Files
@ a76c60e8cc43
Branch filter:
Location: therm/drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c
a76c60e8cc43
51.6 KiB
text/plain
Add MAX31865 RTD reader stub code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 | /**
******************************************************************************
* @file stm32f0xx_hal_rcc_ex.c
* @author MCD Application Team
* @version V1.1.0
* @date 03-Oct-2014
* @brief Extended RCC HAL module driver
* This file provides firmware functions to manage the following
* functionalities RCC extension peripheral:
* + Extended Clock Source configuration functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
For CRS, RCC Extention HAL driver can be used as follows:
(#) In System clock config, HSI48 need to be enabled
(#] Enable CRS clock in IP MSP init which will use CRS functions
(#) Call CRS functions like this
(##) Prepare synchronization configuration necessary for HSI48 calibration
(+++) Default values can be set for frequency Error Measurement (reload and error limit)
and also HSI48 oscillator smooth trimming.
(+++) Macro __HAL_RCC_CRS_CALCULATE_RELOADVALUE can be also used to calculate
directly reload value with target and sychronization frequencies values
(##) Call function HAL_RCCEx_CRSConfig which
(+++) Reset CRS registers to their default values.
(+++) Configure CRS registers with synchronization configuration
(+++) Enable automatic calibration and frequency error counter feature
(##) A polling function is provided to wait for complete Synchronization
(+++) Call function HAL_RCCEx_CRSWaitSynchronization()
(+++) According to CRS status, user can decide to adjust again the calibration or continue
application if synchronization is OK
(#) User can retrieve information related to synchronization in calling function
HAL_RCCEx_CRSGetSynchronizationInfo()
(#) Regarding synchronization status and synchronization information, user can try a new calibration
in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
it means that the actual frequency is lower than the target (and so, that the TRIM value should be
incremented), while when it is detected during the upcounting phase it means that the actual frequency
is higher (and that the TRIM value should be decremented).
(#) To use IT mode, user needs to handle it in calling different macros available to do it
(__HAL_RCC_CRS_XXX_IT). Interuptions will go through RCC Handler (RCC_IRQn/RCC_CRS_IRQHandler)
(++) Call function HAL_RCCEx_CRSConfig()
(++) Enable RCC_IRQn (thnaks to NVIC functions)
(++) Enable CRS IT (__HAL_RCC_CRS_ENABLE_IT)
(++) Implement CRS status management in RCC_CRS_IRQHandler
(#) To force a SYNC EVENT, user can use function HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). Function can be
called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup RCCEx RCCEx Extended HAL module driver
* @brief RCC Extension HAL module driver.
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCCEx_Private_Define RCCEx Private Define
* @{
*/
#define HSI48_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */
/* Bit position in register */
#define CRS_CFGR_FELIM_BITNUMBER 16
#define CRS_CR_TRIM_BITNUMBER 8
#define CRS_ISR_FECAP_BITNUMBER 16
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCCEx_Private_Variables RCCEx Private Variables
* @{
*/
const uint8_t PLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 16};
const uint8_t PredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8,
9,10, 11, 12, 13, 14, 15, 16};
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
* @{
*/
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended RCC clocks control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
[..]
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
select the RTC clock source; in this case the Backup domain will be reset in
order to modify the RTC Clock source, as consequence RTC registers (including
the backup registers) and RCC_BDCR register are set to their reset values.
@endverbatim
* @{
*/
/**
* @brief Initializes the RCC Oscillators according to the specified parameters in the
* RCC_OscInitTypeDef.
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC Oscillators.
