Files
@ fd0299f4b71e
Branch filter:
Location: therm/libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_rcc.c
fd0299f4b71e
66.4 KiB
text/plain
Add todo
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 | /**
******************************************************************************
* @file stm32l1xx_rcc.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Reset and clock control (RCC) peripheral:
* + Internal/external clocks, PLL, CSS and MCO configuration
* + System, AHB and APB busses clocks configuration
* + Peripheral clocks configuration
* + Interrupts and flags management
*
@verbatim
===============================================================================
##### RCC specific features #####
===============================================================================
[..] After reset the device is running from MSI (2 MHz) with Flash 0 WS,
all peripherals are off except internal SRAM, Flash and JTAG.
(#) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
all peripherals mapped on these busses are running at MSI speed.
(#) The clock for all peripherals is switched off, except the SRAM and
FLASH.
(#) All GPIOs are in input floating state, except the JTAG pins which
are assigned to be used for debug purpose.
[..] Once the device started from reset, the user application has to:
(#) Configure the clock source to be used to drive the System clock
(if the application needs higher frequency/performance)
(#) Configure the System clock frequency and Flash settings
(#) Configure the AHB and APB busses prescalers
(#) Enable the clock for the peripheral(s) to be used
(#) Configure the clock source(s) for peripherals whose clocks are not
derived from the System clock (ADC, RTC/LCD and IWDG)
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup RCC
* @brief RCC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of HSION bit */
#define CR_OFFSET (RCC_OFFSET + 0x00)
#define HSION_BitNumber 0x00
#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
/* Alias word address of MSION bit */
#define MSION_BitNumber 0x08
#define CR_MSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (MSION_BitNumber * 4))
/* Alias word address of PLLON bit */
#define PLLON_BitNumber 0x18
#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
/* Alias word address of CSSON bit */
#define CSSON_BitNumber 0x1C
#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of LSION bit */
#define CSR_OFFSET (RCC_OFFSET + 0x34)
#define LSION_BitNumber 0x00
#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
/* Alias word address of LSECSSON bit */
#define LSECSSON_BitNumber 0x0B
#define CSR_LSECSSON_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSECSSON_BitNumber * 4))
/* Alias word address of RTCEN bit */
#define RTCEN_BitNumber 0x16
#define CSR_RTCEN_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCEN_BitNumber * 4))
/* Alias word address of RTCRST bit */
#define RTCRST_BitNumber 0x17
#define CSR_RTCRST_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCRST_BitNumber * 4))
/* ---------------------- RCC registers mask -------------------------------- */
/* RCC Flag Mask */
#define FLAG_MASK ((uint8_t)0x1F)
/* CR register byte 3 (Bits[23:16]) base address */
#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802)
/* ICSCR register byte 4 (Bits[31:24]) base address */
#define ICSCR_BYTE4_ADDRESS ((uint32_t)0x40023807)
/* CFGR register byte 3 (Bits[23:16]) base address */
#define CFGR_BYTE3_ADDRESS ((uint32_t)0x4002380A)
/* CFGR register byte 4 (Bits[31:24]) base address */
#define CFGR_BYTE4_ADDRESS ((uint32_t)0x4002380B)
/* CIR register byte 2 (Bits[15:8]) base address */
#define CIR_BYTE2_ADDRESS ((uint32_t)0x4002380D)
/* CIR register byte 3 (Bits[23:16]) base address */
#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002380E)
/* CSR register byte 2 (Bits[15:8]) base address */
#define CSR_BYTE2_ADDRESS ((uint32_t)0x40023835)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static __I uint8_t PLLMulTable[9] = {3, 4, 6, 8, 12, 16, 24, 32, 48};
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RCC_Private_Functions
* @{
*/
/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
* @brief Internal and external clocks, PLL, CSS and MCO configuration functions
*
@verbatim
===============================================================================
##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
===============================================================================
[..] This section provide functions allowing to configure the internal/external
clocks, PLL, CSS and MCO.
(#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly
or through the PLL as System clock source.
(#) MSI (multi-speed internal), multispeed low power RC
(65.536 KHz to 4.194 MHz) MHz used as System clock source.
(#) LSI (low-speed internal), 37 KHz low consumption RC used as IWDG
and/or RTC clock source.
(#) HSE (high-speed external), 1 to 24 MHz crystal oscillator used
directly or through the PLL as System clock source. Can be used
also as RTC clock source.
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
(#) PLL (clocked by HSI or HSE), for System clock and USB (48 MHz).
(#) CSS (Clock security system), once enable and if a HSE clock failure
occurs (HSE used directly or through PLL as System clock source),
the System clock is automatically switched to MSI and an interrupt
is generated if enabled.
The interrupt is linked to the Cortex-M3 NMI (Non-Maskable Interrupt)
exception vector.
(#) MCO (microcontroller clock output), used to output SYSCLK, HSI, MSI,
HSE, PLL, LSI or LSE clock (through a configurable prescaler) on
PA8 pin.
