Files
@ cfa4fd71c861
Branch filter:
Location: therm/drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
cfa4fd71c861
24.8 KiB
text/plain
Fixed rendering issues when drawing setpoints, other various fixes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | /**
******************************************************************************
* @file stm32f0xx_hal_rcc.c
* @author MCD Application Team
* @version V1.1.0
* @date 03-Oct-2014
* @brief RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Reset and Clock Control (RCC) peripheral:
* + Initialization/de-initialization function
* + Peripheral Control function
*
@verbatim
==============================================================================
##### RCC specific features #####
==============================================================================
[..]
After reset the device is running from Internal High Speed oscillator
(HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is disabled,
and all peripherals are off except internal SRAM, Flash and JTAG.
(+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
all peripherals mapped on these busses are running at HSI speed.
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
(+) All GPIOs are in input floating state, except the JTAG pins which
are assigned to be used for debug purpose.
[..]
Once the device started from reset, the user application has to:
(+) Configure the clock source to be used to drive the System clock
(if the application needs higher frequency/performance)
(+) Configure the System clock frequency and Flash settings
(+) Configure the AHB and APB busses prescalers
(+) Enable the clock for the peripheral(s) to be used
(+) Configure the clock source(s) for peripherals which clocks are not
derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..)
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup RCC RCC HAL module driver
* @brief RCC HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCC_Private_Define RCC Private Define
* @{
*/
#define RCC_CFGR_HPRE_BITNUMBER 4
#define RCC_CFGR_PPRE_BITNUMBER 8
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
* @{
*/
#define __MCO_CLK_ENABLE() __GPIOA_CLK_ENABLE()
#define MCO_GPIO_PORT GPIOA
#define MCO_PIN GPIO_PIN_8
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
* @{
*/
const uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup RCC_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_Exported_Functions_Group1 Initialization/de-initialization function
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization function #####
===============================================================================
[..]
This section provide functions allowing to configure the internal/external oscillators
(HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK,
AHB and APB1).
[..] Internal/external clock and PLL configuration
(#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
the PLL as System clock source.
The HSI clock can be used also to clock the USART and I2C peripherals.
(#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock
the ADC peripheral.
(#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
clock source.
(#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
through the PLL as System clock source. Can be used also as RTC clock source.
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
(#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks:
(++) The first output is used to generate the high speed system clock (up to 48 MHz)
(++) The second output is used to generate the clock for the USB FS (48 MHz)
(++) The third output may be used to generate the clock for the TIM, I2C and USART
peripherals (up to 48 MHz)
(#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
and if a HSE clock failure occurs(HSE used directly or through PLL as System
clock source), the System clockis automatically switched to HSI and an interrupt
is generated if enabled. The interrupt is linked to the Cortex-M0 NMI
(Non-Maskable Interrupt) exception vector.
(#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL
clock (divided by 2) output on pin (such as PA8 pin).
[..] System, AHB and APB busses clocks configuration
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
HSE and PLL.
The AHB clock (HCLK) is derived from System clock through configurable
prescaler and used to clock the CPU, memory and peripherals mapped
on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived
from AHB clock through configurable prescalers and used to clock
the peripherals mapped on these busses. You can use
"HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
(#) All the peripheral clocks are derived from the System clock (SYSCLK) except:
(++) The FLASH program/erase clock which is always HSI 8MHz clock.
(++) The USB 48 MHz clock which is derived from the PLL VCO clock.
(++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
(++) The I2C clock which can be derived as well from HSI 8MHz clock.
(++) The ADC clock which is derived from PLL output.
(++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
(HSE divided by a programmable prescaler). The System clock (SYSCLK)
frequency must be higher or equal to the RTC clock frequency.
(++) IWDG clock which is always the LSI clock.
(#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz,
Depending on the SYSCLK frequency, the flash latency should be adapted accordingly:
+-----------------------------------------------+
| Latency | SYSCLK clock frequency (MHz) |
|---------------|-------------------------------|
|0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
|---------------|-------------------------------|
|1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
+-----------------------------------------------+
(#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
prefetch is disabled.
@endverbatim
* @{
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - HSI ON and used as system clock source
* - HSE and PLL OFF
* - AHB, APB1 prescaler set to 1.
