Files @ 9294a623e8e5
Branch filter:

Location: therm/drivers/CMSIS/DSP_Lib/Source/MatrixFunctions/arm_mat_inverse_f32.c

Ethan Zonca
Added support for both heaters and coolers as well as thermostatic control
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
*    
* $Date:        1. March 2013 
* $Revision: 	V1.4.1
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_mat_inverse_f32.c    
*    
* Description:	Floating-point matrix inverse.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupMatrix    
 */

/**    
 * @defgroup MatrixInv Matrix Inverse    
 *    
 * Computes the inverse of a matrix.    
 *    
 * The inverse is defined only if the input matrix is square and non-singular (the determinant    
 * is non-zero). The function checks that the input and output matrices are square and of the    
 * same size.    
 *    
 * Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix    
 * inversion of floating-point matrices.    
 *    
 * \par Algorithm    
 * The Gauss-Jordan method is used to find the inverse.    
 * The algorithm performs a sequence of elementary row-operations till it    
 * reduces the input matrix to an identity matrix. Applying the same sequence    
 * of elementary row-operations to an identity matrix yields the inverse matrix.    
 * If the input matrix is singular, then the algorithm terminates and returns error status    
 * <code>ARM_MATH_SINGULAR</code>.    
 * \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"    
 */

/**    
 * @addtogroup MatrixInv    
 * @{    
 */

/**    
 * @brief Floating-point matrix inverse.    
 * @param[in]       *pSrc points to input matrix structure    
 * @param[out]      *pDst points to output matrix structure    
 * @return     		The function returns    
 * <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size    
 * of the output matrix does not match the size of the input matrix.    
 * If the input matrix is found to be singular (non-invertible), then the function returns    
 * <code>ARM_MATH_SINGULAR</code>.  Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.    
 */

arm_status arm_mat_inverse_f32(
  const arm_matrix_instance_f32 * pSrc,
  arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn = pSrc->pData;                  /* input data matrix pointer */
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
  float32_t *pInT1, *pInT2;                      /* Temporary input data matrix pointer */
  float32_t *pInT3, *pInT4;                      /* Temporary output data matrix pointer */
  float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst;  /* Temporary input and output data matrix pointer */
  uint32_t numRows = pSrc->numRows;              /* Number of rows in the matrix  */
  uint32_t numCols = pSrc->numCols;              /* Number of Cols in the matrix  */

#ifndef ARM_MATH_CM0_FAMILY
  float32_t maxC;                                /* maximum value in the column */

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  float32_t Xchg, in = 0.0f, in1;                /* Temporary input values  */
  uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l;      /* loop counters */
  arm_status status;                             /* status of matrix inverse */

#ifdef ARM_MATH_MATRIX_CHECK


  /* Check for matrix mismatch condition */
  if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
     || (pSrc->numRows != pDst->numRows))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */

  {

    /*--------------------------------------------------------------------------------------------------------------    
	 * Matrix Inverse can be solved using elementary row operations.    
	 *    
	 *	Gauss-Jordan Method:    
	 *    
	 *	   1. First combine the identity matrix and the input matrix separated by a bar to form an    
	 *        augmented matrix as follows:    
	 *				        _ 	      	       _         _	       _    
	 *					   |  a11  a12 | 1   0  |       |  X11 X12  |    
	 *					   |           |        |   =   |           |    
	 *					   |_ a21  a22 | 0   1 _|       |_ X21 X21 _|    
	 *    
	 *		2. In our implementation, pDst Matrix is used as identity matrix.    
	 *    
	 *		3. Begin with the first row. Let i = 1.    
	 *    
	 *	    4. Check to see if the pivot for column i is the greatest of the column.    
	 *		   The pivot is the element of the main diagonal that is on the current row.    
	 *		   For instance, if working with row i, then the pivot element is aii.    
	 *		   If the pivot is not the most significant of the coluimns, exchange that row with a row
	 *		   below it that does contain the most significant value in column i. If the most
	 *         significant value of the column is zero, then an inverse to that matrix does not exist.
	 *		   The most significant value of the column is the absolut maximum.
	 *    
	 *	    5. Divide every element of row i by the pivot.    
	 *    
	 *	    6. For every row below and  row i, replace that row with the sum of that row and    
	 *		   a multiple of row i so that each new element in column i below row i is zero.    
	 *    
	 *	    7. Move to the next row and column and repeat steps 2 through 5 until you have zeros    
	 *		   for every element below and above the main diagonal.    
	 *    
	 *		8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).    
	 *		   Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).    
	 *----------------------------------------------------------------------------------------------------------------*/

    /* Working pointer for destination matrix */
    pInT2 = pOut;