@endverbatim
* @{
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* @note MSI ON and used as system clock source (MSI range is not modified
* by this function, it keep the value configured by user application)
* @note HSI, HSE and PLL OFF
* @note AHB, APB1 and APB2 prescaler set to 1.
* @note CSS and MCO OFF
* @note All interrupts disabled
* @note However, this function doesn't modify the configuration of the
* @note Peripheral clocks
* @note LSI, LSE and RTC clocks
* @param None
* @retval None
*/
void RCC_DeInit(void)
{
/* Set MSION bit */
RCC->CR |= (uint32_t)0x00000100;
/* Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], MCOSEL[2:0] and MCOPRE[2:0] bits */
RCC->CFGR &= (uint32_t)0x88FFC00C;
/* Reset HSION, HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xEEFEFFFE;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLMUL[3:0] and PLLDIV[1:0] bits */
RCC->CFGR &= (uint32_t)0xFF02FFFF;
/* Disable all interrupts */
RCC->CIR = 0x00000000;
}
/**
* @brief Configures the External High Speed oscillator (HSE).
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function reset the CSSON bit, so if the Clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param RCC_HSE: specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg RCC_HSE_ON: turn ON the HSE oscillator
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
* @retval None
*/
void RCC_HSEConfig(uint8_t RCC_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_HSE));
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF;
/* Set the new HSE configuration -------------------------------------------*/
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE;
}
/**
* @brief Waits for HSE start-up.
* @note This functions waits on HSERDY flag to be set and return SUCCESS if
* this flag is set, otherwise returns ERROR if the timeout is reached
* and this flag is not set. The timeout value is defined by the constant
* HSE_STARTUP_TIMEOUT in stm32l1xx.h file. You can tailor it depending
* on the HSE crystal used in your application.
* @param None
* @retval An ErrorStatus enumeration value:
* - SUCCESS: HSE oscillator is stable and ready to use
* - ERROR: HSE oscillator not yet ready
*/
ErrorStatus RCC_WaitForHSEStartUp(void)
{
__IO uint32_t StartUpCounter = 0;
ErrorStatus status = ERROR;
FlagStatus HSEStatus = RESET;
/* Wait till HSE is ready and if timeout is reached exit */
do
{
HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
StartUpCounter++;
} while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Adjusts the Internal Multi Speed oscillator (MSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal MSI RC.
* Refer to the Application Note AN3300 for more details on how to
* calibrate the MSI.
* @param MSICalibrationValue: specifies the MSI calibration trimming value.
* This parameter must be a number between 0 and 0xFF.
* @retval None
*/
void RCC_AdjustMSICalibrationValue(uint8_t MSICalibrationValue)
{
/* Check the parameters */
assert_param(IS_RCC_MSI_CALIBRATION_VALUE(MSICalibrationValue));
*(__IO uint8_t *) ICSCR_BYTE4_ADDRESS = MSICalibrationValue;
}
/**
* @brief Configures the Internal Multi Speed oscillator (MSI) clock range.
* @note After restart from Reset or wakeup from STANDBY, the MSI clock is
* around 2.097 MHz. The MSI clock does not change after wake-up from
* STOP mode.
* @note The MSI clock range can be modified on the fly.
* @param RCC_MSIRange: specifies the MSI Clock range.
* This parameter must be one of the following values:
* @arg RCC_MSIRange_0: MSI clock is around 65.536 KHz
* @arg RCC_MSIRange_1: MSI clock is around 131.072 KHz
* @arg RCC_MSIRange_2: MSI clock is around 262.144 KHz
* @arg RCC_MSIRange_3: MSI clock is around 524.288 KHz
* @arg RCC_MSIRange_4: MSI clock is around 1.048 MHz
* @arg RCC_MSIRange_5: MSI clock is around 2.097 MHz (default after Reset or wake-up from STANDBY)
* @arg RCC_MSIRange_6: MSI clock is around 4.194 MHz
*
* @retval None
*/
void RCC_MSIRangeConfig(uint32_t RCC_MSIRange)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_MSIRange));
tmpreg = RCC->ICSCR;
/* Clear MSIRANGE[2:0] bits */
tmpreg &= ~RCC_ICSCR_MSIRANGE;
/* Set the MSIRANGE[2:0] bits according to RCC_MSIRange value */
tmpreg |= (uint32_t)RCC_MSIRange;
/* Store the new value */
RCC->ICSCR = tmpreg;
}
/**
* @brief Enables or disables the Internal Multi Speed oscillator (MSI).
* @note The MSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after
* startup from Reset, wakeup from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
* @note MSI can not be stopped if it is used as system clock source.
* In this case, you have to select another source of the system
* clock then stop the MSI.
* @note After enabling the MSI, the application software should wait on
* MSIRDY flag to be set indicating that MSI clock is stable and can
* be used as system clock source.
* @param NewState: new state of the MSI.
* This parameter can be: ENABLE or DISABLE.
* @note When the MSI is stopped, MSIRDY flag goes low after 6 MSI oscillator
* clock cycles.
