Files
@ 297213e62b1d
Branch filter:
Location: therm/libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_pwr.c
297213e62b1d
33.1 KiB
text/plain
Somehow temp is working
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | /**
******************************************************************************
* @file stm32l1xx_pwr.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + RTC Domain Access
* + PVD configuration
* + WakeUp pins configuration
* + Ultra Low Power mode configuration
* + Voltage Scaling configuration
* + Low Power modes configuration
* + Flags management
*
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_pwr.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup PWR
* @brief PWR driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* --------- PWR registers bit address in the alias region ---------- */
#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of DBP bit */
#define CR_OFFSET (PWR_OFFSET + 0x00)
#define DBP_BitNumber 0x08
#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
/* Alias word address of PVDE bit */
#define PVDE_BitNumber 0x04
#define CR_PVDE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))
/* Alias word address of ULP bit */
#define ULP_BitNumber 0x09
#define CR_ULP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (ULP_BitNumber * 4))
/* Alias word address of FWU bit */
#define FWU_BitNumber 0x0A
#define CR_FWU_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (FWU_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of EWUP bit */
#define CSR_OFFSET (PWR_OFFSET + 0x04)
#define EWUP_BitNumber 0x08
#define CSR_EWUP_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (EWUP_BitNumber * 4))
/* ------------------ PWR registers bit mask ------------------------ */
/* CR register bit mask */
#define CR_DS_MASK ((uint32_t)0xFFFFFFFC)
#define CR_PLS_MASK ((uint32_t)0xFFFFFF1F)
#define CR_VOS_MASK ((uint32_t)0xFFFFE7FF)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup PWR_Private_Functions
* @{
*/
/** @defgroup PWR_Group1 RTC Domain Access function
* @brief RTC Domain Access function
*
@verbatim
==============================================================================
##### RTC Domain Access function #####
==============================================================================
[..] After reset, the RTC Registers (RCC CSR Register, RTC registers and RTC backup
registers) are protected against possible stray write accesses.
[..] To enable access to RTC domain use the PWR_RTCAccessCmd(ENABLE) function.
@endverbatim
* @{
*/
/**
* @brief Deinitializes the PWR peripheral registers to their default reset values.
* @note Before calling this function, the VOS[1:0] bits should be configured
* to "10" and the system frequency has to be configured accordingly.
* To configure the VOS[1:0] bits, use the PWR_VoltageScalingConfig()
* function.
* @note ULP and FWU bits are not reset by this function.
* @param None
* @retval None
*/
void PWR_DeInit(void)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
}
/**
* @brief Enables or disables access to the RTC and backup registers.
* @note If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
* RTC Domain Access should be kept enabled.
* @param NewState: new state of the access to the RTC and backup registers.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_RTCAccessCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group2 PVD configuration functions
* @brief PVD configuration functions
*
@verbatim
==============================================================================
##### PVD configuration functions #####
==============================================================================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a threshold
selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
(+) The PVD can use an external input analog voltage (PVD_IN) which is compared
internally to VREFINT. The PVD_IN (PB7) has to be configured in Analog mode
when PWR_PVDLevel_7 is selected (PLS[2:0] = 111).
(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower than the
PVD threshold. This event is internally connected to the EXTI line16
and can generate an interrupt if enabled through the EXTI registers.
(+) The PVD is stopped in Standby mode.
@endverbatim
* @{
*/
/**
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
* @param PWR_PVDLevel: specifies the PVD detection level.
* This parameter can be one of the following values:
* @arg PWR_PVDLevel_0: PVD detection level set to 1.9V.
* @arg PWR_PVDLevel_1: PVD detection level set to 2.1V.
* @arg PWR_PVDLevel_2: PVD detection level set to 2.3V.
* @arg PWR_PVDLevel_3: PVD detection level set to 2.5V.
* @arg PWR_PVDLevel_4: PVD detection level set to 2.7V.
* @arg PWR_PVDLevel_5: PVD detection level set to 2.9V.
* @arg PWR_PVDLevel_6: PVD detection level set to 3.1V.
* @arg PWR_PVDLevel_7: External input analog voltage (Compare internally to VREFINT).