    /* Loop over the number of rows */
    rowCnt = numRows;

    /* Making the destination matrix as identity matrix */
    while(rowCnt > 0u)
    {
      /* Writing all zeroes in lower triangle of the destination matrix */
      j = numRows - rowCnt;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Writing all ones in the diagonal of the destination matrix */
      *pInT2++ = 1.0f;

      /* Writing all zeroes in upper triangle of the destination matrix */
      j = rowCnt - 1u;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Decrement the loop counter */
      rowCnt--;
    }

    /* Loop over the number of columns of the input matrix.    
       All the elements in each column are processed by the row operations */
    loopCnt = numCols;

    /* Index modifier to navigate through the columns */
    l = 0u;

    while(loopCnt > 0u)
    {
      /* Check if the pivot element is zero..    
       * If it is zero then interchange the row with non zero row below.    
       * If there is no non zero element to replace in the rows below,    
       * then the matrix is Singular. */

      /* Working pointer for the input matrix that points    
       * to the pivot element of the particular row  */
      pInT1 = pIn + (l * numCols);

      /* Working pointer for the destination matrix that points    
       * to the pivot element of the particular row  */
      pInT3 = pOut + (l * numCols);

      /* Temporary variable to hold the pivot value */
      in = *pInT1;

      /* Destination pointer modifier */
      k = 1u;

     /* Grab the most significant value from column l */
      maxC = 0;
      for (i = 0; i < numRows; i++)
      {
        maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
        pInT1 += numCols;
      }

      /* Update the status if the matrix is singular */
      if(maxC == 0.0f)
      {
        status = ARM_MATH_SINGULAR;
        break;
      }

      /* Restore pInT1  */
      pInT1 -= numRows * numCols;
      
      /* Check if the pivot element is the most significant of the column */
      if( (in > 0.0f ? in : -in) != maxC)
      {
        /* Loop over the number rows present below */
        i = numRows - (l + 1u);

        while(i > 0u)
        {
          /* Update the input and destination pointers */
          pInT2 = pInT1 + (numCols * l);
          pInT4 = pInT3 + (numCols * k);

          /* Look for the most significant element to    
           * replace in the rows below */
          if((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
          {
            /* Loop over number of columns    
             * to the right of the pilot element */
            j = numCols - l;

            while(j > 0u)
            {
              /* Exchange the row elements of the input matrix */
              Xchg = *pInT2;
              *pInT2++ = *pInT1;
              *pInT1++ = Xchg;

              /* Decrement the loop counter */
              j--;
            }

            /* Loop over number of columns of the destination matrix */
            j = numCols;

            while(j > 0u)
            {
              /* Exchange the row elements of the destination matrix */
              Xchg = *pInT4;
              *pInT4++ = *pInT3;
              *pInT3++ = Xchg;

              /* Decrement the loop counter */
              j--;
            }

            /* Flag to indicate whether exchange is done or not */
            flag = 1u;

            /* Break after exchange is done */
            break;
          }

          /* Update the destination pointer modifier */
          k++;

          /* Decrement the loop counter */
          i--;
        }
      }

      /* Update the status if the matrix is singular */
      if((flag != 1u) && (in == 0.0f))
      {
        status = ARM_MATH_SINGULAR;

        break;
      }

      /* Points to the pivot row of input and destination matrices */
      pPivotRowIn = pIn + (l * numCols);
      pPivotRowDst = pOut + (l * numCols);

      /* Temporary pointers to the pivot row pointers */
      pInT1 = pPivotRowIn;
      pInT2 = pPivotRowDst;

      /* Pivot element of the row */
      in = *pPivotRowIn;

      /* Loop over number of columns    
       * to the right of the pilot element */
      j = (numCols - l);

      while(j > 0u)
      {
        /* Divide each element of the row of the input matrix    
         * by the pivot element */
        in1 = *pInT1;
        *pInT1++ = in1 / in;

        /* Decrement the loop counter */
        j--;
      }

      /* Loop over number of columns of the destination matrix */
      j = numCols;

      while(j > 0u)
      {
        /* Divide each element of the row of the destination matrix    
         * by the pivot element */
        in1 = *pInT2;
        *pInT2++ = in1 / in;

        /* Decrement the loop counter */
        j--;
      }

      /* Replace the rows with the sum of that row and a multiple of row i    
       * so that each new element in column i above row i is zero.*/

      /* Temporary pointers for input and destination matrices */
      pInT1 = pIn;
      pInT2 = pOut;

      /* index used to check for pivot element */
      i = 0u;

