48 ready interrupt, applicable only for STM32F072 devices    
  *             @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval The new state of RCC_IT (SET or RESET).
  */
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
  ITStatus bitstatus = RESET;
  
  /* Check the parameters */
  assert_param(IS_RCC_GET_IT(RCC_IT));
  
  /* Check the status of the specified RCC interrupt */
  if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the RCC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the RCC's interrupt pending bits.
  * @param  RCC_IT: specifies the interrupt pending bit to clear.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_IT_LSIRDY: LSI ready interrupt
  *             @arg RCC_IT_LSERDY: LSE ready interrupt
  *             @arg RCC_IT_HSIRDY: HSI ready interrupt
  *             @arg RCC_IT_HSERDY: HSE ready interrupt
  *             @arg RCC_IT_PLLRDY: PLL ready interrupt
  *             @arg RCC_IT_HSI48RDY: HSI48 ready interrupt, applicable only for STM32F072 devices 
  *             @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  *             @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval None
  */
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
  /* Check the parameters */
  assert_param(IS_RCC_CLEAR_IT(RCC_IT));
  
  /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
     pending bits */
  *(__IO uint8_t *) CIR_BYTE2_ADDRESS = RCC_IT;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/