* @retval None
*/
void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
tmpreg = PWR->CR;
/* Clear PLS[7:5] bits */
tmpreg &= CR_PLS_MASK;
/* Set PLS[7:5] bits according to PWR_PVDLevel value */
tmpreg |= PWR_PVDLevel;
/* Store the new value */
PWR->CR = tmpreg;
}
/**
* @brief Enables or disables the Power Voltage Detector(PVD).
* @param NewState: new state of the PVD.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_PVDCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group3 WakeUp pins configuration functions
* @brief WakeUp pins configuration functions
*
@verbatim
==============================================================================
##### WakeUp pin configuration functions #####
==============================================================================
(+) WakeUp pins are used to wakeup the system from Standby mode. These pins are
forced in input pull down configuration and are active on rising edges.
(+) There are three WakeUp pins: WakeUp Pin 1 on PA.00, WakeUp Pin 2 on PC.13 and
WakeUp Pin 3 on PE.06.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the WakeUp Pin functionality.
* @param PWR_WakeUpPin: specifies the WakeUpPin.
* This parameter can be: PWR_WakeUpPin_1, PWR_WakeUpPin_2 or PWR_WakeUpPin_3.
* @param NewState: new state of the WakeUp Pin functionality.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_WakeUpPinCmd(uint32_t PWR_WakeUpPin, FunctionalState NewState)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_PWR_WAKEUP_PIN(PWR_WakeUpPin));
assert_param(IS_FUNCTIONAL_STATE(NewState));
tmp = CSR_EWUP_BB + PWR_WakeUpPin;
*(__IO uint32_t *) (tmp) = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group4 Ultra Low Power mode configuration functions
* @brief Ultra Low Power mode configuration functions
*
@verbatim
==============================================================================
##### Ultra Low Power mode configuration functions #####
==============================================================================
[..]
(+) The internal voltage reference consumption is not negligible, in particular
in Stop and Standby mode. To reduce power consumption, use the PWR_UltraLowPowerCmd()
function (ULP bit (Ultra low power) in the PWR_CR register) to disable the
internal voltage reference. However, in this case, when exiting from the
Stop/Standby mode, the functions managed through the internal voltage reference
are not reliable during the internal voltage reference startup time (up to 3 ms).
To reduce the wakeup time, the device can exit from Stop/Standby mode without
waiting for the internal voltage reference startup time. This is performed
by using the PWR_FastWakeUpCmd() function (setting the FWU bit (Fast
wakeup) in the PWR_CR register) before entering Stop/Standby mode.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the Fast WakeUp from Ultra Low Power mode.
* @param NewState: new state of the Fast WakeUp functionality.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_FastWakeUpCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_FWU_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Ultra Low Power mode.
* @param NewState: new state of the Ultra Low Power mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_UltraLowPowerCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_ULP_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group5 Voltage Scaling configuration functions
* @brief Voltage Scaling configuration functions
*
@verbatim
==============================================================================
##### Voltage Scaling configuration functions #####
==============================================================================
(+) The dynamic voltage scaling is a power management technique which consists in
increasing or decreasing the voltage used for the digital peripherals (VCORE),
according to the circumstances.
[..] Depending on the device voltage range, the maximum frequency and FLASH wait
state should be adapted accordingly:
[..]
+------------------------------------------------------------------+
| Wait states | HCLK clock frequency (MHz) |
| |------------------------------------------------|
| (Latency) | voltage range | voltage range |
| | 1.65 V - 3.6 V | 2.0 V - 3.6 V |
| |----------------|---------------|---------------|
| | Range 3 | Range 2 | Range 1 |
| | VCORE = 1.2 V | VCORE = 1.5 V | VCORE = 1.8 V |
|---------------- |----------------|---------------|---------------|
| 0WS(1CPU cycle) |0 < HCLK <= 2 |0 < HCLK <= 8 |0 < HCLK <= 16 |
|-----------------|----------------|---------------|---------------|
| 1WS(2CPU cycle) |2 < HCLK <= 4 |8 < HCLK <= 16 |16 < HCLK <= 32|
|-----------------|----------------|---------------|---------------|
| CPU Performance | Low | Medium | High |
|-----__----------|----------------|---------------|---------------|
|Power Performance| High | Medium | Low |
+------------------------------------------------------------------+
(+) To modify the Product voltage range, user application has to:
(++) Check VDD to identify which ranges are allowed (see table above).
