Files
@ 6f2ea9363f0e
Branch filter:
Location: therm/libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_rcc.c
6f2ea9363f0e
68.8 KiB
text/plain
Prune old USB, add cube generated files
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 | /**
******************************************************************************
* @file stm32f0xx_rcc.c
* @author MCD Application Team
* @version V1.4.0
* @date 24-July-2014
* @brief This file provides firmware functions to manage the following
* functionalities of the Reset and clock control (RCC) peripheral:
* + Internal/external clocks, PLL, CSS and MCO configuration
* + System, AHB and APB busses clocks configuration
* + Peripheral clocks configuration
* + Interrupts and flags management
*
@verbatim
===============================================================================
##### RCC specific features #####
===============================================================================
[..] After reset the device is running from HSI (8 MHz) with Flash 0 WS,
all peripherals are off except internal SRAM, Flash and SWD.
(#) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
all peripherals mapped on these busses are running at HSI speed.
(#) The clock for all peripherals is switched off, except the SRAM and FLASH.
(#) All GPIOs are in input floating state, except the SWD pins which
are assigned to be used for debug purpose.
[..] Once the device started from reset, the user application has to:
(#) Configure the clock source to be used to drive the System clock
(if the application needs higher frequency/performance)
(#) Configure the System clock frequency and Flash settings
(#) Configure the AHB and APB busses prescalers
(#) Enable the clock for the peripheral(s) to be used
(#) Configure the clock source(s) for peripherals which clocks are not
derived from the System clock (ADC, CEC, I2C, USART, RTC and IWDG)
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_rcc.h"
/** @addtogroup STM32F0xx_StdPeriph_Driver
* @{
*/
/** @defgroup RCC
* @brief RCC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ---------------------- RCC registers mask -------------------------------- */
/* RCC Flag Mask */
#define FLAG_MASK ((uint8_t)0x1F)
/* CR register byte 2 (Bits[23:16]) base address */
#define CR_BYTE2_ADDRESS ((uint32_t)0x40021002)
/* CFGR register byte 3 (Bits[31:23]) base address */
#define CFGR_BYTE3_ADDRESS ((uint32_t)0x40021007)
/* CIR register byte 1 (Bits[15:8]) base address */
#define CIR_BYTE1_ADDRESS ((uint32_t)0x40021009)
/* CIR register byte 2 (Bits[23:16]) base address */
#define CIR_BYTE2_ADDRESS ((uint32_t)0x4002100A)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RCC_Private_Functions
* @{
*/
/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
* @brief Internal and external clocks, PLL, CSS and MCO configuration functions
*
@verbatim
===============================================================================
##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
===============================================================================
[..] This section provides functions allowing to configure the internal/external clocks,
PLL, CSS and MCO.
(#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly
or through the PLL as System clock source.
The HSI clock can be used also to clock the USART, I2C and CEC peripherals.
(#) HSI14 (high-speed internal for ADC), 14 MHz factory-trimmed RC used to clock
the ADC peripheral.
(#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
clock source.
(#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
through the PLL as System clock source. Can be used also as RTC clock source.
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
LSE can be used also to clock the USART and CEC peripherals.
(#) PLL (clocked by HSI or HSE), for System clock.
(#) CSS (Clock security system), once enabled and if a HSE clock failure occurs
(HSE used directly or through PLL as System clock source), the System clock
is automatically switched to HSI and an interrupt is generated if enabled.
The interrupt is linked to the Cortex-M0 NMI (Non-Maskable Interrupt)
exception vector.
(#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSI14, LSI,
HSE, LSE or PLL (divided by 2) clock on PA8 pin.
@endverbatim
* @{
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* @note HSI ON and used as system clock source
* @note HSI14, HSE and PLL OFF
* @note AHB, APB prescaler set to 1.
* @note CSS and MCO OFF
* @note All interrupts disabled
* @note However, this function doesn't modify the configuration of the
* @note Peripheral clocks
* @note LSI, LSE and RTC clocks
* @param None
* @retval None
*/
void RCC_DeInit(void)
{
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
#if defined (STM32F051)
/* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
RCC->CFGR &= (uint32_t)0xF8FFB80C;
#else
/* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0] and PLLNODIV bits */
RCC->CFGR &= (uint32_t)0x08FFB80C;
#endif /* STM32F051 */
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
RCC->CFGR &= (uint32_t)0xFFC0FFFF;
/* Reset PREDIV1[3:0] bits */
RCC->CFGR2 &= (uint32_t)0xFFFFFFF0;
/* Reset USARTSW[1:0], I2CSW, CECSW and ADCSW bits */
RCC->CFGR3 &= (uint32_t)0xFFF0FEAC;
/* Reset HSI14 bit */
RCC->CR2 &= (uint32_t)0xFFFFFFFE;
/* Disable all interrupts */
RCC->CIR = 0x00000000;
}
/**
* @brief Configures the External High Speed oscillator (HSE).
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function resets the CSSON bit, so if the Clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param RCC_HSE: specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg RCC_HSE_ON: turn ON the HSE oscillator
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
* @retval None
*/
void RCC_HSEConfig(uint8_t RCC_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_HSE));
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
*(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE_OFF;
/* Set the new HSE configuration -------------------------------------------*/
*(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE;
}
/**
* @brief Waits for HSE start-up.
* @note This function waits on HSERDY flag to be set and return SUCCESS if
* this flag is set, otherwise returns ERROR if the timeout is reached
* and this flag is not set. The timeout value is defined by the constant
* HSE_STARTUP_TIMEOUT in stm32f0xx.h file. You can tailor it depending
* on the HSE crystal used in your application.
