Files @ 4f9e65f1e0dc
Branch filter:

Location: therm/libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_pwr.c

Ethan Zonca
Remove L1 CMSIS
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/**
  ******************************************************************************
  * @file    stm32l1xx_pwr.c
  * @author  MCD Application Team
  * @version V1.2.0
  * @date    22-February-2013
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Power Controller (PWR) peripheral:           
  *           + RTC Domain Access
  *           + PVD configuration
  *           + WakeUp pins configuration
  *           + Ultra Low Power mode configuration
  *           + Voltage Scaling configuration
  *           + Low Power modes configuration
  *           + Flags management
  *               
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_pwr.h"
#include "stm32l1xx_rcc.h"

/** @addtogroup STM32L1xx_StdPeriph_Driver
  * @{
  */

/** @defgroup PWR 
  * @brief PWR driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* --------- PWR registers bit address in the alias region ---------- */
#define PWR_OFFSET               (PWR_BASE - PERIPH_BASE)

/* --- CR Register ---*/

/* Alias word address of DBP bit */
#define CR_OFFSET                (PWR_OFFSET + 0x00)
#define DBP_BitNumber            0x08
#define CR_DBP_BB                (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))

/* Alias word address of PVDE bit */
#define PVDE_BitNumber           0x04
#define CR_PVDE_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))

/* Alias word address of ULP bit */
#define ULP_BitNumber           0x09
#define CR_ULP_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (ULP_BitNumber * 4))

/* Alias word address of FWU bit */
#define FWU_BitNumber           0x0A
#define CR_FWU_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (FWU_BitNumber * 4))

/* --- CSR Register ---*/

/* Alias word address of EWUP bit */
#define CSR_OFFSET               (PWR_OFFSET + 0x04)
#define EWUP_BitNumber           0x08
#define CSR_EWUP_BB              (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (EWUP_BitNumber * 4))

/* ------------------ PWR registers bit mask ------------------------ */

/* CR register bit mask */
#define CR_DS_MASK               ((uint32_t)0xFFFFFFFC)
#define CR_PLS_MASK              ((uint32_t)0xFFFFFF1F)
#define CR_VOS_MASK              ((uint32_t)0xFFFFE7FF)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup PWR_Private_Functions
  * @{
  */

/** @defgroup PWR_Group1 RTC Domain Access function 
 *  @brief   RTC Domain Access function  
 *
@verbatim   
  ============================================================================== 
                     ##### RTC Domain Access function #####
  ============================================================================== 

    [..] After reset, the RTC Registers (RCC CSR Register, RTC registers and RTC backup 
         registers) are protected against possible stray write accesses.
    [..] To enable access to RTC domain use the PWR_RTCAccessCmd(ENABLE) function.

@endverbatim
  * @{
  */

/**
  * @brief  Deinitializes the PWR peripheral registers to their default reset values.
  * @note   Before calling this function, the VOS[1:0] bits should be configured 
  *         to "10" and the system frequency has to be configured accordingly. 
  *         To configure the VOS[1:0] bits, use the PWR_VoltageScalingConfig()
  *         function.
  * @note   ULP and FWU bits are not reset by this function.    
  * @param  None
  * @retval None
  */
void PWR_DeInit(void)
{
  RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
  RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
}

/**
  * @brief  Enables or disables access to the RTC and backup registers.
  * @note   If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the 
  *         RTC Domain Access should be kept enabled.
  * @param  NewState: new state of the access to the RTC and backup registers.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void PWR_RTCAccessCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
}

/**
  * @}
  */

/** @defgroup PWR_Group2 PVD configuration functions
 *  @brief   PVD configuration functions 
 *
@verbatim   
  ============================================================================== 
                    ##### PVD configuration functions #####
  ==============================================================================    
  [..]
  (+) The PVD is used to monitor the VDD power supply by comparing it to a threshold
      selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
  (+) The PVD can use an external input analog voltage (PVD_IN) which is compared 
      internally to VREFINT. The PVD_IN (PB7) has to be configured in Analog mode 
      when PWR_PVDLevel_7 is selected (PLS[2:0] = 111).
  (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower than the 
      PVD threshold. This event is internally connected to the EXTI line16
      and can generate an interrupt if enabled through the EXTI registers.
  (+) The PVD is stopped in Standby mode.

