Files @ 9294a623e8e5
Branch filter:

Location: therm/drivers/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c

Ethan Zonca
Added support for both heaters and coolers as well as thermostatic control
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/* ----------------------------------------------------------------------   
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.   
*   
* $Date:        17. January 2013  
* $Revision: 	V1.4.1  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_cfft_radix2_f32.c   
*   
* Description:	Radix-2 Decimation in Frequency CFFT & CIFFT Floating point processing function   
*   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

void arm_radix2_butterfly_f32(
  float32_t * pSrc,
  uint32_t fftLen,
  float32_t * pCoef,
  uint16_t twidCoefModifier);

void arm_radix2_butterfly_inverse_f32(
  float32_t * pSrc,
  uint32_t fftLen,
  float32_t * pCoef,
  uint16_t twidCoefModifier,
  float32_t onebyfftLen);

extern void arm_bitreversal_f32(
    float32_t * pSrc,
    uint16_t fftSize,
    uint16_t bitRevFactor,
    uint16_t * pBitRevTab);

/**   
* @ingroup groupTransforms   
*/

/**   
* @addtogroup ComplexFFT   
* @{   
*/

/**   
* @details
* @brief Radix-2 CFFT/CIFFT.
* @deprecated Do not use this function.  It has been superceded by \ref arm_cfft_f32 and will be removed
* in the future.
* @param[in]      *S    points to an instance of the floating-point Radix-2 CFFT/CIFFT structure.  
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.  
* @return none.
*/

void arm_cfft_radix2_f32(
const arm_cfft_radix2_instance_f32 * S,
float32_t * pSrc)
{

   if(S->ifftFlag == 1u)
   {
      /*  Complex IFFT radix-2  */
      arm_radix2_butterfly_inverse_f32(pSrc, S->fftLen, S->pTwiddle,
      S->twidCoefModifier, S->onebyfftLen);
   }
   else
   {
      /*  Complex FFT radix-2  */
      arm_radix2_butterfly_f32(pSrc, S->fftLen, S->pTwiddle,
      S->twidCoefModifier);
   }

   if(S->bitReverseFlag == 1u)
   {
      /*  Bit Reversal */
      arm_bitreversal_f32(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
   }

}


/**    
* @} end of ComplexFFT group    
*/



/* ----------------------------------------------------------------------    
** Internal helper function used by the FFTs    
** ------------------------------------------------------------------- */

/*    
* @brief  Core function for the floating-point CFFT butterfly process.   
* @param[in, out] *pSrc            points to the in-place buffer of floating-point data type.   
* @param[in]      fftLen           length of the FFT.   
* @param[in]      *pCoef           points to the twiddle coefficient buffer.   
* @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
* @return none.   
*/

void arm_radix2_butterfly_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier)
{

   uint32_t i, j, k, l;
   uint32_t n1, n2, ia;
   float32_t xt, yt, cosVal, sinVal;
   float32_t p0, p1, p2, p3;
   float32_t a0, a1;

#ifndef ARM_MATH_CM0_FAMILY

   /*  Initializations for the first stage */
   n2 = fftLen >> 1;
   ia = 0;
   i = 0;

   // loop for groups 
   for (k = n2; k > 0; k--)
   {
      cosVal = pCoef[ia * 2];
      sinVal = pCoef[(ia * 2) + 1];

      /*  Twiddle coefficients index modifier */
      ia += twidCoefModifier;

      /*  index calculation for the input as, */
      /*  pSrc[i + 0], pSrc[i + fftLen/1] */
      l = i + n2;

      /*  Butterfly implementation */
      a0 = pSrc[2 * i] + pSrc[2 * l];
      xt = pSrc[2 * i] - pSrc[2 * l];

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
      
      p0 = xt * cosVal;
      p1 = yt * sinVal;
      p2 = yt * cosVal;
      p3 = xt * sinVal;  
      
      pSrc[2 * i]     = a0;   
      pSrc[2 * i + 1] = a1;       
      
      pSrc[2 * l]     = p0 + p1;
      pSrc[2 * l + 1] = p2 - p3;
      
      i++;
   }                             // groups loop end 

   twidCoefModifier <<= 1u;

