Changeset - 2a5ab412b8d9
[Not reviewed]
cortex-f0
67 2 100
Ethan Zonca - 10 years ago 2015-01-03 14:54:59
ez@ethanzonca.com
Swap out to HAL library and new USB library
169 files changed with 74571 insertions and 41178 deletions:
main.c
2
2
main.h
2
0 comments (0 inline, 0 general)
libraries/STM32F0xx_CPAL_Driver/inc/stm32f0xx_i2c_cpal.h
Show inline comments
 
deleted file
libraries/STM32F0xx_CPAL_Driver/inc/stm32f0xx_i2c_cpal_conf_template.h
Show inline comments
 
deleted file
libraries/STM32F0xx_CPAL_Driver/inc/stm32f0xx_i2c_cpal_hal.h
Show inline comments
 
deleted file
libraries/STM32F0xx_CPAL_Driver/src/stm32f0xx_i2c_cpal.c
Show inline comments
 
deleted file
libraries/STM32F0xx_CPAL_Driver/src/stm32f0xx_i2c_cpal_hal.c
Show inline comments
 
deleted file
libraries/STM32F0xx_CPAL_Driver/src/stm32f0xx_i2c_cpal_usercallback_template.c
Show inline comments
 
deleted file
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file contains all the functions prototypes for the HAL 
 
  *          module driver.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_H
 
#define __STM32F0xx_HAL_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_conf.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup HAL
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup HAL_Exported_Constants HAL Exported Constants
 
  * @{  
 
  */
 
   
 
#if defined(SYSCFG_CFGR1_DMA_RMP)
 
/** @defgroup HAL_DMA_remapping HAL DMA remapping
 
  *        Elements values convention: 0xYYYYYYYY
 
  *           - YYYYYYYY  : Position in the SYSCFG register CFGR1
 
  * @{  
 
  */
 
#define HAL_REMAPDMA_ADC_DMA_CH2         ((uint32_t)SYSCFG_CFGR1_ADC_DMA_RMP) /*!< ADC DMA remap 
 
                                                                         0: No remap (ADC DMA requests mapped on DMA channel 1
 
                                                                         1: Remap (ADC DMA requests mapped on DMA channel 2 */
 
#define HAL_REMAPDMA_USART1_TX_DMA_CH4   ((uint32_t)SYSCFG_CFGR1_USART1TX_DMA_RMP) /*!< USART1 TX DMA remap 
 
                                                                         0: No remap (USART1_TX DMA request mapped on DMA channel 2
 
                                                                         1: Remap (USART1_TX DMA request mapped on DMA channel 4 */
 
#define HAL_REMAPDMA_USART1_RX_DMA_CH5   ((uint32_t)SYSCFG_CFGR1_USART1RX_DMA_RMP) /*!< USART1 RX DMA remap 
 
                                                                         0: No remap (USART1_RX DMA request mapped on DMA channel 3
 
                                                                         1: Remap (USART1_RX DMA request mapped on DMA channel 5 */
 
#define HAL_REMAPDMA_TIM16_DMA_CH4       ((uint32_t)SYSCFG_CFGR1_TIM16_DMA_RMP) /*!< TIM16 DMA request remap
 
                                                                         0: No remap (TIM16_CH1 and TIM16_UP DMA requests mapped on DMA channel 3)
 
                                                                         1: Remap (TIM16_CH1 and TIM16_UP DMA requests mapped on DMA channel 4) */
 
#define HAL_REMAPDMA_TIM17_DMA_CH2       ((uint32_t)SYSCFG_CFGR1_TIM17_DMA_RMP) /*!< TIM17 DMA request remap
 
                                                                         0: No remap (TIM17_CH1 and TIM17_UP DMA requests mapped on DMA channel 1
 
                                                                         1: Remap (TIM17_CH1 and TIM17_UP DMA requests mapped on DMA channel 2) */
 
 
#if defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx)
 
#define HAL_REMAPDMA_TIM16_DMA_CH6       ((uint32_t)SYSCFG_CFGR1_TIM16_DMA_RMP2) /*!< TIM16 alternate DMA request remapping bit. Available on STM32F07x devices only
 
                                                                         0: No alternate remap (TIM16 DMA requestsmapped according to TIM16_DMA_RMP bit)
 
                                                                         1: Alternate remap (TIM16_CH1 and TIM16_UP DMA requests mapped on DMA channel 6) */
 
#define HAL_REMAPDMA_TIM17_DMA_CH7       ((uint32_t)SYSCFG_CFGR1_TIM17_DMA_RMP2) /*!< TIM17 alternate DMA request remapping bit. Available on STM32F07x devices only
 
                                                                         0: No alternate remap (TIM17 DMA requestsmapped according to TIM17_DMA_RMP bit)
 
                                                                         1: Alternate remap (TIM17_CH1 and TIM17_UP DMA requests mapped on DMA channel 7) */
 
#define HAL_REMAPDMA_SPI2_DMA_CH67       ((uint32_t)SYSCFG_CFGR1_SPI2_DMA_RMP) /*!< SPI2 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (SPI2_RX and SPI2_TX DMA requests mapped on DMA channel 4 and 5 respectively)
 
                                                                         1: 1: Remap (SPI2_RX and SPI2_TX DMA requests mapped on DMA channel 6 and 7 respectively) */
 
#define HAL_REMAPDMA_USART2_DMA_CH67     ((uint32_t)SYSCFG_CFGR1_USART2_DMA_RMP) /*!< USART2 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (USART2_RX and USART2_TX DMA requests mapped on DMA channel 5 and 4 respectively)
 
                                                                         1: 1: Remap (USART2_RX and USART2_TX DMA requests mapped on DMA channel 6 and 7 respectively) */
 
#define HAL_REMAPDMA_USART3_DMA_CH32     ((uint32_t)SYSCFG_CFGR1_USART3_DMA_RMP) /*!< USART3 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (USART3_RX and USART3_TX DMA requests mapped on DMA channel 6 and 7 respectively)
 
                                                                         1: 1: Remap (USART3_RX and USART3_TX DMA requests mapped on DMA channel 3 and 2 respectively) */
 
#define HAL_REMAPDMA_I2C1_DMA_CH76       ((uint32_t)SYSCFG_CFGR1_I2C1_DMA_RMP) /*!< I2C1 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (I2C1_RX and I2C1_TX DMA requests mapped on DMA channel 3 and 2 respectively)
 
                                                                         1: Remap (I2C1_RX and I2C1_TX DMA requests mapped on DMA channel 7 and 6 respectively) */
 
#define HAL_REMAPDMA_TIM1_DMA_CH6        ((uint32_t)SYSCFG_CFGR1_TIM1_DMA_RMP) /*!< TIM1 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (TIM1_CH1, TIM1_CH2 and TIM1_CH3 DMA requests mapped on DMA channel 2, 3 and 4 respectively)
 
                                                                         1: Remap (TIM1_CH1, TIM1_CH2 and TIM1_CH3 DMA requests mapped on DMA channel 6 */
 
#define HAL_REMAPDMA_TIM2_DMA_CH7        ((uint32_t)SYSCFG_CFGR1_TIM2_DMA_RMP) /*!< TIM2 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (TIM2_CH2 and TIM2_CH4 DMA requests mapped on DMA channel 3 and 4 respectively)
 
                                                                         1: Remap (TIM2_CH2 and TIM2_CH4 DMA requests mapped on DMA channel 7 */
 
#define HAL_REMAPDMA_TIM3_DMA_CH6        ((uint32_t)SYSCFG_CFGR1_TIM3_DMA_RMP) /*!< TIM3 DMA request remapping bit. Available on STM32F07x devices only.
 