(++) Check the PWR_FLAG_VOSF (Voltage Scaling update ongoing) using the PWR_GetFlagStatus()
function and wait until it is reset.
(++) Configure the Voltage range using the PWR_VoltageScalingConfig() function.
(+) When VCORE range 1 is selected and VDD drops below 2.0 V, the application must
reconfigure the system:
(++) Detect that VDD drops below 2.0 V using the PVD Level 1.
(++) Adapt the clock frequency to the voltage range that will be selected at next step.
(++) Select the required voltage range.
(++) When VCORE range 2 or range 3 is selected and VDD drops below 2.0 V, no system
reconfiguration is required.
(+) When VDD is above 2.0 V, any of the 3 voltage ranges can be selected.
(++) When the voltage range is above the targeted voltage range (e.g. from range
1 to 2).
(++) Adapt the clock frequency to the lower voltage range that will be selected
at next step.
(++) Select the required voltage range.
(++) When the voltage range is below the targeted voltage range (e.g. from range
3 to 1).
(++) Select the required voltage range.
(++) Tune the clock frequency if needed.
(+) When VDD is below 2.0 V, only range 2 and 3 can be selected:
(++) From range 2 to range 3.
(+++) Adapt the clock frequency to voltage range 3.
(+++) Select voltage range 3.
(++) From range 3 to range 2.
(+++) Select the voltage range 2.
(+++) Tune the clock frequency if needed.
@endverbatim
* @{
*/
/**
* @brief Configures the voltage scaling range.
* @note During voltage scaling configuration, the system clock is stopped
* until the regulator is stabilized (VOSF = 0). This must be taken
* into account during application developement, in case a critical
* reaction time to interrupt is needed, and depending on peripheral
* used (timer, communication,...).
*
* @param PWR_VoltageScaling: specifies the voltage scaling range.
* This parameter can be:
* @arg PWR_VoltageScaling_Range1: Voltage Scaling Range 1 (VCORE = 1.8V).
* @arg PWR_VoltageScaling_Range2: Voltage Scaling Range 2 (VCORE = 1.5V).
* @arg PWR_VoltageScaling_Range3: Voltage Scaling Range 3 (VCORE = 1.2V)
* @retval None
*/
void PWR_VoltageScalingConfig(uint32_t PWR_VoltageScaling)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(PWR_VoltageScaling));
tmp = PWR->CR;
tmp &= CR_VOS_MASK;
tmp |= PWR_VoltageScaling;
PWR->CR = tmp & 0xFFFFFFF3;
}
/**
* @}
*/
/** @defgroup PWR_Group6 Low Power modes configuration functions
* @brief Low Power modes configuration functions
*
@verbatim
==============================================================================
##### Low Power modes configuration functions #####
==============================================================================
[..] The devices feature five low-power modes:
(+) Low power run mode: regulator in low power mode, limited clock frequency,
limited number of peripherals running.
(+) Sleep mode: Cortex-M3 core stopped, peripherals kept running.
(+) Low power sleep mode: Cortex-M3 core stopped, limited clock frequency,
limited number of peripherals running, regulator in low power mode.
(+) Stop mode: all clocks are stopped, regulator running, regulator in low power mode.
(+) Standby mode: VCORE domain powered off.
*** Low power run mode (LP run) ***
===================================
[..]
(+) Entry:
(++) Decrease the system frequency.
(++) The regulator is forced in low power mode using the PWR_EnterLowPowerRunMode()
function.
(+) Exit:
(++) The regulator is forced in Main regulator mode sing the PWR_EnterLowPowerRunMode()
function.
(++) Increase the system frequency if needed.
*** Sleep mode ***
==================
[..]
(+) Entry:
(++) The Sleep mode is entered by using the PWR_EnterSleepMode(PWR_Regulator_ON,)
function with regulator ON.
(+) Exit:
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep mode.
*** Low power sleep mode (LP sleep) ***
=======================================
[..]
(+) Entry:
(++) The Flash memory must be switched off by using the FLASH_SLEEPPowerDownCmd()
function.
(++) Decrease the system frequency.
(++) The regulator is forced in low power mode and the WFI or WFE instructions
are executed using the PWR_EnterSleepMode(PWR_Regulator_LowPower,) function
with regulator in LowPower.
(+) Exit:
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep LP mode.