* @retval None
*/
void RCC_MSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_MSION_BB = (uint32_t)NewState;
}
/**
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* Refer to the Application Note AN3300 for more details on how to
* calibrate the HSI.
* @param HSICalibrationValue: specifies the HSI calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
* @retval None
*/
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
tmpreg = RCC->ICSCR;
/* Clear HSITRIM[4:0] bits */
tmpreg &= ~RCC_ICSCR_HSITRIM;
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
tmpreg |= (uint32_t)HSICalibrationValue << 8;
/* Store the new value */
RCC->ICSCR = tmpreg;
}
/**
* @brief Enables or disables the Internal High Speed oscillator (HSI).
* @note After enabling the HSI, the application software should wait on
* HSIRDY flag to be set indicating that HSI clock is stable and can
* be used to clock the PLL and/or system clock.
* @note HSI can not be stopped if it is used directly or through the PLL
* as system clock. In this case, you have to select another source
* of the system clock then stop the HSI.
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* @param NewState: new state of the HSI.
* This parameter can be: ENABLE or DISABLE.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
* @retval None
*/
void RCC_HSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
}
/**
* @brief Configures the External Low Speed oscillator (LSE).
* @note As the LSE is in the RTC domain and write access is denied to this
* domain after reset, you have to enable write access using
* PWR_RTCAccessCmd(ENABLE) function before to configure the LSE
* (to be done once after reset).
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param RCC_LSE: specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg RCC_LSE_ON: turn ON the LSE oscillator
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
* @retval None
*/
void RCC_LSEConfig(uint8_t RCC_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_LSE));
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
*(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE_OFF;
/* Set the new LSE configuration -------------------------------------------*/
*(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE;
}
/**
* @brief Enables or disables the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @param NewState: new state of the LSI.
* This parameter can be: ENABLE or DISABLE.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
* @retval None
*/
void RCC_LSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
}
/**
* @brief Configures the PLL clock source and multiplication factor.
* @note This function must be used only when the PLL is disabled.
*
* @param RCC_PLLSource: specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock source
* @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock source
* @note The minimum input clock frequency for PLL is 2 MHz (when using HSE as
* PLL source).
*
* @param RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
* This parameter can be:
* @arg RCC_PLLMul_3: PLL clock source multiplied by 3
* @arg RCC_PLLMul_4: PLL clock source multiplied by 4
* @arg RCC_PLLMul_6: PLL clock source multiplied by 6
* @arg RCC_PLLMul_8: PLL clock source multiplied by 8
* @arg RCC_PLLMul_12: PLL clock source multiplied by 12
* @arg RCC_PLLMul_16: PLL clock source multiplied by 16
* @arg RCC_PLLMul_24: PLL clock source multiplied by 24
* @arg RCC_PLLMul_32: PLL clock source multiplied by 32
* @arg RCC_PLLMul_48: PLL clock source multiplied by 48
* @note The application software must set correctly the PLL multiplication
* factor to avoid exceeding:
* - 96 MHz as PLLVCO when the product is in range 1
* - 48 MHz as PLLVCO when the product is in range 2
* - 24 MHz when the product is in range 3
* @note When using the USB the PLLVCO should be 96MHz
*
* @param RCC_PLLDiv: specifies the PLL division factor.
* This parameter can be:
* @arg RCC_PLLDiv_2: PLL Clock output divided by 2
* @arg RCC_PLLDiv_3: PLL Clock output divided by 3
* @arg RCC_PLLDiv_4: PLL Clock output divided by 4
* @note The application software must set correctly the output division to avoid
* exceeding 32 MHz as SYSCLK.
*
* @retval None
*/
void RCC_PLLConfig(uint8_t RCC_PLLSource, uint8_t RCC_PLLMul, uint8_t RCC_PLLDiv)
{
/* Check the parameters */
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
assert_param(IS_RCC_PLL_DIV(RCC_PLLDiv));
*(__IO uint8_t *) CFGR_BYTE3_ADDRESS = (uint8_t)(RCC_PLLSource | ((uint8_t)(RCC_PLLMul | (uint8_t)(RCC_PLLDiv))));
}
/**
* @brief Enables or disables the PLL.
* @note After enabling the PLL, the application software should wait on
* PLLRDY flag to be set indicating that PLL clock is stable and can
* be used as system clock source.
* @note The PLL can not be disabled if it is used as system clock source
* @note The PLL is disabled by hardware when entering STOP and STANDBY modes.
* @param NewState: new state of the PLL.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLLCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Clock Security System.
* @note If a failure is detected on the HSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
* allowing the MCU to perform rescue operations. The CSSI is linked to
* the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
* @param NewState: new state of the Clock Security System.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the LSE Clock Security System.
* @param NewState: new state of the Clock Security System.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_LSEClockSecuritySystemCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_LSECSSON_BB = (uint32_t)NewState;
}
/**
* @brief Selects the clock source to output on MCO pin (PA8).
* @note PA8 should be configured in alternate function mode.
* @param RCC_MCOSource: specifies the clock source to output.