                                                                         0: No remap (TIM3_CH1 and TIM3_TRIG DMA requests mapped on DMA channel 4)
 
                                                                         1: Remap (TIM3_CH1 and TIM3_TRIG DMA requests mapped on DMA channel 6) */
 
#endif
 
 
#if defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx)
 
#define IS_HAL_REMAPDMA(RMP) (((RMP) == HAL_REMAPDMA_ADC_DMA_CH2)        || \
 
                              ((RMP) == HAL_REMAPDMA_USART1_TX_DMA_CH4) || \
 
                              ((RMP) == HAL_REMAPDMA_USART1_RX_DMA_CH5) || \
 
                              ((RMP) == HAL_REMAPDMA_TIM16_DMA_CH4)     || \
 
                              ((RMP) == HAL_REMAPDMA_TIM17_DMA_CH2)     || \
 
                              ((RMP) == HAL_REMAPDMA_TIM16_DMA_CH6)     || \
 
                              ((RMP) == HAL_REMAPDMA_TIM17_DMA_CH7)     || \
 
                              ((RMP) == HAL_REMAPDMA_SPI2_DMA_CH67)     || \
 
                              ((RMP) == HAL_REMAPDMA_USART2_DMA_CH67)   || \
 
                              ((RMP) == HAL_REMAPDMA_USART3_DMA_CH32)   || \
 
                              ((RMP) == HAL_REMAPDMA_I2C1_DMA_CH76)     || \
 
                              ((RMP) == HAL_REMAPDMA_TIM1_DMA_CH6)      || \
 
                              ((RMP) == HAL_REMAPDMA_TIM2_DMA_CH7)      || \
 
                              ((RMP) == HAL_REMAPDMA_TIM3_DMA_CH6))
 
#else
 
#define IS_HAL_REMAPDMA(RMP) (((RMP) == HAL_REMAPDMA_ADC_DMA_CH2)       || \
 
                              ((RMP) == HAL_REMAPDMA_USART1_TX_DMA_CH4) || \
 
                              ((RMP) == HAL_REMAPDMA_USART1_RX_DMA_CH5) || \
 
                              ((RMP) == HAL_REMAPDMA_TIM16_DMA_CH4)     || \
 
                              ((RMP) == HAL_REMAPDMA_TIM17_DMA_CH2))
 
#endif
 
/**
 
  * @}
 
  */
 
#endif /* SYSCFG_CFGR1_DMA_RMP */
 
 
#if defined(SYSCFG_CFGR1_PA11_PA12_RMP)
 
/** @defgroup HAL_Pin_remapping HAL Pin remapping
 
  * @{
 
  */
 
#define HAL_REMAP_PA11_PA12                 (SYSCFG_CFGR1_PA11_PA12_RMP)  /*!< PA11 and PA12 remapping bit for small packages (28 and 20 pins).
 
                                                                           0: No remap (pin pair PA9/10 mapped on the pins)
 
                                                                           1: Remap (pin pair PA11/12 mapped instead of PA9/10) */
 
 
#define IS_HAL_REMAP_PIN(RMP) ((RMP) == HAL_REMAP_PA11_PA12)
 
/**
 
  * @}
 
  */
 
#endif /* SYSCFG_CFGR1_PA11_PA12_RMP */
 
 
#if defined(STM32F091xC)
 
/** @defgroup HAL_IRDA_ENV_SEL HAL IRDA Enveloppe Selection
 
  * @{
 
  */
 
#define HAL_SYSCFG_IRDA_ENV_SEL_TIM16     (SYSCFG_CFGR1_IRDA_ENV_SEL_0 & SYSCFG_CFGR1_IRDA_ENV_SEL_1)    /* 00: Timer16 is selected as IRDA Modulation enveloppe source */
 
#define HAL_SYSCFG_IRDA_ENV_SEL_USART1    (SYSCFG_CFGR1_IRDA_ENV_SEL_0)  /* 01: USART1 is selected as IRDA Modulation enveloppe source */
 
#define HAL_SYSCFG_IRDA_ENV_SEL_USART4    (SYSCFG_CFGR1_IRDA_ENV_SEL_1)  /* 10: USART4 is selected as IRDA Modulation enveloppe source */
 
 
#define IS_HAL_SYSCFG_IRDA_ENV_SEL(SEL)   (((SEL) == HAL_SYSCFG_IRDA_ENV_SEL_TIM16)   || \
 
                                           ((SEL) == HAL_SYSCFG_IRDA_ENV_SEL_USART1)   || \
 
                                           ((SEL) == HAL_SYSCFG_IRDA_ENV_SEL_USART4))
 
/**
 
  * @}
 
  */
 
#endif /* STM32F091xC */
 
 
 
/** @defgroup HAL_FastModePlus_I2C HAL FastModePlus I2C
 
  * @{
 
  */
 
#if defined(SYSCFG_CFGR1_I2C_FMP_PB6)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB6     (SYSCFG_CFGR1_I2C_FMP_PB6)  /*!< Fast Mode Plus (FM+) driving capability activation on the pad
 
                                                                         0: PB6 pin operates in standard mode
 
                                                                         1: I2C FM+ mode enabled on PB6 pin, and the Speed control is bypassed */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_PB6 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_PB7)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB7     (SYSCFG_CFGR1_I2C_FMP_PB7)  /*!< Fast Mode Plus (FM+) driving capability activation on the pad
 
                                                                         0: PB7 pin operates in standard mode
 
                                                                         1: I2C FM+ mode enabled on PB7 pin, and the Speed control is bypassed */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_PB7 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_PB8)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB8     (SYSCFG_CFGR1_I2C_FMP_PB8)  /*!< Fast Mode Plus (FM+) driving capability activation on the pad
 
                                                                         0: PB8 pin operates in standard mode
 
                                                                         1: I2C FM+ mode enabled on PB8 pin, and the Speed control is bypassed */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_PB8 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_PB9)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB9     (SYSCFG_CFGR1_I2C_FMP_PB9)  /*!< Fast Mode Plus (FM+) driving capability activation on the pad
 
                                                                         0: PB9 pin operates in standard mode
 
                                                                         1: I2C FM+ mode enabled on PB9 pin, and the Speed control is bypassed */                                                                        
 
#endif /* SYSCFG_CFGR1_I2C_FMP_PB9 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C1)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C1        (SYSCFG_CFGR1_I2C_FMP_I2C1)  /*!< I2C1 fast mode Plus driving capability activation
 
                                                                         0: FM+ mode is not enabled on I2C1 pins selected through AF selection bits
 
                                                                         1: FM+ mode is enabled on I2C1 pins selected through AF selection bits */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_I2C1 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C2)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C2        (SYSCFG_CFGR1_I2C_FMP_I2C2)  /*!< I2C2 fast mode Plus driving capability activation
 