* @note The PLL is not disabled when used as system clock.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
/*------------------------------- HSE Configuration ------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) ||
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
{
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState != RCC_HSE_ON))
{
return HAL_ERROR;
}
}
else
{
/* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
__HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set the new HSE configuration ---------------------------------------*/
__HAL_RCC_HSE_CONFIG((uint8_t)RCC_OscInitStruct->HSEState);
/* Check the HSE State */
if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{
if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*----------------------------- HSI Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
{
/* Check the parameters */
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) ||
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
{
/* When the HSI is used as system clock it is not allowed to be disabled */
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
{
return HAL_ERROR;
}
/* Otherwise, just the calibration is allowed */
else
{
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
}
else
{
/* Check the HSI State */
if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
{
/* Enable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_ENABLE();
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
{
if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator (HSI) calibration value. */
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
else
{
/* Disable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------ LSI Configuration -------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
{
/* Check the parameters */
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
/* Check the LSI State */
if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
{
/* Enable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_ENABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
{
if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
{
if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/*------------------------------ LSE Configuration -------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
/* Enable Power Clock */
__PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
SET_BIT(PWR->CR, PWR_CR_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart) > DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
__HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
{
if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set the new LSE configuration -----------------------------------------*/
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
/* Check the LSE State */
if(RCC_OscInitStruct->LSEState == RCC_LSE_ON)
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
{
if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/*----------------------------- HSI14 Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14)
{
/* Check the parameters */
assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State));
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue));
/* Check the HSI14 State */
if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON)
{
/* Disable ADC control of the Internal High Speed oscillator HSI14 */
__HAL_RCC_HSI14ADC_DISABLE();
/* Enable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI14_ENABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET)
{
if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
__HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
}
else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL)
{
/* Enable ADC control of the Internal High Speed oscillator HSI14 */
__HAL_RCC_HSI14ADC_ENABLE();
/* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
__HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
}
else
{
/* Disable ADC control of the Internal High Speed oscillator HSI14 */
__HAL_RCC_HSI14ADC_DISABLE();
/* Disable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI14_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/*----------------------------- HSI48 Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
{
/* Check the parameters */
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
/* When the HSI48 is used as system clock it is not allowed to be disabled */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) ||
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48)))
{
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON))
{
return HAL_ERROR;
}
}
else
{
/* Check the HSI State */
if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
{
/* Enable the Internal High Speed oscillator (HSI48). */
__HAL_RCC_HSI48_ENABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
{
if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal High Speed oscillator (HSI48). */
__HAL_RCC_HSI48_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
/*-------------------------------- PLL Configuration -----------------------*/
/* Check the parameters */
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
{
/* Check if the PLL is used as system clock or not */
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
{
/* Check the parameters */
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV));
assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the main PLL clock source, predivider and multiplication factor. */
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
RCC_OscInitStruct->PLL.PREDIV,
RCC_OscInitStruct->PLL.PLLMUL);
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
else
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Initializes the CPU, AHB and APB busses clocks according to the specified
* parameters in the RCC_ClkInitStruct.
* @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC peripheral.
* @param FLatency: FLASH Latency
* This parameter can be one of the following values:
* @arg FLASH_LATENCY_0: FLASH 0 Latency cycle
* @arg FLASH_LATENCY_1: FLASH 1 Latency cycle
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
* and updated by HAL_RCC_GetHCLKFreq() function called within this function
*
* @note The HSI is used (enabled by hardware) as system clock source after
* startup from Reset, wake-up from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
*
* @note A switch from one clock source to another occurs only if the target
* clock source is ready (clock stable after startup delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
* occur when the clock source will be ready.