* This parameter can be one of the following values:
* @arg RCC_MCOSource_NoClock: No clock selected
* @arg RCC_MCOSource_SYSCLK: System clock selected
* @arg RCC_MCOSource_HSI: HSI oscillator clock selected
* @arg RCC_MCOSource_MSI: MSI oscillator clock selected
* @arg RCC_MCOSource_HSE: HSE oscillator clock selected
* @arg RCC_MCOSource_PLLCLK: PLL clock selected
* @arg RCC_MCOSource_LSI: LSI clock selected
* @arg RCC_MCOSource_LSE: LSE clock selected
* @param RCC_MCODiv: specifies the MCO prescaler.
* This parameter can be one of the following values:
* @arg RCC_MCODiv_1: no division applied to MCO clock
* @arg RCC_MCODiv_2: division by 2 applied to MCO clock
* @arg RCC_MCODiv_4: division by 4 applied to MCO clock
* @arg RCC_MCODiv_8: division by 8 applied to MCO clock
* @arg RCC_MCODiv_16: division by 16 applied to MCO clock
* @retval None
*/
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint8_t RCC_MCODiv)
{
/* Check the parameters */
assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
assert_param(IS_RCC_MCO_DIV(RCC_MCODiv));
/* Select MCO clock source and prescaler */
*(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCOSource | RCC_MCODiv;
}
/**
* @}
*/
/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
* @brief System, AHB and APB busses clocks configuration functions
*
@verbatim
===============================================================================
##### System, AHB and APB busses clocks configuration functions #####
===============================================================================
[..] This section provide functions allowing to configure the System, AHB,
APB1 and APB2 busses clocks.
(#) Several clock sources can be used to drive the System clock (SYSCLK):
MSI, HSI, HSE and PLL.
The AHB clock (HCLK) is derived from System clock through configurable
prescaler and used to clock the CPU, memory and peripherals mapped
on AHB bus (DMA and GPIO).APB1 (PCLK1) and APB2 (PCLK2) clocks are
derived from AHB clock through configurable prescalers and used to
clock the peripherals mapped on these busses. You can use
"RCC_GetClocksFreq()" function to retrieve the frequencies of these
clocks.
-@- All the peripheral clocks are derived from the System clock (SYSCLK)
except:
(+@) The USB 48 MHz clock which is derived from the PLL VCO clock.
(+@) The ADC clock which is always the HSI clock. A divider by 1, 2
or 4 allows to adapt the clock frequency to the device operating
conditions.
(+@) The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz
HSE_RTC (HSE divided by a programmable prescaler).
The System clock (SYSCLK) frequency must be higher or equal to
the RTC/LCD clock frequency.
(+@) IWDG clock which is always the LSI clock.
(#) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 32 MHz.
Depending on the device voltage range, the maximum frequency should
be adapted accordingly:
+----------------------------------------------------------------+
| Wait states | HCLK clock frequency (MHz) |
| |------------------------------------------------|
| (Latency) | voltage range | voltage range |
| | 1.65 V - 3.6 V | 2.0 V - 3.6 V |
| |----------------|---------------|---------------|
| | VCORE = 1.2 V | VCORE = 1.5 V | VCORE = 1.8 V |
|-------------- |----------------|---------------|---------------|
|0WS(1CPU cycle)|0 < HCLK <= 2 |0 < HCLK <= 8 |0 < HCLK <= 16 |
|---------------|----------------|---------------|---------------|
|1WS(2CPU cycle)|2 < HCLK <= 4 |8 < HCLK <= 16 |16 < HCLK <= 32|
+----------------------------------------------------------------+
(#) After reset, the System clock source is the MSI (2 MHz) with 0 WS,
Flash 32-bit access is enabled and prefetch is disabled.
[..] It is recommended to use the following software sequences to tune the
number of wait states needed to access the Flash memory with the CPU
frequency (HCLK).
(+) Increasing the CPU frequency (in the same voltage range)
(+) Program the Flash 64-bit access, using "FLASH_ReadAccess64Cmd(ENABLE)"
function
(+) Check that 64-bit access is taken into account by reading FLASH_ACR
(+) Program Flash WS to 1, using "FLASH_SetLatency(FLASH_Latency_1)"
function
(+) Check that the new number of WS is taken into account by reading
FLASH_ACR
(+) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
(+) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()"
function
(+) Check that the new CPU clock source is taken into account by reading
the clock source status, using "RCC_GetSYSCLKSource()" function
(+) Decreasing the CPU frequency (in the same voltage range)
(+) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
(+) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()"
function
(+) Check that the new CPU clock source is taken into account by reading
the clock source status, using "RCC_GetSYSCLKSource()" function
(+) Program the new number of WS, using "FLASH_SetLatency()" function
(+) Check that the new number of WS is taken into account by reading
FLASH_ACR
(+) Enable the Flash 32-bit access, using "FLASH_ReadAccess64Cmd(DISABLE)"
function
(+) Check that 32-bit access is taken into account by reading FLASH_ACR
@endverbatim
* @{
*/
/**
* @brief Configures the system clock (SYSCLK).