* - CSS, MCO OFF
* - All interrupts disabled
* @note This function doesn't modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval None
*/
void HAL_RCC_DeInit(void)
{
/* Set HSION bit, HSITRIM[4:0] bits to the reset value*/
SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4);
/* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO);
/* Reset HSEON, CSSON, PLLON bits */
CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON);
/* Reset HSEBYP bit */
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
/* Reset CFGR register */
CLEAR_REG(RCC->CFGR);
/* Reset CFGR2 register */
CLEAR_REG(RCC->CFGR2);
/* Reset CFGR3 register */
CLEAR_REG(RCC->CFGR3);
/* Disable all interrupts */
CLEAR_REG(RCC->CIR);
}
/**
* @brief Initializes the RCC Oscillators according to the specified parameters in the
* RCC_OscInitTypeDef.
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC Oscillators.
* @note The PLL is not disabled when used as system clock.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
/* Note : This function is defined into this file for library reference. */
/* Function content is located into file stm32f0xx_hal_rcc_ex.c to */
/* handle the possible oscillators present in STM32F0xx devices */
/* Return error status as not implemented here */
return HAL_ERROR;
}
/**
* @brief Initializes the CPU, AHB and APB busses clocks according to the specified
* parameters in the RCC_ClkInitStruct.
* @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC peripheral.
* @param FLatency: FLASH Latency
* This parameter can be one of the following values:
* @arg FLASH_LATENCY_0: FLASH 0 Latency cycle
* @arg FLASH_LATENCY_1: FLASH 1 Latency cycle
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
* and updated by HAL_RCC_GetHCLKFreq() function called within this function
*
* @note The HSI is used (enabled by hardware) as system clock source after
* startup from Reset, wake-up from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
*
* @note A switch from one clock source to another occurs only if the target
* clock source is ready (clock stable after startup delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
* occur when the clock source will be ready.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
{
/* Note : This function is defined into this file for library reference. */
/* Function content is located into file stm32f0xx_hal_rcc_ex.c to */
/* handle the possible oscillators present in STM32F0xx devices */
/* Return error status as not implemented here */
return HAL_ERROR;
}
/**
* @}
*/
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control function
* @brief RCC clocks control functions
*
@verbatim
===============================================================================
##### Peripheral Control function #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
@endverbatim
* @{
*/
/**
* @brief Selects the clock source to output on MCO pin(such as PA8).
* @note MCO pin (such as PA8) should be configured in alternate function mode.
* @param RCC_MCOx: specifies the output direction for the clock source.
* This parameter can be one of the following values:
* @arg RCC_MCO: Clock source to output on MCO pin(such as PA8).
* @param RCC_MCOSource: specifies the clock source to output.
* This parameter can be one of the following values:
* @arg RCC_MCOSOURCE_LSI: LSI clock selected as MCO source
* @arg RCC_MCOSOURCE_HSI: HSI clock selected as MCO source
* @arg RCC_MCOSOURCE_LSE: LSE clock selected as MCO source
* @arg RCC_MCOSOURCE_HSE: HSE clock selected as MCO source
* @arg RCC_MCOSOURCE_PLLCLK_NODIV: main PLL clock not divided selected as MCO source (not applicable to STM32F05x devices)
* @arg RCC_MCOSOURCE_PLLCLK_DIV2: main PLL clock divided by 2 selected as MCO source
* @arg RCC_MCOSOURCE_SYSCLK: System clock (SYSCLK) selected as MCO source
* @param RCC_MCODiv: specifies the MCOx prescaler.
* This parameter can be one of the following values:
* @arg RCC_MCO_NODIV: no division applied to MCO clock
* @retval None
*/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
GPIO_InitTypeDef gpio;
/* Check the parameters */
assert_param(IS_RCC_MCO(RCC_MCOx));
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
/* RCC_MCO */
assert_param(IS_RCC_MCOSOURCE(RCC_MCOSource));
/* MCO Clock Enable */
__MCO_CLK_ENABLE();
/* Configue the MCO pin in alternate function mode */
gpio.Pin = MCO_PIN;
gpio.Mode = GPIO_MODE_AF_PP;
gpio.Speed = GPIO_SPEED_HIGH;
gpio.Pull = GPIO_NOPULL;
gpio.Alternate = GPIO_AF0_MCO;
HAL_GPIO_Init(MCO_GPIO_PORT, &gpio);
/* Configure the MCO clock source */
__HAL_RCC_MCO_CONFIG(RCC_MCOSource, RCC_MCODiv);
}
/**
* @brief Enables the Clock Security System.
