Files @ ab94f8a0a0c6
Branch filter:

Location: HydroBot/protomodule-firmware/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c

matthewreed
Read analog ph sensor
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
/**
  ******************************************************************************
  * @file    stm32f0xx_hal_rcc.c
  * @author  MCD Application Team
  * @brief   RCC HAL module driver.
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Reset and Clock Control (RCC) peripheral:
  *           + Initialization and de-initialization functions
  *           + Peripheral Control functions
  *       
  @verbatim                
  ==============================================================================
                      ##### RCC specific features #####
  ==============================================================================
    [..]  
      After reset the device is running from Internal High Speed oscillator
      (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled, 
      and all peripherals are off except internal SRAM, Flash and JTAG.
      (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
          all peripherals mapped on these buses are running at HSI speed.
      (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
      (+) All GPIOs are in input floating state, except the JTAG pins which
          are assigned to be used for debug purpose.
    [..] Once the device started from reset, the user application has to:
      (+) Configure the clock source to be used to drive the System clock
          (if the application needs higher frequency/performance)
      (+) Configure the System clock frequency and Flash settings  
      (+) Configure the AHB and APB buses prescalers
      (+) Enable the clock for the peripheral(s) to be used
      (+) Configure the clock source(s) for peripherals whose clocks are not
          derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..)

                      ##### RCC Limitations #####
  ==============================================================================
    [..]  
      A delay between an RCC peripheral clock enable and the effective peripheral 
      enabling should be taken into account in order to manage the peripheral read/write 
      from/to registers.
      (+) This delay depends on the peripheral mapping.
        (++) AHB & APB peripherals, 1 dummy read is necessary

    [..]  
      Workarounds:
      (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
          inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
*/

/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"

/** @addtogroup STM32F0xx_HAL_Driver
  * @{
  */

/** @defgroup RCC RCC
* @brief RCC HAL module driver
  * @{
  */

#ifdef HAL_RCC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
 * @{
 */
/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
  * @{
  */

#define MCO1_CLK_ENABLE()     __HAL_RCC_GPIOA_CLK_ENABLE()
#define MCO1_GPIO_PORT        GPIOA
#define MCO1_PIN              GPIO_PIN_8

/**
  * @}
  */

/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
  * @{
  */
/**
  * @}
  */

/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/

/** @defgroup RCC_Exported_Functions RCC Exported Functions
  * @{
  */

/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions 
  *  @brief    Initialization and Configuration functions 
  *
  @verbatim    
  ===============================================================================
           ##### Initialization and de-initialization functions #####
  ===============================================================================
    [..]
      This section provides functions allowing to configure the internal/external oscillators
      (HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, 
      AHB and APB1).

    [..] Internal/external clock and PLL configuration
      (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
          the PLL as System clock source.
          The HSI clock can be used also to clock the USART and I2C peripherals.

      (#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock 
          the ADC peripheral.

      (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
          clock source.

      (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
          through the PLL as System clock source. Can be used also as RTC clock source.

      (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.   

      (#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks:
       (++) The first output is used to generate the high speed system clock (up to 48 MHz)
       (++) The second output is used to generate the clock for the USB FS (48 MHz)
       (++) The third output may be used to generate the clock for the TIM, I2C and USART 
            peripherals (up to 48 MHz)

      (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
          and if a HSE clock failure occurs(HSE used directly or through PLL as System 
          clock source), the System clocks automatically switched to HSI and an interrupt
          is generated if enabled. The interrupt is linked to the Cortex-M0 NMI 
          (Non-Maskable Interrupt) exception vector.   

      (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL
          clock (divided by 2) output on pin (such as PA8 pin).

    [..] System, AHB and APB buses clocks configuration
      (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
          HSE and PLL.
          The AHB clock (HCLK) is derived from System clock through configurable
          prescaler and used to clock the CPU, memory and peripherals mapped
          on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived
          from AHB clock through configurable prescalers and used to clock
          the peripherals mapped on these buses. You can use
          "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.

