Files @ 3e00cf5fc57d
Branch filter:

Location: therm/libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_adc.c

Ethan Zonca
Trying to make clocks work
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
/**
  ******************************************************************************
  * @file    stm32l1xx_adc.c
  * @author  MCD Application Team
  * @version V1.2.0
  * @date    22-February-2013
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Analog to Digital Convertor (ADC) peripheral:
  *           + Initialization and Configuration
  *           + Power saving
  *           + Analog Watchdog configuration
  *           + Temperature Sensor & Vrefint (Voltage Reference internal) management 
  *           + Regular Channels Configuration
  *           + Regular Channels DMA Configuration
  *           + Injected channels Configuration
  *           + Interrupts and flags management
  *         
  *  @verbatim
================================================================================
                      ##### How to use this driver #####
================================================================================
    [..]
    (#) Configure the ADC Prescaler, conversion resolution and data alignment 
        using the ADC_Init() function.
    (#) Activate the ADC peripheral using ADC_Cmd() function.
    
    *** Regular channels group configuration ***
    ============================================
    [..]
    (+) To configure the ADC regular channels group features, use 
        ADC_Init() and ADC_RegularChannelConfig() functions.
    (+) To activate the continuous mode, use the ADC_continuousModeCmd()
        function.
    (+) To configurate and activate the Discontinuous mode, use the 
        ADC_DiscModeChannelCountConfig() and ADC_DiscModeCmd() functions.
    (+) To read the ADC converted values, use the ADC_GetConversionValue()
        function.
  
    *** DMA for Regular channels group features configuration ***
    =============================================================
    [..]
    (+) To enable the DMA mode for regular channels group, use the 
               ADC_DMACmd() function.
    (+) To enable the generation of DMA requests continuously at the end
               of the last DMA transfer, use the ADC_DMARequestAfterLastTransferCmd() 
               function.
             
    *** Injected channels group configuration ***
    =============================================
    [..]
    (+) To configure the ADC Injected channels group features, use 
        ADC_InjectedChannelConfig() and  ADC_InjectedSequencerLengthConfig()
        functions.
    (+) To activate the continuous mode, use the ADC_continuousModeCmd()
        function.
    (+) To activate the Injected Discontinuous mode, use the 
        ADC_InjectedDiscModeCmd() function.
    (+) To activate the AutoInjected mode, use the ADC_AutoInjectedConvCmd() 
        function.
    (+) To read the ADC converted values, use the ADC_GetInjectedConversionValue() 
        function.

  @endverbatim
  *
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */
  
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_adc.h"
#include "stm32l1xx_rcc.h"

/** @addtogroup STM32L1xx_StdPeriph_Driver
  * @{
  */

/** @defgroup ADC 
  * @brief ADC driver modules
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ADC DISCNUM mask */
#define CR1_DISCNUM_RESET         ((uint32_t)0xFFFF1FFF)
   
/* ADC AWDCH mask */
#define CR1_AWDCH_RESET           ((uint32_t)0xFFFFFFE0) 
  
/* ADC Analog watchdog enable mode mask */
#define CR1_AWDMODE_RESET         ((uint32_t)0xFF3FFDFF)
  
/* CR1 register Mask */
#define CR1_CLEAR_MASK            ((uint32_t)0xFCFFFEFF) 
   
/* ADC DELAY mask */            
#define CR2_DELS_RESET            ((uint32_t)0xFFFFFF0F)
   
/* ADC JEXTEN mask */
#define CR2_JEXTEN_RESET          ((uint32_t)0xFFCFFFFF)
  
/* ADC JEXTSEL mask */
#define CR2_JEXTSEL_RESET         ((uint32_t)0xFFF0FFFF)
  
/* CR2 register Mask */
#define CR2_CLEAR_MASK            ((uint32_t)0xC0FFF7FD)

/* ADC SQx mask */
#define SQR5_SQ_SET               ((uint32_t)0x0000001F)  
#define SQR4_SQ_SET               ((uint32_t)0x0000001F)  
#define SQR3_SQ_SET               ((uint32_t)0x0000001F)  
#define SQR2_SQ_SET               ((uint32_t)0x0000001F)  
#define SQR1_SQ_SET               ((uint32_t)0x0000001F)

/* ADC L Mask */
#define SQR1_L_RESET              ((uint32_t)0xFE0FFFFF) 

/* ADC JSQx mask */
#define JSQR_JSQ_SET              ((uint32_t)0x0000001F) 
 
/* ADC JL mask */
#define JSQR_JL_SET               ((uint32_t)0x00300000) 
#define JSQR_JL_RESET             ((uint32_t)0xFFCFFFFF) 

/* ADC SMPx mask */
#define SMPR1_SMP_SET             ((uint32_t)0x00000007)  
#define SMPR2_SMP_SET             ((uint32_t)0x00000007)
#define SMPR3_SMP_SET             ((uint32_t)0x00000007) 
#define SMPR0_SMP_SET             ((uint32_t)0x00000007)

/* ADC JDRx registers offset */
#define JDR_OFFSET                ((uint8_t)0x30)   
  
/* ADC CCR register Mask */
#define CR_CLEAR_MASK             ((uint32_t)0xFFFCFFFF) 

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup ADC_Private_Functions
  * @{
  */

/** @defgroup ADC_Group1 Initialization and Configuration functions
 *  @brief   Initialization and Configuration functions.
 *
@verbatim    
 ===============================================================================
          ##### Initialization and Configuration functions #####
 ===============================================================================
    [..] This section provides functions allowing to:
        (+) Initialize and configure the ADC Prescaler.
        (+) ADC Conversion Resolution (12bit..6bit).
        (+) Scan Conversion Mode (multichannel or one channel) for regular group.
        (+) ADC Continuous Conversion Mode (Continuous or Single conversion) for 
            regular group.
        (+) External trigger Edge and source of regular group.
        (+) Converted data alignment (left or right).
        (+) The number of ADC conversions that will be done using the sequencer 
            for regular channel group.
        (+) Enable or disable the ADC peripheral.
    
@endverbatim
  * @{
  */

/**
  * @brief  Deinitializes ADC1 peripheral registers to their default reset values.
  * @param  None
  * @retval None
  */
void ADC_DeInit(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));

  if(ADCx == ADC1)
  {
    /* Enable ADC1 reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, ENABLE);
    /* Release ADC1 from reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, DISABLE);
  }
}

/**
  * @brief  Initializes the ADCx peripheral according to the specified parameters
  *         in the ADC_InitStruct.
  * @note   This function is used to configure the global features of the ADC ( 
  *         Resolution and Data Alignment), however, the rest of the configuration
  *         parameters are specific to the regular channels group (scan mode 
  *         activation, continuous mode activation, External trigger source and 
  *         edge, number of conversion in the regular channels group sequencer).
  * @param  ADCx: where x can be 1 to select the ADC peripheral.
  * @param  ADC_InitStruct: pointer to an ADC_InitTypeDef structure that contains 
  *         the configuration information for the specified ADC peripheral.
  * @retval None
  */
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct)               
{
  uint32_t tmpreg1 = 0;
  uint8_t tmpreg2 = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_RESOLUTION(ADC_InitStruct->ADC_Resolution)); 
  assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ScanConvMode));
  assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ContinuousConvMode)); 
  assert_param(IS_ADC_EXT_TRIG_EDGE(ADC_InitStruct->ADC_ExternalTrigConvEdge)); 
  assert_param(IS_ADC_EXT_TRIG(ADC_InitStruct->ADC_ExternalTrigConv));    
  assert_param(IS_ADC_DATA_ALIGN(ADC_InitStruct->ADC_DataAlign)); 
  assert_param(IS_ADC_REGULAR_LENGTH(ADC_InitStruct->ADC_NbrOfConversion));
  