*** Stop mode ***
=================
[..] In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI,
the HSI and the HSE RC oscillators are disabled. Internal SRAM and register
contents are preserved.
The voltage regulator can be configured either in normal or low-power mode.
To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering the Stop mode. They can be switched
on again by software after exiting the Stop mode using the PWR_UltraLowPowerCmd()
function.
(+) Entry:
(++) The Stop mode is entered using the PWR_EnterSTOPMode(PWR_Regulator_LowPower,)
function with regulator in LowPower or with Regulator ON.
(+) Exit:
(++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
*** Standby mode ***
====================
[..] The Standby mode allows to achieve the lowest power consumption. It is based
on the Cortex-M3 deepsleep mode, with the voltage regulator disabled.
The VCORE domain is consequently powered off. The PLL, the MSI, the HSI
oscillator and the HSE oscillator are also switched off. SRAM and register
contents are lost except for the RTC registers, RTC backup registers and
Standby circuitry.
[..] The voltage regulator is OFF.
[..] To minimize the consumption In Standby mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering the Standby mode. They can be switched
on again by software after exiting the Standby mode using the PWR_UltraLowPowerCmd()
function.
(+) Entry:
(++) The Standby mode is entered using the PWR_EnterSTANDBYMode() function.
(+) Exit:
(++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
*** Auto-wakeup (AWU) from low-power mode ***
=============================================
[..]The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
Wakeup event, a tamper event, a time-stamp event, or a comparator event,
without depending on an external interrupt (Auto-wakeup mode).
(+) RTC auto-wakeup (AWU) from the Stop mode
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
(+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
or Event modes) using the EXTI_Init() function.
(+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
(+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
and RTC_AlarmCmd() functions.
(++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
is necessary to:
(+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt
or Event modes) using the EXTI_Init() function.
(+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
function.
(+++) Configure the RTC to detect the tamper or time stamp event using the
RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
functions.
(++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
(+++) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt
or Event modes) using the EXTI_Init() function.
(+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function.
(+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
(+) RTC auto-wakeup (AWU) from the Standby mode
(++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
(+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function.
(+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
and RTC_AlarmCmd() functions.
(++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it
is necessary to:
(+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
function.
(+++) Configure the RTC to detect the tamper or time stamp event using the
RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
functions.
(++) To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
(+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
(+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
(+) Comparator auto-wakeup (AWU) from the Stop mode
(++) To wake up from the Stop mode with an comparator 1 or comparator 2 wakeup
event, it is necessary to:
(+++) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2
to be sensitive to to the selected edges (falling, rising or falling
and rising) (Interrupt or Event modes) using the EXTI_Init() function.
(+++) Configure the comparator to generate the event.
@endverbatim
* @{
*/
/**
* @brief Enters/Exits the Low Power Run mode.
* @note Low power run mode can only be entered when VCORE is in range 2.
* In addition, the dynamic voltage scaling must not be used when Low
* power run mode is selected. Only Stop and Sleep modes with regulator
* configured in Low power mode is allowed when Low power run mode is
* selected.
* @note In Low power run mode, all I/O pins keep the same state as in Run mode.
* @param NewState: new state of the Low Power Run mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_EnterLowPowerRunMode(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
PWR->CR |= PWR_CR_LPSDSR;
PWR->CR |= PWR_CR_LPRUN;
}
else
{
PWR->CR &= (uint32_t)~((uint32_t)PWR_CR_LPRUN);
PWR->CR &= (uint32_t)~((uint32_t)PWR_CR_LPSDSR);
}
}
/**
* @brief Enters Sleep mode.
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
* @param PWR_Regulator: specifies the regulator state in Sleep mode.
* This parameter can be one of the following values:
* @arg PWR_Regulator_ON: Sleep mode with regulator ON
* @arg PWR_Regulator_LowPower: Sleep mode with regulator in low power mode
* @note Low power sleep mode can only be entered when VCORE is in range 2.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Low power sleep mode.
