Files
@ 618031ff9252
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c
618031ff9252
7.8 KiB
text/plain
Added Reset menu to Idle screen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_f32.c
*
* Description: Floating-point complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByRealMult Complex-by-Real Multiplication
*
* Multiplies a complex vector by a real vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values while the real array has a total of <code>numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
* pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Floating-point complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*/
void arm_cmplx_mult_real_f32(
float32_t * pSrcCmplx,
float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples)
{
float32_t in; /* Temporary variable to store input value */
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */
float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */
float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */
float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */
float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read input from complex input buffer */
inA1 = pSrcCmplx[0];
inA2 = pSrcCmplx[1];
/* read input from real input buffer */
inB1 = pSrcReal[0];
/* read input from complex input buffer */
inA3 = pSrcCmplx[2];
/* multiply complex buffer real input with real buffer input */
out1 = inA1 * inB1;
/* read input from complex input buffer */
inA4 = pSrcCmplx[3];
/* multiply complex buffer imaginary input with real buffer input */
out2 = inA2 * inB1;
/* read input from real input buffer */
inB2 = pSrcReal[1];
/* read input from complex input buffer */
inA5 = pSrcCmplx[4];
/* multiply complex buffer real input with real buffer input */
out3 = inA3 * inB2;
/* read input from complex input buffer */
inA6 = pSrcCmplx[5];
/* read input from real input buffer */
inB3 = pSrcReal[2];
/* multiply complex buffer imaginary input with real buffer input */
out4 = inA4 * inB2;
/* read input from complex input buffer */
inA7 = pSrcCmplx[6];
/* multiply complex buffer real input with real buffer input */
out5 = inA5 * inB3;
/* read input from complex input buffer */
inA8 = pSrcCmplx[7];
/* multiply complex buffer imaginary input with real buffer input */
out6 = inA6 * inB3;
/* read input from real input buffer */
inB4 = pSrcReal[3];
/* store result to destination bufer */
pCmplxDst[0] = out1;
/* multiply complex buffer real input with real buffer input */
out7 = inA7 * inB4;
/* store result to destination bufer */
pCmplxDst[1] = out2;
/* multiply complex buffer imaginary input with real buffer input */
out8 = inA8 * inB4;
/* store result to destination bufer */
pCmplxDst[2] = out3;
pCmplxDst[3] = out4;
pCmplxDst[4] = out5;
/* incremnet complex input buffer by 8 to process next samples */
pSrcCmplx += 8u;
/* store result to destination bufer */
pCmplxDst[5] = out6;
/* increment real input buffer by 4 to process next samples */
pSrcReal += 4u;
/* store result to destination bufer */
pCmplxDst[6] = out7;
pCmplxDst[7] = out8;
/* increment destination buffer by 8 to process next sampels */
pCmplxDst += 8u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
/* Decrement the numSamples loop counter */
blkCnt--;
}
}
/**
* @} end of CmplxByRealMult group
*/
|