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @param None
* @retval An ErrorStatus enumeration value:
* - SUCCESS: HSE oscillator is stable and ready to use
* - ERROR: HSE oscillator not yet ready
*/
ErrorStatus RCC_WaitForHSEStartUp(void)
{
__IO uint32_t StartUpCounter = 0;
ErrorStatus status = ERROR;
FlagStatus HSEStatus = RESET;
/* Wait till HSE is ready and if timeout is reached exit */
do
{
HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
StartUpCounter++;
} while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* Refer to the Application Note AN4067 for more details on how to
* calibrate the HSI.
* @param HSICalibrationValue: specifies the HSI calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
* @retval None
*/
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
tmpreg = RCC->CR;
/* Clear HSITRIM[4:0] bits */
tmpreg &= ~RCC_CR_HSITRIM;
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
tmpreg |= (uint32_t)HSICalibrationValue << 3;
/* Store the new value */
RCC->CR = tmpreg;
}
/**
* @brief Enables or disables the Internal High Speed oscillator (HSI).
* @note After enabling the HSI, the application software should wait on
* HSIRDY flag to be set indicating that HSI clock is stable and can
* be used to clock the PLL and/or system clock.
* @note HSI can not be stopped if it is used directly or through the PLL
* as system clock. In this case, you have to select another source
* of the system clock then stop the HSI.
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* @param NewState: new state of the HSI.
* This parameter can be: ENABLE or DISABLE.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
* @retval None
*/
void RCC_HSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR |= RCC_CR_HSION;
}
else
{
RCC->CR &= ~RCC_CR_HSION;
}
}
/**
* @brief Adjusts the Internal High Speed oscillator for ADC (HSI14)
* calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* Refer to the Application Note AN4067 for more details on how to
* calibrate the HSI14.
* @param HSI14CalibrationValue: specifies the HSI14 calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
* @retval None
*/
void RCC_AdjustHSI14CalibrationValue(uint8_t HSI14CalibrationValue)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HSI14_CALIBRATION_VALUE(HSI14CalibrationValue));
tmpreg = RCC->CR2;
/* Clear HSI14TRIM[4:0] bits */
tmpreg &= ~RCC_CR2_HSI14TRIM;
/* Set the HSITRIM14[4:0] bits according to HSI14CalibrationValue value */
tmpreg |= (uint32_t)HSI14CalibrationValue << 3;
/* Store the new value */
RCC->CR2 = tmpreg;
}
/**
* @brief Enables or disables the Internal High Speed oscillator for ADC (HSI14).
* @note After enabling the HSI14, the application software should wait on
* HSIRDY flag to be set indicating that HSI clock is stable and can
* be used to clock the ADC.
* @note The HSI14 is stopped by hardware when entering STOP and STANDBY modes.
* @param NewState: new state of the HSI14.
* This parameter can be: ENABLE or DISABLE.
* @note When the HSI14 is stopped, HSI14RDY flag goes low after 6 HSI14 oscillator
* clock cycles.
* @retval None
*/
void RCC_HSI14Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR2 |= RCC_CR2_HSI14ON;
}
else
{
RCC->CR2 &= ~RCC_CR2_HSI14ON;
}
}
/**
* @brief Enables or disables the Internal High Speed oscillator request from ADC.
* @param NewState: new state of the HSI14 ADC request.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_HSI14ADCRequestCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR2 &= ~RCC_CR2_HSI14DIS;
}
else
{
RCC->CR2 |= RCC_CR2_HSI14DIS;
}
}
/**
* @brief Configures the External Low Speed oscillator (LSE).
* @note As the LSE is in the Backup domain and write access is denied to this
* domain after reset, you have to enable write access using
* PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
* (to be done once after reset).
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param RCC_LSE: specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg RCC_LSE_ON: turn ON the LSE oscillator
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
* @retval None
*/
void RCC_LSEConfig(uint32_t RCC_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_LSE));
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
/* Reset LSEON bit */
RCC->BDCR &= ~(RCC_BDCR_LSEON);
/* Reset LSEBYP bit */
RCC->BDCR &= ~(RCC_BDCR_LSEBYP);
/* Configure LSE */
RCC->BDCR |= RCC_LSE;
}
/**
* @brief Configures the External Low Speed oscillator (LSE) drive capability.
* @param RCC_LSEDrive: specifies the new state of the LSE drive capability.
* This parameter can be one of the following values:
* @arg RCC_LSEDrive_Low: LSE oscillator low drive capability.
* @arg RCC_LSEDrive_MediumLow: LSE oscillator medium low drive capability.
* @arg RCC_LSEDrive_MediumHigh: LSE oscillator medium high drive capability.
* @arg RCC_LSEDrive_High: LSE oscillator high drive capability.
* @retval None
*/
void RCC_LSEDriveConfig(uint32_t RCC_LSEDrive)
{
/* Check the parameters */
assert_param(IS_RCC_LSE_DRIVE(RCC_LSEDrive));
/* Clear LSEDRV[1:0] bits */
RCC->BDCR &= ~(RCC_BDCR_LSEDRV);
/* Set the LSE Drive */
RCC->BDCR |= RCC_LSEDrive;
}
/**
* @brief Enables or disables the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @param NewState: new state of the LSI.
* This parameter can be: ENABLE or DISABLE.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
* @retval None
*/
void RCC_LSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CSR |= RCC_CSR_LSION;
}
else
{
RCC->CSR &= ~RCC_CSR_LSION;
}
}
/**
* @brief Configures the PLL clock source and multiplication factor.
* @note This function must be used only when the PLL is disabled.
*
* @param RCC_PLLSource: specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock selected as PLL clock source
* @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock entry
* @arg RCC_PLLSource_HSI48 HSI48 oscillator clock selected as PLL clock source, applicable only for STM32F072 devices
* @arg RCC_PLLSource_HSI: HSI clock selected as PLL clock entry, applicable only for STM32F072 devices
* @note The minimum input clock frequency for PLL is 2 MHz (when using HSE as
* PLL source).