@endverbatim
  * @{
  */

/**
  * @brief  Configures the voltage threshold detected by the Power Voltage Detector(PVD).
  * @param  PWR_PVDLevel: specifies the PVD detection level.
  *   This parameter can be one of the following values:
  *     @arg PWR_PVDLevel_0: PVD detection level set to 1.9V.
  *     @arg PWR_PVDLevel_1: PVD detection level set to 2.1V.
  *     @arg PWR_PVDLevel_2: PVD detection level set to 2.3V.
  *     @arg PWR_PVDLevel_3: PVD detection level set to 2.5V.
  *     @arg PWR_PVDLevel_4: PVD detection level set to 2.7V.
  *     @arg PWR_PVDLevel_5: PVD detection level set to 2.9V.
  *     @arg PWR_PVDLevel_6: PVD detection level set to 3.1V.
  *     @arg PWR_PVDLevel_7: External input analog voltage (Compare internally to VREFINT).
  * @retval None
  */
void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
  
  tmpreg = PWR->CR;
  
  /* Clear PLS[7:5] bits */
  tmpreg &= CR_PLS_MASK;
  
  /* Set PLS[7:5] bits according to PWR_PVDLevel value */
  tmpreg |= PWR_PVDLevel;
  
  /* Store the new value */
  PWR->CR = tmpreg;
}

/**
  * @brief  Enables or disables the Power Voltage Detector(PVD).
  * @param  NewState: new state of the PVD.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void PWR_PVDCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)NewState;
}

/**
  * @}
  */

/** @defgroup PWR_Group3 WakeUp pins configuration functions
 *  @brief   WakeUp pins configuration functions 
 *
@verbatim   
  ============================================================================== 
               ##### WakeUp pin configuration functions #####
  ==============================================================================   

  (+) WakeUp pins are used to wakeup the system from Standby mode. These pins are 
      forced in input pull down configuration and are active on rising edges.
  (+) There are three WakeUp pins: WakeUp Pin 1 on PA.00, WakeUp Pin 2 on PC.13 and
      WakeUp Pin 3 on PE.06.

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the WakeUp Pin functionality.
  * @param  PWR_WakeUpPin: specifies the WakeUpPin.
  *   This parameter can be: PWR_WakeUpPin_1, PWR_WakeUpPin_2 or PWR_WakeUpPin_3.
  * @param  NewState: new state of the WakeUp Pin functionality.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void PWR_WakeUpPinCmd(uint32_t PWR_WakeUpPin, FunctionalState NewState)
{
  __IO uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_PWR_WAKEUP_PIN(PWR_WakeUpPin));
  
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  tmp = CSR_EWUP_BB + PWR_WakeUpPin;
  
  *(__IO uint32_t *) (tmp) = (uint32_t)NewState;
}

/**
  * @}
  */

/** @defgroup PWR_Group4 Ultra Low Power mode configuration functions
 *  @brief   Ultra Low Power mode configuration functions 
 *
@verbatim   
  ============================================================================== 
             ##### Ultra Low Power mode configuration functions #####
  ==============================================================================   
  [..]
  (+) The internal voltage reference consumption is not negligible, in particular 
      in Stop and Standby mode. To reduce power consumption, use the PWR_UltraLowPowerCmd()
      function (ULP bit (Ultra low power) in the PWR_CR register) to disable the 
      internal voltage reference. However, in this case, when exiting from the 
      Stop/Standby mode, the functions managed through the internal voltage reference 
      are not reliable during the internal voltage reference startup time (up to 3 ms).
      To reduce the wakeup time, the device can exit from Stop/Standby mode without 
      waiting for the internal voltage reference startup time. This is performed 
      by using the PWR_FastWakeUpCmd() function (setting the FWU bit (Fast
      wakeup) in the PWR_CR register) before entering Stop/Standby mode.

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the Fast WakeUp from Ultra Low Power mode.
  * @param  NewState: new state of the Fast WakeUp  functionality.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void PWR_FastWakeUpCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  *(__IO uint32_t *) CR_FWU_BB = (uint32_t)NewState;
}

/**
  * @brief  Enables or disables the Ultra Low Power mode.
  * @param  NewState: new state of the Ultra Low Power mode.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void PWR_UltraLowPowerCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  *(__IO uint32_t *) CR_ULP_BB = (uint32_t)NewState;
}

/**
  * @}
  */

/** @defgroup PWR_Group5 Voltage Scaling configuration functions
 *  @brief   Voltage Scaling configuration functions 
 *
@verbatim   
  ============================================================================== 
              ##### Voltage Scaling configuration functions #####
  ==============================================================================  

    (+) The dynamic voltage scaling is a power management technique which consists in 
        increasing or decreasing the voltage used for the digital peripherals (VCORE), 
        according to the circumstances.
   