* @note The MSI is used (enabled by hardware) as system clock source after
* startup from Reset, wake-up from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
* @note A switch from one clock source to another occurs only if the target
* clock source is ready (clock stable after startup delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
* occur when the clock source will be ready.
* You can use RCC_GetSYSCLKSource() function to know which clock is
* currently used as system clock source.
* @param RCC_SYSCLKSource: specifies the clock source used as system clock source
* This parameter can be one of the following values:
* @arg RCC_SYSCLKSource_MSI: MSI selected as system clock source
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
* @retval None
*/
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
tmpreg = RCC->CFGR;
/* Clear SW[1:0] bits */
tmpreg &= ~RCC_CFGR_SW;
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */
tmpreg |= RCC_SYSCLKSource;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Returns the clock source used as system clock.
* @param None
* @retval The clock source used as system clock. The returned value can be one
* of the following values:
* - 0x00: MSI used as system clock
* - 0x04: HSI used as system clock
* - 0x08: HSE used as system clock
* - 0x0C: PLL used as system clock
*/
uint8_t RCC_GetSYSCLKSource(void)
{
return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}
/**
* @brief Configures the AHB clock (HCLK).
* @note Depending on the device voltage range, the software has to set correctly
* these bits to ensure that the system frequency does not exceed the
* maximum allowed frequency (for more details refer to section above
* "CPU, AHB and APB busses clocks configuration functions")
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
* the system clock (SYSCLK).
* This parameter can be one of the following values:
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
* @retval None
*/
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HCLK(RCC_SYSCLK));
tmpreg = RCC->CFGR;
/* Clear HPRE[3:0] bits */
tmpreg &= ~RCC_CFGR_HPRE;
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */
tmpreg |= RCC_SYSCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the Low Speed APB clock (PCLK1).
* @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB1 clock = HCLK
* @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
* @retval None
*/
void RCC_PCLK1Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE1[2:0] bits */
tmpreg &= ~RCC_CFGR_PPRE1;
/* Set PPRE1[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the High Speed APB clock (PCLK2).
* @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB2 clock = HCLK
* @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
* @retval None
*/
void RCC_PCLK2Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE2[2:0] bits */
tmpreg &= ~RCC_CFGR_PPRE2;
/* Set PPRE2[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK << 3;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Returns the frequencies of the System, AHB and APB busses clocks.
* @note The frequency returned by this function is not the real frequency
* in the chip. It is calculated based on the predefined constant and
* the source selected by RCC_SYSCLKConfig():
*
* @note If SYSCLK source is MSI, function returns values based on MSI
* Value as defined by the MSI range, refer to RCC_MSIRangeConfig()
*
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
*
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
*
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32l1xx.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().
*
* (**) HSE_VALUE is a constant defined in stm32l1xx.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* return wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
* the clocks frequencies.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
* @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
* must be called to update the structure's field. Otherwise, any
* configuration based on this function will be incorrect.
*
* @retval None
*/
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
uint32_t tmp = 0, pllmul = 0, plldiv = 0, pllsource = 0, presc = 0, msirange = 0;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* MSI used as system clock */
msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13;
RCC_Clocks->SYSCLK_Frequency = (32768 * (1 << (msirange + 1)));
break;
case 0x04: /* HSI used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmul = RCC->CFGR & RCC_CFGR_PLLMUL;
plldiv = RCC->CFGR & RCC_CFGR_PLLDIV;
pllmul = PLLMulTable[(pllmul >> 18)];
plldiv = (plldiv >> 22) + 1;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
if (pllsource == 0x00)
{
/* HSI oscillator clock selected as PLL clock source */
RCC_Clocks->SYSCLK_Frequency = (((HSI_VALUE) * pllmul) / plldiv);
}
else
{
/* HSE selected as PLL clock source */
RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE) * pllmul) / plldiv);
}
break;
default: /* MSI used as system clock */
msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13;
RCC_Clocks->SYSCLK_Frequency = (32768 * (1 << (msirange + 1)));
break;
}
/* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/
/* Get HCLK prescaler */
tmp = RCC->CFGR & RCC_CFGR_HPRE;
tmp = tmp >> 4;
presc = APBAHBPrescTable[tmp];
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
/* Get PCLK1 prescaler */
tmp = RCC->CFGR & RCC_CFGR_PPRE1;
tmp = tmp >> 8;
presc = APBAHBPrescTable[tmp];
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* Get PCLK2 prescaler */
tmp = RCC->CFGR & RCC_CFGR_PPRE2;
tmp = tmp >> 11;
presc = APBAHBPrescTable[tmp];
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
}
/**
* @}
*/
/** @defgroup RCC_Group3 Peripheral clocks configuration functions
* @brief Peripheral clocks configuration functions
*
@verbatim
===============================================================================
##### Peripheral clocks configuration functions #####
===============================================================================
[..] This section provide functions allowing to configure the Peripheral clocks.
(#) The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
(HSE divided by a programmable prescaler).