      /* Loop over number of rows */
      /*  to be replaced by the sum of that row and a multiple of row i */
      k = numRows;

      while(k > 0u)
      {
        /* Check for the pivot element */
        if(i == l)
        {
          /* If the processing element is the pivot element,    
             only the columns to the right are to be processed */
          pInT1 += numCols - l;

          pInT2 += numCols;
        }
        else
        {
          /* Element of the reference row */
          in = *pInT1;

          /* Working pointers for input and destination pivot rows */
          pPRT_in = pPivotRowIn;
          pPRT_pDst = pPivotRowDst;

          /* Loop over the number of columns to the right of the pivot element,    
             to replace the elements in the input matrix */
          j = (numCols - l);

          while(j > 0u)
          {
            /* Replace the element by the sum of that row    
               and a multiple of the reference row  */
            in1 = *pInT1;
            *pInT1++ = in1 - (in * *pPRT_in++);

            /* Decrement the loop counter */
            j--;
          }

          /* Loop over the number of columns to    
             replace the elements in the destination matrix */
          j = numCols;

          while(j > 0u)
          {
            /* Replace the element by the sum of that row    
               and a multiple of the reference row  */
            in1 = *pInT2;
            *pInT2++ = in1 - (in * *pPRT_pDst++);

            /* Decrement the loop counter */
            j--;
          }

        }

        /* Increment the temporary input pointer */
        pInT1 = pInT1 + l;

        /* Decrement the loop counter */
        k--;

        /* Increment the pivot index */
        i++;
      }

      /* Increment the input pointer */
      pIn++;

      /* Decrement the loop counter */
      loopCnt--;

      /* Increment the index modifier */
      l++;
    }


#else

  /* Run the below code for Cortex-M0 */

  float32_t Xchg, in = 0.0f;                     /* Temporary input values  */
  uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l;      /* loop counters */
  arm_status status;                             /* status of matrix inverse */

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
     || (pSrc->numRows != pDst->numRows))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  {

    /*--------------------------------------------------------------------------------------------------------------       
	 * Matrix Inverse can be solved using elementary row operations.        
	 *        
	 *	Gauss-Jordan Method:       
	 *	 	       
	 *	   1. First combine the identity matrix and the input matrix separated by a bar to form an        
	 *        augmented matrix as follows:        
	 *				        _  _	      _	    _	   _   _         _	       _       
	 *					   |  |  a11  a12  | | | 1   0  |   |       |  X11 X12  |         
	 *					   |  |            | | |        |   |   =   |           |        
	 *					   |_ |_ a21  a22 _| | |_0   1 _|  _|       |_ X21 X21 _|       
	 *					          
	 *		2. In our implementation, pDst Matrix is used as identity matrix.    
	 *       
	 *		3. Begin with the first row. Let i = 1.       
	 *       
	 *	    4. Check to see if the pivot for row i is zero.       
	 *		   The pivot is the element of the main diagonal that is on the current row.       
	 *		   For instance, if working with row i, then the pivot element is aii.       
	 *		   If the pivot is zero, exchange that row with a row below it that does not        
	 *		   contain a zero in column i. If this is not possible, then an inverse        
	 *		   to that matrix does not exist.       
	 *	       
	 *	    5. Divide every element of row i by the pivot.       
	 *	       
	 *	    6. For every row below and  row i, replace that row with the sum of that row and        
	 *		   a multiple of row i so that each new element in column i below row i is zero.       
	 *	       
	 *	    7. Move to the next row and column and repeat steps 2 through 5 until you have zeros       
	 *		   for every element below and above the main diagonal.        
	 *		   		          
	 *		8. Now an identical matrix is formed to the left of the bar(input matrix, src).       
	 *		   Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).         
	 *----------------------------------------------------------------------------------------------------------------*/

    /* Working pointer for destination matrix */
    pInT2 = pOut;

    /* Loop over the number of rows */
    rowCnt = numRows;

    /* Making the destination matrix as identity matrix */
    while(rowCnt > 0u)
    {
      /* Writing all zeroes in lower triangle of the destination matrix */
      j = numRows - rowCnt;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Writing all ones in the diagonal of the destination matrix */
      *pInT2++ = 1.0f;

      /* Writing all zeroes in upper triangle of the destination matrix */
      j = rowCnt - 1u;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Decrement the loop counter */
      rowCnt--;
    }

    /* Loop over the number of columns of the input matrix.     
       All the elements in each column are processed by the row operations */
    loopCnt = numCols;

    /* Index modifier to navigate through the columns */
    l = 0u;
    //for(loopCnt = 0u; loopCnt < numCols; loopCnt++)   
    while(loopCnt > 0u)
    {
      /* Check if the pivot element is zero..    
       * If it is zero then interchange the row with non zero row below.   
       * If there is no non zero element to replace in the rows below,   
       * then the matrix is Singular. */