*
* @param RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
* This parameter can be RCC_PLLMul_x where x:[2,16]
*
* @retval None
*/
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
{
/* Check the parameters */
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
/* Clear PLL Source [16] and Multiplier [21:18] bits */
RCC->CFGR &= ~(RCC_CFGR_PLLMULL | RCC_CFGR_PLLSRC);
/* Set the PLL Source and Multiplier */
RCC->CFGR |= (uint32_t)(RCC_PLLSource | RCC_PLLMul);
}
/**
* @brief Enables or disables the PLL.
* @note After enabling the PLL, the application software should wait on
* PLLRDY flag to be set indicating that PLL clock is stable and can
* be used as system clock source.
* @note The PLL can not be disabled if it is used as system clock source
* @note The PLL is disabled by hardware when entering STOP and STANDBY modes.
* @param NewState: new state of the PLL.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLLCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR |= RCC_CR_PLLON;
}
else
{
RCC->CR &= ~RCC_CR_PLLON;
}
}
/**
* @brief Enables or disables the Internal High Speed oscillator for USB (HSI48).
* This function is only applicable for STM32F072 devices.
* @note After enabling the HSI48, the application software should wait on
* HSI48RDY flag to be set indicating that HSI48 clock is stable and can
* be used to clock the USB.
* @note The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
* @param NewState: new state of the HSI48.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_HSI48Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR2 |= RCC_CR2_HSI48ON;
}
else
{
RCC->CR2 &= ~RCC_CR2_HSI48ON;
}
}
/**
* @brief Configures the PREDIV1 division factor.
* @note This function must be used only when the PLL is disabled.
* @param RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
* This parameter can be RCC_PREDIV1_Divx where x:[1,16]
* @retval None
*/
void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Div)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));
tmpreg = RCC->CFGR2;
/* Clear PREDIV1[3:0] bits */
tmpreg &= ~(RCC_CFGR2_PREDIV1);
/* Set the PREDIV1 division factor */
tmpreg |= RCC_PREDIV1_Div;
/* Store the new value */
RCC->CFGR2 = tmpreg;
}
/**
* @brief Enables or disables the Clock Security System.
* @note If a failure is detected on the HSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
* allowing the MCU to perform rescue operations. The CSSI is linked to
* the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
* @param NewState: new state of the Clock Security System.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->CR |= RCC_CR_CSSON;
}
else
{
RCC->CR &= ~RCC_CR_CSSON;
}
}
#ifdef STM32F051
/**
* @brief Selects the clock source to output on MCO pin (PA8).
* @note PA8 should be configured in alternate function mode.
* @param RCC_MCOSource: specifies the clock source to output.
* This parameter can be one of the following values:
* @arg RCC_MCOSource_NoClock: No clock selected.
* @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
* @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
* @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
* @arg RCC_MCOSource_SYSCLK: System clock selected.
* @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
* @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
* @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
* @retval None
*/
void RCC_MCOConfig(uint8_t RCC_MCOSource)
{
/* Check the parameters */
assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
/* Select MCO clock source and prescaler */
*(__IO uint8_t *) CFGR_BYTE3_ADDRESS = RCC_MCOSource;
}
#else
/**
* @brief Selects the clock source to output on MCO pin (PA8) and the corresponding
* prescsaler.
* @note PA8 should be configured in alternate function mode.
* @param RCC_MCOSource: specifies the clock source to output.
* This parameter can be one of the following values:
* @arg RCC_MCOSource_NoClock: No clock selected.
* @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
* @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
* @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
* @arg RCC_MCOSource_SYSCLK: System clock selected.
* @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
* @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
* @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
* @arg RCC_MCOSource_PLLCLK: PLL clock selected.
* @arg RCC_MCOSource_HSI48: HSI48 clock selected.
* @param RCC_MCOPrescaler: specifies the prescaler on MCO pin.
* This parameter can be one of the following values:
* @arg RCC_MCOPrescaler_1: MCO clock is divided by 1.
* @arg RCC_MCOPrescaler_2: MCO clock is divided by 2.
* @arg RCC_MCOPrescaler_4: MCO clock is divided by 4.
* @arg RCC_MCOPrescaler_8: MCO clock is divided by 8.
* @arg RCC_MCOPrescaler_16: MCO clock is divided by 16.
* @arg RCC_MCOPrescaler_32: MCO clock is divided by 32.
* @arg RCC_MCOPrescaler_64: MCO clock is divided by 64.
* @arg RCC_MCOPrescaler_128: MCO clock is divided by 128.
* @retval None
*/
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint32_t RCC_MCOPrescaler)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
assert_param(IS_RCC_MCO_PRESCALER(RCC_MCOPrescaler));
/* Get CFGR value */
tmpreg = RCC->CFGR;
/* Clear MCOPRE[2:0] bits */
tmpreg &= ~(RCC_CFGR_MCO_PRE | RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
/* Set the RCC_MCOSource and RCC_MCOPrescaler */
tmpreg |= (RCC_MCOPrescaler | ((uint32_t)RCC_MCOSource<<24));
/* Store the new value */
RCC->CFGR = tmpreg;
}
#endif /* STM32F072 */
/**
* @}
*/
/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
* @brief System, AHB and APB busses clocks configuration functions
*
@verbatim
===============================================================================
##### System, AHB and APB busses clocks configuration functions #####
===============================================================================
[..] This section provide functions allowing to configure the System, AHB and
APB busses clocks.
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
HSE and PLL.
The AHB clock (HCLK) is derived from System clock through configurable prescaler
and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA and GPIO).
and APB (PCLK) clocks are derived from AHB clock through
configurable prescalers and used to clock the peripherals mapped on these busses.
