Files
@ c0c52bad69d7
Branch filter:
Location: therm/main.c
c0c52bad69d7
9.1 KiB
text/plain
Initial work on flash stuff. Reads and writes weird values...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | #include "stm32f0xx_hal.h"
#include "config.h"
#include "states.h"
#include "ssd1306.h"
#include "gpio.h"
#include "spi.h"
#include "flash.h"
#include "stringhelpers.h"
#include "display.h"
#include "storage.h"
#include "usb_device.h"
#include "usbd_cdc_if.h"
// Prototypes
// Move to header file
void process();
void SystemClock_Config(void);
therm_settings_t set;
therm_status_t status;
// Globalish setting vars
SPI_HandleTypeDef hspi1;
static __IO uint32_t TimingDelay;
void deinit(void)
{
HAL_DeInit();
}
volatile int i=0;
int main(void)
{
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Unset bootloader option bytes (if set) */
void bootloader_unset(void);
/* Initialize all configured peripherals */
init_gpio();
MX_USB_DEVICE_Init();
// USB startup delay
HAL_Delay(1000);
HAL_GPIO_WritePin(LED_POWER, 1);
if(!HAL_GPIO_ReadPin(SW_UP))
bootloader_enter(); // Resets into bootloader
// TODO: Awesome pwm of power LED
// Configure 1ms SysTick (change if more temporal resolution needed)
//RCC_ClocksTypeDef RCC_Clocks;
//RCC_GetClocksFreq(&RCC_Clocks);
//SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
// Init SPI busses
init_spi();
// Init OLED over SPI
ssd1306_Init();
ssd1306_clearscreen();
// Default settings
set.boottobrew = 0;
set.temp_units = TEMP_UNITS_CELSIUS;
set.windup_guard = 1;
set.k_p = 1;
set.k_i = 1;
set.k_d = 1;
set.ignore_tc_error = 0;
set.setpoint_brew = 0;
set.setpoint_steam = 0;
// Default status
status.temp = 0;
status.temp_frac = 0;
status.state_resume = 0;
status.state = STATE_IDLE;
status.setpoint = 0;
status.pid_enabled = 0;
// Load settings (if any) from EEPROM
restore_settings(&set);
// Go to brew instead of idle if configured thusly
if(set.boottobrew)
status.state = STATE_PREHEAT_BREW;
// Startup screen
ssd1306_DrawString("therm v0.2", 1, 40);
ssd1306_DrawString("protofusion.org/therm", 3, 0);
HAL_Delay(1500);
flash_init(&set);
HAL_Delay(1500);
ssd1306_clearscreen();
// Main loop
while(1)
{
// Process sensor inputs
process();
// Run state machine
display_process(&set, &status);
}
}
// Clock configuration
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
__SYSCFG_CLK_ENABLE();
}
// Grab temperature reading from MAX31855
void update_temp() {
// Assert CS
HAL_GPIO_WritePin(MAX_CS, 0);
uint8_t rxdatah[1] = {0x00};
uint8_t rxdatal[1] = {0x00};
HAL_SPI_Receive(&hspi1, rxdatah, 1, 100);
HAL_SPI_Receive(&hspi1, rxdatal, 1, 100);
// Release CS
HAL_GPIO_WritePin(MAX_CS, 1);
// Assemble data array into one var
uint16_t temp_pre = rxdatal[0] | (rxdatah[0]<<8);
if(temp_pre & 0b0000000000000010) {
ssd1306_clearscreen();
HAL_Delay(100); // FIXME: remove?
status.tc_errno = 4;
status.state = STATE_TC_ERROR;
status.temp = 0;
status.temp_frac = 0;
}
else if(temp_pre & 0b0000000000000001 && !set.ignore_tc_error) {
status.tc_errno = 1;
HAL_Delay(100); // FIXME: remove?
