Files
@ 3dc8ab4e2928
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/MatrixFunctions/arm_mat_inverse_f32.c
3dc8ab4e2928
23.6 KiB
text/plain
Fix stupid thermocouple error issue finally. Temporarily disable CDC transmit. Move PID calcs into a different loop for fun and profit.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 1. March 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_inverse_f32.c
*
* Description: Floating-point matrix inverse.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixInv Matrix Inverse
*
* Computes the inverse of a matrix.
*
* The inverse is defined only if the input matrix is square and non-singular (the determinant
* is non-zero). The function checks that the input and output matrices are square and of the
* same size.
*
* Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
* inversion of floating-point matrices.
*
* \par Algorithm
* The Gauss-Jordan method is used to find the inverse.
* The algorithm performs a sequence of elementary row-operations till it
* reduces the input matrix to an identity matrix. Applying the same sequence
* of elementary row-operations to an identity matrix yields the inverse matrix.
* If the input matrix is singular, then the algorithm terminates and returns error status
* <code>ARM_MATH_SINGULAR</code>.
* \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
*/
/**
* @addtogroup MatrixInv
* @{
*/
/**
* @brief Floating-point matrix inverse.
* @param[in] *pSrc points to input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns
* <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size
* of the output matrix does not match the size of the input matrix.
* If the input matrix is found to be singular (non-invertible), then the function returns
* <code>ARM_MATH_SINGULAR</code>. Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.
*/
arm_status arm_mat_inverse_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn = pSrc->pData; /* input data matrix pointer */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
float32_t *pInT3, *pInT4; /* Temporary output data matrix pointer */
float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
#ifndef ARM_MATH_CM0_FAMILY
float32_t maxC; /* maximum value in the column */
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
|| (pSrc->numRows != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*--------------------------------------------------------------------------------------------------------------
* Matrix Inverse can be solved using elementary row operations.
*
* Gauss-Jordan Method:
*
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
* augmented matrix as follows:
* _ _ _ _
* | a11 a12 | 1 0 | | X11 X12 |
* | | | = | |
* |_ a21 a22 | 0 1 _| |_ X21 X21 _|
*
* 2. In our implementation, pDst Matrix is used as identity matrix.
*
* 3. Begin with the first row. Let i = 1.
*
* 4. Check to see if the pivot for column i is the greatest of the column.
* The pivot is the element of the main diagonal that is on the current row.
* For instance, if working with row i, then the pivot element is aii.
* If the pivot is not the most significant of the coluimns, exchange that row with a row
* below it that does contain the most significant value in column i. If the most
* significant value of the column is zero, then an inverse to that matrix does not exist.
* The most significant value of the column is the absolut maximum.
*
* 5. Divide every element of row i by the pivot.
*
* 6. For every row below and row i, replace that row with the sum of that row and
* a multiple of row i so that each new element in column i below row i is zero.
*
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
* for every element below and above the main diagonal.
*
* 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
* Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
*----------------------------------------------------------------------------------------------------------------*/
/* Working pointer for destination matrix */
pInT2 = pOut;
/* Loop over the number of rows */
rowCnt = numRows;
/* Making the destination matrix as identity matrix */
while(rowCnt > 0u)
{
/* Writing all zeroes in lower triangle of the destination matrix */
j = numRows - rowCnt;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
*pInT2++ = 1.0f;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1u;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Decrement the loop counter */
rowCnt--;
}
/* Loop over the number of columns of the input matrix.
All the elements in each column are processed by the row operations */
loopCnt = numCols;
/* Index modifier to navigate through the columns */
l = 0u;
while(loopCnt > 0u)
{
/* Check if the pivot element is zero..
* If it is zero then interchange the row with non zero row below.