   // loop for stage 
   for (k = n2; k > 2; k = k >> 1)
   {
      n1 = n2;
      n2 = n2 >> 1;
      ia = 0;

      // loop for groups 
      j = 0;
      do
      {
         cosVal = pCoef[ia * 2];
         sinVal = pCoef[(ia * 2) + 1];
         ia += twidCoefModifier;

         // loop for butterfly 
         i = j;
         do
         {
            l = i + n2;
            a0 = pSrc[2 * i] + pSrc[2 * l];
            xt = pSrc[2 * i] - pSrc[2 * l];

            yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
            a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
            
            p0 = xt * cosVal;
            p1 = yt * sinVal;
            p2 = yt * cosVal;
            p3 = xt * sinVal;  
            
            pSrc[2 * i] = a0;   
            pSrc[2 * i + 1] = a1;       
            
            pSrc[2 * l]     = p0 + p1;
            pSrc[2 * l + 1] = p2 - p3;
            
            i += n1;
         } while( i < fftLen );                        // butterfly loop end 
         j++;
      } while( j < n2);                          // groups loop end 
      twidCoefModifier <<= 1u;
   }                             // stages loop end 

   // loop for butterfly 
   for (i = 0; i < fftLen; i += 2)
   {
      a0 = pSrc[2 * i] + pSrc[2 * i + 2];
      xt = pSrc[2 * i] - pSrc[2 * i + 2];

      yt = pSrc[2 * i + 1] - pSrc[2 * i + 3];
      a1 = pSrc[2 * i + 3] + pSrc[2 * i + 1];
      
      pSrc[2 * i] = a0;   
      pSrc[2 * i + 1] = a1;
      pSrc[2 * i + 2] = xt;
      pSrc[2 * i + 3] = yt;
   }                             // groups loop end 

#else
 
   n2 = fftLen;

   // loop for stage 
   for (k = fftLen; k > 1; k = k >> 1)
   {
      n1 = n2;
      n2 = n2 >> 1;
      ia = 0;

      // loop for groups 
      j = 0;
      do
      {
         cosVal = pCoef[ia * 2];
         sinVal = pCoef[(ia * 2) + 1];
         ia += twidCoefModifier;

         // loop for butterfly 
         i = j;
         do
         {
            l = i + n2;
            a0 = pSrc[2 * i] + pSrc[2 * l];
            xt = pSrc[2 * i] - pSrc[2 * l];

            yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
            a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
            
            p0 = xt * cosVal;
            p1 = yt * sinVal;
            p2 = yt * cosVal;
            p3 = xt * sinVal;  
            
            pSrc[2 * i] = a0;   
            pSrc[2 * i + 1] = a1;       
            
            pSrc[2 * l]     = p0 + p1;
            pSrc[2 * l + 1] = p2 - p3;
            
            i += n1;
         } while(i < fftLen);
         j++;
      } while(j < n2);
      twidCoefModifier <<= 1u;
   }

#endif //    #ifndef ARM_MATH_CM0_FAMILY

}


void arm_radix2_butterfly_inverse_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier,
float32_t onebyfftLen)
{

   uint32_t i, j, k, l;
   uint32_t n1, n2, ia;
   float32_t xt, yt, cosVal, sinVal;
   float32_t p0, p1, p2, p3;
   float32_t a0, a1;

#ifndef ARM_MATH_CM0_FAMILY

   n2 = fftLen >> 1;
   ia = 0;

   // loop for groups 
   for (i = 0; i < n2; i++)
   {
      cosVal = pCoef[ia * 2];
      sinVal = pCoef[(ia * 2) + 1];
      ia += twidCoefModifier;

      l = i + n2;
      a0 = pSrc[2 * i] + pSrc[2 * l];
      xt = pSrc[2 * i] - pSrc[2 * l];

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
      
      p0 = xt * cosVal;
      p1 = yt * sinVal;
      p2 = yt * cosVal;
      p3 = xt * sinVal;  
      
      pSrc[2 * i] = a0;   
      pSrc[2 * i + 1] = a1;       
      
      pSrc[2 * l]     = p0 - p1;
      pSrc[2 * l + 1] = p2 + p3;  
   }                             // groups loop end 

   twidCoefModifier <<= 1u;