You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
(+@) The ADC clock which is derived from HSI14 or APB (APB divided by a
programmable prescaler: 2 or 4).
(+@) The CEC clock which is derived from LSE or HSI divided by 244.
(+@) The I2C clock which is derived from HSI or system clock (SYSCLK).
(+@) The USART clock which is derived from HSI, system clock (SYSCLK), APB or LSE.
(+@) The RTC/LCD clock which is derived from the LSE, LSI or 2 MHz HSE_RTC (HSE
divided by a programmable prescaler).
The System clock (SYSCLK) frequency must be higher or equal to the RTC/LCD
clock frequency.
(+@) IWDG clock which is always the LSI clock.
(#) The maximum frequency of the SYSCLK, HCLK and PCLK is 48 MHz.
Depending on the maximum frequency, the FLASH wait states (WS) should be
adapted accordingly:
+--------------------------------------------- +
| Wait states | HCLK clock frequency (MHz) |
|---------------|------------------------------|
|0WS(1CPU cycle)| 0 < HCLK <= 24 |
|---------------|------------------------------|
|1WS(2CPU cycle)| 24 < HCLK <= 48 |
+----------------------------------------------+
(#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
prefetch is disabled.
[..] It is recommended to use the following software sequences to tune the number
of wait states needed to access the Flash memory with the CPU frequency (HCLK).
(+) Increasing the CPU frequency
(++) Program the Flash Prefetch buffer, using "FLASH_PrefetchBufferCmd(ENABLE)"
function
(++) Check that Flash Prefetch buffer activation is taken into account by
reading FLASH_ACR using the FLASH_GetPrefetchBufferStatus() function
(++) Program Flash WS to 1, using "FLASH_SetLatency(FLASH_Latency_1)" function
(++) Check that the new number of WS is taken into account by reading FLASH_ACR
(++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
(++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
(++) Check that the new CPU clock source is taken into account by reading
the clock source status, using "RCC_GetSYSCLKSource()" function
(+) Decreasing the CPU frequency
(++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
(++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
(++) Check that the new CPU clock source is taken into account by reading
the clock source status, using "RCC_GetSYSCLKSource()" function
(++) Program the new number of WS, using "FLASH_SetLatency()" function
(++) Check that the new number of WS is taken into account by reading FLASH_ACR
(++) Disable the Flash Prefetch buffer using "FLASH_PrefetchBufferCmd(DISABLE)"
function
(++) Check that Flash Prefetch buffer deactivation is taken into account by reading FLASH_ACR
using the FLASH_GetPrefetchBufferStatus() function.
@endverbatim
* @{
*/
/**
* @brief Configures the system clock (SYSCLK).
* @note The HSI is used (enabled by hardware) as system clock source after
* startup from Reset, wake-up from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
* @note A switch from one clock source to another occurs only if the target
* clock source is ready (clock stable after startup delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
* occur when the clock source will be ready.
* You can use RCC_GetSYSCLKSource() function to know which clock is
* currently used as system clock source.
* @param RCC_SYSCLKSource: specifies the clock source used as system clock source
* This parameter can be one of the following values:
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
* @arg RCC_SYSCLKSource_HSI48: HSI48 selected as system clock source, applicable only for STM32F072 devices
* @retval None
*/
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
tmpreg = RCC->CFGR;
/* Clear SW[1:0] bits */
tmpreg &= ~RCC_CFGR_SW;
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */
tmpreg |= RCC_SYSCLKSource;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Returns the clock source used as system clock.
* @param None
* @retval The clock source used as system clock. The returned value can be one
* of the following values:
* - 0x00: HSI used as system clock
* - 0x04: HSE used as system clock
* - 0x08: PLL used as system clock
* - 0x0C: HSI48 used as system clock, applicable only for STM32F072 devices
*/
uint8_t RCC_GetSYSCLKSource(void)
{
return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}
/**
* @brief Configures the AHB clock (HCLK).
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
* the system clock (SYSCLK).
* This parameter can be one of the following values:
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
* @retval None
*/
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HCLK(RCC_SYSCLK));
tmpreg = RCC->CFGR;
/* Clear HPRE[3:0] bits */
tmpreg &= ~RCC_CFGR_HPRE;
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */
tmpreg |= RCC_SYSCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the APB clock (PCLK).
* @param RCC_HCLK: defines the APB clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB clock = HCLK
* @arg RCC_HCLK_Div2: APB clock = HCLK/2
* @arg RCC_HCLK_Div4: APB clock = HCLK/4
* @arg RCC_HCLK_Div8: APB clock = HCLK/8
* @arg RCC_HCLK_Div16: APB clock = HCLK/16
* @retval None
*/
void RCC_PCLKConfig(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE[2:0] bits */
tmpreg &= ~RCC_CFGR_PPRE;
/* Set PPRE[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the ADC clock (ADCCLK).
* @note This function is obsolete.
* For proper ADC clock selection, refer to ADC_ClockModeConfig() in the ADC driver
* @param RCC_ADCCLK: defines the ADC clock source. This clock is derived
* from the HSI14 or APB clock (PCLK).
* This parameter can be one of the following values:
* @arg RCC_ADCCLK_HSI14: ADC clock = HSI14 (14MHz)
* @arg RCC_ADCCLK_PCLK_Div2: ADC clock = PCLK/2
* @arg RCC_ADCCLK_PCLK_Div4: ADC clock = PCLK/4
* @retval None
*/
void RCC_ADCCLKConfig(uint32_t RCC_ADCCLK)
{
/* Check the parameters */
assert_param(IS_RCC_ADCCLK(RCC_ADCCLK));
/* Clear ADCPRE bit */
RCC->CFGR &= ~RCC_CFGR_ADCPRE;
/* Set ADCPRE bits according to RCC_PCLK value */
RCC->CFGR |= RCC_ADCCLK & 0xFFFF;
/* Clear ADCSW bit */
RCC->CFGR3 &= ~RCC_CFGR3_ADCSW;
/* Set ADCSW bits according to RCC_ADCCLK value */
RCC->CFGR3 |= RCC_ADCCLK >> 16;
}
/**
* @brief Configures the CEC clock (CECCLK).