                                                                         0: FM+ mode is not enabled on I2C2 pins selected through AF selection bits
 
                                                                         1: FM+ mode is enabled on I2C2 pins selected through AF selection bits */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_I2C2 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_PA9)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C2_PA9    (SYSCFG_CFGR1_I2C_FMP_PA9)  /*!< Fast Mode Plus (FM+) driving capability activation on the pad
 
                                                                         0: PA9 pin operates in standard mode
 
                                                                         1: FM+ mode is enabled on PA9 pin, and the Speed control is bypassed */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_PA9 */
 
 
#if defined(SYSCFG_CFGR1_I2C_FMP_PA10)
 
#define HAL_SYSCFG_FASTMODEPLUS_I2C2_PA10   (SYSCFG_CFGR1_I2C_FMP_PA10)  /*!< Fast Mode Plus (FM+) driving capability activation on the pad
 
                                                                         0: PA10 pin operates in standard mode
 
                                                                         1: FM+ mode is enabled on PA10 pin, and the Speed control is bypassed */
 
#endif /* SYSCFG_CFGR1_I2C_FMP_PA10 */
 
 
#if defined(STM32F091xC)|| defined(STM32F098xx)
 
#define IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG(CONFIG) (((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C1)      || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C2)      || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C2_PA9)  || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C2_PA10) || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB6)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB7)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB8)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB9))
 
#elif defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG(CONFIG) (((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C1)      || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C2)      || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB6)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB7)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB8)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB9))
 
#elif defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx)
 
#define IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG(CONFIG) (((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C1)      || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C2_PA9)  || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C2_PA10) || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB6)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB7)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB8)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB9))
 
#elif defined(STM32F042x6) || defined(STM32F048xx)
 
#define IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG(CONFIG) (((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C1)    || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB6) || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB7) || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB8) || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB9))
 
#else
 
#define IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG(CONFIG) (((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB6)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB7)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB8)   || \
 
                                                   ((CONFIG) == HAL_SYSCFG_FASTMODEPLUS_I2C_PB9))
 
#endif
 
 
/**
 
  * @}
 
  */
 
 
#if defined(STM32F091xC) || defined (STM32F098xx)
 
/** @defgroup HAL_ISR_Wrapper HAL ISR Wrapper
 
  * @{
 
  */
 
#define HAL_SYSCFG_ITLINE0                           ((uint32_t) 0x00000000)
 
#define HAL_SYSCFG_ITLINE1                           ((uint32_t) 0x00000001)
 
#define HAL_SYSCFG_ITLINE2                           ((uint32_t) 0x00000002)
 
#define HAL_SYSCFG_ITLINE3                           ((uint32_t) 0x00000003)
 
#define HAL_SYSCFG_ITLINE4                           ((uint32_t) 0x00000004)
 
#define HAL_SYSCFG_ITLINE5                           ((uint32_t) 0x00000005)
 
#define HAL_SYSCFG_ITLINE6                           ((uint32_t) 0x00000006)
 
#define HAL_SYSCFG_ITLINE7                           ((uint32_t) 0x00000007)
 
#define HAL_SYSCFG_ITLINE8                           ((uint32_t) 0x00000008)
 
#define HAL_SYSCFG_ITLINE9                           ((uint32_t) 0x00000009)
 
#define HAL_SYSCFG_ITLINE10                          ((uint32_t) 0x0000000A)
 
#define HAL_SYSCFG_ITLINE11                          ((uint32_t) 0x0000000B)
 
#define HAL_SYSCFG_ITLINE12                          ((uint32_t) 0x0000000C)
 
#define HAL_SYSCFG_ITLINE13                          ((uint32_t) 0x0000000D)
 
#define HAL_SYSCFG_ITLINE14                          ((uint32_t) 0x0000000E)
 
#define HAL_SYSCFG_ITLINE15                          ((uint32_t) 0x0000000F)
 
#define HAL_SYSCFG_ITLINE16                          ((uint32_t) 0x00000010)
 
#define HAL_SYSCFG_ITLINE17                          ((uint32_t) 0x00000011)
 
#define HAL_SYSCFG_ITLINE18                          ((uint32_t) 0x00000012)
 
#define HAL_SYSCFG_ITLINE19                          ((uint32_t) 0x00000013)
 
#define HAL_SYSCFG_ITLINE20                          ((uint32_t) 0x00000014)
 
#define HAL_SYSCFG_ITLINE21                          ((uint32_t) 0x00000015)
 
#define HAL_SYSCFG_ITLINE22                          ((uint32_t) 0x00000016)
 
#define HAL_SYSCFG_ITLINE23                          ((uint32_t) 0x00000017)
 
#define HAL_SYSCFG_ITLINE24                          ((uint32_t) 0x00000018)
 
#define HAL_SYSCFG_ITLINE25                          ((uint32_t) 0x00000019)
 
#define HAL_SYSCFG_ITLINE26                          ((uint32_t) 0x0000001A)
 
#define HAL_SYSCFG_ITLINE27                          ((uint32_t) 0x0000001B)
 
#define HAL_SYSCFG_ITLINE28                          ((uint32_t) 0x0000001C)
 
#define HAL_SYSCFG_ITLINE29                          ((uint32_t) 0x0000001D)
 
#define HAL_SYSCFG_ITLINE30                          ((uint32_t) 0x0000001E)
 
#define HAL_SYSCFG_ITLINE31                          ((uint32_t) 0x0000001F)
 
 
#define HAL_ITLINE_EWDG           ((uint32_t) ((HAL_SYSCFG_ITLINE0 << 0x18) | SYSCFG_ITLINE0_SR_EWDG)) /* EWDG has expired .... */
 
#if defined(STM32F091xC)
 
#define HAL_ITLINE_PVDOUT         ((uint32_t) ((HAL_SYSCFG_ITLINE1 << 0x18) | SYSCFG_ITLINE1_SR_PVDOUT)) /* Power voltage detection Interrupt .... */
 
#endif
 
#define HAL_ITLINE_VDDIO2         ((uint32_t) ((HAL_SYSCFG_ITLINE1 << 0x18) | SYSCFG_ITLINE1_SR_VDDIO2)) /* VDDIO2 Interrupt .... */
 
#define HAL_ITLINE_RTC_WAKEUP     ((uint32_t) ((HAL_SYSCFG_ITLINE2 << 0x18) | SYSCFG_ITLINE2_SR_RTC_WAKEUP)) /* RTC WAKEUP -> exti[20] Interrupt */
 
#define HAL_ITLINE_RTC_TSTAMP     ((uint32_t) ((HAL_SYSCFG_ITLINE2 << 0x18) | SYSCFG_ITLINE2_SR_RTC_TSTAMP)) /* RTC Time Stamp -> exti[19] interrupt */
 
#define HAL_ITLINE_RTC_ALRA       ((uint32_t) ((HAL_SYSCFG_ITLINE2 << 0x18) | SYSCFG_ITLINE2_SR_RTC_ALRA)) /* RTC Alarm -> exti[17] interrupt .... */
 