  /*---------------------------- ADCx CR1 Configuration -----------------*/
  /* Get the ADCx CR1 value */
  tmpreg1 = ADCx->CR1;
  /* Clear RES and SCAN bits */ 
  tmpreg1 &= CR1_CLEAR_MASK;
  /* Configure ADCx: scan conversion mode and resolution */
  /* Set SCAN bit according to ADC_ScanConvMode value */
  /* Set RES bit according to ADC_Resolution value */ 
  tmpreg1 |= (uint32_t)(((uint32_t)ADC_InitStruct->ADC_ScanConvMode << 8) | ADC_InitStruct->ADC_Resolution);
  /* Write to ADCx CR1 */
  ADCx->CR1 = tmpreg1;
  
  /*---------------------------- ADCx CR2 Configuration -----------------*/
  /* Get the ADCx CR2 value */
  tmpreg1 = ADCx->CR2;
  /* Clear CONT, ALIGN, EXTEN and EXTSEL bits */
  tmpreg1 &= CR2_CLEAR_MASK;
  /* Configure ADCx: external trigger event and edge, data alignment and continuous conversion mode */
  /* Set ALIGN bit according to ADC_DataAlign value */
  /* Set EXTEN bits according to ADC_ExternalTrigConvEdge value */ 
  /* Set EXTSEL bits according to ADC_ExternalTrigConv value */
  /* Set CONT bit according to ADC_ContinuousConvMode value */
  tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_DataAlign | ADC_InitStruct->ADC_ExternalTrigConv | 
              ADC_InitStruct->ADC_ExternalTrigConvEdge | ((uint32_t)ADC_InitStruct->ADC_ContinuousConvMode << 1));
  /* Write to ADCx CR2 */
  ADCx->CR2 = tmpreg1;
  
  /*---------------------------- ADCx SQR1 Configuration -----------------*/
  /* Get the ADCx SQR1 value */
  tmpreg1 = ADCx->SQR1;
  /* Clear L bits */
  tmpreg1 &= SQR1_L_RESET;
  /* Configure ADCx: regular channel sequence length */
  /* Set L bits according to ADC_NbrOfConversion value */ 
  tmpreg2 |= (uint8_t)(ADC_InitStruct->ADC_NbrOfConversion - (uint8_t)1);
  tmpreg1 |= ((uint32_t)tmpreg2 << 20);
  /* Write to ADCx SQR1 */
  ADCx->SQR1 = tmpreg1;
}

/**
  * @brief  Fills each ADC_InitStruct member with its default value.
  * @note   This function is used to initialize the global features of the ADC ( 
  *         Resolution and Data Alignment), however, the rest of the configuration
  *         parameters are specific to the regular channels group (scan mode 
  *         activation, continuous mode activation, External trigger source and 
  *         edge, number of conversion in the regular channels group sequencer).
  * @param  ADC_InitStruct: pointer to an ADC_InitTypeDef structure which will 
  *         be initialized.
  * @retval None
  */
void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct)                            
{
  /* Reset ADC init structure parameters values */
  /* Initialize the ADC_Resolution member */
  ADC_InitStruct->ADC_Resolution = ADC_Resolution_12b;

  /* Initialize the ADC_ScanConvMode member */
  ADC_InitStruct->ADC_ScanConvMode = DISABLE;

  /* Initialize the ADC_ContinuousConvMode member */
  ADC_InitStruct->ADC_ContinuousConvMode = DISABLE;

  /* Initialize the ADC_ExternalTrigConvEdge member */
  ADC_InitStruct->ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;

  /* Initialize the ADC_ExternalTrigConv member */
  ADC_InitStruct->ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2;

  /* Initialize the ADC_DataAlign member */
  ADC_InitStruct->ADC_DataAlign = ADC_DataAlign_Right;

  /* Initialize the ADC_NbrOfConversion member */
  ADC_InitStruct->ADC_NbrOfConversion = 1;
}

/**
  * @brief  Initializes the ADCs peripherals according to the specified parameters
  *          in the ADC_CommonInitStruct.
  * @param  ADC_CommonInitStruct: pointer to an ADC_CommonInitTypeDef structure 
  *         that contains the configuration information (Prescaler) for ADC1 peripheral.
  * @retval None
  */
void ADC_CommonInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct)                           
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_PRESCALER(ADC_CommonInitStruct->ADC_Prescaler));

  /*---------------------------- ADC CCR Configuration -----------------*/
  /* Get the ADC CCR value */
  tmpreg = ADC->CCR;

  /* Clear ADCPRE bit */ 
  tmpreg &= CR_CLEAR_MASK;
  
  /* Configure ADCx: ADC prescaler according to ADC_Prescaler */                
  tmpreg |= (uint32_t)(ADC_CommonInitStruct->ADC_Prescaler);        
                
  /* Write to ADC CCR */
  ADC->CCR = tmpreg;
}

/**
  * @brief  Fills each ADC_CommonInitStruct member with its default value.
  * @param  ADC_CommonInitStruct: pointer to an ADC_CommonInitTypeDef structure
  *         which will be initialized.
  * @retval None
  */
void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct)                      
{
  /* Reset ADC init structure parameters values */
  /* Initialize the ADC_Prescaler member */
  ADC_CommonInitStruct->ADC_Prescaler = ADC_Prescaler_Div1;
}

/**
  * @brief  Enables or disables the specified ADC peripheral.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the ADCx peripheral.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the ADON bit to wake up the ADC from power down mode */
    ADCx->CR2 |= (uint32_t)ADC_CR2_ADON;
  }
  else
  {
    /* Disable the selected ADC peripheral */
    ADCx->CR2 &= (uint32_t)(~ADC_CR2_ADON);
  }
}

/**
  * @brief  Selects the specified ADC Channels Bank.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_Bank: ADC Channels Bank.
  *     @arg ADC_Bank_A: ADC Channels Bank A.
  *     @arg ADC_Bank_B: ADC Channels Bank B.
  * @retval None
  */
void ADC_BankSelection(ADC_TypeDef* ADCx, uint8_t ADC_Bank)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_BANK(ADC_Bank));

  if (ADC_Bank != ADC_Bank_A)
  {
    /* Set the ADC_CFG bit to select the ADC Bank B channels */
    ADCx->CR2 |= (uint32_t)ADC_CR2_CFG;
  }
  else
  {
    /* Reset the ADC_CFG bit to select the ADC Bank A channels */
    ADCx->CR2 &= (uint32_t)(~ADC_CR2_CFG);
  }
}

/**
  * @}
  */

/** @defgroup ADC_Group2 Power saving functions
 *  @brief   Power saving functions 
 *
@verbatim   
 ===============================================================================
                    ##### Power saving functions #####
 ===============================================================================
    [..] This section provides functions allowing to reduce power consumption.
    [..] The two function must be combined to get the maximal benefits:
         When the ADC frequency is higher than the CPU one, it is recommended to:
         (#) Insert a freeze delay :
             ==> using ADC_DelaySelectionConfig(ADC1, ADC_DelayLength_Freeze).
         (#) Enable the power down in Idle and Delay phases :
             ==> using ADC_PowerDownCmd(ADC1, ADC_PowerDown_Idle_Delay, ENABLE).