   // loop for stage 
   for (k = fftLen / 2; k > 2; k = k >> 1)
   {
      n1 = n2;
      n2 = n2 >> 1;
      ia = 0;

      // loop for groups 
      j = 0;
      do
      {
         cosVal = pCoef[ia * 2];
         sinVal = pCoef[(ia * 2) + 1];
         ia += twidCoefModifier;

         // loop for butterfly 
         i = j;
         do
         {
            l = i + n2;
            a0 = pSrc[2 * i] + pSrc[2 * l];
            xt = pSrc[2 * i] - pSrc[2 * l];

            yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
            a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
            
            p0 = xt * cosVal;
            p1 = yt * sinVal;
            p2 = yt * cosVal;
            p3 = xt * sinVal;  
            
            pSrc[2 * i] = a0;   
            pSrc[2 * i + 1] = a1;       
            
            pSrc[2 * l]     = p0 - p1;
            pSrc[2 * l + 1] = p2 + p3; 

            i += n1;
         } while( i < fftLen );                 // butterfly loop end 
         j++;
      } while(j < n2);                      // groups loop end 

      twidCoefModifier <<= 1u;
   }                             // stages loop end 

   // loop for butterfly 
   for (i = 0; i < fftLen; i += 2)
   {   
      a0 = pSrc[2 * i] + pSrc[2 * i + 2];
      xt = pSrc[2 * i] - pSrc[2 * i + 2];
      
      a1 = pSrc[2 * i + 3] + pSrc[2 * i + 1];
      yt = pSrc[2 * i + 1] - pSrc[2 * i + 3];
      
      p0 = a0 * onebyfftLen;
      p2 = xt * onebyfftLen;
      p1 = a1 * onebyfftLen;
      p3 = yt * onebyfftLen; 
      
      pSrc[2 * i] = p0;
      pSrc[2 * i + 1] = p1;  
      pSrc[2 * i + 2] = p2;       
      pSrc[2 * i + 3] = p3;
   }                             // butterfly loop end 

#else

   n2 = fftLen;

   // loop for stage 
   for (k = fftLen; k > 2; k = k >> 1)
   {
      n1 = n2;
      n2 = n2 >> 1;
      ia = 0;

      // loop for groups 
      j = 0;
      do
      {
         cosVal = pCoef[ia * 2];
         sinVal = pCoef[(ia * 2) + 1];
         ia = ia + twidCoefModifier;

         // loop for butterfly 
         i = j;
         do
         {
            l = i + n2;
            a0 = pSrc[2 * i] + pSrc[2 * l];
            xt = pSrc[2 * i] - pSrc[2 * l];

            yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
            a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
            
            p0 = xt * cosVal;
            p1 = yt * sinVal;
            p2 = yt * cosVal;
            p3 = xt * sinVal;  
            
            pSrc[2 * i] = a0;   
            pSrc[2 * i + 1] = a1;       
            
            pSrc[2 * l]     = p0 - p1;
            pSrc[2 * l + 1] = p2 + p3;  
            
            i += n1;
         } while( i < fftLen );                    // butterfly loop end 
         j++;
      } while( j < n2 );                      // groups loop end 

      twidCoefModifier = twidCoefModifier << 1u;
   }                             // stages loop end 

   n1 = n2;
   n2 = n2 >> 1;

   // loop for butterfly 
   for (i = 0; i < fftLen; i += n1)
   {
      l = i + n2;
      
      a0 = pSrc[2 * i] + pSrc[2 * l];
      xt = pSrc[2 * i] - pSrc[2 * l];
      
      a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      
      p0 = a0 * onebyfftLen;
      p2 = xt * onebyfftLen;
      p1 = a1 * onebyfftLen;
      p3 = yt * onebyfftLen; 
      
      pSrc[2 * i] = p0;
      pSrc[2u * l] = p2;
     
      pSrc[2 * i + 1] = p1;    
      pSrc[2u * l + 1u] = p3;
   }                             // butterfly loop end 

#endif //      #ifndef ARM_MATH_CM0_FAMILY

}