#define HAL_ITLINE_FLASH_ITF      ((uint32_t) ((HAL_SYSCFG_ITLINE3 << 0x18) | SYSCFG_ITLINE3_SR_FLASH_ITF)) /* Flash ITF Interrupt */
 
#define HAL_ITLINE_CRS            ((uint32_t) ((HAL_SYSCFG_ITLINE4 << 0x18) | SYSCFG_ITLINE4_SR_CRS)) /* CRS Interrupt */
 
#define HAL_ITLINE_CLK_CTRL       ((uint32_t) ((HAL_SYSCFG_ITLINE4 << 0x18) | SYSCFG_ITLINE4_SR_CLK_CTRL)) /* CLK Control Interrupt */
 
#define HAL_ITLINE_EXTI0          ((uint32_t) ((HAL_SYSCFG_ITLINE5 << 0x18) | SYSCFG_ITLINE5_SR_EXTI0)) /* External Interrupt 0 */
 
#define HAL_ITLINE_EXTI1          ((uint32_t) ((HAL_SYSCFG_ITLINE5 << 0x18) | SYSCFG_ITLINE5_SR_EXTI1)) /* External Interrupt 1 */
 
#define HAL_ITLINE_EXTI2          ((uint32_t) ((HAL_SYSCFG_ITLINE6 << 0x18) | SYSCFG_ITLINE6_SR_EXTI2)) /* External Interrupt 2 */
 
#define HAL_ITLINE_EXTI3          ((uint32_t) ((HAL_SYSCFG_ITLINE6 << 0x18) | SYSCFG_ITLINE6_SR_EXTI3)) /* External Interrupt 3 */
 
#define HAL_ITLINE_EXTI4          ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI4)) /* EXTI4 Interrupt */
 
#define HAL_ITLINE_EXTI5          ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI5)) /* EXTI5 Interrupt */
 
#define HAL_ITLINE_EXTI6          ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI6)) /* EXTI6 Interrupt */
 
#define HAL_ITLINE_EXTI7          ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI7)) /* EXTI7 Interrupt */
 
#define HAL_ITLINE_EXTI8          ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI8)) /* EXTI8 Interrupt */
 
#define HAL_ITLINE_EXTI9          ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI9)) /* EXTI9 Interrupt */
 
#define HAL_ITLINE_EXTI10         ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI10)) /* EXTI10 Interrupt */
 
#define HAL_ITLINE_EXTI11         ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI11)) /* EXTI11 Interrupt */
 
#define HAL_ITLINE_EXTI12         ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI12)) /* EXTI12 Interrupt */
 
#define HAL_ITLINE_EXTI13         ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI13)) /* EXTI13 Interrupt */
 
#define HAL_ITLINE_EXTI14         ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI14)) /* EXTI14 Interrupt */
 
#define HAL_ITLINE_EXTI15         ((uint32_t) ((HAL_SYSCFG_ITLINE7 << 0x18) | SYSCFG_ITLINE7_SR_EXTI15)) /* EXTI15 Interrupt */
 
#define HAL_ITLINE_TSC_EOA        ((uint32_t) ((HAL_SYSCFG_ITLINE8 << 0x18) | SYSCFG_ITLINE8_SR_TSC_EOA)) /* Touch control EOA Interrupt */
 
#define HAL_ITLINE_TSC_MCE        ((uint32_t) ((HAL_SYSCFG_ITLINE8 << 0x18) | SYSCFG_ITLINE8_SR_TSC_MCE)) /* Touch control MCE Interrupt */
 
#define HAL_ITLINE_DMA1_CH1       ((uint32_t) ((HAL_SYSCFG_ITLINE9 << 0x18) | SYSCFG_ITLINE9_SR_DMA1_CH1)) /* DMA1 Channel 1 Interrupt */
 
#define HAL_ITLINE_DMA1_CH2       ((uint32_t) ((HAL_SYSCFG_ITLINE10 << 0x18) | SYSCFG_ITLINE10_SR_DMA1_CH2)) /* DMA1 Channel 2 Interrupt */
 
#define HAL_ITLINE_DMA1_CH3       ((uint32_t) ((HAL_SYSCFG_ITLINE10 << 0x18) | SYSCFG_ITLINE10_SR_DMA1_CH3)) /* DMA1 Channel 3 Interrupt */
 
#define HAL_ITLINE_DMA2_CH1       ((uint32_t) ((HAL_SYSCFG_ITLINE10 << 0x18) | SYSCFG_ITLINE10_SR_DMA2_CH1)) /* DMA2 Channel 1 Interrupt */
 
#define HAL_ITLINE_DMA2_CH2       ((uint32_t) ((HAL_SYSCFG_ITLINE10 << 0x18) | SYSCFG_ITLINE10_SR_DMA2_CH2)) /* DMA2 Channel 2 Interrupt */
 
#define HAL_ITLINE_DMA1_CH4       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA1_CH4)) /* DMA1 Channel 4 Interrupt */
 
#define HAL_ITLINE_DMA1_CH5       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA1_CH5)) /* DMA1 Channel 5 Interrupt */
 
#define HAL_ITLINE_DMA1_CH6       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA1_CH6)) /* DMA1 Channel 6 Interrupt */
 
#define HAL_ITLINE_DMA1_CH7       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA1_CH7)) /* DMA1 Channel 7 Interrupt */
 
#define HAL_ITLINE_DMA2_CH3       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA2_CH3)) /* DMA2 Channel 3 Interrupt */
 
#define HAL_ITLINE_DMA2_CH4       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA2_CH4)) /* DMA2 Channel 4 Interrupt */
 
#define HAL_ITLINE_DMA2_CH5       ((uint32_t) ((HAL_SYSCFG_ITLINE11 << 0x18) | SYSCFG_ITLINE11_SR_DMA2_CH5)) /* DMA2 Channel 5 Interrupt */
 
#define HAL_ITLINE_ADC            ((uint32_t) ((HAL_SYSCFG_ITLINE12 << 0x18) | SYSCFG_ITLINE12_SR_ADC)) /* ADC Interrupt */
 
#define HAL_ITLINE_COMP1          ((uint32_t) ((HAL_SYSCFG_ITLINE12 << 0x18) | SYSCFG_ITLINE12_SR_COMP1)) /* COMP1 Interrupt -> exti[21] */
 
#define HAL_ITLINE_COMP2          ((uint32_t) ((HAL_SYSCFG_ITLINE12 << 0x18) | SYSCFG_ITLINE12_SR_COMP2)) /* COMP2 Interrupt -> exti[21] */
 
#define HAL_ITLINE_TIM1_BRK       ((uint32_t) ((HAL_SYSCFG_ITLINE13 << 0x18) | SYSCFG_ITLINE13_SR_TIM1_BRK)) /* TIM1 BRK Interrupt */
 
#define HAL_ITLINE_TIM1_UPD       ((uint32_t) ((HAL_SYSCFG_ITLINE13 << 0x18) | SYSCFG_ITLINE13_SR_TIM1_UPD)) /* TIM1 UPD Interrupt */
 