(#) After restart from Reset or wakeup from STANDBY, all peripherals are
off except internal SRAM, Flash and JTAG. Before to start using a
peripheral you have to enable its interface clock. You can do this
using RCC_AHBPeriphClockCmd(), RCC_APB2PeriphClockCmd() and
RCC_APB1PeriphClockCmd() functions.
(#) To reset the peripherals configuration (to the default state after
device reset) you can use RCC_AHBPeriphResetCmd(),
RCC_APB2PeriphResetCmd() and RCC_APB1PeriphResetCmd() functions.
(#) To further reduce power consumption in SLEEP mode the peripheral
clocks can be disabled prior to executing the WFI or WFE instructions.
You can do this using RCC_AHBPeriphClockLPModeCmd(),
RCC_APB2PeriphClockLPModeCmd() and RCC_APB1PeriphClockLPModeCmd()
functions.
@endverbatim
* @{
*/
/**
* @brief Configures the RTC and LCD clock (RTCCLK / LCDCLK).
* @note As the RTC clock configuration bits are in the RTC domain and write
* access is denied to this domain after reset, you have to enable write
* access using PWR_RTCAccessCmd(ENABLE) function before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it can't be changed unless the RTC
* is reset using RCC_RTCResetCmd function, or by a Power On Reset (POR)
* @note The RTC clock (RTCCLK) is used also to clock the LCD (LCDCLK).
*
* @param RCC_RTCCLKSource: specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div2: HSE divided by 2 selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div4: HSE divided by 4 selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div8: HSE divided by 8 selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div16: HSE divided by 16 selected as RTC clock
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
*
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
* RTC clock source).
*
* @retval None
*/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
if ((RCC_RTCCLKSource & RCC_CSR_RTCSEL_HSE) == RCC_CSR_RTCSEL_HSE)
{
/* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */
tmpreg = RCC->CR;
/* Clear RTCPRE[1:0] bits */
tmpreg &= ~RCC_CR_RTCPRE;
/* Configure HSE division factor for RTC clock */
tmpreg |= (RCC_RTCCLKSource & RCC_CR_RTCPRE);
/* Store the new value */
RCC->CR = tmpreg;
}
RCC->CSR &= ~RCC_CSR_RTCSEL;
/* Select the RTC clock source */
RCC->CSR |= (RCC_RTCCLKSource & RCC_CSR_RTCSEL);
}
/**
* @brief Enables or disables the RTC clock.
* @note This function must be used only after the RTC clock source was selected
* using the RCC_RTCCLKConfig function.
* @param NewState: new state of the RTC clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCCLKCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_RTCEN_BB = (uint32_t)NewState;
}
/**
* @brief Forces or releases the RTC peripheral and associated resources reset.
* @note This function resets the RTC peripheral, RTC clock source selection
* (in RCC_CSR) and the backup registers.
* @param NewState: new state of the RTC reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCResetCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_RTCRST_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the AHB peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA: GPIOA clock
* @arg RCC_AHBPeriph_GPIOB: GPIOB clock
* @arg RCC_AHBPeriph_GPIOC: GPIOC clock
* @arg RCC_AHBPeriph_GPIOD: GPIOD clock
* @arg RCC_AHBPeriph_GPIOE: GPIOE clock
* @arg RCC_AHBPeriph_GPIOH: GPIOH clock
* @arg RCC_AHBPeriph_GPIOF: GPIOF clock
* @arg RCC_AHBPeriph_GPIOG: GPIOG clock
* @arg RCC_AHBPeriph_CRC: CRC clock
* @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_DMA1: DMA1 clock
* @arg RCC_AHBPeriph_DMA2: DMA2 clock
* @arg RCC_AHBPeriph_AES: AES clock
* @arg RCC_AHBPeriph_FSMC: FSMC clock
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBENR |= RCC_AHBPeriph;
}
else
{
RCC->AHBENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the High Speed APB (APB2) peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG: SYSCFG APB2 Clock.
* @arg RCC_APB2Periph_TIM9: TIM9 APB2 Clock.
* @arg RCC_APB2Periph_TIM10: TIM10 APB2 Clock.
* @arg RCC_APB2Periph_TIM11: TIM11 APB2 Clock.
* @arg RCC_APB2Periph_ADC1: ADC1 APB2 Clock.
* @arg RCC_APB2Periph_SDIO: SDIO APB2 Clock.
* @arg RCC_APB2Periph_SPI1: SPI1 APB2 Clock.
* @arg RCC_APB2Periph_USART1: USART1 APB2 Clock.