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the ADC Power Down during Delay and/or Idle phase.
  * @note   ADC power-on and power-off can be managed by hardware to cut the 
  *         consumption when the ADC is not converting.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_PowerDown: The ADC power down configuration.
  *         This parameter can be one of the following values:
  *     @arg ADC_PowerDown_Delay:      ADC is powered down during delay phase.
  *     @arg ADC_PowerDown_Idle:       ADC is powered down during Idle phase.
  *     @arg ADC_PowerDown_Idle_Delay: ADC is powered down during Delay and Idle phases.
  * @note   The ADC can be powered down:
  * @note   During the hardware delay insertion (using the ADC_PowerDown_Delay
  *           parameter).
  *           => The ADC is powered up again at the end of the delay.
  * @note   During the ADC is waiting for a trigger event ( using the 
  *           ADC_PowerDown_Idle parameter).
  *           => The ADC is powered up at the next trigger event.
  * @note   During the hardware delay insertion or the ADC is waiting for a 
  *           trigger event (using the ADC_PowerDown_Idle_Delay parameter).
  *            => The ADC is powered up only at the end of the delay and at the
  *              next trigger event.
  * @param  NewState: new state of the ADCx power down.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_PowerDownCmd(ADC_TypeDef* ADCx, uint32_t ADC_PowerDown, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  assert_param(IS_ADC_POWER_DOWN(ADC_PowerDown));
  
  if (NewState != DISABLE)
  {
    /* Enable the ADC power-down during Delay and/or Idle phase */
    ADCx->CR1 |= ADC_PowerDown;
  }
  else
  {
    /* Disable The ADC power-down during Delay and/or Idle phase */
    ADCx->CR1 &= (uint32_t)~ADC_PowerDown;
  }
}

/**
  * @brief  Defines the length of the delay which is applied after a conversion 
  *         or a sequence of conversion.
  * @note   When the CPU clock is not fast enough to manage the data rate, a 
  *         Hardware delay can be introduced between ADC conversions to reduce 
  *         this data rate.
  * @note   The Hardware delay is inserted after :
  *         - each regular conversion.
  *         - after each sequence of injected conversions.
  * @note   No Hardware delay is inserted between conversions of different groups.
  * @note   When the hardware delay is not enough, the Freeze Delay Mode can be 
  *         selected and a new conversion can start only if all the previous data 
  *         of the same group have been treated:
  *         - for a regular conversion: once the ADC conversion data register has 
  *           been read (using ADC_GetConversionValue() function) or if the EOC 
  *           Flag has been cleared (using ADC_ClearFlag() function).
  *         - for an injected conversion: when the JEOC bit has been cleared 
  *           (using ADC_ClearFlag() function).
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_DelayLength: The length of delay which is applied after a 
  *         conversion or a sequence of conversion. 
  *   This parameter can be one of the following values:
  *     @arg ADC_DelayLength_None: No delay.
  *     @arg ADC_DelayLength_Freeze: Delay until the converted data has been read.
  *     @arg ADC_DelayLength_7Cycles: Delay length equal to 7 APB clock cycles.
  *     @arg ADC_DelayLength_15Cycles: Delay length equal to 15 APB clock cycles	
  *     @arg ADC_DelayLength_31Cycles: Delay length equal to 31 APB clock cycles	
  *     @arg ADC_DelayLength_63Cycles: Delay length equal to 63 APB clock cycles	
  *     @arg ADC_DelayLength_127Cycles: Delay length equal to 127 APB clock cycles	
  *     @arg ADC_DelayLength_255Cycles: Delay length equal to 255 APB clock cycles	
  * @retval None
  */
void ADC_DelaySelectionConfig(ADC_TypeDef* ADCx, uint8_t ADC_DelayLength)
{
  uint32_t tmpreg = 0;
   
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_DELAY_LENGTH(ADC_DelayLength));

  /* Get the old register value */    
  tmpreg = ADCx->CR2;
  /* Clear the old delay length */
  tmpreg &= CR2_DELS_RESET;
  /* Set the delay length */
  tmpreg |= ADC_DelayLength;
  /* Store the new register value */
  ADCx->CR2 = tmpreg;

}

/**
  * @}
  */

/** @defgroup ADC_Group3 Analog Watchdog configuration functions
 *  @brief   Analog Watchdog configuration functions. 
 *
@verbatim   
 ===============================================================================
                   ##### Analog Watchdog configuration functions #####
 ===============================================================================  
    [..] This section provides functions allowing to configure the Analog Watchdog
         (AWD) feature in the ADC.
    [..] A typical configuration Analog Watchdog is done following these steps :
         (#) the ADC guarded channel(s) is (are) selected using the 
             ADC_AnalogWatchdogSingleChannelConfig() function.
         (#) The Analog watchdog lower and higher threshold are configured using 
             the ADC_AnalogWatchdogThresholdsConfig() function.
         (#) The Analog watchdog is enabled and configured to enable the check, 
             on one or more channels, using the  ADC_AnalogWatchdogCmd() function.

@endverbatim
  * @{
  */
  
/**
  * @brief  Enables or disables the analog watchdog on single/all regular
  *         or injected channels.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_AnalogWatchdog: the ADC analog watchdog configuration.
  *   This parameter can be one of the following values:
  *     @arg ADC_AnalogWatchdog_SingleRegEnable: Analog watchdog on a single 
  *          regular channel.
  *     @arg ADC_AnalogWatchdog_SingleInjecEnable: Analog watchdog on a single 
  *          injected channel.
  *     @arg ADC_AnalogWatchdog_SingleRegOrInjecEnable: Analog watchdog on a 
  *          single regular or injected channel.
  *     @arg ADC_AnalogWatchdog_AllRegEnable: Analog watchdog on all regular 
  *          channel.
  *     @arg ADC_AnalogWatchdog_AllInjecEnable: Analog watchdog on all injected 
  *          channel.
  *     @arg ADC_AnalogWatchdog_AllRegAllInjecEnable: Analog watchdog on all 
  *           regular and injected channels.
  *     @arg ADC_AnalogWatchdog_None: No channel guarded by the analog watchdog.
  * @retval None	  
  */
void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_ANALOG_WATCHDOG(ADC_AnalogWatchdog));

  /* Get the old register value */
  tmpreg = ADCx->CR1;
  /* Clear AWDEN, JAWDEN and AWDSGL bits */   
  tmpreg &= CR1_AWDMODE_RESET;
  /* Set the analog watchdog enable mode */
  tmpreg |= ADC_AnalogWatchdog;
  /* Store the new register value */
  ADCx->CR1 = tmpreg;
}

/**
  * @brief  Configures the high and low thresholds of the analog watchdog.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  HighThreshold: the ADC analog watchdog High threshold value.
  *         This parameter must be a 12bit value.
  * @param  LowThreshold: the ADC analog watchdog Low threshold value.
  *         This parameter must be a 12bit value.
  * @retval None
  */
void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,
                                        uint16_t LowThreshold)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_THRESHOLD(HighThreshold));
  assert_param(IS_ADC_THRESHOLD(LowThreshold));

  /* Set the ADCx high threshold */
  ADCx->HTR = HighThreshold;
  /* Set the ADCx low threshold */
  ADCx->LTR = LowThreshold;
}