* @param RCC_CECCLK: defines the CEC clock source. This clock is derived
* from the HSI or LSE clock.
* This parameter can be one of the following values:
* @arg RCC_CECCLK_HSI_Div244: CEC clock = HSI/244 (32768Hz)
* @arg RCC_CECCLK_LSE: CEC clock = LSE
* @retval None
*/
void RCC_CECCLKConfig(uint32_t RCC_CECCLK)
{
/* Check the parameters */
assert_param(IS_RCC_CECCLK(RCC_CECCLK));
/* Clear CECSW bit */
RCC->CFGR3 &= ~RCC_CFGR3_CECSW;
/* Set CECSW bits according to RCC_CECCLK value */
RCC->CFGR3 |= RCC_CECCLK;
}
/**
* @brief Configures the I2C1 clock (I2C1CLK).
* @param RCC_I2CCLK: defines the I2C1 clock source. This clock is derived
* from the HSI or System clock.
* This parameter can be one of the following values:
* @arg RCC_I2C1CLK_HSI: I2C1 clock = HSI
* @arg RCC_I2C1CLK_SYSCLK: I2C1 clock = System Clock
* @retval None
*/
void RCC_I2CCLKConfig(uint32_t RCC_I2CCLK)
{
/* Check the parameters */
assert_param(IS_RCC_I2CCLK(RCC_I2CCLK));
/* Clear I2CSW bit */
RCC->CFGR3 &= ~RCC_CFGR3_I2C1SW;
/* Set I2CSW bits according to RCC_I2CCLK value */
RCC->CFGR3 |= RCC_I2CCLK;
}
/**
* @brief Configures the USART1 clock (USART1CLK).
* @param RCC_USARTCLK: defines the USART clock source. This clock is derived
* from the HSI or System clock.
* This parameter can be one of the following values:
* @arg RCC_USART1CLK_PCLK: USART1 clock = APB Clock (PCLK)
* @arg RCC_USART1CLK_SYSCLK: USART1 clock = System Clock
* @arg RCC_USART1CLK_LSE: USART1 clock = LSE Clock
* @arg RCC_USART1CLK_HSI: USART1 clock = HSI Clock
* @arg RCC_USART2CLK_PCLK: USART2 clock = APB Clock (PCLK), applicable only for STM32F072 and STM32F091 devices
* @arg RCC_USART2CLK_SYSCLK: USART2 clock = System Clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_USART2CLK_LSE: USART2 clock = LSE Clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_USART2CLK_HSI: USART2 clock = HSI Clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_USART3CLK_PCLK: USART3 clock = APB Clock (PCLK), applicable only for STM32F091 devices
* @arg RCC_USART3CLK_SYSCLK: USART3 clock = System Clock, applicable only for STM32F091 devices
* @arg RCC_USART3CLK_LSE: USART3 clock = LSE Clock, applicable only for STM32F091 devices
* @arg RCC_USART3CLK_HSI: USART3 clock = HSI Clock, applicable only for STM32F091 devices
* @retval None
*/
void RCC_USARTCLKConfig(uint32_t RCC_USARTCLK)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_RCC_USARTCLK(RCC_USARTCLK));
/* Get USART index */
tmp = (RCC_USARTCLK >> 28);
/* Clear USARTSW[1:0] bit */
if (tmp == (uint32_t)0x00000001)
{
/* Clear USART1SW[1:0] bit */
RCC->CFGR3 &= ~RCC_CFGR3_USART1SW;
}
else if (tmp == (uint32_t)0x00000002)
{
/* Clear USART2SW[1:0] bit */
RCC->CFGR3 &= ~RCC_CFGR3_USART2SW;
}
else
{
/* Clear USART3SW[1:0] bit */
RCC->CFGR3 &= ~RCC_CFGR3_USART3SW;
}
/* Set USARTxSW bits according to RCC_USARTCLK value */
RCC->CFGR3 |= RCC_USARTCLK;
}
/**
* @brief Configures the USB clock (USBCLK).
* This function is only applicable for STM32F072 devices.
* @param RCC_USBCLK: defines the USB clock source. This clock is derived
* from the HSI48 or system clock.
* This parameter can be one of the following values:
* @arg RCC_USBCLK_HSI48: USB clock = HSI48
* @arg RCC_USBCLK_PLLCLK: USB clock = PLL clock
* @retval None
*/
void RCC_USBCLKConfig(uint32_t RCC_USBCLK)
{
/* Check the parameters */
assert_param(IS_RCC_USBCLK(RCC_USBCLK));
/* Clear USBSW bit */
RCC->CFGR3 &= ~RCC_CFGR3_USBSW;
/* Set USBSW bits according to RCC_USBCLK value */
RCC->CFGR3 |= RCC_USBCLK;
}
/**
* @brief Returns the frequencies of the System, AHB and APB busses clocks.
* @note The frequency returned by this function is not the real frequency
* in the chip. It is calculated based on the predefined constant and
* the source selected by RCC_SYSCLKConfig():
*
* @note If SYSCLK source is HSI, function returns constant HSI_VALUE(*)
*
* @note If SYSCLK source is HSE, function returns constant HSE_VALUE(**)
*
* @note If SYSCLK source is PLL, function returns constant HSE_VALUE(**)
* or HSI_VALUE(*) multiplied by the PLL factors.