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2ENR |= RCC_APB2Periph;
}
else
{
RCC->APB2ENR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2: TIM2 clock
* @arg RCC_APB1Periph_TIM3: TIM3 clock
* @arg RCC_APB1Periph_TIM4: TIM4 clock
* @arg RCC_APB1Periph_TIM5: TIM5 clock
* @arg RCC_APB1Periph_TIM6: TIM6 clock
* @arg RCC_APB1Periph_TIM7: TIM7 clock
* @arg RCC_APB1Periph_LCD: LCD clock
* @arg RCC_APB1Periph_WWDG: WWDG clock
* @arg RCC_APB1Periph_SPI2: SPI2 clock
* @arg RCC_APB1Periph_SPI3: SPI3 clock
* @arg RCC_APB1Periph_USART2: USART2 clock
* @arg RCC_APB1Periph_USART3: USART3 clock
* @arg RCC_APB1Periph_UART4: UART4 clock
* @arg RCC_APB1Periph_UART5: UART5 clock
* @arg RCC_APB1Periph_I2C1: I2C1 clock
* @arg RCC_APB1Periph_I2C2: I2C2 clock
* @arg RCC_APB1Periph_USB: USB clock
* @arg RCC_APB1Periph_PWR: PWR clock
* @arg RCC_APB1Periph_DAC: DAC clock
* @arg RCC_APB1Periph_COMP COMP clock
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1ENR |= RCC_APB1Periph;
}
else
{
RCC->APB1ENR &= ~RCC_APB1Periph;
}
}
/**
* @brief Forces or releases AHB peripheral reset.
* @param RCC_AHBPeriph: specifies the AHB peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA: GPIOA clock
* @arg RCC_AHBPeriph_GPIOB: GPIOB clock
* @arg RCC_AHBPeriph_GPIOC: GPIOC clock
* @arg RCC_AHBPeriph_GPIOD: GPIOD clock
* @arg RCC_AHBPeriph_GPIOE: GPIOE clock
* @arg RCC_AHBPeriph_GPIOH: GPIOH clock
* @arg RCC_AHBPeriph_GPIOF: GPIOF clock
* @arg RCC_AHBPeriph_GPIOG: GPIOG clock
* @arg RCC_AHBPeriph_CRC: CRC clock
* @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_DMA1: DMA1 clock
* @arg RCC_AHBPeriph_DMA2: DMA2 clock
* @arg RCC_AHBPeriph_AES: AES clock
* @arg RCC_AHBPeriph_FSMC: FSMC clock
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBRSTR |= RCC_AHBPeriph;
}
else
{
RCC->AHBRSTR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Forces or releases High Speed APB (APB2) peripheral reset.
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
* @arg RCC_APB2Periph_TIM9: TIM9 clock
* @arg RCC_APB2Periph_TIM10: TIM10 clock
* @arg RCC_APB2Periph_TIM11: TIM11 clock
* @arg RCC_APB2Periph_ADC1: ADC1 clock
* @arg RCC_APB2Periph_SDIO: SDIO clock
* @arg RCC_APB2Periph_SPI1: SPI1 clock
* @arg RCC_APB2Periph_USART1: USART1 clock
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2RSTR |= RCC_APB2Periph;
}
else
{
RCC->APB2RSTR &= ~RCC_APB2Periph;
}
}
/**
* @brief Forces or releases Low Speed APB (APB1) peripheral reset.
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2: TIM2 clock
* @arg RCC_APB1Periph_TIM3: TIM3 clock
* @arg RCC_APB1Periph_TIM4: TIM4 clock
* @arg RCC_APB1Periph_TIM5: TIM5 clock
* @arg RCC_APB1Periph_TIM6: TIM6 clock
* @arg RCC_APB1Periph_TIM7: TIM7 clock
* @arg RCC_APB1Periph_LCD: LCD clock
* @arg RCC_APB1Periph_WWDG: WWDG clock
* @arg RCC_APB1Periph_SPI2: SPI2 clock
* @arg RCC_APB1Periph_SPI3: SPI3 clock
* @arg RCC_APB1Periph_USART2: USART2 clock
* @arg RCC_APB1Periph_USART3: USART3 clock
* @arg RCC_APB1Periph_UART4: UART4 clock
* @arg RCC_APB1Periph_UART5: UART5 clock
* @arg RCC_APB1Periph_I2C1: I2C1 clock
* @arg RCC_APB1Periph_I2C2: I2C2 clock
* @arg RCC_APB1Periph_USB: USB clock
* @arg RCC_APB1Periph_PWR: PWR clock
* @arg RCC_APB1Periph_DAC: DAC clock
* @arg RCC_APB1Periph_COMP
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1RSTR |= RCC_APB1Periph;
}
else
{
RCC->APB1RSTR &= ~RCC_APB1Periph;
}
}
/**
* @brief Enables or disables the AHB peripheral clock during SLEEP mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* - After wakeup from SLEEP mode, the peripheral clock is enabled again.
