Files
@ 9294a623e8e5
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/TransformFunctions/arm_rfft_q31.c
9294a623e8e5
11.2 KiB
text/plain
Added support for both heaters and coolers as well as thermostatic control
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_rfft_q31.c
*
* Description: RFFT & RIFFT Q31 process function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
void arm_radix4_butterfly_inverse_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pCoef,
uint32_t twidCoefModifier);
void arm_radix4_butterfly_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pCoef,
uint32_t twidCoefModifier);
void arm_bitreversal_q31(
q31_t * pSrc,
uint32_t fftLen,
uint16_t bitRevFactor,
uint16_t * pBitRevTab);
/*--------------------------------------------------------------------
* Internal functions prototypes
--------------------------------------------------------------------*/
void arm_split_rfft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier);
void arm_split_rifft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier);
/**
* @addtogroup RealFFT
* @{
*/
/**
* @brief Processing function for the Q31 RFFT/RIFFT.
* @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure.
* @param[in] *pSrc points to the input buffer.
* @param[out] *pDst points to the output buffer.
* @return none.
*
* \par Input an output formats:
* \par
* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
* Hence the output format is different for different RFFT sizes.
* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
* \par
* \image html RFFTQ31.gif "Input and Output Formats for Q31 RFFT"
*
* \par
* \image html RIFFTQ31.gif "Input and Output Formats for Q31 RIFFT"
*/
void arm_rfft_q31(
const arm_rfft_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst)
{
const arm_cfft_radix4_instance_q31 *S_CFFT = S->pCfft;
/* Calculation of RIFFT of input */
if(S->ifftFlagR == 1u)
{
/* Real IFFT core process */
arm_split_rifft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal,
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
/* Complex readix-4 IFFT process */
arm_radix4_butterfly_inverse_q31(pDst, S_CFFT->fftLen,
S_CFFT->pTwiddle,
S_CFFT->twidCoefModifier);
/* Bit reversal process */
if(S->bitReverseFlagR == 1u)
{
arm_bitreversal_q31(pDst, S_CFFT->fftLen,
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
}
}
else
{
/* Calculation of RFFT of input */
/* Complex readix-4 FFT process */
arm_radix4_butterfly_q31(pSrc, S_CFFT->fftLen,
S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
/* Bit reversal process */
if(S->bitReverseFlagR == 1u)
{
arm_bitreversal_q31(pSrc, S_CFFT->fftLen,
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
}
/* Real FFT core process */
arm_split_rfft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal,
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
}
}
/**
* @} end of RealFFT group
*/
/**
* @brief Core Real FFT process
* @param[in] *pSrc points to the input buffer.
* @param[in] fftLen length of FFT.
* @param[in] *pATable points to the twiddle Coef A buffer.
* @param[in] *pBTable points to the twiddle Coef B buffer.
* @param[out] *pDst points to the output buffer.
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_split_rfft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier)
{
uint32_t i; /* Loop Counter */
q31_t outR, outI; /* Temporary variables for output */
q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
q31_t *pOut1 = &pDst[2], *pOut2 = &pDst[(4u * fftLen) - 1u];
q31_t *pIn1 = &pSrc[2], *pIn2 = &pSrc[(2u * fftLen) - 1u];
/* Init coefficient pointers */
pCoefA = &pATable[modifier * 2u];
pCoefB = &pBTable[modifier * 2u];
i = fftLen - 1u;
while(i > 0u)
{
/*
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
*/
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
CoefA1 = *pCoefA++;
CoefA2 = *pCoefA;
/* outR = (pSrc[2 * i] * pATable[2 * i] */
outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32));
/* outI = pIn[2 * i] * pATable[2 * i + 1] */
outI = ((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32));
/* - pSrc[2 * i + 1] * pATable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (-CoefA2))) >> 32);
/* (pIn[2 * i + 1] * pATable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32);
/* pSrc[2 * n - 2 * i] * pBTable[2 * i] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (-CoefA2))) >> 32);
CoefB1 = *pCoefB;
/* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefB1))) >> 32);
/* pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32);
/* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefA2))) >> 32);
/* write output */
*pOut1++ = (outR << 1u);
*pOut1++ = (outI << 1u);
/* write complex conjugate output */
*pOut2-- = -(outI << 1u);
*pOut2-- = (outR << 1u);
/* update coefficient pointer */
pCoefB = pCoefB + (modifier * 2u);
pCoefA = pCoefA + ((modifier * 2u) - 1u);
i--;
}
pDst[2u * fftLen] = pSrc[0] - pSrc[1];
pDst[(2u * fftLen) + 1u] = 0;
pDst[0] = pSrc[0] + pSrc[1];
pDst[1] = 0;
}
/**
* @brief Core Real IFFT process
* @param[in] *pSrc points to the input buffer.
* @param[in] fftLen length of FFT.
* @param[in] *pATable points to the twiddle Coef A buffer.
* @param[in] *pBTable points to the twiddle Coef B buffer.
* @param[out] *pDst points to the output buffer.
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_split_rifft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier)
{
q31_t outR, outI; /* Temporary variables for output */
q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
q31_t *pIn1 = &pSrc[0], *pIn2 = &pSrc[(2u * fftLen) + 1u];
pCoefA = &pATable[0];
pCoefB = &pBTable[0];
while(fftLen > 0u)
{
/*
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
pIn[2 * n - 2 * i] * pBTable[2 * i] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
*/
CoefA1 = *pCoefA++;
CoefA2 = *pCoefA;
/* outR = (pIn[2 * i] * pATable[2 * i] */
outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32));
/* - pIn[2 * i] * pATable[2 * i + 1] */
outI = -((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32));
/* pIn[2 * i + 1] * pATable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (CoefA2))) >> 32);
/* pIn[2 * i + 1] * pATable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32);
/* pIn[2 * n - 2 * i] * pBTable[2 * i] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefA2))) >> 32);
CoefB1 = *pCoefB;
/* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */
outI =
(q31_t) ((((q63_t) outI << 32) - ((q63_t) * pIn2-- * (CoefB1))) >> 32);
/* pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32);
/* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (CoefA2))) >> 32);
/* write output */
*pDst++ = (outR << 1u);
*pDst++ = (outI << 1u);
/* update coefficient pointer */
pCoefB = pCoefB + (modifier * 2u);
pCoefA = pCoefA + ((modifier * 2u) - 1u);
/* Decrement loop count */
fftLen--;
}
}
|