*
* @note If SYSCLK source is HSI48, function returns constant HSI48_VALUE(***)
*
* @note (*) HSI_VALUE is a constant defined in stm32f0xx.h file (default value
* 8 MHz) but the real value may vary depending on the variations
* in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().
*
* @note (**) HSE_VALUE is a constant defined in stm32f0xx.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* return wrong result.
*
* @note (***) HSI48_VALUE is a constant defined in stm32f0xx.h file (default value
* 48 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
* the clocks frequencies.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
* @note Each time SYSCLK, HCLK and/or PCLK clock changes, this function
* must be called to update the structure's field. Otherwise, any
* configuration based on this function will be incorrect.
*
* @retval None
*/
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
uint32_t tmp = 0, pllmull = 0, pllsource = 0, prediv1factor = 0, presc = 0, pllclk = 0;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* HSI used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
case 0x04: /* HSE used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
break;
case 0x08: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
pllmull = ( pllmull >> 18) + 2;
if (pllsource == 0x00)
{
/* HSI oscillator clock divided by 2 selected as PLL clock entry */
pllclk = (HSI_VALUE >> 1) * pllmull;
}
else
{
prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
/* HSE oscillator clock selected as PREDIV1 clock entry */
pllclk = (HSE_VALUE / prediv1factor) * pllmull;
}
RCC_Clocks->SYSCLK_Frequency = pllclk;
break;
case 0x0C: /* HSI48 used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI48_VALUE;
break;
default: /* HSI used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
}
/* Compute HCLK, PCLK clocks frequencies -----------------------------------*/
/* Get HCLK prescaler */
tmp = RCC->CFGR & RCC_CFGR_HPRE;
tmp = tmp >> 4;
presc = APBAHBPrescTable[tmp];
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
/* Get PCLK prescaler */
tmp = RCC->CFGR & RCC_CFGR_PPRE;
tmp = tmp >> 8;
presc = APBAHBPrescTable[tmp];
/* PCLK clock frequency */
RCC_Clocks->PCLK_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* ADCCLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_ADCSW) != RCC_CFGR3_ADCSW)
{
/* ADC Clock is HSI14 Osc. */
RCC_Clocks->ADCCLK_Frequency = HSI14_VALUE;
}
else
{
if((RCC->CFGR & RCC_CFGR_ADCPRE) != RCC_CFGR_ADCPRE)
{
/* ADC Clock is derived from PCLK/2 */
RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK_Frequency >> 1;
}
else
{
/* ADC Clock is derived from PCLK/4 */
RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK_Frequency >> 2;
}
}
/* CECCLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_CECSW) != RCC_CFGR3_CECSW)
{
/* CEC Clock is HSI/244 */
RCC_Clocks->CECCLK_Frequency = HSI_VALUE / 244;
}
else
{
/* CECC Clock is LSE Osc. */
RCC_Clocks->CECCLK_Frequency = LSE_VALUE;
}
/* I2C1CLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_I2C1SW) != RCC_CFGR3_I2C1SW)
{
/* I2C1 Clock is HSI Osc. */
RCC_Clocks->I2C1CLK_Frequency = HSI_VALUE;
}
else
{
/* I2C1 Clock is System Clock */
RCC_Clocks->I2C1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
}
/* USART1CLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == 0x0)
{
/* USART1 Clock is PCLK */
RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK_Frequency;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_0)
{
/* USART1 Clock is System Clock */
RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_1)
{
/* USART1 Clock is LSE Osc. */
RCC_Clocks->USART1CLK_Frequency = LSE_VALUE;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW)
{
/* USART1 Clock is HSI Osc. */
RCC_Clocks->USART1CLK_Frequency = HSI_VALUE;
}
/* USART2CLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == 0x0)
{
/* USART Clock is PCLK */
RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->PCLK_Frequency;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_0)
{
/* USART Clock is System Clock */
RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_1)
{
/* USART Clock is LSE Osc. */
RCC_Clocks->USART2CLK_Frequency = LSE_VALUE;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW)
{
/* USART Clock is HSI Osc. */
RCC_Clocks->USART2CLK_Frequency = HSI_VALUE;
}
/* USART3CLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == 0x0)
{
/* USART Clock is PCLK */
RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->PCLK_Frequency;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_0)
{
/* USART Clock is System Clock */
RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_1)
{
/* USART Clock is LSE Osc. */
RCC_Clocks->USART3CLK_Frequency = LSE_VALUE;
}
else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW)
{
/* USART Clock is HSI Osc. */
RCC_Clocks->USART3CLK_Frequency = HSI_VALUE;
}
/* USBCLK clock frequency */
if((RCC->CFGR3 & RCC_CFGR3_USBSW) != RCC_CFGR3_USBSW)
{
/* USB Clock is HSI48 */
RCC_Clocks->USBCLK_Frequency = HSI48_VALUE;
}
else
{
/* USB Clock is PLL clock */
RCC_Clocks->USBCLK_Frequency = pllclk;
}
}
/**
* @}
*/
/** @defgroup RCC_Group3 Peripheral clocks configuration functions
* @brief Peripheral clocks configuration functions
*
@verbatim
===============================================================================
#####Peripheral clocks configuration functions #####
===============================================================================
[..] This section provide functions allowing to configure the Peripheral clocks.
(#) The RTC clock which is derived from the LSE, LSI or HSE_Div32 (HSE
divided by 32).
(#) After restart from Reset or wakeup from STANDBY, all peripherals are off
except internal SRAM, Flash and SWD. Before to start using a peripheral you
have to enable its interface clock. You can do this using RCC_AHBPeriphClockCmd(),
RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions.
(#) To reset the peripherals configuration (to the default state after device reset)
you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and
RCC_APB1PeriphResetCmd() functions.