* - By default, all peripheral clocks are enabled during SLEEP mode.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA: GPIOA clock
* @arg RCC_AHBPeriph_GPIOB: GPIOB clock
* @arg RCC_AHBPeriph_GPIOC: GPIOC clock
* @arg RCC_AHBPeriph_GPIOD: GPIOD clock
* @arg RCC_AHBPeriph_GPIOE: GPIOE clock
* @arg RCC_AHBPeriph_GPIOH: GPIOH clock
* @arg RCC_AHBPeriph_GPIOF: GPIOF clock
* @arg RCC_AHBPeriph_GPIOG: GPIOG clock
* @arg RCC_AHBPeriph_CRC: CRC clock
* @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_SRAM: SRAM clock
* @arg RCC_AHBPeriph_DMA1: DMA1 clock
* @arg RCC_AHBPeriph_DMA2: DMA2 clock
* @arg RCC_AHBPeriph_AES: AES clock
* @arg RCC_AHBPeriph_FSMC: FSMC clock
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClockLPModeCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_LPMODE_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBLPENR |= RCC_AHBPeriph;
}
else
{
RCC->AHBLPENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the APB2 peripheral clock during SLEEP mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
* @arg RCC_APB2Periph_TIM9: TIM9 clock
* @arg RCC_APB2Periph_TIM10: TIM10 clock
* @arg RCC_APB2Periph_TIM11: TIM11 clock
* @arg RCC_APB2Periph_ADC1: ADC1 clock
* @arg RCC_APB2Periph_SDIO: SDIO clock
* @arg RCC_APB2Periph_SPI1: SPI1 clock
* @arg RCC_APB2Periph_USART1: USART1 clock
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2LPENR |= RCC_APB2Periph;
}
else
{
RCC->APB2LPENR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enables or disables the APB1 peripheral clock during SLEEP mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2: TIM2 clock
* @arg RCC_APB1Periph_TIM3: TIM3 clock
* @arg RCC_APB1Periph_TIM4: TIM4 clock
* @arg RCC_APB1Periph_TIM5: TIM5 clock
* @arg RCC_APB1Periph_TIM6: TIM6 clock
* @arg RCC_APB1Periph_TIM7: TIM7 clock
* @arg RCC_APB1Periph_LCD: LCD clock
* @arg RCC_APB1Periph_WWDG: WWDG clock
* @arg RCC_APB1Periph_SPI2: SPI2 clock
* @arg RCC_APB1Periph_SPI3: SPI3 clock
* @arg RCC_APB1Periph_USART2: USART2 clock
* @arg RCC_APB1Periph_USART3: USART3 clock
* @arg RCC_APB1Periph_UART4: UART4 clock
* @arg RCC_APB1Periph_UART5: UART5 clock
* @arg RCC_APB1Periph_I2C1: I2C1 clock
* @arg RCC_APB1Periph_I2C2: I2C2 clock
* @arg RCC_APB1Periph_USB: USB clock
* @arg RCC_APB1Periph_PWR: PWR clock
* @arg RCC_APB1Periph_DAC: DAC clock
* @arg RCC_APB1Periph_COMP: COMP clock
* @param NewState: new state
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1LPENR |= RCC_APB1Periph;
}
else
{
RCC->APB1LPENR &= ~RCC_APB1Periph;
}
}
/**
* @}
*/
/** @defgroup RCC_Group4 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified RCC interrupts.
* @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled
* and if the HSE clock fails, the CSS interrupt occurs and an NMI is
* automatically generated. The NMI will be executed indefinitely, and
* since NMI has higher priority than any other IRQ (and main program)
* the application will be stacked in the NMI ISR unless the CSS interrupt
* pending bit is cleared.
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_LSECSS: LSE CSS interrupt
* @param NewState: new state of the specified RCC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_IT(RCC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Perform Byte access to RCC_CIR[12:8] bits to enable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
}
else
{
/* Perform Byte access to RCC_CIR[12:8] bits to disable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
}
}
/**
* @brief Checks whether the specified RCC flag is set or not.
* @param RCC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_MSIRDY: MSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSECSS: LSE oscillator clock CSS detected
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
* @retval The new state of RCC_FLAG (SET or RESET).
*/
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
uint32_t tmp = 0;
uint32_t statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_FLAG(RCC_FLAG));
/* Get the RCC register index */
tmp = RCC_FLAG >> 5;
if (tmp == 1) /* The flag to check is in CR register */
{
statusreg = RCC->CR;
}
else /* The flag to check is in CSR register (tmp == 2) */
{
statusreg = RCC->CSR;
}
/* Get the flag position */
tmp = RCC_FLAG & FLAG_MASK;
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the RCC reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
* @param None
* @retval None
*/
void RCC_ClearFlag(void)
{
/* Set RMVF bit to clear the reset flags */
RCC->CSR |= RCC_CSR_RMVF;
}
/**
* @brief Checks whether the specified RCC interrupt has occurred or not.
* @param RCC_IT: specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_LSECSS: LSE CSS interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval The new state of RCC_IT (SET or RESET).
*/
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_GET_IT(RCC_IT));
/* Check the status of the specified RCC interrupt */
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the RCC_IT status */
return bitstatus;
}
/**
* @brief Clears the RCC's interrupt pending bits.
* @param RCC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_LSECSS: LSE CSS interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval None
*/
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
/* Check the parameters */
assert_param(IS_RCC_CLEAR_IT(RCC_IT));
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
pending bits */
*(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|