#define HAL_ITLINE_TIM1_TRG       ((uint32_t) ((HAL_SYSCFG_ITLINE13 << 0x18) | SYSCFG_ITLINE13_SR_TIM1_TRG)) /* TIM1 TRG Interrupt */
 
#define HAL_ITLINE_TIM1_CCU       ((uint32_t) ((HAL_SYSCFG_ITLINE13 << 0x18) | SYSCFG_ITLINE13_SR_TIM1_CCU)) /* TIM1 CCU Interrupt */
 
#define HAL_ITLINE_TIM1_CC        ((uint32_t) ((HAL_SYSCFG_ITLINE14 << 0x18) | SYSCFG_ITLINE14_SR_TIM1_CC)) /* TIM1 CC Interrupt */
 
#define HAL_ITLINE_TIM2           ((uint32_t) ((HAL_SYSCFG_ITLINE15 << 0x18) | SYSCFG_ITLINE15_SR_TIM2_GLB)) /* TIM2 Interrupt */
 
#define HAL_ITLINE_TIM3           ((uint32_t) ((HAL_SYSCFG_ITLINE16 << 0x18) | SYSCFG_ITLINE16_SR_TIM3_GLB)) /* TIM3 Interrupt */
 
#define HAL_ITLINE_DAC            ((uint32_t) ((HAL_SYSCFG_ITLINE17 << 0x18) | SYSCFG_ITLINE17_SR_DAC)) /* DAC Interrupt */
 
#define HAL_ITLINE_TIM6           ((uint32_t) ((HAL_SYSCFG_ITLINE17 << 0x18) | SYSCFG_ITLINE17_SR_TIM6_GLB)) /* TIM6 Interrupt */
 
#define HAL_ITLINE_TIM7           ((uint32_t) ((HAL_SYSCFG_ITLINE18 << 0x18) | SYSCFG_ITLINE18_SR_TIM7_GLB)) /* TIM7 Interrupt */
 
#define HAL_ITLINE_TIM14          ((uint32_t) ((HAL_SYSCFG_ITLINE19 << 0x18) | SYSCFG_ITLINE19_SR_TIM14_GLB)) /* TIM14 Interrupt */
 
#define HAL_ITLINE_TIM15          ((uint32_t) ((HAL_SYSCFG_ITLINE20 << 0x18) | SYSCFG_ITLINE20_SR_TIM15_GLB)) /* TIM15 Interrupt */
 
#define HAL_ITLINE_TIM16          ((uint32_t) ((HAL_SYSCFG_ITLINE21 << 0x18) | SYSCFG_ITLINE21_SR_TIM16_GLB)) /* TIM16 Interrupt */
 
#define HAL_ITLINE_TIM17          ((uint32_t) ((HAL_SYSCFG_ITLINE22 << 0x18) | SYSCFG_ITLINE22_SR_TIM17_GLB)) /* TIM17 Interrupt */
 
#define HAL_ITLINE_I2C1           ((uint32_t) ((HAL_SYSCFG_ITLINE23 << 0x18) | SYSCFG_ITLINE23_SR_I2C1_GLB)) /* I2C1 Interrupt -> exti[23] */
 
#define HAL_ITLINE_I2C2           ((uint32_t) ((HAL_SYSCFG_ITLINE24 << 0x18) | SYSCFG_ITLINE24_SR_I2C2_GLB)) /* I2C2 Interrupt */
 
#define HAL_ITLINE_SPI1           ((uint32_t) ((HAL_SYSCFG_ITLINE25 << 0x18) | SYSCFG_ITLINE25_SR_SPI1)) /* I2C1 Interrupt -> exti[23] */
 
#define HAL_ITLINE_SPI2           ((uint32_t) ((HAL_SYSCFG_ITLINE26 << 0x18) | SYSCFG_ITLINE26_SR_SPI2)) /* SPI1 Interrupt */
 
#define HAL_ITLINE_USART1         ((uint32_t) ((HAL_SYSCFG_ITLINE27 << 0x18) | SYSCFG_ITLINE27_SR_USART1_GLB)) /*!< USART1 GLB Interrupt -> exti[25] */
 
#define HAL_ITLINE_USART2         ((uint32_t) ((HAL_SYSCFG_ITLINE28 << 0x18) | SYSCFG_ITLINE28_SR_USART2_GLB)) /*!< USART2 GLB Interrupt -> exti[26] */
 
#define HAL_ITLINE_USART3         ((uint32_t) ((HAL_SYSCFG_ITLINE29 << 0x18) | SYSCFG_ITLINE29_SR_USART3_GLB)) /* USART3 Interrupt .... */
 
#define HAL_ITLINE_USART4         ((uint32_t) ((HAL_SYSCFG_ITLINE29 << 0x18) | SYSCFG_ITLINE29_SR_USART4_GLB)) /* USART4 Interrupt .... */
 
#define HAL_ITLINE_USART5         ((uint32_t) ((HAL_SYSCFG_ITLINE29 << 0x18) | SYSCFG_ITLINE29_SR_USART5_GLB)) /* USART5 Interrupt .... */
 
#define HAL_ITLINE_USART6         ((uint32_t) ((HAL_SYSCFG_ITLINE29 << 0x18) | SYSCFG_ITLINE29_SR_USART6_GLB)) /* USART6 Interrupt .... */
 
#define HAL_ITLINE_USART7         ((uint32_t) ((HAL_SYSCFG_ITLINE29 << 0x18) | SYSCFG_ITLINE29_SR_USART7_GLB)) /* USART7 Interrupt .... */
 
#define HAL_ITLINE_USART8         ((uint32_t) ((HAL_SYSCFG_ITLINE29 << 0x18) | SYSCFG_ITLINE29_SR_USART8_GLB)) /* USART8 Interrupt .... */
 
#define HAL_ITLINE_CAN            ((uint32_t) ((HAL_SYSCFG_ITLINE30 << 0x18) | SYSCFG_ITLINE30_SR_CAN)) /* CAN Interrupt */
 
#define HAL_ITLINE_CEC            ((uint32_t) ((HAL_SYSCFG_ITLINE30 << 0x18) | SYSCFG_ITLINE30_SR_CEC)) /* CEC Interrupt -> exti[27] */
 
/**
 
  * @}
 
  */
 
#endif /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */  
 
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup HAL_Exported_Macros HAL Exported Macros
 
  * @{  
 
  */
 
 
/** @defgroup HAL_Freeze_Unfreeze_Peripherals HAL Freeze Unfreeze Peripherals
 
  * @brief  Freeze/Unfreeze Peripherals in Debug mode 
 
  * @{  
 
  */
 
  
 
#if defined(DBGMCU_APB1_FZ_DBG_CAN_STOP)
 
#define __HAL_FREEZE_CAN_DBGMCU()            (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_CAN_STOP))
 
#define __HAL_UNFREEZE_CAN_DBGMCU()          (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_CAN_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_CAN_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_RTC_STOP)
 
#define __HAL_FREEZE_RTC_DBGMCU()            (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_RTC_STOP))
 
#define __HAL_UNFREEZE_RTC_DBGMCU()          (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_RTC_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_RTC_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_I2C1_SMBUS_TIMEOUT)
 