* If there is no non zero element to replace in the rows below,
* then the matrix is Singular. */
/* Working pointer for the input matrix that points
* to the pivot element of the particular row */
pInT1 = pIn + (l * numCols);
/* Working pointer for the destination matrix that points
* to the pivot element of the particular row */
pInT3 = pOut + (l * numCols);
/* Temporary variable to hold the pivot value */
in = *pInT1;
/* Destination pointer modifier */
k = 1u;
/* Grab the most significant value from column l */
maxC = 0;
for (i = 0; i < numRows; i++)
{
maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
pInT1 += numCols;
}
/* Update the status if the matrix is singular */
if(maxC == 0.0f)
{
status = ARM_MATH_SINGULAR;
break;
}
/* Restore pInT1 */
pInT1 -= numRows * numCols;
/* Check if the pivot element is the most significant of the column */
if( (in > 0.0f ? in : -in) != maxC)
{
/* Loop over the number rows present below */
i = numRows - (l + 1u);
while(i > 0u)
{
/* Update the input and destination pointers */
pInT2 = pInT1 + (numCols * l);
pInT4 = pInT3 + (numCols * k);
/* Look for the most significant element to
* replace in the rows below */
if((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
{
/* Loop over number of columns
* to the right of the pilot element */
j = numCols - l;
while(j > 0u)
{
/* Exchange the row elements of the input matrix */
Xchg = *pInT2;
*pInT2++ = *pInT1;
*pInT1++ = Xchg;
/* Decrement the loop counter */
j--;
}
/* Loop over number of columns of the destination matrix */
j = numCols;
while(j > 0u)
{
/* Exchange the row elements of the destination matrix */
Xchg = *pInT4;
*pInT4++ = *pInT3;
*pInT3++ = Xchg;
/* Decrement the loop counter */
j--;
}
/* Flag to indicate whether exchange is done or not */
flag = 1u;
/* Break after exchange is done */
break;
}
/* Update the destination pointer modifier */
k++;
/* Decrement the loop counter */
i--;
}
}
/* Update the status if the matrix is singular */
if((flag != 1u) && (in == 0.0f))
{
status = ARM_MATH_SINGULAR;
break;
}
/* Points to the pivot row of input and destination matrices */
pPivotRowIn = pIn + (l * numCols);
pPivotRowDst = pOut + (l * numCols);
/* Temporary pointers to the pivot row pointers */
pInT1 = pPivotRowIn;
pInT2 = pPivotRowDst;
/* Pivot element of the row */
in = *pPivotRowIn;
/* Loop over number of columns
* to the right of the pilot element */
j = (numCols - l);
while(j > 0u)
{
/* Divide each element of the row of the input matrix
* by the pivot element */
in1 = *pInT1;
*pInT1++ = in1 / in;
/* Decrement the loop counter */
j--;
}
/* Loop over number of columns of the destination matrix */
j = numCols;
while(j > 0u)
{
/* Divide each element of the row of the destination matrix
* by the pivot element */
in1 = *pInT2;
*pInT2++ = in1 / in;
/* Decrement the loop counter */
j--;
}
/* Replace the rows with the sum of that row and a multiple of row i
* so that each new element in column i above row i is zero.*/
/* Temporary pointers for input and destination matrices */
pInT1 = pIn;
pInT2 = pOut;
/* index used to check for pivot element */
i = 0u;
/* Loop over number of rows */
/* to be replaced by the sum of that row and a multiple of row i */
k = numRows;
while(k > 0u)
{
/* Check for the pivot element */
if(i == l)
{
/* If the processing element is the pivot element,
only the columns to the right are to be processed */
pInT1 += numCols - l;
pInT2 += numCols;
}
else
{
/* Element of the reference row */
in = *pInT1;
/* Working pointers for input and destination pivot rows */
pPRT_in = pPivotRowIn;
pPRT_pDst = pPivotRowDst;
/* Loop over the number of columns to the right of the pivot element,
to replace the elements in the input matrix */
j = (numCols - l);
while(j > 0u)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
in1 = *pInT1;
*pInT1++ = in1 - (in * *pPRT_in++);
/* Decrement the loop counter */
j--;
}
/* Loop over the number of columns to
replace the elements in the destination matrix */
j = numCols;
while(j > 0u)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
in1 = *pInT2;
*pInT2++ = in1 - (in * *pPRT_pDst++);
/* Decrement the loop counter */
j--;
}
}
/* Increment the temporary input pointer */
pInT1 = pInT1 + l;
/* Decrement the loop counter */
k--;
/* Increment the pivot index */
i++;
}
/* Increment the input pointer */
pIn++;
/* Decrement the loop counter */
loopCnt--;
/* Increment the index modifier */
l++;
}
#else
/* Run the below code for Cortex-M0 */
float32_t Xchg, in = 0.0f; /* Temporary input values */
uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
|| (pSrc->numRows != pDst->numRows))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*--------------------------------------------------------------------------------------------------------------
* Matrix Inverse can be solved using elementary row operations.
*
* Gauss-Jordan Method:
*
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
* augmented matrix as follows:
* _ _ _ _ _ _ _ _
* | | a11 a12 | | | 1 0 | | | X11 X12 |
* | | | | | | | = | |
* |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
*
* 2. In our implementation, pDst Matrix is used as identity matrix.
*
* 3. Begin with the first row. Let i = 1.
*
* 4. Check to see if the pivot for row i is zero.
* The pivot is the element of the main diagonal that is on the current row.
* For instance, if working with row i, then the pivot element is aii.
* If the pivot is zero, exchange that row with a row below it that does not
* contain a zero in column i. If this is not possible, then an inverse
* to that matrix does not exist.
*
* 5. Divide every element of row i by the pivot.
*
* 6. For every row below and row i, replace that row with the sum of that row and
* a multiple of row i so that each new element in column i below row i is zero.
*
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
* for every element below and above the main diagonal.
