Files
@ 9d6570f4456f
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sin_f32.c
9d6570f4456f
12.4 KiB
text/plain
updated pid code to use fixed point math
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_sin_f32.c
*
* Description: Fast sine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup sin Sine
*
* Computes the trigonometric sine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
* value of 2*pi wraps around to 0.
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Example code for the generation of the floating-point sine table:
* <pre>
* tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]=sin(2*pi*n/tableSize);
* }</pre>
* \par
* where pi value is 3.14159265358979
*/
static const float32_t sinTable[259] = {
-0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f
};
/**
* @brief Fast approximation to the trigonometric sine function for floating-point data.
* @param[in] x input value in radians.
* @return sin(x).
*/
float32_t arm_sin_f32(
float32_t x)
{
float32_t sinVal, fract, in; /* Temporary variables for input, output */
int32_t index; /* Index variable */
uint32_t tableSize = (uint32_t) TABLE_SIZE; /* Initialise tablesize */
float32_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
float32_t a, b, c, d; /* Four nearest output values */
float32_t *tablePtr; /* Pointer to table */
int32_t n;
float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
float32_t oneminusfractby2;
float32_t frby2xfrsq, frby6xfrsq;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (float32_t *) & sinTable[index];
/* Read four nearest values of input value from the sin table */
a = tablePtr[0];
b = tablePtr[1];
c = tablePtr[2];
d = tablePtr[3];
/* Cubic interpolation process */
fractsq = fract * fract;
fractby2 = fract * 0.5f;
fractby6 = fract * 0.166666667f;
fractby3 = fract * 0.3333333333333f;
fractsqby2 = fractsq * 0.5f;
frby2xfrsq = (fractby2) * fractsq;
frby6xfrsq = (fractby6) * fractsq;
oneminusfractby2 = 1.0f - fractby2;
wb = fractsqby2 - fractby3;
wc = (fractsqby2 + fract);
wa = wb - frby6xfrsq;
wb = frby2xfrsq - fractsq;
sinVal = wa * a;
wc = wc - frby2xfrsq;
wd = (frby6xfrsq) - fractby6;
wb = wb + oneminusfractby2;
/* Calculate sin value */
sinVal = (sinVal + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (sinVal);
}
/**
* @} end of sin group
*/
|