/**
  * @brief  Configures the analog watchdog guarded single channel.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_Channel: the ADC channel to configure for the analog watchdog. 
  *   This parameter can be one of the following values:
  *     @arg ADC_Channel_0: ADC Channel0 selected
  *     @arg ADC_Channel_1: ADC Channel1 selected
  *     @arg ADC_Channel_2: ADC Channel2 selected
  *     @arg ADC_Channel_3: ADC Channel3 selected
  *     @arg ADC_Channel_4: ADC Channel4 selected
  *     @arg ADC_Channel_5: ADC Channel5 selected
  *     @arg ADC_Channel_6: ADC Channel6 selected
  *     @arg ADC_Channel_7: ADC Channel7 selected
  *     @arg ADC_Channel_8: ADC Channel8 selected
  *     @arg ADC_Channel_9: ADC Channel9 selected
  *     @arg ADC_Channel_10: ADC Channel10 selected
  *     @arg ADC_Channel_11: ADC Channel11 selected
  *     @arg ADC_Channel_12: ADC Channel12 selected
  *     @arg ADC_Channel_13: ADC Channel13 selected
  *     @arg ADC_Channel_14: ADC Channel14 selected
  *     @arg ADC_Channel_15: ADC Channel15 selected
  *     @arg ADC_Channel_16: ADC Channel16 selected
  *     @arg ADC_Channel_17: ADC Channel17 selected
  *     @arg ADC_Channel_18: ADC Channel18 selected
  *     @arg ADC_Channel_19: ADC Channel19 selected
  *     @arg ADC_Channel_20: ADC Channel20 selected
  *     @arg ADC_Channel_21: ADC Channel21 selected
  *     @arg ADC_Channel_22: ADC Channel22 selected
  *     @arg ADC_Channel_23: ADC Channel23 selected
  *     @arg ADC_Channel_24: ADC Channel24 selected
  *     @arg ADC_Channel_25: ADC Channel25 selected
  *     @arg ADC_Channel_27: ADC Channel27 selected
  *     @arg ADC_Channel_28: ADC Channel28 selected
  *     @arg ADC_Channel_29: ADC Channel29 selected
  *     @arg ADC_Channel_30: ADC Channel30 selected
  *     @arg ADC_Channel_31: ADC Channel31 selected
  *     @arg ADC_Channel_0b: ADC Channel0b selected
  *     @arg ADC_Channel_1b: ADC Channel1b selected
  *     @arg ADC_Channel_2b: ADC Channel2b selected
  *     @arg ADC_Channel_3b: ADC Channel3b selected
  *     @arg ADC_Channel_6b: ADC Channel6b selected
  *     @arg ADC_Channel_7b: ADC Channel7b selected
  *     @arg ADC_Channel_8b: ADC Channel8b selected
  *     @arg ADC_Channel_9b: ADC Channel9b selected
  *     @arg ADC_Channel_10b: ADC Channel10b selected
  *     @arg ADC_Channel_11b: ADC Channel11b selected
  *     @arg ADC_Channel_12b: ADC Channel12b selected
  * @retval None
  */
void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CHANNEL(ADC_Channel));

  /* Get the old register value */
  tmpreg = ADCx->CR1;
  /* Clear the Analog watchdog channel select bits */
  tmpreg &= CR1_AWDCH_RESET;
  /* Set the Analog watchdog channel */
  tmpreg |= ADC_Channel;
  /* Store the new register value */
  ADCx->CR1 = tmpreg;
}

/**
  * @}
  */

/** @defgroup ADC_Group4 Temperature Sensor & Vrefint (Voltage Reference internal) management function
 *  @brief   Temperature Sensor & Vrefint (Voltage Reference internal) management function.
 *
@verbatim   
 =========================================================================================
 ##### Temperature Sensor and Vrefint (Voltage Reference internal) management function #####
 =========================================================================================
    [..] This section provides a function allowing to enable/ disable the internal 
         connections between the ADC and the Temperature Sensor and the Vrefint 
         source.
    [..] A typical configuration to get the Temperature sensor and Vrefint channels 
         voltages is done following these steps :
         (#) Enable the internal connection of Temperature sensor and Vrefint sources 
             with the ADC channels using ADC_TempSensorVrefintCmd() function.
         (#) select the ADC_Channel_TempSensor and/or ADC_Channel_Vrefint using 
             ADC_RegularChannelConfig() or  ADC_InjectedChannelConfig() functions.
         (#) Get the voltage values, using ADC_GetConversionValue() or 
             ADC_GetInjectedConversionValue().
@endverbatim
  * @{
  */
  
/**
  * @brief  Enables or disables the temperature sensor and Vrefint channel.
  * @param  NewState: new state of the temperature sensor and Vref int channels.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_TempSensorVrefintCmd(FunctionalState NewState)                
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the temperature sensor and Vrefint channel*/
    ADC->CCR |= (uint32_t)ADC_CCR_TSVREFE;
  }
  else
  {
    /* Disable the temperature sensor and Vrefint channel*/
    ADC->CCR &= (uint32_t)(~ADC_CCR_TSVREFE);
  }
}

/**
  * @}
  */

/** @defgroup ADC_Group5 Regular Channels Configuration functions
 *  @brief   Regular Channels Configuration functions.
 *
@verbatim   
 ===============================================================================
            ##### Regular Channels Configuration functions #####
 ===============================================================================
    [..] This section provides functions allowing to manage the ADC regular channels,
         it is composed of 2 sub sections :
         (#) Configuration and management functions for regular channels: This 
             subsection provides functions allowing to configure the ADC regular 
             channels :
             (++) Configure the rank in the regular group sequencer for each channel.
             (++) Configure the sampling time for each channel.
             (++) select the conversion Trigger for regular channels.
             (++) select the desired EOC event behavior configuration.
             (++) Activate the continuous Mode  (*).
             (++) Activate the Discontinuous Mode.
             -@@- Please Note that the following features for regular channels are 
                  configurated using the ADC_Init() function : 
                  (+@@) scan mode activation.
                  (+@@) continuous mode activation (**).
                  (+@@) External trigger source.
                  (+@@) External trigger edge.
                  (+@@) number of conversion in the regular channels group sequencer.
             -@@- (*) and (**) are performing the same configuration.
         (#) Get the conversion data: This subsection provides an important function 
             in the ADC peripheral since it returns the converted data of the current 
             regular channel. When the Conversion value is read, the EOC Flag is 
             automatically cleared.
@endverbatim
  * @{
  */

/**
  * @brief  Configures for the selected ADC regular channel its corresponding
  *         rank in the sequencer and its sampling time.
  * @param  ADCx: where x can be 1 to select the ADC peripheral.
  * @param  ADC_Channel: the ADC channel to configure.
  *   This parameter can be one of the following values:
  *     @arg ADC_Channel_0: ADC Channel0 selected
  *     @arg ADC_Channel_1: ADC Channel1 selected
  *     @arg ADC_Channel_2: ADC Channel2 selected
  *     @arg ADC_Channel_3: ADC Channel3 selected
  *     @arg ADC_Channel_4: ADC Channel4 selected
  *     @arg ADC_Channel_5: ADC Channel5 selected
  *     @arg ADC_Channel_6: ADC Channel6 selected
  *     @arg ADC_Channel_7: ADC Channel7 selected
  *     @arg ADC_Channel_8: ADC Channel8 selected
  *     @arg ADC_Channel_9: ADC Channel9 selected
  *     @arg ADC_Channel_10: ADC Channel10 selected
  *     @arg ADC_Channel_11: ADC Channel11 selected
  *     @arg ADC_Channel_12: ADC Channel12 selected
  *     @arg ADC_Channel_13: ADC Channel13 selected
  *     @arg ADC_Channel_14: ADC Channel14 selected
  *     @arg ADC_Channel_15: ADC Channel15 selected
  *     @arg ADC_Channel_16: ADC Channel16 selected
  *     @arg ADC_Channel_17: ADC Channel17 selected
  *     @arg ADC_Channel_18: ADC Channel18 selected 
  *     @arg ADC_Channel_19: ADC Channel19 selected
  *     @arg ADC_Channel_20: ADC Channel20 selected
  *     @arg ADC_Channel_21: ADC Channel21 selected
  *     @arg ADC_Channel_22: ADC Channel22 selected
  *     @arg ADC_Channel_23: ADC Channel23 selected
  *     @arg ADC_Channel_24: ADC Channel24 selected
  *     @arg ADC_Channel_25: ADC Channel25 selected
  *     @arg ADC_Channel_27: ADC Channel27 selected
  *     @arg ADC_Channel_28: ADC Channel28 selected
  *     @arg ADC_Channel_29: ADC Channel29 selected
  *     @arg ADC_Channel_30: ADC Channel30 selected
  *     @arg ADC_Channel_31: ADC Channel31 selected 
  *     @arg ADC_Channel_0b: ADC Channel0b selected
  *     @arg ADC_Channel_1b: ADC Channel1b selected
  *     @arg ADC_Channel_2b: ADC Channel2b selected
  *     @arg ADC_Channel_3b: ADC Channel3b selected
  *     @arg ADC_Channel_6b: ADC Channel6b selected
  *     @arg ADC_Channel_7b: ADC Channel7b selected
  *     @arg ADC_Channel_8b: ADC Channel8b selected
  *     @arg ADC_Channel_9b: ADC Channel9b selected
  *     @arg ADC_Channel_10b: ADC Channel10b selected
  *     @arg ADC_Channel_11b: ADC Channel11b selected
  *     @arg ADC_Channel_12b: ADC Channel12b selected   
  * @param  Rank: The rank in the regular group sequencer. This parameter
  *               must be between 1 to 28.
  * @param  ADC_SampleTime: The sample time value to be set for the selected 
  *         channel.
  *   This parameter can be one of the following values:
  *     @arg ADC_SampleTime_4Cycles: Sample time equal to 4 cycles
  *     @arg ADC_SampleTime_9Cycles: Sample time equal to 9 cycles
  *     @arg ADC_SampleTime_16Cycles: Sample time equal to 16 cycles
  *     @arg ADC_SampleTime_24Cycles: Sample time equal to 24 cycles	
  *     @arg ADC_SampleTime_48Cycles: Sample time equal to 48 cycles	
  *     @arg ADC_SampleTime_96Cycles: Sample time equal to 96 cycles	
  *     @arg ADC_SampleTime_192Cycles: Sample time equal to 192 cycles	
  *     @arg ADC_SampleTime_384Cycles: Sample time equal to 384 cycles	
  * @retval None
  */
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
  uint32_t tmpreg1 = 0, tmpreg2 = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CHANNEL(ADC_Channel));
  assert_param(IS_ADC_REGULAR_RANK(Rank));
  assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));