* @param PWR_SLEEPEntry: specifies if SLEEP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_SLEEPEntry_WFI: enter SLEEP mode with WFI instruction
* @arg PWR_SLEEPEntry_WFE: enter SLEEP mode with WFE instruction
* @retval None
*/
void PWR_EnterSleepMode(uint32_t PWR_Regulator, uint8_t PWR_SLEEPEntry)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(PWR_Regulator));
assert_param(IS_PWR_SLEEP_ENTRY(PWR_SLEEPEntry));
/* Select the regulator state in Sleep mode ---------------------------------*/
tmpreg = PWR->CR;
/* Clear PDDS and LPDSR bits */
tmpreg &= CR_DS_MASK;
/* Set LPDSR bit according to PWR_Regulator value */
tmpreg |= PWR_Regulator;
/* Store the new value */
PWR->CR = tmpreg;
/* Clear SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP);
/* Select SLEEP mode entry -------------------------------------------------*/
if(PWR_SLEEPEntry == PWR_SLEEPEntry_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__WFE();
}
}
/**
* @brief Enters STOP mode.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note When exiting Stop mode by issuing an interrupt or a wakeup event,
* the MSI RC oscillator is selected as system clock.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
* @param PWR_Regulator: specifies the regulator state in STOP mode.
* This parameter can be one of the following values:
* @arg PWR_Regulator_ON: STOP mode with regulator ON.
* @arg PWR_Regulator_LowPower: STOP mode with regulator in low power mode.
* @param PWR_STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_STOPEntry_WFI: enter STOP mode with WFI instruction.
* @arg PWR_STOPEntry_WFE: enter STOP mode with WFE instruction.
* @retval None
*/
void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(PWR_Regulator));
assert_param(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
/* Select the regulator state in STOP mode ---------------------------------*/
tmpreg = PWR->CR;
/* Clear PDDS and LPDSR bits */
tmpreg &= CR_DS_MASK;
/* Set LPDSR bit according to PWR_Regulator value */
tmpreg |= PWR_Regulator;
/* Store the new value */
PWR->CR = tmpreg;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP;
/* Select STOP mode entry --------------------------------------------------*/
if(PWR_STOPEntry == PWR_STOPEntry_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP);
}
/**
* @brief Enters STANDBY mode.
* @note In Standby mode, all I/O pins are high impedance except for:
* Reset pad (still available)
* RTC_AF1 pin (PC13) if configured for Wakeup pin 2 (WKUP2), tamper,
* time-stamp, RTC Alarm out, or RTC clock calibration out.
* WKUP pin 1 (PA0) and WKUP pin 3 (PE6), if enabled.
* @param None
* @retval None
*/
void PWR_EnterSTANDBYMode(void)
{
/* Clear Wakeup flag */
PWR->CR |= PWR_CR_CWUF;
/* Select STANDBY mode */
PWR->CR |= PWR_CR_PDDS;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP;
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM )
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}
/**
* @}
*/
/** @defgroup PWR_Group7 Flags management functions
* @brief Flags management functions
*
@verbatim
==============================================================================
##### Flags management functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Checks whether the specified PWR flag is set or not.
* @param PWR_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
* was received from the WKUP pin or from the RTC alarm (Alarm A or Alarm B),
* RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
* @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
* resumed from StandBy mode.
* @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
* by the PWR_PVDCmd() function.
* @arg PWR_FLAG_VREFINTRDY: Internal Voltage Reference Ready flag. This
* flag indicates the state of the internal voltage reference, VREFINT.
* @arg PWR_FLAG_VOS: Voltage Scaling select flag. A delay is required for
* the internal regulator to be ready after the voltage range is changed.
* The VOSF flag indicates that the regulator has reached the voltage level
* defined with bits VOS[1:0] of PWR_CR register.
* @arg PWR_FLAG_REGLP: Regulator LP flag. This flag is set by hardware
* when the MCU is in Low power run mode.
* When the MCU exits from Low power run mode, this flag stays SET until
* the regulator is ready in main mode. A polling on this flag is
* recommended to wait for the regulator main mode.
* This flag is RESET by hardware when the regulator is ready.
* @retval The new state of PWR_FLAG (SET or RESET).
*/
FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_PWR_GET_FLAG(PWR_FLAG));
if ((PWR->CSR & PWR_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the PWR's pending flags.
* @param PWR_FLAG: specifies the flag to clear.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WU: Wake Up flag
* @arg PWR_FLAG_SB: StandBy flag
* @retval None
*/
void PWR_ClearFlag(uint32_t PWR_FLAG)
{
/* Check the parameters */
assert_param(IS_PWR_CLEAR_FLAG(PWR_FLAG));
PWR->CR |= PWR_FLAG << 2;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|