#define __HAL_FREEZE_I2C1_TIMEOUT_DBGMCU()   (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_I2C1_SMBUS_TIMEOUT))
 
#define __HAL_UNFREEZE_I2C1_TIMEOUT_DBGMCU() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_I2C1_SMBUS_TIMEOUT))
 
#endif /* DBGMCU_APB1_FZ_DBG_I2C1_SMBUS_TIMEOUT */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_IWDG_STOP)
 
#define __HAL_FREEZE_IWDG_DBGMCU()           (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_IWDG_STOP))
 
#define __HAL_UNFREEZE_IWDG_DBGMCU()         (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_IWDG_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_IWDG_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_WWDG_STOP)
 
#define __HAL_FREEZE_WWDG_DBGMCU()           (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_WWDG_STOP))
 
#define __HAL_UNFREEZE_WWDG_DBGMCU()         (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_WWDG_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_WWDG_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_TIM2_STOP)
 
#define __HAL_FREEZE_TIM2_DBGMCU()           (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM2_STOP))
 
#define __HAL_UNFREEZE_TIM2_DBGMCU()         (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM2_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_TIM2_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_TIM3_STOP)
 
#define __HAL_FREEZE_TIM3_DBGMCU()           (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM3_STOP))
 
#define __HAL_UNFREEZE_TIM3_DBGMCU()         (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM3_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_TIM3_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_TIM6_STOP)
 
#define __HAL_FREEZE_TIM6_DBGMCU()           (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM6_STOP))
 
#define __HAL_UNFREEZE_TIM6_DBGMCU()         (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM6_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_TIM6_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_TIM7_STOP)
 
#define __HAL_FREEZE_TIM7_DBGMCU()           (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM7_STOP))
 
#define __HAL_UNFREEZE_TIM7_DBGMCU()         (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM7_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_TIM7_STOP */
 
 
#if defined(DBGMCU_APB1_FZ_DBG_TIM14_STOP)
 
#define __HAL_FREEZE_TIM14_DBGMCU()          (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM14_STOP))
 
#define __HAL_UNFREEZE_TIM14_DBGMCU()        (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM14_STOP))
 
#endif /* DBGMCU_APB1_FZ_DBG_TIM14_STOP */
 
 
#if defined(DBGMCU_APB2_FZ_DBG_TIM1_STOP)
 
#define __HAL_FREEZE_TIM1_DBGMCU()           (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM1_STOP))
 
#define __HAL_UNFREEZE_TIM1_DBGMCU()         (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM1_STOP))
 
#endif /* DBGMCU_APB2_FZ_DBG_TIM1_STOP */
 
 
#if defined(DBGMCU_APB2_FZ_DBG_TIM15_STOP)
 
#define __HAL_FREEZE_TIM15_DBGMCU()          (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM15_STOP))
 
#define __HAL_UNFREEZE_TIM15_DBGMCU()        (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM15_STOP))
 
#endif /* DBGMCU_APB2_FZ_DBG_TIM15_STOP */
 
 
#if defined(DBGMCU_APB2_FZ_DBG_TIM16_STOP)
 
#define __HAL_FREEZE_TIM16_DBGMCU()          (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM16_STOP))
 
#define __HAL_UNFREEZE_TIM16_DBGMCU()        (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM16_STOP))
 
#endif /* DBGMCU_APB2_FZ_DBG_TIM16_STOP */
 
 
#if defined(DBGMCU_APB2_FZ_DBG_TIM17_STOP)
 
#define __HAL_FREEZE_TIM17_DBGMCU()          (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM17_STOP))
 
#define __HAL_UNFREEZE_TIM17_DBGMCU()        (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM17_STOP))
 
#endif /* DBGMCU_APB2_FZ_DBG_TIM17_STOP */
 
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup Memory_Mapping_Selection Memory Mapping Selection
 
  * @{   
 
  */
 
#if defined(SYSCFG_CFGR1_MEM_MODE)
 
/** @brief  Main Flash memory mapped at 0x00000000
 
  */
 
#define __HAL_REMAPMEMORY_FLASH()        (SYSCFG->CFGR1 &= ~(SYSCFG_CFGR1_MEM_MODE))
 
#endif /* SYSCFG_CFGR1_MEM_MODE */
 
 
#if defined(SYSCFG_CFGR1_MEM_MODE_0)
 
/** @brief  System Flash memory mapped at 0x00000000
 
  */
 
#define __HAL_REMAPMEMORY_SYSTEMFLASH()  do {SYSCFG->CFGR1 &= ~(SYSCFG_CFGR1_MEM_MODE); \
 
                                             SYSCFG->CFGR1 |= SYSCFG_CFGR1_MEM_MODE_0;  \
 
                                            }while(0)
 
#endif /* SYSCFG_CFGR1_MEM_MODE_0 */
 
 
#if defined(SYSCFG_CFGR1_MEM_MODE_0) && defined(SYSCFG_CFGR1_MEM_MODE_1)
 
/** @brief  Embedded SRAM mapped at 0x00000000
 
  */
 
#define __HAL_REMAPMEMORY_SRAM()         do {SYSCFG->CFGR1 &= ~(SYSCFG_CFGR1_MEM_MODE); \
 
                                             SYSCFG->CFGR1 |= (SYSCFG_CFGR1_MEM_MODE_0 | SYSCFG_CFGR1_MEM_MODE_1); \
 
                                            }while(0) 
 
#endif /* SYSCFG_CFGR1_MEM_MODE_0 && SYSCFG_CFGR1_MEM_MODE_1 */
 
/**
 
  * @}
 
  */ 
 
 
#if defined(SYSCFG_CFGR1_DMA_RMP)
 
/** @defgroup HAL_DMA_remap HAL DMA remap
 
  * @brief  DMA remapping enable/disable macros
 
  * @param __DMA_REMAP__: This parameter can be a value of @ref HAL_DMA_remapping
 
  * @{   
 
  */
 
#define __HAL_REMAPDMA_CHANNEL_ENABLE(__DMA_REMAP__)   do {assert_param(IS_HAL_REMAPDMA((__DMA_REMAP__)));                  \
 
                                                           SYSCFG->CFGR1 |= (__DMA_REMAP__);                                \
 
                                                         }while(0)
 
#define __HAL_REMAPDMA_CHANNEL_DISABLE(__DMA_REMAP__)  do {assert_param(IS_HAL_REMAPDMA((__DMA_REMAP__)));                  \
 
                                                           SYSCFG->CFGR1 &= ~(__DMA_REMAP__);                               \
 
                                                         }while(0)
 
/**
 
  * @}
 
  */  
 
#endif /* SYSCFG_CFGR1_DMA_RMP */
 
 
#if defined(SYSCFG_CFGR1_PA11_PA12_RMP)
 
/** @defgroup HAL_Pin_remap HAL Pin remap 
 
  * @brief  Pin remapping enable/disable macros
 
  * @param __PIN_REMAP__: This parameter can be a value of @ref HAL_Pin_remapping
 
  * @{   
 
  */
 
#define __HAL_REMAP_PIN_ENABLE(__PIN_REMAP__)          do {assert_param(IS_HAL_REMAP_PIN((__PIN_REMAP__)));                 \
 