  /* If ADC_Channel_30 or ADC_Channel_31 is selected */
  if (ADC_Channel > ADC_Channel_29)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR0;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR0_SMP_SET << (3 * (ADC_Channel - 30));
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 30));
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR0 = tmpreg1;
  }
  /* If ADC_Channel_20 ... ADC_Channel_29 is selected */
  else if (ADC_Channel > ADC_Channel_19)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR1;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR1_SMP_SET << (3 * (ADC_Channel - 20));
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 20));
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR1 = tmpreg1;
  }
  /* If ADC_Channel_10 ... ADC_Channel_19 is selected */
  else if (ADC_Channel > ADC_Channel_9)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR2;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR2_SMP_SET << (3 * (ADC_Channel - 10));
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR2 = tmpreg1;
  }
  else /* ADC_Channel include in ADC_Channel_[0..9] */
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR3;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR3_SMP_SET << (3 * ADC_Channel);
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR3 = tmpreg1;
  }
  /* For Rank 1 to 6 */
  if (Rank < 7)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR5;
    /* Calculate the mask to clear */
    tmpreg2 = SQR5_SQ_SET << (5 * (Rank - 1));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 1));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR5 = tmpreg1;
  }
  /* For Rank 7 to 12 */
  else if (Rank < 13)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR4;
    /* Calculate the mask to clear */
    tmpreg2 = SQR4_SQ_SET << (5 * (Rank - 7));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 7));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR4 = tmpreg1;
  }  
  /* For Rank 13 to 18 */
  else if (Rank < 19)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR3;
    /* Calculate the mask to clear */
    tmpreg2 = SQR3_SQ_SET << (5 * (Rank - 13));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 13));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR3 = tmpreg1;
  }
    
  /* For Rank 19 to 24 */
  else if (Rank < 25)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR2;
    /* Calculate the mask to clear */
    tmpreg2 = SQR2_SQ_SET << (5 * (Rank - 19));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 19));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR2 = tmpreg1;
  }   
  
  /* For Rank 25 to 28 */
  else
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR1;
    /* Calculate the mask to clear */
    tmpreg2 = SQR1_SQ_SET << (5 * (Rank - 25));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 25));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR1 = tmpreg1;
  }
}

/**
  * @brief  Enables the selected ADC software start conversion of the regular channels.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @retval None
  */
void ADC_SoftwareStartConv(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));

  /* Enable the selected ADC conversion for regular group */
  ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
}

/**
  * @brief  Gets the selected ADC Software start regular conversion Status.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @retval The new state of ADC software start conversion (SET or RESET).
  */
FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx)
{
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));

  /* Check the status of SWSTART bit */
  if ((ADCx->CR2 & ADC_CR2_SWSTART) != (uint32_t)RESET)
  {
    /* SWSTART bit is set */
    bitstatus = SET;
  }
  else
  {
    /* SWSTART bit is reset */
    bitstatus = RESET;
  }
  /* Return the SWSTART bit status */
  return  bitstatus;
}

/**
  * @brief  Enables or disables the EOC on each regular channel conversion.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC EOC flag rising
  *    This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_EOCOnEachRegularChannelCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC EOC rising on each regular channel conversion */
    ADCx->CR2 |= ADC_CR2_EOCS;
  }
  else
  {
    /* Disable the selected ADC EOC rising on each regular channel conversion */
    ADCx->CR2 &= (uint32_t)~ADC_CR2_EOCS;
  }
}

/**
  * @brief  Enables or disables the ADC continuous conversion mode.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC continuous conversion mode.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_ContinuousModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC continuous conversion mode */
    ADCx->CR2 |= (uint32_t)ADC_CR2_CONT;
  }
  else
  {
    /* Disable the selected ADC continuous conversion mode */
    ADCx->CR2 &= (uint32_t)(~ADC_CR2_CONT);
  }
}

/**
  * @brief  Configures the discontinuous mode for the selected ADC regular
  *         group channel.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  Number: specifies the discontinuous mode regular channel count value.
  *         This number must be between 1 and 8.
  * @retval None
  */
void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number)
{
  uint32_t tmpreg1 = 0;
  uint32_t tmpreg2 = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_REGULAR_DISC_NUMBER(Number));

  /* Get the old register value */
  tmpreg1 = ADCx->CR1;
  /* Clear the old discontinuous mode channel count */
  tmpreg1 &= CR1_DISCNUM_RESET;
  /* Set the discontinuous mode channel count */
  tmpreg2 = Number - 1;
  tmpreg1 |= tmpreg2 << 13;
  /* Store the new register value */
  ADCx->CR1 = tmpreg1;
}

/**
  * @brief  Enables or disables the discontinuous mode on regular group
  *         channel for the specified ADC.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC discontinuous mode on regular 
  *         group channel.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC regular discontinuous mode */
    ADCx->CR1 |= (uint32_t)ADC_CR1_DISCEN;
  }
  else
  {
    /* Disable the selected ADC regular discontinuous mode */
    ADCx->CR1 &= (uint32_t)(~ADC_CR1_DISCEN);
  }
}

/**
  * @brief  Returns the last ADCx conversion result data for regular channel.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @retval The Data conversion value.
  */
uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));

  /* Return the selected ADC conversion value */
  return (uint16_t) ADCx->DR;
}

/**
  * @}
  */

/** @defgroup ADC_Group6 Regular Channels DMA Configuration functions
 *  @brief   Regular Channels DMA Configuration functions.
 *
@verbatim   
 ===============================================================================
          ##### Regular Channels DMA Configuration functions #####
 ===============================================================================
    [..] This section provides functions allowing to configure the DMA for ADC regular 
         channels.Since converted regular channel values are stored into a unique 
         data register, it is useful to use DMA for conversion of more than one 
         regular channel. This avoids the loss of the data already stored in the 
         ADC Data register.
         When the DMA mode is enabled (using the ADC_DMACmd() function), after each
         conversion of a regular channel, a DMA request is generated.
    [..] Depending on the "DMA disable selection" configuration (using the 
         ADC_DMARequestAfterLastTransferCmd() function), at the end of the last DMA 
         transfer, two possibilities are allowed:
         (+) No new DMA request is issued to the DMA controller (feature DISABLED).
         (+) Requests can continue to be generated (feature ENABLED).