   [..] Depending on the device voltage range, the maximum frequency and FLASH wait
        state should be adapted accordingly:
   [..] 
        +------------------------------------------------------------------+     
        |   Wait states   |                HCLK clock frequency (MHz)      |
        |                 |------------------------------------------------|     
        |    (Latency)    |            voltage range       | voltage range | 
        |                 |            1.65 V - 3.6 V      | 2.0 V - 3.6 V |
        |                 |----------------|---------------|---------------|
        |                 |     Range 3    |    Range 2    |    Range 1    |
        |                 |  VCORE = 1.2 V | VCORE = 1.5 V | VCORE = 1.8 V |
        |---------------- |----------------|---------------|---------------|             
        | 0WS(1CPU cycle) |0 < HCLK <= 2   |0 < HCLK <= 8  |0 < HCLK <= 16 |
        |-----------------|----------------|---------------|---------------|  
        | 1WS(2CPU cycle) |2 < HCLK <= 4   |8 < HCLK <= 16 |16 < HCLK <= 32|
        |-----------------|----------------|---------------|---------------|  
        | CPU Performance |      Low       |     Medium    |     High      |
        |-----__----------|----------------|---------------|---------------|  
        |Power Performance|      High      |     Medium    |      Low      |                 
        +------------------------------------------------------------------+    

    (+) To modify the Product voltage range, user application has to:
        (++) Check VDD to identify which ranges are allowed (see table above).
        (++) Check the PWR_FLAG_VOSF (Voltage Scaling update ongoing) using the PWR_GetFlagStatus() 
             function and wait until it is  reset.
        (++) Configure the Voltage range using the PWR_VoltageScalingConfig() function.

    (+) When VCORE range 1 is selected and VDD drops below 2.0 V, the application must
        reconfigure the system:
        (++) Detect that VDD drops below 2.0 V using the PVD Level 1.
        (++) Adapt the clock frequency to the voltage range that will be selected at next step.
        (++) Select the required voltage range.
        (++) When VCORE range 2 or range 3 is selected and VDD drops below 2.0 V, no system
             reconfiguration is required.
 
    (+) When VDD is above 2.0 V, any of the 3 voltage ranges can be selected.
        (++) When the voltage range is above the targeted voltage range (e.g. from range 
             1 to 2).
        (++) Adapt the clock frequency to the lower voltage range that will be selected 
             at next step.
        (++) Select the required voltage range.
        (++) When the voltage range is below the targeted voltage range (e.g. from range 
             3 to 1).
        (++) Select the required voltage range.
        (++) Tune the clock frequency if needed.
 
    (+) When VDD is below 2.0 V, only range 2 and 3 can be selected:
        (++) From range 2 to range 3.
             (+++) Adapt the clock frequency to voltage range 3.
             (+++) Select voltage range 3.
        (++) From range 3 to range 2.
             (+++) Select the voltage range 2.
             (+++) Tune the clock frequency if needed.

@endverbatim
  * @{
  */

/**
  * @brief  Configures the voltage scaling range.
  * @note   During voltage scaling configuration, the system clock is stopped 
  *         until the regulator is stabilized (VOSF = 0). This must be taken 
  *         into account during application developement, in case a critical 
  *         reaction time to interrupt is needed, and depending on peripheral 
  *         used (timer, communication,...).
  *             
  * @param  PWR_VoltageScaling: specifies the voltage scaling range.
  *   This parameter can be:
  *     @arg PWR_VoltageScaling_Range1: Voltage Scaling Range 1 (VCORE = 1.8V).
  *     @arg PWR_VoltageScaling_Range2: Voltage Scaling Range 2 (VCORE = 1.5V).
  *     @arg PWR_VoltageScaling_Range3: Voltage Scaling Range 3 (VCORE = 1.2V) 
  * @retval None
  */
void PWR_VoltageScalingConfig(uint32_t PWR_VoltageScaling)
{
  uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(PWR_VoltageScaling));
  
  tmp = PWR->CR;

  tmp &= CR_VOS_MASK;
  tmp |= PWR_VoltageScaling;
  
  PWR->CR = tmp & 0xFFFFFFF3;

}

/**
  * @}
  */

/** @defgroup PWR_Group6 Low Power modes configuration functions
 *  @brief   Low Power modes configuration functions 
 *
@verbatim   
  ============================================================================== 
              ##### Low Power modes configuration functions #####
  ==============================================================================    

    [..] The devices feature five low-power modes:
    (+) Low power run mode: regulator in low power mode, limited clock frequency, 
        limited number of peripherals running.
    (+) Sleep mode: Cortex-M3 core stopped, peripherals kept running.
    (+) Low power sleep mode: Cortex-M3 core stopped, limited clock frequency, 
        limited number of peripherals running, regulator in low power mode.
    (+) Stop mode: all clocks are stopped, regulator running, regulator in low power mode.
    (+) Standby mode: VCORE domain powered off.
   