                                                           SYSCFG->CFGR1 |= (__PIN_REMAP__);                                \
 
                                                         }while(0)
 
#define __HAL_REMAP_PIN_DISABLE(__PIN_REMAP__)         do {assert_param(IS_HAL_REMAP_PIN((__PIN_REMAP__)));                 \
 
                                                           SYSCFG->CFGR1 &= ~(__PIN_REMAP__);                               \
 
                                                         }while(0)
 
/**
 
  * @}
 
  */  
 
#endif /* SYSCFG_CFGR1_PA11_PA12_RMP */
 
 
/** @defgroup HAL_Fast_mode_plus_driving_cap HAL Fast mode plus driving cap
 
  * @brief  Fast mode Plus driving capability enable/disable macros
 
  * @param __FASTMODEPLUS__: This parameter can be a value of @ref HAL_FastModePlus_I2C
 
  * @{    
 
  */
 
#define __HAL_SYSCFG_FASTMODEPLUS_ENABLE(__FASTMODEPLUS__)  do {assert_param(IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG((__FASTMODEPLUS__))); \
 
                                                                SYSCFG->CFGR1 |= (__FASTMODEPLUS__);                                 \
 
                                                               }while(0)
 
 
#define __HAL_SYSCFG_FASTMODEPLUS_DISABLE(__FASTMODEPLUS__) do {assert_param(IS_HAL_SYSCFG_FASTMODEPLUS_CONFIG((__FASTMODEPLUS__))); \
 
                                                                SYSCFG->CFGR1 &= ~(__FASTMODEPLUS__);                                \
 
                                                               }while(0)
 
/**
 
  * @}
 
  */  
 
  
 
#if defined(SYSCFG_CFGR2_LOCKUP_LOCK)
 
/** @defgroup Cortex_Lockup_Enable Cortex Lockup Enable
 
  * @{   
 
  */
 
/** @brief  SYSCFG Break Lockup lock
 
  *         Enables and locks the connection of Cortex-M0 LOCKUP (Hardfault) output to TIM1/15/16/17 Break input
 
  * @note   The selected configuration is locked and can be unlocked by system reset
 
  */
 
#define __HAL_SYSCFG_BREAK_LOCKUP_LOCK()   do {SYSCFG->CFGR2 &= ~(SYSCFG_CFGR2_LOCKUP_LOCK); \
 
                                               SYSCFG->CFGR2 |= SYSCFG_CFGR2_LOCKUP_LOCK;    \
 
                                              }while(0)
 
/**
 
  * @}
 
  */  
 
#endif /* SYSCFG_CFGR2_LOCKUP_LOCK */
 
 
#if defined(SYSCFG_CFGR2_PVD_LOCK)
 
/** @defgroup PVD_Lock_Enable PVD Lock
 
  * @{  
 
  */
 
/** @brief  SYSCFG Break PVD lock
 
  *         Enables and locks the PVD connection with Timer1/8/15/16/17 Break Input, , as well as the PVDE and PLS[2:0] in the PWR_CR register
 
  * @note   The selected configuration is locked and can be unlocked by system reset
 
  */
 
#define __HAL_SYSCFG_BREAK_PVD_LOCK()      do {SYSCFG->CFGR2 &= ~(SYSCFG_CFGR2_PVD_LOCK); \
 
                                               SYSCFG->CFGR2 |= SYSCFG_CFGR2_PVD_LOCK;    \
 
                                              }while(0)
 
/**
 
  * @}
 
  */
 
#endif /* SYSCFG_CFGR2_PVD_LOCK */
 
 
#if defined(SYSCFG_CFGR2_SRAM_PARITY_LOCK)
 
/** @defgroup SRAM_Parity_Lock SRAM Parity Lock
 
  * @{
 
  */
 
/** @brief  SYSCFG Break SRAM PARITY lock
 
  *         Enables and locks the SRAM_PARITY error signal with Break Input of TIMER1/8/15/16/17
 
  * @note   The selected configuration is locked and can be unlocked by system reset
 
  */
 
#define __HAL_SYSCFG_BREAK_SRAMPARITY_LOCK() do {SYSCFG->CFGR2 &= ~(SYSCFG_CFGR2_SRAM_PARITY_LOCK); \
 
                                                 SYSCFG->CFGR2 |= SYSCFG_CFGR2_SRAM_PARITY_LOCK;    \
 
                                                }while(0)
 
/**
 
  * @}
 
  */
 
#endif /* SYSCFG_CFGR2_SRAM_PARITY_LOCK */
 
 
#if defined(SYSCFG_CFGR2_SRAM_PEF)
 
/** @defgroup HAL_SYSCFG_Parity_check_on_RAM HAL SYSCFG Parity check on RAM
 
  * @brief  Parity check on RAM disable macro
 
  * @note   Disabling the parity check on RAM locks the configuration bit.
 
  *         To re-enable the parity check on RAM perform a system reset.
 
  * @{  
 
  */
 
#define __HAL_SYSCFG_RAM_PARITYCHECK_DISABLE()   (SYSCFG->CFGR2 |= SYSCFG_CFGR2_SRAM_PEF)
 
/**
 
  * @}
 
  */
 
#endif /* SYSCFG_CFGR2_SRAM_PEF */
 
 
 
#if defined(STM32F091xC) || defined (STM32F098xx)
 
/** @defgroup HAL_ISR_wrapper_check HAL ISR wrapper check
 
  * @brief  ISR wrapper check
 
  * @note   Allow to determine interrupt source per line.
 
  * @{  
 
  */
 
#define __HAL_GET_PENDING_IT(__SOURCE__)       (SYSCFG->IT_LINE_SR[((__SOURCE__) >> 0x18)] & ((__SOURCE__) & 0x00FFFFFF))
 
/**
 
  * @}
 
  */
 
#endif /* (STM32F091xC) || defined (STM32F098xx)*/
 
 
#if defined(STM32F091xC) || defined (STM32F098xx)
 
/** @defgroup HAL_SYSCFG_IRDA_modulation_envelope_selection HAL SYSCFG IRDA modulation envelope selection
 
  * @brief  selection of the modulation envelope signal macro, using bits [7:6] of SYS_CTRL(CFGR1) register
 
  * @param __SOURCE__: This parameter can be a value of @ref HAL_IRDA_ENV_SEL
 
  * @{  
 
  */
 
#define __HAL_SYSCFG_IRDA_ENV_SELECTION(__SOURCE__)  do {assert_param(IS_HAL_SYSCFG_IRDA_ENV_SEL((__SOURCE__))); \
 
                                                         SYSCFG->CFGR1 &= ~(SYSCFG_CFGR1_IRDA_ENV_SEL); \
 
                                                         SYSCFG->CFGR1 |= (__SOURCE__);    \
 
                                                        }while(0)
 
 
#define __HAL_SYSCFG_GET_IRDA_ENV_SELECTION()  ((SYSCFG->CFGR1) & 0x000000C0)
 
/**
 
  * @}
 
  */
 
#endif /* (STM32F091xC) || defined (STM32F098xx)*/
 
 
/**
 
  * @}
 
  */   
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup HAL_Exported_Functions HAL Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions 
 