      /* Working pointer for the input matrix that points     
       * to the pivot element of the particular row  */
      pInT1 = pIn + (l * numCols);

      /* Working pointer for the destination matrix that points     
       * to the pivot element of the particular row  */
      pInT3 = pOut + (l * numCols);

      /* Temporary variable to hold the pivot value */
      in = *pInT1;

      /* Destination pointer modifier */
      k = 1u;

      /* Check if the pivot element is zero */
      if(*pInT1 == 0.0f)
      {
        /* Loop over the number rows present below */
        for (i = (l + 1u); i < numRows; i++)
        {
          /* Update the input and destination pointers */
          pInT2 = pInT1 + (numCols * l);
          pInT4 = pInT3 + (numCols * k);

          /* Check if there is a non zero pivot element to     
           * replace in the rows below */
          if(*pInT2 != 0.0f)
          {
            /* Loop over number of columns     
             * to the right of the pilot element */
            for (j = 0u; j < (numCols - l); j++)
            {
              /* Exchange the row elements of the input matrix */
              Xchg = *pInT2;
              *pInT2++ = *pInT1;
              *pInT1++ = Xchg;
            }

            for (j = 0u; j < numCols; j++)
            {
              Xchg = *pInT4;
              *pInT4++ = *pInT3;
              *pInT3++ = Xchg;
            }

            /* Flag to indicate whether exchange is done or not */
            flag = 1u;

            /* Break after exchange is done */
            break;
          }

          /* Update the destination pointer modifier */
          k++;
        }
      }

      /* Update the status if the matrix is singular */
      if((flag != 1u) && (in == 0.0f))
      {
        status = ARM_MATH_SINGULAR;

        break;
      }

      /* Points to the pivot row of input and destination matrices */
      pPivotRowIn = pIn + (l * numCols);
      pPivotRowDst = pOut + (l * numCols);

      /* Temporary pointers to the pivot row pointers */
      pInT1 = pPivotRowIn;
      pInT2 = pPivotRowDst;

      /* Pivot element of the row */
      in = *(pIn + (l * numCols));

      /* Loop over number of columns     
       * to the right of the pilot element */
      for (j = 0u; j < (numCols - l); j++)
      {
        /* Divide each element of the row of the input matrix     
         * by the pivot element */
        *pInT1 = *pInT1 / in;
        pInT1++;
      }
      for (j = 0u; j < numCols; j++)
      {
        /* Divide each element of the row of the destination matrix     
         * by the pivot element */
        *pInT2 = *pInT2 / in;
        pInT2++;
      }

      /* Replace the rows with the sum of that row and a multiple of row i     
       * so that each new element in column i above row i is zero.*/

      /* Temporary pointers for input and destination matrices */
      pInT1 = pIn;
      pInT2 = pOut;

      for (i = 0u; i < numRows; i++)
      {
        /* Check for the pivot element */
        if(i == l)
        {
          /* If the processing element is the pivot element,     
             only the columns to the right are to be processed */
          pInT1 += numCols - l;
          pInT2 += numCols;
        }
        else
        {
          /* Element of the reference row */
          in = *pInT1;

          /* Working pointers for input and destination pivot rows */
          pPRT_in = pPivotRowIn;
          pPRT_pDst = pPivotRowDst;

          /* Loop over the number of columns to the right of the pivot element,     
             to replace the elements in the input matrix */
          for (j = 0u; j < (numCols - l); j++)
          {
            /* Replace the element by the sum of that row     
               and a multiple of the reference row  */
            *pInT1 = *pInT1 - (in * *pPRT_in++);
            pInT1++;
          }
          /* Loop over the number of columns to     
             replace the elements in the destination matrix */
          for (j = 0u; j < numCols; j++)
          {
            /* Replace the element by the sum of that row     
               and a multiple of the reference row  */
            *pInT2 = *pInT2 - (in * *pPRT_pDst++);
            pInT2++;
          }

        }
        /* Increment the temporary input pointer */
        pInT1 = pInT1 + l;
      }
      /* Increment the input pointer */
      pIn++;

      /* Decrement the loop counter */
      loopCnt--;
      /* Increment the index modifier */
      l++;
    }


#endif /* #ifndef ARM_MATH_CM0_FAMILY */

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;

    if((flag != 1u) && (in == 0.0f))
    {
      status = ARM_MATH_SINGULAR;
    }
  }
  /* Return to application */
  return (status);
}

/**    
 * @} end of MatrixInv group    
 */