  *** Low power run mode (LP run) *** 
  ===================================
      [..]
    (+) Entry:
        (++) Decrease the system frequency.
        (++) The regulator is forced in low power mode using the PWR_EnterLowPowerRunMode()
             function.
    (+) Exit:
        (++) The regulator is forced in Main regulator mode sing the PWR_EnterLowPowerRunMode()
             function.
        (++) Increase the system frequency if needed.

  *** Sleep mode *** 
  ==================
  [..] 
    (+) Entry:
        (++) The Sleep mode is entered by using the PWR_EnterSleepMode(PWR_Regulator_ON,) 
             function with regulator ON.
    (+) Exit:
        (++) Any peripheral interrupt acknowledged by the nested vectored interrupt 
             controller (NVIC) can wake up the device from Sleep mode.

  *** Low power sleep mode (LP sleep) *** 
  =======================================
  [..] 
    (+) Entry:
        (++) The Flash memory must be switched off by using the FLASH_SLEEPPowerDownCmd()
             function.
        (++) Decrease the system frequency.
        (++) The regulator is forced in low power mode and the WFI or WFE instructions
             are executed using the PWR_EnterSleepMode(PWR_Regulator_LowPower,) function 
             with regulator in LowPower.
    (+) Exit:
        (++) Any peripheral interrupt acknowledged by the nested vectored interrupt 
             controller (NVIC) can wake up the device from Sleep LP mode.

  *** Stop mode *** 
  =================
  [..] In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI,
       the HSI and the HSE RC oscillators are disabled. Internal SRAM and register 
       contents are preserved.
       The voltage regulator can be configured either in normal or low-power mode.
       To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
       sensor can be switched off before entering the Stop mode. They can be switched 
       on again by software after exiting the Stop mode using the PWR_UltraLowPowerCmd()
       function. 
   
    (+) Entry:
        (++) The Stop mode is entered using the PWR_EnterSTOPMode(PWR_Regulator_LowPower,) 
             function with regulator in LowPower or with Regulator ON.
    (+) Exit:
        (++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
      
  *** Standby mode *** 
  ====================
  [..] The Standby mode allows to achieve the lowest power consumption. It is based 
       on the Cortex-M3 deepsleep mode, with the voltage regulator disabled. 
       The VCORE domain is consequently powered off. The PLL, the MSI, the HSI 
       oscillator and the HSE oscillator are also switched off. SRAM and register 
       contents are lost except for the RTC registers, RTC backup registers and 
       Standby circuitry.
   
  [..] The voltage regulator is OFF.
   
  [..] To minimize the consumption In Standby mode, VREFINT, the BOR, PVD, and temperature
       sensor can be switched off before entering the Standby mode. They can be switched 
       on again by software after exiting the Standby mode using the PWR_UltraLowPowerCmd()
       function. 
   
    (+) Entry:
        (++) The Standby mode is entered using the PWR_EnterSTANDBYMode() function.
    (+) Exit:
        (++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
            tamper event, time-stamp event, external reset in NRST pin, IWDG reset.

  *** Auto-wakeup (AWU) from low-power mode *** 
  =============================================
  [..]The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC 
      Wakeup event, a tamper event, a time-stamp event, or a comparator event, 
      without depending on an external interrupt (Auto-wakeup mode).

    (+) RTC auto-wakeup (AWU) from the Stop mode
        (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
             (+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt 
                   or Event modes) using the EXTI_Init() function.
             (+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
             (+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm() 
                   and RTC_AlarmCmd() functions.
        (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it 
             is necessary to:
             (+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt 
                   or Event modes) using the EXTI_Init() function.
             (+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig() 
                   function.
             (+++) Configure the RTC to detect the tamper or time stamp event using the
                   RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
                   functions.
        (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
             (+++) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt 
                   or Event modes) using the EXTI_Init() function.
             (+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function.
             (+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(), 
                   RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.