      (#) All the peripheral clocks are derived from the System clock (SYSCLK) except:
        (++) The FLASH program/erase clock  which is always HSI 8MHz clock.
        (++) The USB 48 MHz clock which is derived from the PLL VCO clock.
        (++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
        (++) The I2C clock which can be derived as well from HSI 8MHz clock.
        (++) The ADC clock which is derived from PLL output.
        (++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
             (HSE divided by a programmable prescaler). The System clock (SYSCLK)
             frequency must be higher or equal to the RTC clock frequency.
        (++) IWDG clock which is always the LSI clock.

      (#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz,
          Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.

      (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
          prefetch is disabled.
  @endverbatim
  * @{
  */
  
/*
  Additional consideration on the SYSCLK based on Latency settings:
          +-----------------------------------------------+
          | Latency       | SYSCLK clock frequency (MHz)  |
          |---------------|-------------------------------|
          |0WS(1CPU cycle)|       0 < SYSCLK <= 24        |
          |---------------|-------------------------------|
          |1WS(2CPU cycle)|      24 < SYSCLK <= 48        |
          +-----------------------------------------------+
  */

/**
  * @brief  Resets the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  *            - HSI ON and used as system clock source
  *            - HSE and PLL OFF
  *            - AHB, APB1 prescaler set to 1.
  *            - CSS and MCO1 OFF
  *            - All interrupts disabled
  * @note   This function does not modify the configuration of the
  *            - Peripheral clocks
  *            - LSI, LSE and RTC clocks
  * @retval None
  */
void HAL_RCC_DeInit(void)
{
  /* Set HSION bit, HSITRIM[4:0] bits to the reset value*/
  SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4); 

  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
  CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO);

  /* Reset HSEON, CSSON, PLLON bits */
  CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON);
  
  /* Reset HSEBYP bit */
  CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);

  /* Reset CFGR register */
  CLEAR_REG(RCC->CFGR);
  
  /* Reset CFGR2 register */
  CLEAR_REG(RCC->CFGR2);
  
  /* Reset CFGR3 register */
  CLEAR_REG(RCC->CFGR3);
  
  /* Disable all interrupts */
  CLEAR_REG(RCC->CIR);

  /* Update the SystemCoreClock global variable */
  SystemCoreClock = HSI_VALUE;
}

/**
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @note   Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
  *         supported by this macro. User should request a transition to LSE Off
  *         first and then LSE On or LSE Bypass.
  * @note   Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
  *         supported by this macro. User should request a transition to HSE Off
  *         first and then HSE On or HSE Bypass.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
   uint32_t tickstart = 0U;
  
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));

  /*------------------------------- HSE Configuration ------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));

    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
      

       /* Check the HSE State */
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
        {
           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
    
    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
    {
      /* When HSI is used as system clock it will not disabled */
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
      {
       /* Enable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
                
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*------------------------------ LSI Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
    
    /* Check the LSI State */
    if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();
      
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();
      
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }
  /*------------------------------ LSE Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    FlagStatus       pwrclkchanged = RESET;
    
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));

    /* Update LSE configuration in Backup Domain control register    */
    /* Requires to enable write access to Backup Domain of necessary */
    if(__HAL_RCC_PWR_IS_CLK_DISABLED())
    {
      __HAL_RCC_PWR_CLK_ENABLE();
      pwrclkchanged = SET;
    }
    
    if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
    {
      /* Enable write access to Backup domain */
      SET_BIT(PWR->CR, PWR_CR_DBP);
      
      /* Wait for Backup domain Write protection disable */
      tickstart = HAL_GetTick();

      while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
      {
        if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }

    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    /* Check the LSE State */
    if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
    {
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }

    /* Require to disable power clock if necessary */
    if(pwrclkchanged == SET)
    {
      __HAL_RCC_PWR_CLK_DISABLE();
    }
  }

  /*----------------------------- HSI14 Configuration --------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue));

