Files
@ 9294a623e8e5
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/TransformFunctions/arm_dct4_q15.c
9294a623e8e5
13.7 KiB
text/plain
Added support for both heaters and coolers as well as thermostatic control
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_dct4_q15.c
*
* Description: Processing function of DCT4 & IDCT4 Q15.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup DCT4_IDCT4
* @{
*/
/**
* @brief Processing function for the Q15 DCT4/IDCT4.
* @param[in] *S points to an instance of the Q15 DCT4 structure.
* @param[in] *pState points to state buffer.
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
* @return none.
*
* \par Input an output formats:
* Internally inputs are downscaled in the RFFT process function to avoid overflows.
* Number of bits downscaled, depends on the size of the transform.
* The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below:
*
* \image html dct4FormatsQ15Table.gif
*/
void arm_dct4_q15(
const arm_dct4_instance_q15 * S,
q15_t * pState,
q15_t * pInlineBuffer)
{
uint32_t i; /* Loop counter */
q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */
q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */
q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */
q15_t in; /* Temporary variable */
/* DCT4 computation involves DCT2 (which is calculated using RFFT)
* along with some pre-processing and post-processing.
* Computational procedure is explained as follows:
* (a) Pre-processing involves multiplying input with cos factor,
* r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
* where,
* r(n) -- output of preprocessing
* u(n) -- input to preprocessing(actual Source buffer)
* (b) Calculation of DCT2 using FFT is divided into three steps:
* Step1: Re-ordering of even and odd elements of input.
* Step2: Calculating FFT of the re-ordered input.
* Step3: Taking the real part of the product of FFT output and weights.
* (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
* Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
* where,
* Y4 -- DCT4 output, Y2 -- DCT2 output
* (d) Multiplying the output with the normalizing factor sqrt(2/N).
*/
/*-------- Pre-processing ------------*/
/* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N);
arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N);
/* ----------------------------------------------------------------
* Step1: Re-ordering of even and odd elements as
* pState[i] = pInlineBuffer[2*i] and
* pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
---------------------------------------------------------------------*/
/* pS1 initialized to pState */
pS1 = pState;
/* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
pS2 = pState + (S->N - 1u);
/* pbuff initialized to input buffer */
pbuff = pInlineBuffer;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
i = (uint32_t) S->Nby2 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
do
{
/* Re-ordering of even and odd elements */
/* pState[i] = pInlineBuffer[2*i] */
*pS1++ = *pbuff++;
/* pState[N-i-1] = pInlineBuffer[2*i+1] */
*pS2-- = *pbuff++;
*pS1++ = *pbuff++;
*pS2-- = *pbuff++;
*pS1++ = *pbuff++;
*pS2-- = *pbuff++;
*pS1++ = *pbuff++;
*pS2-- = *pbuff++;
/* Decrement the loop counter */
i--;
} while(i > 0u);
/* pbuff initialized to input buffer */
pbuff = pInlineBuffer;
/* pS1 initialized to pState */
pS1 = pState;
/* Initializing the loop counter to N/4 instead of N for loop unrolling */
i = (uint32_t) S->N >> 2u;
/* Processing with loop unrolling 4 times as N is always multiple of 4.
* Compute 4 outputs at a time */
do
{
/* Writing the re-ordered output back to inplace input buffer */
*pbuff++ = *pS1++;
*pbuff++ = *pS1++;
*pbuff++ = *pS1++;
*pbuff++ = *pS1++;
/* Decrement the loop counter */
i--;
} while(i > 0u);
/* ---------------------------------------------------------
* Step2: Calculate RFFT for N-point input
* ---------------------------------------------------------- */
/* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
arm_rfft_q15(S->pRfft, pInlineBuffer, pState);
/*----------------------------------------------------------------------
* Step3: Multiply the FFT output with the weights.
*----------------------------------------------------------------------*/
arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N);
/* The output of complex multiplication is in 3.13 format.
* Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */
arm_shift_q15(pState, 2, pState, S->N * 2);
/* ----------- Post-processing ---------- */
/* DCT-IV can be obtained from DCT-II by the equation,
* Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
* Hence, Y4(0) = Y2(0)/2 */
/* Getting only real part from the output and Converting to DCT-IV */
/* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
i = ((uint32_t) S->N - 1u) >> 2u;
/* pbuff initialized to input buffer. */
pbuff = pInlineBuffer;
/* pS1 initialized to pState */
pS1 = pState;
/* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
in = *pS1++ >> 1u;
/* input buffer acts as inplace, so output values are stored in the input itself. */
*pbuff++ = in;
/* pState pointer is incremented twice as the real values are located alternatively in the array */
pS1++;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
do
{
/* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
/* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
in = *pS1++ - in;
*pbuff++ = in;
/* points to the next real value */
pS1++;
in = *pS1++ - in;
*pbuff++ = in;
pS1++;
in = *pS1++ - in;
*pbuff++ = in;
pS1++;
in = *pS1++ - in;
*pbuff++ = in;
pS1++;
/* Decrement the loop counter */
i--;
} while(i > 0u);
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
i = ((uint32_t) S->N - 1u) % 0x4u;
while(i > 0u)
{
/* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
/* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
in = *pS1++ - in;
*pbuff++ = in;
/* points to the next real value */
pS1++;
/* Decrement the loop counter */
i--;
}
/*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
/* Initializing the loop counter to N/4 instead of N for loop unrolling */
i = (uint32_t) S->N >> 2u;
/* pbuff initialized to the pInlineBuffer(now contains the output values) */
pbuff = pInlineBuffer;
/* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */
do
{
/* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
in = *pbuff;
*pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
in = *pbuff;
*pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
in = *pbuff;
*pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
in = *pbuff;
*pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
/* Decrement the loop counter */
i--;
} while(i > 0u);
#else
/* Run the below code for Cortex-M0 */
/* Initializing the loop counter to N/2 */
i = (uint32_t) S->Nby2;
do
{
/* Re-ordering of even and odd elements */
/* pState[i] = pInlineBuffer[2*i] */
*pS1++ = *pbuff++;
/* pState[N-i-1] = pInlineBuffer[2*i+1] */
*pS2-- = *pbuff++;
/* Decrement the loop counter */
i--;
} while(i > 0u);
/* pbuff initialized to input buffer */
pbuff = pInlineBuffer;
/* pS1 initialized to pState */
pS1 = pState;
/* Initializing the loop counter */
i = (uint32_t) S->N;
do
{
/* Writing the re-ordered output back to inplace input buffer */
*pbuff++ = *pS1++;
/* Decrement the loop counter */
i--;
} while(i > 0u);
/* ---------------------------------------------------------
* Step2: Calculate RFFT for N-point input
* ---------------------------------------------------------- */
/* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
arm_rfft_q15(S->pRfft, pInlineBuffer, pState);
/*----------------------------------------------------------------------
* Step3: Multiply the FFT output with the weights.
*----------------------------------------------------------------------*/
arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N);
/* The output of complex multiplication is in 3.13 format.
* Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */
arm_shift_q15(pState, 2, pState, S->N * 2);
/* ----------- Post-processing ---------- */
/* DCT-IV can be obtained from DCT-II by the equation,
* Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
* Hence, Y4(0) = Y2(0)/2 */
/* Getting only real part from the output and Converting to DCT-IV */
/* Initializing the loop counter */
i = ((uint32_t) S->N - 1u);
/* pbuff initialized to input buffer. */
pbuff = pInlineBuffer;
/* pS1 initialized to pState */
pS1 = pState;
/* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
in = *pS1++ >> 1u;
/* input buffer acts as inplace, so output values are stored in the input itself. */
*pbuff++ = in;
/* pState pointer is incremented twice as the real values are located alternatively in the array */
pS1++;
do
{
/* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
/* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
in = *pS1++ - in;
*pbuff++ = in;
/* points to the next real value */
pS1++;
/* Decrement the loop counter */
i--;
} while(i > 0u);
/*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
/* Initializing the loop counter */
i = (uint32_t) S->N;
/* pbuff initialized to the pInlineBuffer(now contains the output values) */
pbuff = pInlineBuffer;
do
{
/* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
in = *pbuff;
*pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
/* Decrement the loop counter */
i--;
} while(i > 0u);
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of DCT4_IDCT4 group
*/
|