    (+) RTC auto-wakeup (AWU) from the Standby mode
        (++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
             (+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function.
             (+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm() 
                   and RTC_AlarmCmd() functions.
        (++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it 
             is necessary to:
             (+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig() 
                   function.
             (+++) Configure the RTC to detect the tamper or time stamp event using the
                   RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
                   functions.
        (++) To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
             (+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
             (+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(), 
                   RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.

    (+) Comparator auto-wakeup (AWU) from the Stop mode
        (++) To wake up from the Stop mode with an comparator 1 or comparator 2 wakeup
             event, it is necessary to:
             (+++) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2 
                   to be sensitive to to the selected edges (falling, rising or falling 
                   and rising) (Interrupt or Event modes) using the EXTI_Init() function.
             (+++) Configure the comparator to generate the event.

@endverbatim
  * @{
  */

/**
  * @brief  Enters/Exits the Low Power Run mode.
  * @note   Low power run mode can only be entered when VCORE is in range 2.
  *         In addition, the dynamic voltage scaling must not be used when Low 
  *         power run mode is selected. Only Stop and Sleep modes with regulator 
  *         configured in Low power mode is allowed when Low power run mode is 
  *         selected.  
  * @note   In Low power run mode, all I/O pins keep the same state as in Run mode.
  * @param  NewState: new state of the Low Power Run mode.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void PWR_EnterLowPowerRunMode(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    PWR->CR |= PWR_CR_LPSDSR;
    PWR->CR |= PWR_CR_LPRUN;     
  }
  else
  {
    PWR->CR &= (uint32_t)~((uint32_t)PWR_CR_LPRUN); 
    PWR->CR &= (uint32_t)~((uint32_t)PWR_CR_LPSDSR);  
  }  
}

/**
  * @brief  Enters Sleep mode.
  * @note   In Sleep mode, all I/O pins keep the same state as in Run mode.  
  * @param  PWR_Regulator: specifies the regulator state in Sleep mode.
  *   This parameter can be one of the following values:
  *     @arg PWR_Regulator_ON: Sleep mode with regulator ON
  *     @arg PWR_Regulator_LowPower: Sleep mode with regulator in low power mode
  * @note   Low power sleep mode can only be entered when VCORE is in range 2.
  * @note   When the voltage regulator operates in low power mode, an additional 
  *         startup delay is incurred when waking up from Low power sleep mode.
  * @param  PWR_SLEEPEntry: specifies if SLEEP mode in entered with WFI or WFE instruction.
  *   This parameter can be one of the following values:
  *     @arg PWR_SLEEPEntry_WFI: enter SLEEP mode with WFI instruction
  *     @arg PWR_SLEEPEntry_WFE: enter SLEEP mode with WFE instruction
  * @retval None
  */
void PWR_EnterSleepMode(uint32_t PWR_Regulator, uint8_t PWR_SLEEPEntry)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_PWR_REGULATOR(PWR_Regulator));

  assert_param(IS_PWR_SLEEP_ENTRY(PWR_SLEEPEntry));
  
  /* Select the regulator state in Sleep mode ---------------------------------*/
  tmpreg = PWR->CR;
  
  /* Clear PDDS and LPDSR bits */
  tmpreg &= CR_DS_MASK;
  
  /* Set LPDSR bit according to PWR_Regulator value */
  tmpreg |= PWR_Regulator;
  
  /* Store the new value */
  PWR->CR = tmpreg;

  /* Clear SLEEPDEEP bit of Cortex System Control Register */
  SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP);
  
  /* Select SLEEP mode entry -------------------------------------------------*/
  if(PWR_SLEEPEntry == PWR_SLEEPEntry_WFI)
  {   
    /* Request Wait For Interrupt */
    __WFI();
  }
  else
  {
    /* Request Wait For Event */
    __WFE();
  }
}

/**
  * @brief  Enters STOP mode.
  * @note   In Stop mode, all I/O pins keep the same state as in Run mode.
  * @note   When exiting Stop mode by issuing an interrupt or a wakeup event, 
  *         the MSI RC oscillator is selected as system clock.
  * @note   When the voltage regulator operates in low power mode, an additional 
  *         startup delay is incurred when waking up from Stop mode. 
  *         By keeping the internal regulator ON during Stop mode, the consumption 
  *         is higher although the startup time is reduced.
  * @param  PWR_Regulator: specifies the regulator state in STOP mode.
  *   This parameter can be one of the following values:
  *     @arg PWR_Regulator_ON: STOP mode with regulator ON.
  *     @arg PWR_Regulator_LowPower: STOP mode with regulator in low power mode.
  * @param  PWR_STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
  *   This parameter can be one of the following values:
  *     @arg PWR_STOPEntry_WFI: enter STOP mode with WFI instruction.
  *     @arg PWR_STOPEntry_WFE: enter STOP mode with WFE instruction.
  * @retval None
  */
void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_PWR_REGULATOR(PWR_Regulator));
  assert_param(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
  