@endverbatim
* @{
*/
/**
* @brief Configures the RTC clock (RTCCLK).
* @note As the RTC clock configuration bits are in the Backup domain and write
* access is denied to this domain after reset, you have to enable write
* access using PWR_BackupAccessCmd(ENABLE) function before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it can't be changed unless the RTC
* is reset using RCC_BackupResetCmd function, or by a Power On Reset (POR)
*
* @param RCC_RTCCLKSource: specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div32: HSE divided by 32 selected as RTC clock
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
*
* @note The maximum input clock frequency for RTC is 2MHz (when using HSE as
* RTC clock source).
*
* @retval None
*/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
/* Select the RTC clock source */
RCC->BDCR |= RCC_RTCCLKSource;
}
/**
* @brief Enables or disables the RTC clock.
* @note This function must be used only after the RTC clock source was selected
* using the RCC_RTCCLKConfig function.
* @param NewState: new state of the RTC clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCCLKCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->BDCR |= RCC_BDCR_RTCEN;
}
else
{
RCC->BDCR &= ~RCC_BDCR_RTCEN;
}
}
/**
* @brief Forces or releases the Backup domain reset.
* @note This function resets the RTC peripheral (including the backup registers)
* and the RTC clock source selection in RCC_BDCR register.
* @param NewState: new state of the Backup domain reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_BackupResetCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->BDCR |= RCC_BDCR_BDRST;
}
else
{
RCC->BDCR &= ~RCC_BDCR_BDRST;
}
}
/**
* @brief Enables or disables the AHB peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA: GPIOA clock
* @arg RCC_AHBPeriph_GPIOB: GPIOB clock
* @arg RCC_AHBPeriph_GPIOC: GPIOC clock
* @arg RCC_AHBPeriph_GPIOD: GPIOD clock
* @arg RCC_AHBPeriph_GPIOE: GPIOE clock, applicable only for STM32F072 devices
* @arg RCC_AHBPeriph_GPIOF: GPIOF clock
* @arg RCC_AHBPeriph_TS: TS clock
* @arg RCC_AHBPeriph_CRC: CRC clock
* @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_SRAM: SRAM clock
* @arg RCC_AHBPeriph_DMA1: DMA1 clock
* @arg RCC_AHBPeriph_DMA2: DMA2 clock
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBENR |= RCC_AHBPeriph;
}
else
{
RCC->AHBENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the High Speed APB (APB2) peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
* @arg RCC_APB2Periph_USART6: USART6 clock
* @arg RCC_APB2Periph_USART7: USART7 clock
* @arg RCC_APB2Periph_USART8: USART8 clock
* @arg RCC_APB2Periph_ADC1: ADC1 clock
* @arg RCC_APB2Periph_TIM1: TIM1 clock
* @arg RCC_APB2Periph_SPI1: SPI1 clock
* @arg RCC_APB2Periph_USART1: USART1 clock
* @arg RCC_APB2Periph_TIM15: TIM15 clock
* @arg RCC_APB2Periph_TIM16: TIM16 clock
* @arg RCC_APB2Periph_TIM17: TIM17 clock
* @arg RCC_APB2Periph_DBGMCU: DBGMCU clock
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2ENR |= RCC_APB2Periph;
}
else
{
RCC->APB2ENR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2: TIM2 clock, applicable only for STM32F051 and STM32F072 devices
* @arg RCC_APB1Periph_TIM3: TIM3 clock
* @arg RCC_APB1Periph_TIM6: TIM6 clock
* @arg RCC_APB1Periph_TIM7: TIM7 clock, applicable only for STM32F072 devices
* @arg RCC_APB1Periph_TIM14: TIM14 clock
* @arg RCC_APB1Periph_WWDG: WWDG clock
* @arg RCC_APB1Periph_SPI2: SPI2 clock
* @arg RCC_APB1Periph_USART2: USART2 clock
* @arg RCC_APB1Periph_USART3: USART3 clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_APB1Periph_USART4: USART4 clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_APB1Periph_USART5: USART5 clock, applicable only for STM32F091 devices
* @arg RCC_APB1Periph_I2C1: I2C1 clock
* @arg RCC_APB1Periph_I2C2: I2C2 clock
* @arg RCC_APB1Periph_USB: USB clock, applicable only for STM32F042 and STM32F072 devices
* @arg RCC_APB1Periph_CAN: CAN clock, applicable only for STM32F042 and STM32F072 devices
* @arg RCC_APB1Periph_CRS: CRS clock , applicable only for STM32F042 and STM32F072 devices
* @arg RCC_APB1Periph_PWR: PWR clock
* @arg RCC_APB1Periph_DAC: DAC clock, applicable only for STM32F051 and STM32F072 devices
* @arg RCC_APB1Periph_CEC: CEC clock, applicable only for STM32F051, STM32F042 and STM32F072 devices
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1ENR |= RCC_APB1Periph;
}
else
{
RCC->APB1ENR &= ~RCC_APB1Periph;
}
}
/**
* @brief Forces or releases AHB peripheral reset.
* @param RCC_AHBPeriph: specifies the AHB peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA: GPIOA clock
* @arg RCC_AHBPeriph_GPIOB: GPIOB clock
* @arg RCC_AHBPeriph_GPIOC: GPIOC clock
* @arg RCC_AHBPeriph_GPIOD: GPIOD clock
* @arg RCC_AHBPeriph_GPIOE: GPIOE clock, applicable only for STM32F072 devices
* @arg RCC_AHBPeriph_GPIOF: GPIOF clock
* @arg RCC_AHBPeriph_TS: TS clock
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBRSTR |= RCC_AHBPeriph;
}
else
{
RCC->AHBRSTR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Forces or releases High Speed APB (APB2) peripheral reset.