*
* 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
* Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
*----------------------------------------------------------------------------------------------------------------*/
/* Working pointer for destination matrix */
pInT2 = pOut;
/* Loop over the number of rows */
rowCnt = numRows;
/* Making the destination matrix as identity matrix */
while(rowCnt > 0u)
{
/* Writing all zeroes in lower triangle of the destination matrix */
j = numRows - rowCnt;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Writing all ones in the diagonal of the destination matrix */
*pInT2++ = 1.0f;
/* Writing all zeroes in upper triangle of the destination matrix */
j = rowCnt - 1u;
while(j > 0u)
{
*pInT2++ = 0.0f;
j--;
}
/* Decrement the loop counter */
rowCnt--;
}
/* Loop over the number of columns of the input matrix.
All the elements in each column are processed by the row operations */
loopCnt = numCols;
/* Index modifier to navigate through the columns */
l = 0u;
//for(loopCnt = 0u; loopCnt < numCols; loopCnt++)
while(loopCnt > 0u)
{
/* Check if the pivot element is zero..
* If it is zero then interchange the row with non zero row below.
* If there is no non zero element to replace in the rows below,
* then the matrix is Singular. */
/* Working pointer for the input matrix that points
* to the pivot element of the particular row */
pInT1 = pIn + (l * numCols);
/* Working pointer for the destination matrix that points
* to the pivot element of the particular row */
pInT3 = pOut + (l * numCols);
/* Temporary variable to hold the pivot value */
in = *pInT1;
/* Destination pointer modifier */
k = 1u;
/* Check if the pivot element is zero */
if(*pInT1 == 0.0f)
{
/* Loop over the number rows present below */
for (i = (l + 1u); i < numRows; i++)
{
/* Update the input and destination pointers */
pInT2 = pInT1 + (numCols * l);
pInT4 = pInT3 + (numCols * k);
/* Check if there is a non zero pivot element to
* replace in the rows below */
if(*pInT2 != 0.0f)
{
/* Loop over number of columns
* to the right of the pilot element */
for (j = 0u; j < (numCols - l); j++)
{
/* Exchange the row elements of the input matrix */
Xchg = *pInT2;
*pInT2++ = *pInT1;
*pInT1++ = Xchg;
}
for (j = 0u; j < numCols; j++)
{
Xchg = *pInT4;
*pInT4++ = *pInT3;
*pInT3++ = Xchg;
}
/* Flag to indicate whether exchange is done or not */
flag = 1u;
/* Break after exchange is done */
break;
}
/* Update the destination pointer modifier */
k++;
}
}
/* Update the status if the matrix is singular */
if((flag != 1u) && (in == 0.0f))
{
status = ARM_MATH_SINGULAR;
break;
}
/* Points to the pivot row of input and destination matrices */
pPivotRowIn = pIn + (l * numCols);
pPivotRowDst = pOut + (l * numCols);
/* Temporary pointers to the pivot row pointers */
pInT1 = pPivotRowIn;
pInT2 = pPivotRowDst;
/* Pivot element of the row */
in = *(pIn + (l * numCols));
/* Loop over number of columns
* to the right of the pilot element */
for (j = 0u; j < (numCols - l); j++)
{
/* Divide each element of the row of the input matrix
* by the pivot element */
*pInT1 = *pInT1 / in;
pInT1++;
}
for (j = 0u; j < numCols; j++)
{
/* Divide each element of the row of the destination matrix
* by the pivot element */
*pInT2 = *pInT2 / in;
pInT2++;
}
/* Replace the rows with the sum of that row and a multiple of row i
* so that each new element in column i above row i is zero.*/
/* Temporary pointers for input and destination matrices */
pInT1 = pIn;
pInT2 = pOut;
for (i = 0u; i < numRows; i++)
{
/* Check for the pivot element */
if(i == l)
{
/* If the processing element is the pivot element,
only the columns to the right are to be processed */
pInT1 += numCols - l;
pInT2 += numCols;
}
else
{
/* Element of the reference row */
in = *pInT1;
/* Working pointers for input and destination pivot rows */
pPRT_in = pPivotRowIn;
pPRT_pDst = pPivotRowDst;
/* Loop over the number of columns to the right of the pivot element,
to replace the elements in the input matrix */
for (j = 0u; j < (numCols - l); j++)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
*pInT1 = *pInT1 - (in * *pPRT_in++);
pInT1++;
}
/* Loop over the number of columns to
replace the elements in the destination matrix */
for (j = 0u; j < numCols; j++)
{
/* Replace the element by the sum of that row
and a multiple of the reference row */
*pInT2 = *pInT2 - (in * *pPRT_pDst++);
pInT2++;
}
}
/* Increment the temporary input pointer */
pInT1 = pInT1 + l;
}
/* Increment the input pointer */
pIn++;
/* Decrement the loop counter */
loopCnt--;
/* Increment the index modifier */
l++;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
if((flag != 1u) && (in == 0.0f))
{
status = ARM_MATH_SINGULAR;
}
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixInv group
*/
|