* @note If a failure is detected on the HSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
* allowing the MCU to perform rescue operations. The CSSI is linked to
* the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
* @retval None
*/
void HAL_RCC_EnableCSS(void)
{
SET_BIT(RCC->CR, RCC_CR_CSSON);
}
/**
* @brief Disables the Clock Security System.
* @retval None
*/
void HAL_RCC_DisableCSS(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_CSSON);
}
/**
* @brief Returns the SYSCLK frequency
* @note The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
* @note If SYSCLK source is HSI, function returns a value based on HSI_VALUE(*)
* @note If SYSCLK source is HSI48, function returns a value based on HSI48_VALUE(*)
* @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
* divided by PREDIV factor(**)
* @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
* divided by PREDIV factor(**) or depending on STM32F0xx devices either a value based
* on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the
* PLL factor .
* @note (*) HSI_VALUE & HSI48_VALUE are constants defined in stm32f0xx_hal_conf.h file
* (default values 8 MHz and 48MHz).
* @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
*
* @note Each time SYSCLK changes, this function must be called to update the
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
*
* @retval SYSCLK frequency
*/
__weak uint32_t HAL_RCC_GetSysClockFreq(void)
{
/* Note : This function is defined into this file for library reference. */
/* Function content is located into file stm32f0xx_hal_rcc_ex.c to */
/* handle the possible oscillators present in STM32F0xx devices */
/* Return error status as not implemented here */
return HAL_ERROR;
}
/**
* @brief Returns the HCLK frequency
* @note Each time HCLK changes, this function must be called to update the
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
* and updated within this function
*
* @retval HCLK frequency
*/
uint32_t HAL_RCC_GetHCLKFreq(void)
{
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
return SystemCoreClock;
}
/**
* @brief Returns the PCLK1 frequency
* @note Each time PCLK1 changes, this function must be called to update the
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
* @retval PCLK1 frequency
*/
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
return (HAL_RCC_GetHCLKFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE)>> RCC_CFGR_PPRE_BITNUMBER]);
}
/**
* @brief Configures the RCC_OscInitStruct according to the internal
* RCC configuration registers.
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
/* Set all possible values for the Oscillator type parameter ---------------*/
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
/* Get the HSE configuration -----------------------------------------------*/
if((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
{
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
}
else if((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
{
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
}
else
{
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
}
/* Get the HSI configuration -----------------------------------------------*/
if((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
{
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
}
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber);
/* Get the LSE configuration -----------------------------------------------*/
if((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
{
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
}
else if((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
{
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
}
else
{
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
}
/* Get the LSI configuration -----------------------------------------------*/
if((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
{
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
}
else
{
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
}
/* Get the PLL configuration -----------------------------------------------*/
if((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
}
else
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
}
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV);
/* Get the HSI14 configuration -----------------------------------------------*/
if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON)
{
RCC_OscInitStruct->HSI14State = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSI14State = RCC_HSI_OFF;
}
RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_CR2_HSI14TRIM_BitNumber);
/* Get the HSI48 configuration if any-----------------------------------------*/
RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE();
}
/**
* @brief Get the RCC_ClkInitStruct according to the internal
* RCC configuration registers.
* @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that
* contains the current clock configuration.
* @param pFLatency: Pointer on the Flash Latency.
* @retval None
*/
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
{
/* Set all possible values for the Clock type parameter --------------------*/
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
/* Get the SYSCLK configuration --------------------------------------------*/
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
/* Get the HCLK configuration ----------------------------------------------*/
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
/* Get the APB1 configuration ----------------------------------------------*/
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);
/* Get the Flash Wait State (Latency) configuration ------------------------*/
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
}
/**
* @brief This function handles the RCC CSS interrupt request.
* @note This API should be called under the NMI_Handler().
* @retval None
*/
void HAL_RCC_NMI_IRQHandler(void)
{
/* Check RCC CSSF flag */
if(__HAL_RCC_GET_IT(RCC_IT_CSS))
{
/* RCC Clock Security System interrupt user callback */
HAL_RCC_CCSCallback();
/* Clear RCC CSS pending bit */
__HAL_RCC_CLEAR_IT(RCC_IT_CSS);
}
}
/**
* @brief RCC Clock Security System interrupt callback
* @retval none
*/
__weak void HAL_RCC_CCSCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RCC_CCSCallback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|