    /* Check the HSI14 State */
    if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON)
    {
      /* Disable ADC control of the Internal High Speed oscillator HSI14 */
      __HAL_RCC_HSI14ADC_DISABLE();

      /* Enable the Internal High Speed oscillator (HSI). */
      __HAL_RCC_HSI14_ENABLE();

      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till HSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET)
      {
        if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 

      /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
      __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
    }
    else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL)
    {
      /* Enable ADC control of the Internal High Speed oscillator HSI14 */
      __HAL_RCC_HSI14ADC_ENABLE();

      /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
      __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
    }
    else
    {
      /* Disable ADC control of the Internal High Speed oscillator HSI14 */
      __HAL_RCC_HSI14ADC_DISABLE();

      /* Disable the Internal High Speed oscillator (HSI). */
      __HAL_RCC_HSI14_DISABLE();

      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till HSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET)
      {
        if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }

#if defined(RCC_HSI48_SUPPORT)
  /*----------------------------- HSI48 Configuration --------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));

    /* When the HSI48 is used as system clock it is not allowed to be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) ||
       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Check the HSI48 State */
      if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
      {
        /* Enable the Internal High Speed oscillator (HSI48). */
        __HAL_RCC_HSI48_ENABLE();

        /* Get Start Tick */
        tickstart = HAL_GetTick();
      
        /* Wait till HSI48 is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        } 
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI48). */
        __HAL_RCC_HSI48_DISABLE();

        /* Get Start Tick */
        tickstart = HAL_GetTick();
      
        /* Wait till HSI48 is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
#endif /* RCC_HSI48_SUPPORT */
       
  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
    { 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
        assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV));
  
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }

        /* Configure the main PLL clock source, predivider and multiplication factor. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PREDIV,
                             RCC_OscInitStruct->PLL.PLLMUL);
        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  == RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
 
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  
  return HAL_OK;
}

/**
  * @brief  Initializes the CPU, AHB and APB buses clocks according to the specified 
  *         parameters in the RCC_ClkInitStruct.
  * @param  RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC peripheral.
  * @param  FLatency FLASH Latency                   
  *          The value of this parameter depend on device used within the same series
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
  *         and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
  *
  * @note   The HSI is used (enabled by hardware) as system clock source after
  *         start-up from Reset, wake-up from STOP and STANDBY mode, or in case
  *         of failure of the HSE used directly or indirectly as system clock
  *         (if the Clock Security System CSS is enabled).
  *           
  * @note   A switch from one clock source to another occurs only if the target
  *         clock source is ready (clock stable after start-up delay or PLL locked). 
  *         If a clock source which is not yet ready is selected, the switch will
  *         occur when the clock source will be ready. 
  *         You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
  *         currently used as system clock source.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
{
  uint32_t tickstart = 0U;
  
  /* Check the parameters */
  assert_param(RCC_ClkInitStruct != NULL);
  assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
  assert_param(IS_FLASH_LATENCY(FLatency));

  /* To correctly read data from FLASH memory, the number of wait states (LATENCY) 
  must be correctly programmed according to the frequency of the CPU clock 
    (HCLK) of the device. */

  /* Increasing the number of wait states because of higher CPU frequency */
  if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
  {    
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
    __HAL_FLASH_SET_LATENCY(FLatency);
    
    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
    {
      return HAL_ERROR;
    }
  }

  /*-------------------------- HCLK Configuration --------------------------*/
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
  {
    assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
  }

  /*------------------------- SYSCLK Configuration ---------------------------*/ 
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
  {    
    assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
    
    /* HSE is selected as System Clock Source */
    if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
    {
      /* Check the HSE ready flag */  
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    /* PLL is selected as System Clock Source */
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
    {
      /* Check the PLL ready flag */  
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
#if defined(RCC_CFGR_SWS_HSI48)
    /* HSI48 is selected as System Clock Source */
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
    {
      /* Check the HSI48 ready flag */
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
#endif /* RCC_CFGR_SWS_HSI48 */
    /* HSI is selected as System Clock Source */
    else
    {
      /* Check the HSI ready flag */  
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);