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified ADC DMA request.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC DMA transfer.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_DMA_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC DMA request */
    ADCx->CR2 |= (uint32_t)ADC_CR2_DMA;
  }
  else
  {
    /* Disable the selected ADC DMA request */
    ADCx->CR2 &= (uint32_t)(~ADC_CR2_DMA);
  }
}


/**
  * @brief  Enables or disables the ADC DMA request after last transfer (Single-ADC mode).
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC EOC flag rising
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC DMA request after last transfer */
    ADCx->CR2 |= ADC_CR2_DDS;
  }
  else
  {
    /* Disable the selected ADC DMA request after last transfer */
    ADCx->CR2 &= (uint32_t)~ADC_CR2_DDS;
  }
}

/**
  * @}
  */

/** @defgroup ADC_Group7 Injected channels Configuration functions
 *  @brief   Injected channels Configuration functions.
 *
@verbatim   
 ===============================================================================
            ##### Injected channels Configuration functions #####
 ===============================================================================
    [..] This section provide functions allowing to configure the ADC Injected channels,
         it is composed of 2 sub sections : 
         (#) Configuration functions for Injected channels: This subsection provides 
             functions allowing to configure the ADC injected channels :
             (++) Configure the rank in the injected group sequencer for each channel.
             (++) Configure the sampling time for each channel.
             (++) Activate the Auto injected Mode.
             (++) Activate the Discontinuous Mode.
             (++) scan mode activation.
             (++) External/software trigger source.
             (++) External trigger edge.
             (++) injected channels sequencer.
    
         (#) Get the Specified Injected channel conversion data: This subsection 
             provides an important function in the ADC peripheral since it returns 
             the converted data of the specific injected channel.

@endverbatim
  * @{
  */ 

/**
  * @brief  Configures for the selected ADC injected channel its corresponding
  *         rank in the sequencer and its sample time.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_Channel: the ADC channel to configure.
  *   This parameter can be one of the following values:
  *     @arg ADC_Channel_0: ADC Channel0 selected
  *     @arg ADC_Channel_1: ADC Channel1 selected
  *     @arg ADC_Channel_2: ADC Channel2 selected
  *     @arg ADC_Channel_3: ADC Channel3 selected
  *     @arg ADC_Channel_4: ADC Channel4 selected
  *     @arg ADC_Channel_5: ADC Channel5 selected
  *     @arg ADC_Channel_6: ADC Channel6 selected
  *     @arg ADC_Channel_7: ADC Channel7 selected
  *     @arg ADC_Channel_8: ADC Channel8 selected
  *     @arg ADC_Channel_9: ADC Channel9 selected
  *     @arg ADC_Channel_10: ADC Channel10 selected
  *     @arg ADC_Channel_11: ADC Channel11 selected
  *     @arg ADC_Channel_12: ADC Channel12 selected
  *     @arg ADC_Channel_13: ADC Channel13 selected
  *     @arg ADC_Channel_14: ADC Channel14 selected
  *     @arg ADC_Channel_15: ADC Channel15 selected
  *     @arg ADC_Channel_16: ADC Channel16 selected
  *     @arg ADC_Channel_17: ADC Channel17 selected
  *     @arg ADC_Channel_18: ADC Channel18 selected 
  *     @arg ADC_Channel_19: ADC Channel19 selected
  *     @arg ADC_Channel_20: ADC Channel20 selected
  *     @arg ADC_Channel_21: ADC Channel21 selected
  *     @arg ADC_Channel_22: ADC Channel22 selected
  *     @arg ADC_Channel_23: ADC Channel23 selected
  *     @arg ADC_Channel_24: ADC Channel24 selected
  *     @arg ADC_Channel_25: ADC Channel25 selected
  *     @arg ADC_Channel_27: ADC Channel27 selected
  *     @arg ADC_Channel_28: ADC Channel28 selected
  *     @arg ADC_Channel_29: ADC Channel29 selected
  *     @arg ADC_Channel_30: ADC Channel30 selected
  *     @arg ADC_Channel_31: ADC Channel31 selected 
  *     @arg ADC_Channel_0b: ADC Channel0b selected
  *     @arg ADC_Channel_1b: ADC Channel1b selected
  *     @arg ADC_Channel_2b: ADC Channel2b selected
  *     @arg ADC_Channel_3b: ADC Channel3b selected
  *     @arg ADC_Channel_6b: ADC Channel6b selected
  *     @arg ADC_Channel_7b: ADC Channel7b selected
  *     @arg ADC_Channel_8b: ADC Channel8b selected
  *     @arg ADC_Channel_9b: ADC Channel9b selected
  *     @arg ADC_Channel_10b: ADC Channel10b selected
  *     @arg ADC_Channel_11b: ADC Channel11b selected
  *     @arg ADC_Channel_12b: ADC Channel12b selected   
  * @param  Rank: The rank in the injected group sequencer. This parameter
  *         must be between 1 to 4.
  * @param  ADC_SampleTime: The sample time value to be set for the selected 
  *         channel. This parameter can be one of the following values:
  *     @arg ADC_SampleTime_4Cycles: Sample time equal to 4 cycles
  *     @arg ADC_SampleTime_9Cycles: Sample time equal to 9 cycles
  *     @arg ADC_SampleTime_16Cycles: Sample time equal to 16 cycles
  *     @arg ADC_SampleTime_24Cycles: Sample time equal to 24 cycles	
  *     @arg ADC_SampleTime_48Cycles: Sample time equal to 48 cycles	
  *     @arg ADC_SampleTime_96Cycles: Sample time equal to 96 cycles	
  *     @arg ADC_SampleTime_192Cycles: Sample time equal to 192 cycles	
  *     @arg ADC_SampleTime_384Cycles: Sample time equal to 384 cycles	
  * @retval None
  */
void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
  uint32_t tmpreg1 = 0, tmpreg2 = 0, tmpreg3 = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CHANNEL(ADC_Channel));
  assert_param(IS_ADC_INJECTED_RANK(Rank));
  assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
  
  /* If ADC_Channel_30 or ADC_Channel_31 is selected */
  if (ADC_Channel > ADC_Channel_29)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR0;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR0_SMP_SET << (3 * (ADC_Channel - 30));
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 30));
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR0 = tmpreg1;
  }
  /* If ADC_Channel_20 ... ADC_Channel_29 is selected */
  else if (ADC_Channel > ADC_Channel_19)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR1;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR1_SMP_SET << (3 * (ADC_Channel - 20));
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 20));
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR1 = tmpreg1;
  }  
  /* If ADC_Channel_10 ... ADC_Channel_19 is selected */
  else if (ADC_Channel > ADC_Channel_9)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR2;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR2_SMP_SET << (3 * (ADC_Channel - 10));
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR2 = tmpreg1;
  }
  else /* ADC_Channel include in ADC_Channel_[0..9] */
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR3;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR3_SMP_SET << (3 * ADC_Channel);
    /* Clear the old sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
    /* Set the new sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR3 = tmpreg1;
  }
  
  /* Rank configuration */
  /* Get the old register value */
  tmpreg1 = ADCx->JSQR;
  /* Get JL value: Number = JL+1 */
  tmpreg3 =  (tmpreg1 & JSQR_JL_SET)>> 20;
  /* Calculate the mask to clear: ((Rank-1)+(4- (JL+1))) */ 
  tmpreg2 = (uint32_t)(JSQR_JSQ_SET << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1))));
  /* Clear the old JSQx bits for the selected rank */
  tmpreg1 &= ~tmpreg2;
  /* Calculate the mask to set: ((Rank-1)+(4- (JL+1))) */ 
  tmpreg2 = (uint32_t)(((uint32_t)(ADC_Channel)) << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1))));
  /* Set the JSQx bits for the selected rank */
  tmpreg1 |= tmpreg2;
  /* Store the new register value */
  ADCx->JSQR = tmpreg1;
}

/**
  * @brief  Configures the sequencer length for injected channels.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  Length: The sequencer length.
  *         This parameter must be a number between 1 to 4.
  * @retval None
  */
void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length)
{
  uint32_t tmpreg1 = 0;
  uint32_t tmpreg2 = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_INJECTED_LENGTH(Length));
  