  /* Select the regulator state in STOP mode ---------------------------------*/
  tmpreg = PWR->CR;
  /* Clear PDDS and LPDSR bits */
  tmpreg &= CR_DS_MASK;
  
  /* Set LPDSR bit according to PWR_Regulator value */
  tmpreg |= PWR_Regulator;
  
  /* Store the new value */
  PWR->CR = tmpreg;
  
  /* Set SLEEPDEEP bit of Cortex System Control Register */
  SCB->SCR |= SCB_SCR_SLEEPDEEP;
  
  /* Select STOP mode entry --------------------------------------------------*/
  if(PWR_STOPEntry == PWR_STOPEntry_WFI)
  {   
    /* Request Wait For Interrupt */
    __WFI();
  }
  else
  {
    /* Request Wait For Event */
    __WFE();
  }
  /* Reset SLEEPDEEP bit of Cortex System Control Register */
  SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP);  
}

/**
  * @brief  Enters STANDBY mode.
  * @note   In Standby mode, all I/O pins are high impedance except for:
  *         Reset pad (still available) 
  *         RTC_AF1 pin (PC13) if configured for Wakeup pin 2 (WKUP2), tamper, 
  *         time-stamp, RTC Alarm out, or RTC clock calibration out.
  *         WKUP pin 1 (PA0) and WKUP pin 3 (PE6), if enabled.       
  * @param  None
  * @retval None
  */
void PWR_EnterSTANDBYMode(void)
{
  /* Clear Wakeup flag */
  PWR->CR |= PWR_CR_CWUF;
  
  /* Select STANDBY mode */
  PWR->CR |= PWR_CR_PDDS;
  
  /* Set SLEEPDEEP bit of Cortex System Control Register */
  SCB->SCR |= SCB_SCR_SLEEPDEEP;
  
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM   )
  __force_stores();
#endif
  /* Request Wait For Interrupt */
  __WFI();
}

/**
  * @}
  */

/** @defgroup PWR_Group7 Flags management functions
 *  @brief   Flags management functions 
 *
@verbatim   
  ==============================================================================
                       ##### Flags management functions #####
  ==============================================================================   

@endverbatim
  * @{
  */

/**
  * @brief  Checks whether the specified PWR flag is set or not.
  * @param  PWR_FLAG: specifies the flag to check.
  *   This parameter can be one of the following values:
  *     @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event 
  *       was received from the WKUP pin or from the RTC alarm (Alarm A or Alarm B), 
  *       RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
  *     @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
  *                       resumed from StandBy mode.    
  *     @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled 
  *       by the PWR_PVDCmd() function.
  *     @arg PWR_FLAG_VREFINTRDY: Internal Voltage Reference Ready flag. This 
  *       flag indicates the state of the internal voltage reference, VREFINT.
  *     @arg PWR_FLAG_VOS: Voltage Scaling select flag. A delay is required for 
  *       the internal regulator to be ready after the voltage range is changed.
  *       The VOSF flag indicates that the regulator has reached the voltage level 
  *       defined with bits VOS[1:0] of PWR_CR register.
  *     @arg PWR_FLAG_REGLP: Regulator LP flag. This flag is set by hardware 
  *       when the MCU is in Low power run mode.
  *       When the MCU exits from Low power run mode, this flag stays SET until 
  *       the regulator is ready in main mode. A polling on this flag is 
  *       recommended to wait for the regulator main mode. 
  *       This flag is RESET by hardware when the regulator is ready.       
  * @retval The new state of PWR_FLAG (SET or RESET).
  */
FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_PWR_GET_FLAG(PWR_FLAG));
  
  if ((PWR->CSR & PWR_FLAG) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the PWR's pending flags.
  * @param  PWR_FLAG: specifies the flag to clear.
  *   This parameter can be one of the following values:
  *     @arg PWR_FLAG_WU: Wake Up flag
  *     @arg PWR_FLAG_SB: StandBy flag
  * @retval None
  */
void PWR_ClearFlag(uint32_t PWR_FLAG)
{
  /* Check the parameters */
  assert_param(IS_PWR_CLEAR_FLAG(PWR_FLAG));
         
  PWR->CR |=  PWR_FLAG << 2;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/