    /* Get Start Tick */
    tickstart = HAL_GetTick();
    
    if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
      {
        if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
      {
        if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
#if defined(RCC_CFGR_SWS_HSI48)
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48)
      {
        if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
#endif /* RCC_CFGR_SWS_HSI48 */
    else
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
      {
        if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }      
  }    
  /* Decreasing the number of wait states because of lower CPU frequency */
  if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
  {    
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
    __HAL_FLASH_SET_LATENCY(FLatency);
    
    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
    {
      return HAL_ERROR;
    }
  }    

  /*-------------------------- PCLK1 Configuration ---------------------------*/ 
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
  {
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
  }
  
  /* Update the SystemCoreClock global variable */
  SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];

  /* Configure the source of time base considering new system clocks settings*/
  HAL_InitTick (TICK_INT_PRIORITY);
  
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
  *  @brief   RCC clocks control functions
  *
  @verbatim   
  ===============================================================================
                  ##### Peripheral Control functions #####
  ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the RCC Clocks 
    frequencies.

  @endverbatim
  * @{
  */

#if defined(RCC_CFGR_MCOPRE)
/**
  * @brief  Selects the clock source to output on MCO pin.
  * @note   MCO pin should be configured in alternate function mode.
  * @param  RCC_MCOx specifies the output direction for the clock source.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
  * @param  RCC_MCOSource specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1SOURCE_NOCLOCK     No clock selected
  *            @arg @ref RCC_MCO1SOURCE_SYSCLK      System Clock selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSI         HSI selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSE         HSE selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_LSI         LSI selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_LSE         LSE selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSI14       HSI14 selected as MCO clock
  @if STM32F042x6
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elseif STM32F048xx
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elseif STM32F071xB
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elseif STM32F072xB
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elseif STM32F078xx
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elseif STM32F091xC
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elseif STM32F098xx
  *            @arg @ref RCC_MCO1SOURCE_HSI48       HSI48 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elif STM32F030x6
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elif STM32F030xC
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elif STM32F031x6
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elif STM32F038xx
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elif STM32F070x6
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @elif STM32F070xB
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLLCLK selected as MCO clock
  @endif
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock
  * @param  RCC_MCODiv specifies the MCO DIV.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCODIV_1   no division applied to MCO clock
  *            @arg @ref RCC_MCODIV_2   division by 2 applied to MCO clock
  *            @arg @ref RCC_MCODIV_4   division by 4 applied to MCO clock
  *            @arg @ref RCC_MCODIV_8   division by 8 applied to MCO clock
  *            @arg @ref RCC_MCODIV_16  division by 16 applied to MCO clock
  *            @arg @ref RCC_MCODIV_32  division by 32 applied to MCO clock
  *            @arg @ref RCC_MCODIV_64  division by 64 applied to MCO clock
  *            @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock
  * @retval None
  */
#else
/**
  * @brief  Selects the clock source to output on MCO pin.
  * @note   MCO pin should be configured in alternate function mode.
  * @param  RCC_MCOx specifies the output direction for the clock source.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
  * @param  RCC_MCOSource specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1SOURCE_NOCLOCK     No clock selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_SYSCLK      System clock selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSI         HSI selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSE         HSE selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_LSI         LSI selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_LSE         LSE selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSI14       HSI14 selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock
  * @param  RCC_MCODiv specifies the MCO DIV.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCODIV_1 no division applied to MCO clock
  * @retval None
  */
#endif
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
  GPIO_InitTypeDef gpio;

  /* Check the parameters */
  assert_param(IS_RCC_MCO(RCC_MCOx));
  assert_param(IS_RCC_MCODIV(RCC_MCODiv));
  assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
  
  /* Configure the MCO1 pin in alternate function mode */
  gpio.Mode      = GPIO_MODE_AF_PP;
  gpio.Speed     = GPIO_SPEED_FREQ_HIGH;
  gpio.Pull      = GPIO_NOPULL;
  gpio.Pin       = MCO1_PIN;
  gpio.Alternate = GPIO_AF0_MCO;