status.state_resume = status.state;
status.state = STATE_TC_ERROR;
status.temp = 0;
status.temp_frac = 0;
}
else
{
if(status.state == STATE_TC_ERROR)
{
status.state = status.state_resume;
ssd1306_clearscreen();
}
uint8_t sign = status.temp >> 15;// top bit is sign
temp_pre = temp_pre >> 2; // Drop 2 lowest bits
status.temp_frac = temp_pre & 0b11; // get fractional part
status.temp_frac *= 25; // each bit is .25 a degree, up to fixed point
temp_pre = temp_pre >> 2; // Drop 2 fractional bits
int8_t signint;
if(sign) {
signint = -1;
}
else {
signint = 1;
}
// Convert to Fahrenheit
if(set.temp_units == TEMP_UNITS_FAHRENHEIT)
{
status.temp = signint * ((temp_pre*100) + status.temp_frac);
status.temp = status.temp * 1.8;
status.temp += 3200;
status.temp_frac = status.temp % 100;
status.temp /= 100;
status.temp += set.temp_offset;
}
// Use Celsius values
else
{
status.temp = temp_pre * signint;
status.temp += set.temp_offset;
}
}
}
// PID implementation
// TODO: Make struct that has the last_temp and i_state in it, pass by ref. Make struct that has other input values maybe.
int16_t last_pid_temp = 0;
uint8_t last_pid_temp_frac = 0;
int32_t i_state = 0;
int16_t update_pid(uint16_t k_p, uint16_t k_i, uint16_t k_d, int16_t temp, uint8_t temp_frac, int16_t setpoint)
{
// Calculate instantaneous error
int16_t error = setpoint - temp; // TODO: Use fixed point fraction
// Proportional component
int32_t p_term = k_p * error;
// Error accumulator (integrator)
i_state += error;
// to prevent the iTerm getting huge from lots of
// error, we use a "windup guard"
// (this happens when the machine is first turned on and
// it cant help be cold despite its best efforts)
// not necessary, but this makes windup guard values
// relative to the current iGain
int32_t windup_guard_res = set.windup_guard / k_i;
// Calculate integral term with windup guard
if (i_state > windup_guard_res)
i_state = windup_guard_res;
else if (i_state < -windup_guard_res)
i_state = -windup_guard_res;
int32_t i_term = k_i * i_state;
// Calculate differential term (slope since last iteration)
int32_t d_term = (k_d * (status.temp - last_pid_temp));
// Save temperature for next iteration
last_pid_temp = status.temp;
last_pid_temp_frac = status.temp_frac;
int16_t result = p_term + i_term - d_term;
// Put out tenths of percent, 0-1000.
if(result > 1000)
result = 1000;
else if(result < -1000)
result = -1000;
// Return feedback
return result;
}
uint32_t last_ssr_on = 0;
uint32_t last_vcp_tx = 0;
uint32_t last_led = 0;
int16_t ssr_output = 0; // Duty cycle of ssr, 0 to SSR_PERIOD
// Turn SSR output on/off according to set duty cycle.
// TODO: Eventually maybe replace with a very slow timer or something. Double-check this code...
void process()
{
update_temp(); // Read MAX31855
uint32_t ticks = HAL_GetTick();
if(ticks - last_led > 400)
{
HAL_GPIO_TogglePin(LED_POWER);
last_led = ticks;
}
// Every 200ms, set the SSR on unless output is 0
if((ticks - last_ssr_on > SSR_PERIOD))
{
if(status.pid_enabled)
{
// Get ssr output for next time
int16_t power_percent = update_pid(set.k_p, set.k_i, set.k_d, status.temp, status.temp_frac, status.setpoint);
//power-percent is 0-1000
ssr_output = power_percent; //(((uint32_t)SSR_PERIOD * (uint32_t)10 * (uint32_t)100) * power_percent) / (uint32_t)1000000;
}
else
{
ssr_output = 0;
}
// Only support heating (ssr_output > 0) right now
if(ssr_output > 0) {
char tempstr[6];
itoa(ssr_output, tempstr, 10);
ssd1306_DrawString(tempstr, 0, 90);
HAL_GPIO_WritePin(SSR_PIN, 1);
last_ssr_on = ticks;
}
}
// Kill SSR after elapsed period less than SSR_PERIOD
if(ticks - last_ssr_on > ssr_output || ssr_output == 0)
{
HAL_GPIO_WritePin(SSR_PIN, 0);
}
if(ticks - last_vcp_tx > VCP_TX_FREQ)
{
// Print temp to cdc
char tempstr[16];
itoa_fp(status.temp, status.temp_frac, tempstr);
uint8_t numlen = strlen(tempstr);
tempstr[numlen] = '\r';
tempstr[numlen+1] = '\n';
CDC_Transmit_FS(tempstr, numlen+2);
// while(CDC_Transmit_FS("\r\n", 2) == USBD_BUSY);
last_vcp_tx = ticks;
}
}
// vim:softtabstop=4 shiftwidth=4 expandtab
|