* @retval None
*/
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
assert_param(IS_FLASH_LATENCY(FLatency));
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
must be correctly programmed according to the frequency of the CPU clock
(HCLK) of the device. */
/* Increasing the CPU frequency */
if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
{
return HAL_ERROR;
}
/*-------------------------- HCLK Configuration --------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
{
assert_param(IS_RCC_SYSCLK_DIV(RCC_ClkInitStruct->AHBCLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
}
/*------------------------- SYSCLK Configuration ---------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
{
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
/* HSE is selected as System Clock Source */
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
/* Check the HSE ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{
return HAL_ERROR;
}
}
/* PLL is selected as System Clock Source */
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
/* Check the PLL ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{
return HAL_ERROR;
}
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/* HSI48 is selected as System Clock Source */
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
{
/* Check the HSI48 ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
{
return HAL_ERROR;
}
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
/* HSI is selected as System Clock Source */
else
{
/* Check the HSI ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
{
return HAL_ERROR;
}
}
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
/* Get timeout */
tickstart = HAL_GetTick();
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
else
{
while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/* Decreasing the CPU frequency */
else
{
/*-------------------------- HCLK Configuration --------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
{
assert_param(IS_RCC_SYSCLK_DIV(RCC_ClkInitStruct->AHBCLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
}
/*------------------------- SYSCLK Configuration ---------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
{
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
/* HSE is selected as System Clock Source */
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
/* Check the HSE ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{
return HAL_ERROR;
}
}
/* PLL is selected as System Clock Source */
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
/* Check the PLL ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{
return HAL_ERROR;
}
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/* HSI48 is selected as System Clock Source */
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
{
/* Check the HSI48 ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
{
return HAL_ERROR;
}
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
/* HSI is selected as System Clock Source */
else
{
/* Check the HSI ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
{
return HAL_ERROR;
}
}
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
/* Get timeout */
tickstart = HAL_GetTick();
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
else
{
while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
{
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
{
return HAL_ERROR;
}
}
/*-------------------------- PCLK1 Configuration ---------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
{
assert_param(IS_RCC_HCLK_DIV(RCC_ClkInitStruct->APB1CLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
}
/* Configure the source of time base considering new system clocks settings*/
HAL_InitTick (TICK_INT_PRIORITY);
return HAL_OK;
}
/**
* @brief Returns the SYSCLK frequency
* @note The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
* @note If SYSCLK source is HSI, function returns a value based on HSI_VALUE(*)
* @note If SYSCLK source is HSI48, function returns a value based on HSI48_VALUE(*)
* @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
* divided by PREDIV factor(**)
* @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
* divided by PREDIV factor(**) or depending on STM32F0xx devices either a value based
* on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the
* PLL factor .
* @note (*) HSI_VALUE & HSI48_VALUE are constants defined in stm32f0xx_hal_conf.h file
* (default values 8 MHz and 48MHz).
* @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
*
* @note Each time SYSCLK changes, this function must be called to update the
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
*
* @retval SYSCLK frequency
*/
uint32_t HAL_RCC_GetSysClockFreq(void)
{
uint32_t tmpreg = 0, prediv = 0, pllmul = 0, pllclk = 0;
uint32_t sysclockfreq = 0;
tmpreg = RCC->CFGR;
/* Get SYSCLK source -------------------------------------------------------*/
switch (tmpreg & RCC_CFGR_SWS)
{
case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock source */
sysclockfreq = HSE_VALUE;
break;
case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock source */
pllmul = PLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER];
prediv = PredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER];
if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
{
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */
pllclk = (HSE_VALUE/prediv) * pllmul;
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48)
{
/* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */
pllclk = (HSI48_VALUE/prediv) * pllmul;
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
else
{
#if defined(STM32F042x6) || defined(STM32F048xx) || \
defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */
pllclk = (HSI_VALUE/prediv) * pllmul;
#else
/* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
pllclk = (HSI_VALUE >> 1) * pllmul;
#endif /* STM32F042x6 || STM32F048xx || STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
}
sysclockfreq = pllclk;
break;
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
case RCC_SYSCLKSOURCE_STATUS_HSI48: /* HSI48 used as system clock source */
sysclockfreq = HSI48_VALUE;
break;
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
default:
sysclockfreq = HSI_VALUE;
break;
}
return sysclockfreq;
}
/**
* @brief Initializes the RCC extended peripherals clocks according to the specified
* parameters in the RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains the configuration information for the Extended Peripherals clocks
* (USART, RTC, I2C, CEC and USB).
*
* @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source; in this case the Backup domain will be reset in
* order to modify the RTC Clock source, as consequence RTC registers (including
* the backup registers) and RCC_BDCR register are set to their reset values.