  /* Get the old register value */
  tmpreg1 = ADCx->JSQR;
  /* Clear the old injected sequence length JL bits */
  tmpreg1 &= JSQR_JL_RESET;
  /* Set the injected sequence length JL bits */
  tmpreg2 = Length - 1; 
  tmpreg1 |= tmpreg2 << 20;
  /* Store the new register value */
  ADCx->JSQR = tmpreg1;
}

/**
  * @brief  Set the injected channels conversion value offset.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_InjectedChannel: the ADC injected channel to set its offset.
  *   This parameter can be one of the following values:
  *     @arg ADC_InjectedChannel_1: Injected Channel1 selected.
  *     @arg ADC_InjectedChannel_2: Injected Channel2 selected.
  *     @arg ADC_InjectedChannel_3: Injected Channel3 selected.
  *     @arg ADC_InjectedChannel_4: Injected Channel4 selected.
  * @param  Offset: the offset value for the selected ADC injected channel
  *         This parameter must be a 12bit value.
  * @retval None
  */
void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset)
{
  __IO uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
  assert_param(IS_ADC_OFFSET(Offset));  
  
  tmp = (uint32_t)ADCx;
  tmp += ADC_InjectedChannel;
  
  /* Set the selected injected channel data offset */
  *(__IO uint32_t *) tmp = (uint32_t)Offset;
}

/**
  * @brief  Configures the ADCx external trigger for injected channels conversion.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_ExternalTrigInjecConv: specifies the ADC trigger to start injected 
  *    conversion. This parameter can be one of the following values:
  *     @arg ADC_ExternalTrigInjecConv_T9_CC1: Timer9 capture compare1 selected 
  *     @arg ADC_ExternalTrigInjecConv_T9_TRGO: Timer9 TRGO event selected 
  *     @arg ADC_ExternalTrigInjecConv_T2_TRGO: Timer2 TRGO event selected
  *     @arg ADC_ExternalTrigInjecConv_T2_CC1: Timer2 capture compare1 selected
  *     @arg ADC_ExternalTrigInjecConv_T3_CC4: Timer3 capture compare4 selected
  *     @arg ADC_ExternalTrigInjecConv_T4_TRGO: Timer4 TRGO event selected 
  *     @arg ADC_ExternalTrigInjecConv_T4_CC1: Timer4 capture compare1 selected
  *     @arg ADC_ExternalTrigInjecConv_T4_CC2: Timer4 capture compare2 selected 
  *     @arg ADC_ExternalTrigInjecConv_T4_CC3: Timer4 capture compare3 selected
  *     @arg ADC_ExternalTrigInjecConv_T10_CC1: Timer10 capture compare1 selected
  *     @arg ADC_ExternalTrigInjecConv_T7_TRGO: Timer7 TRGO event selected
  *     @arg ADC_ExternalTrigInjecConv_Ext_IT15: External interrupt line 15 event selected
  * @retval None
  */
void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_EXT_INJEC_TRIG(ADC_ExternalTrigInjecConv));

  /* Get the old register value */
  tmpreg = ADCx->CR2;
  /* Clear the old external event selection for injected group */
  tmpreg &= CR2_JEXTSEL_RESET;
  /* Set the external event selection for injected group */
  tmpreg |= ADC_ExternalTrigInjecConv;
  /* Store the new register value */
  ADCx->CR2 = tmpreg;
}

/**
  * @brief  Configures the ADCx external trigger edge for injected channels conversion.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_ExternalTrigInjecConvEdge: specifies the ADC external trigger
  *         edge to start injected conversion.
  *   This parameter can be one of the following values:
  *     @arg ADC_ExternalTrigConvEdge_None: external trigger disabled for 
  *          injected conversion.
  *     @arg ADC_ExternalTrigConvEdge_Rising: detection on rising edge
  *     @arg ADC_ExternalTrigConvEdge_Falling: detection on falling edge
  *     @arg ADC_ExternalTrigConvEdge_RisingFalling: detection on 
  *          both rising and falling edge
  * @retval None
  */
void ADC_ExternalTrigInjectedConvEdgeConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConvEdge)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_EXT_INJEC_TRIG_EDGE(ADC_ExternalTrigInjecConvEdge));

  /* Get the old register value */
  tmpreg = ADCx->CR2;
  /* Clear the old external trigger edge for injected group */
  tmpreg &= CR2_JEXTEN_RESET;
  /* Set the new external trigger edge for injected group */
  tmpreg |= ADC_ExternalTrigInjecConvEdge;
  /* Store the new register value */
  ADCx->CR2 = tmpreg;
}

/**
  * @brief  Enables the selected ADC software start conversion of the injected 
  *         channels.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @retval None
  */
void ADC_SoftwareStartInjectedConv(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Enable the selected ADC conversion for injected group */
  ADCx->CR2 |= (uint32_t)ADC_CR2_JSWSTART;
}

/**
  * @brief  Gets the selected ADC Software start injected conversion Status.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @retval The new state of ADC software start injected conversion (SET or RESET).
  */
FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx)
{
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));

  /* Check the status of JSWSTART bit */
  if ((ADCx->CR2 & ADC_CR2_JSWSTART) != (uint32_t)RESET)
  {
    /* JSWSTART bit is set */
    bitstatus = SET;
  }
  else
  {
    /* JSWSTART bit is reset */
    bitstatus = RESET;
  }
  /* Return the JSWSTART bit status */
  return  bitstatus;
}

/**
  * @brief  Enables or disables the selected ADC automatic injected group
  *         conversion after regular one.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC auto injected
  *         conversion.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC automatic injected group conversion */
    ADCx->CR1 |= (uint32_t)ADC_CR1_JAUTO;
  }
  else
  {
    /* Disable the selected ADC automatic injected group conversion */
    ADCx->CR1 &= (uint32_t)(~ADC_CR1_JAUTO);
  }
}

/**
  * @brief  Enables or disables the discontinuous mode for injected group
  *         channel for the specified ADC.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  NewState: new state of the selected ADC discontinuous mode
  *         on injected group channel. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC injected discontinuous mode */
    ADCx->CR1 |= (uint32_t)ADC_CR1_JDISCEN;
  }
  else
  {
    /* Disable the selected ADC injected discontinuous mode */
    ADCx->CR1 &= (uint32_t)(~ADC_CR1_JDISCEN);
  }
}

/**
  * @brief  Returns the ADC injected channel conversion result.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_InjectedChannel: the converted ADC injected channel.
  *   This parameter can be one of the following values:
  *     @arg ADC_InjectedChannel_1: Injected Channel1 selected
  *     @arg ADC_InjectedChannel_2: Injected Channel2 selected
  *     @arg ADC_InjectedChannel_3: Injected Channel3 selected
  *     @arg ADC_InjectedChannel_4: Injected Channel4 selected
  * @retval The Data conversion value.
  */
uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel)
{
  __IO uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));

  tmp = (uint32_t)ADCx;
  tmp += ADC_InjectedChannel + JDR_OFFSET;
  
  /* Returns the selected injected channel conversion data value */
  return (uint16_t) (*(__IO uint32_t*)  tmp); 
}

/**
  * @}
  */

/** @defgroup ADC_Group8 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions.
 *
@verbatim   
 ===============================================================================
            ##### Interrupts and flags management functions #####
 ===============================================================================
    [..] This section provides functions allowing to configure the ADC Interrupts 
         and get the status and clear flags and Interrupts pending bits.
  
    [..] The ADC provide 4 Interrupts sources and 9 Flags which can be divided into 
         3 groups:
  *** Flags and Interrupts for ADC regular channels ***
  =====================================================
    [..]
        (+)Flags :
           (##) ADC_FLAG_OVR : Overrun detection when regular converted data are 
                lost.
           (##) ADC_FLAG_EOC : Regular channel end of conversion + to indicate 
                (depending on EOCS bit, managed by ADC_EOCOnEachRegularChannelCmd() )
                the end of :
                (+++) a regular CHANNEL conversion.
                (+++) sequence of regular GROUP conversions.