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
* @arg RCC_APB2Periph_USART6: USART6 clock
* @arg RCC_APB2Periph_USART7: USART7 clock
* @arg RCC_APB2Periph_USART8: USART8 clock
* @arg RCC_APB2Periph_ADC1: ADC1 clock
* @arg RCC_APB2Periph_TIM1: TIM1 clock
* @arg RCC_APB2Periph_SPI1: SPI1 clock
* @arg RCC_APB2Periph_USART1: USART1 clock
* @arg RCC_APB2Periph_TIM15: TIM15 clock
* @arg RCC_APB2Periph_TIM16: TIM16 clock
* @arg RCC_APB2Periph_TIM17: TIM17 clock
* @arg RCC_APB2Periph_DBGMCU: DBGMCU clock
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2RSTR |= RCC_APB2Periph;
}
else
{
RCC->APB2RSTR &= ~RCC_APB2Periph;
}
}
/**
* @brief Forces or releases Low Speed APB (APB1) peripheral reset.
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2: TIM2 clock, applicable only for STM32F051 and STM32F072 devices
* @arg RCC_APB1Periph_TIM3: TIM3 clock
* @arg RCC_APB1Periph_TIM6: TIM6 clock
* @arg RCC_APB1Periph_TIM7: TIM7 clock, applicable only for STM32F072 devices
* @arg RCC_APB1Periph_TIM14: TIM14 clock
* @arg RCC_APB1Periph_WWDG: WWDG clock
* @arg RCC_APB1Periph_SPI2: SPI2 clock
* @arg RCC_APB1Periph_USART2: USART2 clock
* @arg RCC_APB1Periph_USART3: USART3 clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_APB1Periph_USART4: USART4 clock, applicable only for STM32F072 and STM32F091 devices
* @arg RCC_APB1Periph_USART5: USART5 clock, applicable only for STM32F091 devices
* @arg RCC_APB1Periph_I2C1: I2C1 clock
* @arg RCC_APB1Periph_I2C2: I2C2 clock
* @arg RCC_APB1Periph_USB: USB clock, applicable only for STM32F042 and STM32F072 devices
* @arg RCC_APB1Periph_CAN: CAN clock, applicable only for STM32F042 and STM32F072 devices
* @arg RCC_APB1Periph_CRS: CRS clock , applicable only for STM32F042 and STM32F072 devices
* @arg RCC_APB1Periph_PWR: PWR clock
* @arg RCC_APB1Periph_DAC: DAC clock, applicable only for STM32F051 and STM32F072 devices
* @arg RCC_APB1Periph_CEC: CEC clock, applicable only for STM32F051, STM32F042 and STM32F072 devices
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1RSTR |= RCC_APB1Periph;
}
else
{
RCC->APB1RSTR &= ~RCC_APB1Periph;
}
}
/**
* @}
*/
/** @defgroup RCC_Group4 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified RCC interrupts.
* @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled
* and if the HSE clock fails, the CSS interrupt occurs and an NMI is
* automatically generated. The NMI will be executed indefinitely, and
* since NMI has higher priority than any other IRQ (and main program)
* the application will be stacked in the NMI ISR unless the CSS interrupt
* pending bit is cleared.
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
* @arg RCC_IT_HSI48RDY: HSI48 ready interrupt, applicable only for STM32F072 devices
* @param NewState: new state of the specified RCC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_IT(RCC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE1_ADDRESS |= RCC_IT;
}
else
{
/* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE1_ADDRESS &= (uint8_t)~RCC_IT;
}
}
/**
* @brief Checks whether the specified RCC flag is set or not.
* @param RCC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_V18PWRRSTF: V1.8 power domain reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
* @arg RCC_FLAG_HSI14RDY: HSI14 oscillator clock ready
* @arg RCC_FLAG_HSI48RDY: HSI48 oscillator clock ready, applicable only for STM32F072 devices
* @retval The new state of RCC_FLAG (SET or RESET).
*/
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
uint32_t tmp = 0;
uint32_t statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_FLAG(RCC_FLAG));
/* Get the RCC register index */
tmp = RCC_FLAG >> 5;
if (tmp == 0) /* The flag to check is in CR register */
{
statusreg = RCC->CR;
}
else if (tmp == 1) /* The flag to check is in BDCR register */
{
statusreg = RCC->BDCR;
}
else if (tmp == 2) /* The flag to check is in CSR register */
{
statusreg = RCC->CSR;
}
else /* The flag to check is in CR2 register */
{
statusreg = RCC->CR2;
}
/* Get the flag position */
tmp = RCC_FLAG & FLAG_MASK;
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the RCC reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_V18PWRRSTF,
* RCC_FLAG_PORRST, RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST,
* RCC_FLAG_LPWRRST.
* @param None
* @retval None
*/
void RCC_ClearFlag(void)
{
/* Set RMVF bit to clear the reset flags */
RCC->CSR |= RCC_CSR_RMVF;
}
/**
* @brief Checks whether the specified RCC interrupt has occurred or not.
* @param RCC_IT: specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
* @arg RCC_IT_HSI48RDY: HSI48 ready interrupt, applicable only for STM32F072 devices
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval The new state of RCC_IT (SET or RESET).
*/
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_GET_IT(RCC_IT));
/* Check the status of the specified RCC interrupt */
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the RCC_IT status */
return bitstatus;
}
/**
* @brief Clears the RCC's interrupt pending bits.
* @param RCC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_HSI48RDY: HSI48 ready interrupt, applicable only for STM32F072 devices
* @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval None
*/
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
/* Check the parameters */
assert_param(IS_RCC_CLEAR_IT(RCC_IT));
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
pending bits */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS = RCC_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|