  /* MCO1 Clock Enable */
  MCO1_CLK_ENABLE();
  
  HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
  
  /* Configure the MCO clock source */
  __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
}

/**
  * @brief  Enables the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to 
  *         the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.  
  * @retval None
  */
void HAL_RCC_EnableCSS(void)
{
  SET_BIT(RCC->CR, RCC_CR_CSSON) ;
}

/**
  * @brief  Disables the Clock Security System.
  * @retval None
  */
void HAL_RCC_DisableCSS(void)
{
  CLEAR_BIT(RCC->CR, RCC_CR_CSSON) ;
}

/**
  * @brief  Returns the SYSCLK frequency     
  * @note   The system frequency computed by this function is not the real 
  *         frequency in the chip. It is calculated based on the predefined 
  *         constant and the selected clock source:
  * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
  * @note     If SYSCLK source is HSE, function returns a value based on HSE_VALUE
  *           divided by PREDIV factor(**)
  * @note     If SYSCLK source is PLL, function returns a value based on HSE_VALUE
  *           divided by PREDIV factor(**) or depending on STM32F0xxxx devices either a value based 
  *           on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the 
  *           PLL factor.
  * @note     (*) HSI_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
  *               8 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature.
  * @note     (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                have wrong result.
  *                  
  * @note   The result of this function could be not correct when using fractional
  *         value for HSE crystal.
  *           
  * @note   This function can be used by the user application to compute the 
  *         baud-rate for the communication peripherals or configure other parameters.
  *           
  * @note   Each time SYSCLK changes, this function must be called to update the
  *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
  *         
  * @retval SYSCLK frequency
  */
uint32_t HAL_RCC_GetSysClockFreq(void)
{
  const uint8_t aPLLMULFactorTable[16] = { 2U,  3U,  4U,  5U,  6U,  7U,  8U,  9U,
                                         10U, 11U, 12U, 13U, 14U, 15U, 16U, 16U};
  const uint8_t aPredivFactorTable[16] = { 1U, 2U,  3U,  4U,  5U,  6U,  7U,  8U,
                                           9U,10U, 11U, 12U, 13U, 14U, 15U, 16U};

  uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U;
  uint32_t sysclockfreq = 0U;
  
  tmpreg = RCC->CFGR;
  
  /* Get SYSCLK source -------------------------------------------------------*/
  switch (tmpreg & RCC_CFGR_SWS)
  {
    case RCC_SYSCLKSOURCE_STATUS_HSE:  /* HSE used as system clock */
    {
      sysclockfreq = HSE_VALUE;
      break;
    }
    case RCC_SYSCLKSOURCE_STATUS_PLLCLK:  /* PLL used as system clock */
    {
      pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER];
      prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER];
      if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */
        pllclk = (HSE_VALUE / prediv) * pllmul;
      }
#if defined(RCC_CFGR_PLLSRC_HSI48_PREDIV)
      else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48)
      {
        /* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */
        pllclk = (HSI48_VALUE / prediv) * pllmul;
      }
#endif /* RCC_CFGR_PLLSRC_HSI48_PREDIV */
      else
      {
#if  (defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC))
        /* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */
        pllclk = (HSI_VALUE / prediv) * pllmul;
#else
        /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
        pllclk = (uint32_t)((HSI_VALUE >> 1U) * pllmul);
#endif
      }
      sysclockfreq = pllclk;
      break;
    }
#if defined(RCC_CFGR_SWS_HSI48)
    case RCC_SYSCLKSOURCE_STATUS_HSI48:    /* HSI48 used as system clock source */
    {
      sysclockfreq = HSI48_VALUE;
      break;
    }
#endif /* RCC_CFGR_SWS_HSI48 */
    case RCC_SYSCLKSOURCE_STATUS_HSI:  /* HSI used as system clock source */
    default: /* HSI used as system clock */
    {
      sysclockfreq = HSI_VALUE;
      break;
    }
  }
  return sysclockfreq;
}