           (##) ADC_FLAG_STRT: Regular channel start + to indicate when regular 
                CHANNEL conversion starts.
           (##) ADC_FLAG_RCNR: Regular channel not ready + to indicate if a new 
                regular conversion can be launched.
        (+)Interrupts :
           (##) ADC_IT_OVR : specifies the interrupt source for Overrun detection 
                event.
           (##) ADC_IT_EOC : specifies the interrupt source for Regular channel 
                end of conversion event.
  
  *** Flags and Interrupts for ADC Injected channels ***
  ======================================================
        (+)Flags :
           (##) ADC_FLAG_JEOC : Injected channel end of conversion+ to indicate at 
                the end of injected GROUP conversion.
           (##) ADC_FLAG_JSTRT: Injected channel start +  to indicate hardware when 
                injected GROUP conversion starts.
           (##) ADC_FLAG_JCNR: Injected channel not ready + to indicate if a new 
                injected conversion can be launched.
        (+)Interrupts 
           (##) ADC_IT_JEOC : specifies the interrupt source for Injected channel 
                end of conversion event.
  *** General Flags and Interrupts for the ADC ***
  ================================================
        (+)Flags :
           (##) ADC_FLAG_AWD: Analog watchdog + to indicate if the converted voltage 
                crosses the programmed thresholds values.
           (##) ADC_FLAG_ADONS: ADC ON status + to indicate if the ADC is ready 
                to convert.
        (+)Interrupts :
           (##) ADC_IT_AWD : specifies the interrupt source for Analog watchdog 
                event.
  
    [..] The user should identify which mode will be used in his application to 
         manage the ADC controller events: Polling mode or Interrupt mode.
  
    [..] In the Polling Mode it is advised to use the following functions:
         (+) ADC_GetFlagStatus() : to check if flags events occur.
         (+) ADC_ClearFlag()     : to clear the flags events.
  
    [..] In the Interrupt Mode it is advised to use the following functions:
         (+) ADC_ITConfig()       : to enable or disable the interrupt source.
         (+) ADC_GetITStatus()    : to check if Interrupt occurs.
         (+) ADC_ClearITPendingBit() : to clear the Interrupt pending Bit 
             (corresponding Flag).
@endverbatim
  * @{
  */ 

/**
  * @brief  Enables or disables the specified ADC interrupts.
  * @param  ADCx: where x can be 1 to select the ADC peripheral.
  * @param  ADC_IT: specifies the ADC interrupt sources to be enabled or disabled.
  *   This parameter can be one of the following values:
  *     @arg ADC_IT_EOC: End of conversion interrupt
  *     @arg ADC_IT_AWD: Analog watchdog interrupt
  *     @arg ADC_IT_JEOC: End of injected conversion interrupt
  *     @arg ADC_IT_OVR: overrun interrupt
  * @param  NewState: new state of the specified ADC interrupts.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState)  
{
  uint32_t itmask = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  assert_param(IS_ADC_IT(ADC_IT)); 

  /* Get the ADC IT index */
  itmask = (uint8_t)ADC_IT;
  itmask = (uint32_t)0x01 << itmask;    

  if (NewState != DISABLE)
  {
    /* Enable the selected ADC interrupts */
    ADCx->CR1 |= itmask;
  }
  else
  {
    /* Disable the selected ADC interrupts */
    ADCx->CR1 &= (~(uint32_t)itmask);
  }
}

/**
  * @brief  Checks whether the specified ADC flag is set or not.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_FLAG: specifies the flag to check.
  *   This parameter can be one of the following values:
  *     @arg ADC_FLAG_AWD: Analog watchdog flag
  *     @arg ADC_FLAG_EOC: End of conversion flag
  *     @arg ADC_FLAG_JEOC: End of injected group conversion flag
  *     @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
  *     @arg ADC_FLAG_STRT: Start of regular group conversion flag
  *     @arg ADC_FLAG_OVR: Overrun flag
  *     @arg ADC_FLAG_ADONS: ADC ON status
  *     @arg ADC_FLAG_RCNR: Regular channel not ready
  *     @arg ADC_FLAG_JCNR: Injected channel not ready
  * @retval The new state of ADC_FLAG (SET or RESET).
  */
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint16_t ADC_FLAG)
{
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_GET_FLAG(ADC_FLAG));

  /* Check the status of the specified ADC flag */
  if ((ADCx->SR & ADC_FLAG) != (uint8_t)RESET)
  {
    /* ADC_FLAG is set */
    bitstatus = SET;
  }
  else
  {
    /* ADC_FLAG is reset */
    bitstatus = RESET;
  }
  /* Return the ADC_FLAG status */
  return  bitstatus;
}

/**
  * @brief  Clears the ADCx's pending flags.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_FLAG: specifies the flag to clear.
  *   This parameter can be any combination of the following values:
  *     @arg ADC_FLAG_AWD: Analog watchdog flag
  *     @arg ADC_FLAG_EOC: End of conversion flag
  *     @arg ADC_FLAG_JEOC: End of injected group conversion flag
  *     @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
  *     @arg ADC_FLAG_STRT: Start of regular group conversion flag
  *     @arg ADC_FLAG_OVR: overrun flag
  * @retval None
  */
void ADC_ClearFlag(ADC_TypeDef* ADCx, uint16_t ADC_FLAG)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CLEAR_FLAG(ADC_FLAG));

  /* Clear the selected ADC flags */
  ADCx->SR = ~(uint32_t)ADC_FLAG;
}

/**
  * @brief  Checks whether the specified ADC interrupt has occurred or not.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_IT: specifies the ADC interrupt source to check.
  *   This parameter can be one of the following values:
  *     @arg ADC_IT_EOC: End of conversion interrupt
  *     @arg ADC_IT_AWD: Analog watchdog interrupt
  *     @arg ADC_IT_JEOC: End of injected conversion interrupt
  *     @arg ADC_IT_OVR: Overrun interrupt
  * @retval The new state of ADC_IT (SET or RESET).
  */
ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT)
{
  ITStatus bitstatus = RESET;
  uint32_t itmask = 0, enablestatus = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_IT(ADC_IT));

  /* Get the ADC IT index */
  itmask = (uint32_t)((uint32_t)ADC_IT >> 8);

  /* Get the ADC_IT enable bit status */
  enablestatus = (ADCx->CR1 & ((uint32_t)0x01 << (uint8_t)ADC_IT)); 

  /* Check the status of the specified ADC interrupt */
  if (((uint32_t)(ADCx->SR & (uint32_t)itmask) != (uint32_t)RESET) && (enablestatus != (uint32_t)RESET))
  {                                                         
    /* ADC_IT is set */
    bitstatus = SET;
  }
  else
  {
    /* ADC_IT is reset */
    bitstatus = RESET;
  }
  /* Return the ADC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the ADCx's interrupt pending bits.
  * @param  ADCx: where x can be 1 to select the ADC1 peripheral.
  * @param  ADC_IT: specifies the ADC interrupt pending bit to clear.
  *   This parameter can be one of the following values:
  *     @arg ADC_IT_EOC: End of conversion interrupt
  *     @arg ADC_IT_AWD: Analog watchdog interrupt
  *     @arg ADC_IT_JEOC: End of injected conversion interrupt
  *     @arg ADC_IT_OVR: Overrun interrupt
  * @retval None
  */
void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT)
{
  uint8_t itmask = 0;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_IT(ADC_IT)); 

  /* Get the ADC IT index */
  itmask = (uint8_t)(ADC_IT >> 8);

  /* Clear the selected ADC interrupt pending bits */
  ADCx->SR = ~(uint32_t)itmask;
}

/**
  * @}
  */

/**
  * @}
  */ 

/**
  * @}
  */ 

/**
  * @}
  */ 

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/