*
* @retval None
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tickstart = 0;
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLK(PeriphClkInit->PeriphClockSelection));
/*---------------------------- RTC configuration -------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
{
/* Enable Power Clock*/
__PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
SET_BIT(PWR->CR, PWR_CR_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart) > DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset the Backup domain only if the RTC Clock source selction is modified */
if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))
{
/* Store the content of BDCR register before the reset of Backup Domain */
tmpreg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = tmpreg;
}
/* If LSE is selected as RTC clock source, wait for LSE reactivation */
if(PeriphClkInit->RTCClockSelection == RCC_RTCCLKSOURCE_LSE)
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
/*------------------------------- USART1 Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
{
/* Check the parameters */
assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
/* Configure the USART1 clock source */
__HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
}
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/*----------------------------- USART2 Configuration --------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
{
/* Check the parameters */
assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
/* Configure the USART2 clock source */
__HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
}
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
#if defined(STM32F091xC) || defined(STM32F098xx)
/*----------------------------- USART3 Configuration --------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
{
/* Check the parameters */
assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
/* Configure the USART3 clock source */
__HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
}
#endif /* STM32F091xC || STM32F098xx */
/*------------------------------ I2C1 Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
{
/* Check the parameters */
assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
/* Configure the I2C1 clock source */
__HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
/*------------------------------ USB Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
{
/* Check the parameters */
assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
/* Configure the USB clock source */
__HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */
#if defined(STM32F042x6) || defined(STM32F048xx) || \
defined(STM32F051x8) || defined(STM32F058xx) || \
defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/*------------------------------ CEC clock Configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
{
/* Check the parameters */
assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
/* Configure the CEC clock source */
__HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
}
#endif /* STM32F042x6 || STM32F048xx || */
/* STM32F051x8 || STM32F058xx || */
/* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
return HAL_OK;
}
/**
* @brief Get the RCC_ClkInitStruct according to the internal
* RCC configuration registers.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* returns the configuration information for the Extended Peripherals clocks
* (USART, RTC, I2C, CEC and USB).
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
/* Set all possible values for the extended clock type parameter------------*/
/* Common part first */
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_RTC;
/* Get the RTC configuration --------------------------------------------*/
PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
/* Get the USART1 configuration --------------------------------------------*/
PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
/* Get the I2C1 clock source -----------------------------------------------*/
PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2;
/* Get the USART2 clock source ---------------------------------------------*/
PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
#if defined(STM32F091xC) || defined(STM32F098xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3;
/* Get the USART3 clock source ---------------------------------------------*/
PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
#endif /* STM32F091xC || STM32F098xx */
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
/* Get the USB clock source ---------------------------------------------*/
PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */
#if defined(STM32F042x6) || defined(STM32F048xx) || \
defined(STM32F051x8) || defined(STM32F058xx) || \
defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC;
/* Get the CEC clock source ------------------------------------------------*/
PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
#endif /* STM32F042x6 || STM32F048xx || */
/* STM32F051x8 || STM32F058xx || */
/* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
}
#if defined(STM32F042x6) || defined(STM32F048xx) || \
defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
defined(STM32F091xC) || defined(STM32F098xx)
/**
* @brief Start automatic synchronization using polling mode
* @param pInit Pointer on RCC_CRSInitTypeDef structure
* @retval None
*/
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
{
/* Check the parameters */
assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
/* CONFIGURATION */
/* Before configuration, reset CRS registers to their default values*/
__CRS_FORCE_RESET();
__CRS_RELEASE_RESET();
/* Configure Synchronization input */
/* Clear SYNCDIV[2:0], SYNCSRC[1:0] & SYNCSPOL bits */
CRS->CFGR &= ~(CRS_CFGR_SYNCDIV | CRS_CFGR_SYNCSRC | CRS_CFGR_SYNCPOL);
/* Set the CRS_CFGR_SYNCDIV[2:0] bits according to Prescaler value */
CRS->CFGR |= pInit->Prescaler;
/* Set the SYNCSRC[1:0] bits according to Source value */
CRS->CFGR |= pInit->Source;
/* Set the SYNCSPOL bits according to Polarity value */
CRS->CFGR |= pInit->Polarity;
/* Configure Frequency Error Measurement */
/* Clear RELOAD[15:0] & FELIM[7:0] bits*/
CRS->CFGR &= ~(CRS_CFGR_RELOAD | CRS_CFGR_FELIM);
/* Set the RELOAD[15:0] bits according to ReloadValue value */
CRS->CFGR |= pInit->ReloadValue;
/* Set the FELIM[7:0] bits according to ErrorLimitValue value */
CRS->CFGR |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER);
/* Adjust HSI48 oscillator smooth trimming */
/* Clear TRIM[5:0] bits */
CRS->CR &= ~CRS_CR_TRIM;
/* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
CRS->CR |= (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER);
/* START AUTOMATIC SYNCHRONIZATION*/
/* Enable Automatic trimming */
__HAL_RCC_CRS_ENABLE_AUTOMATIC_CALIB();
/* Enable Frequency error counter */
__HAL_RCC_CRS_ENABLE_FREQ_ERROR_COUNTER();
}
/**
* @brief Generate the software synchronization event
* @retval None
*/
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
{
CRS->CR |= CRS_CR_SWSYNC;
}
/**
* @brief Function to return synchronization info
* @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
* @retval None
*/
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
{
/* Check the parameter */
assert_param(pSynchroInfo != NULL);
/* Get the reload value */
pSynchroInfo->ReloadValue = (uint32_t)(CRS->CFGR & CRS_CFGR_RELOAD);
/* Get HSI48 oscillator smooth trimming */
pSynchroInfo->HSI48CalibrationValue = (uint32_t)((CRS->CR & CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER);
/* Get Frequency error capture */
pSynchroInfo->FreqErrorCapture = (uint32_t)((CRS->ISR & CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER);
/* Get FFrequency error direction */
pSynchroInfo->FreqErrorDirection = (uint32_t)(CRS->ISR & CRS_ISR_FEDIR);
}
/**
* @brief This function handles CRS Synchronization Timeout.
* @param Timeout: Duration of the timeout
* @note Timeout is based on the maximum time to receive a SYNC event based on synchronization
* frequency.
* @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
* @retval Combination of Synchronization status
* This parameter can be a combination of the following values:
* @arg RCC_CRS_TIMEOUT
* @arg RCC_CRS_SYNCOK
* @arg RCC_CRS_SYNCWARM
* @arg RCC_CRS_SYNCERR
* @arg RCC_CRS_SYNCMISS
* @arg RCC_CRS_TRIMOV
*/
RCC_CRSStatusTypeDef HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
{
RCC_CRSStatusTypeDef crsstatus = RCC_CRS_NONE;
uint32_t tickstart = 0;
/* Get timeout */
tickstart = HAL_GetTick();
/* Check that if one of CRS flags have been set */
while(RCC_CRS_NONE == crsstatus)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
{
crsstatus = RCC_CRS_TIMEOUT;
}
}
/* Check CRS SYNCOK flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
{
/* CRS SYNC event OK */
crsstatus |= RCC_CRS_SYNCOK;
/* Clear CRS SYNC event OK bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
}
/* Check CRS SYNCWARN flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
{
/* CRS SYNC warning */
crsstatus |= RCC_CRS_SYNCWARM;
/* Clear CRS SYNCWARN bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
}
/* Check CRS TRIM overflow flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
{
/* CRS SYNC Error */
crsstatus |= RCC_CRS_TRIMOV;
/* Clear CRS Error bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
}
/* Check CRS Error flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
{
/* CRS SYNC Error */
crsstatus |= RCC_CRS_SYNCERR;
/* Clear CRS Error bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
}
/* Check CRS SYNC Missed flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
{
/* CRS SYNC Missed */
crsstatus |= RCC_CRS_SYNCMISS;
/* Clear CRS SYNC Missed bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
}
/* Check CRS Expected SYNC flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
{
/* frequency error counter reached a zero value */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
}
}
return crsstatus;
}
#endif /* STM32F042x6 || STM32F048xx || */
/* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|