/**
  * @brief  Returns the HCLK frequency     
  * @note   Each time HCLK changes, this function must be called to update the
  *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
  * 
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
  *         and updated within this function
  * @retval HCLK frequency
  */
uint32_t HAL_RCC_GetHCLKFreq(void)
{
  return SystemCoreClock;
}

/**
  * @brief  Returns the PCLK1 frequency     
  * @note   Each time PCLK1 changes, this function must be called to update the
  *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
  * @retval PCLK1 frequency
  */
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
  /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
  return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE) >> RCC_CFGR_PPRE_BITNUMBER]);
}    

/**
  * @brief  Configures the RCC_OscInitStruct according to the internal 
  * RCC configuration registers.
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that 
  * will be configured.
  * @retval None
  */
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);

  /* Set all possible values for the Oscillator type parameter ---------------*/
  RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI  \
                  | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI14;
#if defined(RCC_HSI48_SUPPORT)
  RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48;
#endif /* RCC_HSI48_SUPPORT */


  /* Get the HSE configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
  }
  else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_ON;
  }
  else
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
  }

  /* Get the HSI configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
  {
    RCC_OscInitStruct->HSIState = RCC_HSI_ON;
  }
  else
  {
    RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
  }
  
  RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber);
  
  /* Get the LSE configuration -----------------------------------------------*/
  if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
  }
  else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_ON;
  }
  else
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
  }
  
  /* Get the LSI configuration -----------------------------------------------*/
  if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
  {
    RCC_OscInitStruct->LSIState = RCC_LSI_ON;
  }
  else
  {
    RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
  }
  
  /* Get the HSI14 configuration -----------------------------------------------*/
  if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON)
  {
    RCC_OscInitStruct->HSI14State = RCC_HSI_ON;
  }
  else
  {
    RCC_OscInitStruct->HSI14State = RCC_HSI_OFF;
  }

  RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_HSI14TRIM_BIT_NUMBER);
  
#if defined(RCC_HSI48_SUPPORT)
  /* Get the HSI48 configuration if any-----------------------------------------*/
  RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE();
#endif /* RCC_HSI48_SUPPORT */

  /* Get the PLL configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
  {
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
  }
  else
  {
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
  }
  RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
  RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
  RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV);
}

/**
  * @brief  Get the RCC_ClkInitStruct according to the internal 
  * RCC configuration registers.
  * @param  RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that 
  * contains the current clock configuration.
  * @param  pFLatency Pointer on the Flash Latency.
  * @retval None
  */
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
{
  /* Check the parameters */
  assert_param(RCC_ClkInitStruct != NULL);
  assert_param(pFLatency != NULL);

  /* Set all possible values for the Clock type parameter --------------------*/
  RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
  
  /* Get the SYSCLK configuration --------------------------------------------*/ 
  RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
  
  /* Get the HCLK configuration ----------------------------------------------*/ 
  RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); 
  
  /* Get the APB1 configuration ----------------------------------------------*/ 
  RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);   
  /* Get the Flash Wait State (Latency) configuration ------------------------*/   
  *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); 
}

/**
  * @brief This function handles the RCC CSS interrupt request.
  * @note This API should be called under the NMI_Handler().
  * @retval None
  */
void HAL_RCC_NMI_IRQHandler(void)
{
  /* Check RCC CSSF flag  */
  if(__HAL_RCC_GET_IT(RCC_IT_CSS))
  {
    /* RCC Clock Security System interrupt user callback */
    HAL_RCC_CSSCallback();
    
    /* Clear RCC CSS pending bit */
    __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
  }
}

/**
  * @brief  RCC Clock Security System interrupt callback
  * @retval none
  */
__weak void HAL_RCC_CSSCallback(void)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
    the HAL_RCC_CSSCallback could be implemented in the user file
    */ 
}

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_RCC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/