Files
@ 9294a623e8e5
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
9294a623e8e5
11.9 KiB
text/plain
Added support for both heaters and coolers as well as thermostatic control
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_mat_mult_fast_q15.c
*
* Description: Q15 matrix multiplication (fast variant)
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @param[in] *pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The difference between the function arm_mat_mult_q15() and this fast variant is that
* the fast variant use a 32-bit rather than a 64-bit accumulator.
* The result of each 1.15 x 1.15 multiplication is truncated to
* 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
* format. Finally, the accumulator is saturated and converted to a 1.15 result.
*
* \par
* The fast version has the same overflow behavior as the standard version but provides
* less precision since it discards the low 16 bits of each multiplication result.
* In order to avoid overflows completely the input signals must be scaled down.
* Scale down one of the input matrices by log2(numColsA) bits to
* avoid overflows, as a total of numColsA additions are computed internally for each
* output element.
*
* \par
* See <code>arm_mat_mult_q15()</code> for a slower implementation of this function
* which uses 64-bit accumulation to provide higher precision.
*/
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState)
{
q31_t sum; /* accumulator */
q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
q15_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifndef UNALIGNED_SUPPORT_DISABLE
q31_t in; /* Temporary variable to hold the input value */
q31_t inA1, inA2, inB1, inB2;
#else
q15_t in; /* Temporary variable to hold the input value */
q15_t inA1, inA2, inB1, inB2;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
/* Matrix transpose */
do
{
/* Apply loop unrolling and exchange the columns with row elements */
col = numColsB >> 2;
/* The pointer px is set to starting address of the column being processed */
px = pSrcBT + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(col > 0u)
{
#ifndef UNALIGNED_SUPPORT_DISABLE
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
/* Unpack and store one element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Unpack and store the second element in the destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#else
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Read one element from the row */
in = *pInB++;
/* Store one element in the destination */
*px = in;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Decrement the column loop counter */
col--;
}
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
col = numColsB % 0x4u;
while(col > 0u)
{
/* Read and store the input element in the destination */
*px = *pInB++;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB;
/* Decrement the column loop counter */
col--;
}
i++;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* Reset the variables for the usage in the following multiplication process */
row = numRowsA;
i = 0u;
px = pDst->pData;
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the transposed pSrcB data */
pInB = pSrcBT;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0;
/* Apply loop unrolling and compute 2 MACs simultaneously. */
colCnt = numColsA >> 2;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pInA = pSrcA->pData + i;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
#ifndef UNALIGNED_SUPPORT_DISABLE
inA1 = *__SIMD32(pInA)++;
inB1 = *__SIMD32(pInB)++;
inA2 = *__SIMD32(pInA)++;
inB2 = *__SIMD32(pInB)++;
sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum);
#else
inA1 = *pInA++;
inB1 = *pInB++;
inA2 = *pInA++;
sum += inA1 * inB1;
inB2 = *pInB++;
inA1 = *pInA++;
inB1 = *pInB++;
sum += inA2 * inB2;
inA2 = *pInA++;
inB2 = *pInB++;
sum += inA1 * inB1;
sum += inA2 * inB2;
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/* Decrement the loop counter */
colCnt--;
}
/* process odd column samples */
colCnt = numColsA % 0x4u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
sum += (q31_t) (*pInA++) * (*pInB++);
colCnt--;
}
/* Saturate and store the result in the destination buffer */
*px = (q15_t) (sum >> 15);
px++;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
i = i + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/
|