 *  @brief    Initialization and de-initialization functions
 
  * @{
 
  */    
 
/* Initialization and de-initialization functions  ******************************/
 
HAL_StatusTypeDef HAL_Init(void);
 
HAL_StatusTypeDef HAL_DeInit(void);
 
void              HAL_MspInit(void);
 
void              HAL_MspDeInit(void);
 
HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority);
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup HAL_Exported_Functions_Group2 HAL Control functions 
 
 *  @brief    HAL Control functions
 
  * @{
 
  */    
 
/* Peripheral Control functions  **********************************************/
 
void              HAL_IncTick(void);
 
void              HAL_Delay(__IO uint32_t Delay);
 
uint32_t          HAL_GetTick(void);
 
void              HAL_SuspendTick(void);
 
void              HAL_ResumeTick(void);
 
uint32_t          HAL_GetHalVersion(void);
 
uint32_t          HAL_GetREVID(void);
 
uint32_t          HAL_GetDEVID(void);
 
void              HAL_EnableDBGStopMode(void);
 
void              HAL_DisableDBGStopMode(void);
 
void              HAL_EnableDBGStandbyMode(void);
 
void              HAL_DisableDBGStandbyMode(void);
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */   
 
 
/**
 
  * @}
 
  */ 
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_adc.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_adc.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file containing functions prototypes of ADC HAL library.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_ADC_H
 
#define __STM32F0xx_HAL_ADC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"  
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup ADC
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup ADC_Exported_Types ADC Exported Types
 
  * @{
 
  */
 
     
 
/**
 
  * @brief  Structure definition of ADC initialization and regular group  
 
  * @note   The setting of these parameters with function HAL_ADC_Init() is conditioned to ADC state.
 
  *         ADC state can be either:
 
  *          - For all parameters: ADC disabled (this is the only possible ADC state to modify parameter 'ClockPrescaler')
 
   *         - For all parameters except 'ClockPrescaler': ADC enabled without conversion on going on regular group.
 
  *         If ADC is not in the appropriate state to modify some parameters, these parameters setting is bypassed
 
  *         without error reporting without error reporting (as it can be the expected behaviour in case of intended action to update another parameter (which fulfills the ADC state condition) on the fly).
 
  */
 
typedef struct
 
{
 
  uint32_t ClockPrescaler;        /*!< Select ADC clock source (synchronous clock derived from APB clock or asynchronous clock derived from ADC dedicated HSI RC oscillator 14MHz) and clock prescaler.
 
                                       This parameter can be a value of @ref ADC_ClockPrescaler
 
                                       Note: In case of usage of the ADC dedicated HSI RC oscillator, it must be preliminarily enabled at RCC top level. 
 
                                       Note: This parameter can be modified only if the ADC is disabled */
 
  uint32_t Resolution;            /*!< Configures the ADC resolution. 
 
                                       This parameter can be a value of @ref ADC_Resolution */
 
  uint32_t DataAlign;             /*!< Specifies whether the ADC data  alignment is left or right.  
 
                                       This parameter can be a value of @ref ADC_Data_align */
 
  uint32_t ScanConvMode;          /*!< Configures the sequencer of regular group.
 
                                       This parameter can be associated to parameter 'DiscontinuousConvMode' to have main sequence subdivided in successive parts.
 
                                       Sequencer is automatically enabled if several channels are set (sequencer cannot be disabled, as it can be the case on other STM32 devices):
 
                                       If only 1 channel is set: Conversion is performed in single mode.
 
                                       If several channels are set:  Conversions are performed in sequence mode (ranks defined by each channel number: channel 0 fixed on rank 0, channel 1 fixed on rank1, ...).
 
                                                                     Scan direction can be set to forward (from channel 0 to channel 18) or backward (from channel 18 to channel 0).
 
                                       This parameter can be a value of @ref ADC_Scan_mode */
 
  uint32_t EOCSelection;          /*!< Specifies what EOC (End Of Conversion) flag is used for conversion by polling and interruption: end of conversion of each rank or complete sequence.
 
                                       This parameter can be a value of @ref ADC_EOCSelection. */ 
 
  uint32_t LowPowerAutoWait;      /*!< Selects the dynamic low power Auto Delay: new conversion start only when the previous
 
                                       conversion (for regular group) or previous sequence (for injected group) has been treated by user software.
 
                                       This feature automatically adapts the speed of ADC to the speed of the system that reads the data. Moreover, this avoids risk of overrun for low frequency applications. 
 
                                       This parameter can be set to ENABLE or DISABLE.
 
                                       Note: Do not use with interruption or DMA (HAL_ADC_Start_IT(), HAL_ADC_Start_DMA()) since they have to clear immediately the EOC flag to free the IRQ vector sequencer.
 
                                             Do use with polling: 1. Start conversion with HAL_ADC_Start(), 2. Later on, when conversion data is needed: use HAL_ADC_PollForConversion() to ensure that conversion is completed
 
                                             and use HAL_ADC_GetValue() to retrieve conversion result and trig another conversion. */
 
  uint32_t LowPowerAutoPowerOff;  /*!< Selects the auto-off mode: the ADC automatically powers-off after a conversion and automatically wakes-up when a new conversion is triggered (with startup time between trigger and start of sampling).
 
                                       This feature can be combined with automatic wait mode (parameter 'LowPowerAutoWait').
 
                                       This parameter can be set to ENABLE or DISABLE.
 
                                       Note: If enabled, this feature also turns off the ADC dedicated 14 MHz RC oscillator (HSI14) */
 
  uint32_t ContinuousConvMode;    /*!< Specifies whether the conversion is performed in single mode (one conversion) or continuous mode for regular group,
 
                                       after the selected trigger occurred (software start or external trigger).
 
                                       This parameter can be set to ENABLE or DISABLE. */
 
  uint32_t DiscontinuousConvMode; /*!< Specifies whether the conversions sequence of regular group is performed in Complete-sequence/Discontinuous-sequence (main sequence subdivided in successive parts).
 
                                       Discontinuous mode is used only if sequencer is enabled (parameter 'ScanConvMode'). If sequencer is disabled, this parameter is discarded.
 
                                       Discontinuous mode can be enabled only if continuous mode is disabled. If continuous mode is enabled, this parameter setting is discarded.
 
                                       This parameter can be set to ENABLE or DISABLE
 
                                       Note: Number of discontinuous ranks increment is fixed to one-by-one. */
 
  uint32_t ExternalTrigConv;      /*!< Selects the external event used to trigger the conversion start of regular group.
 
                                       If set to ADC_SOFTWARE_START, external triggers are disabled.
 
                                       This parameter can be a value of @ref ADC_External_trigger_source_Regular */
 
  uint32_t ExternalTrigConvEdge;  /*!< Selects the external trigger edge of regular group.
 
                                       If trigger is set to ADC_SOFTWARE_START, this parameter is discarded.
 
                                       This parameter can be a value of @ref ADC_External_trigger_edge_Regular */
 
  uint32_t DMAContinuousRequests; /*!< Specifies whether the DMA requests are performed in one shot mode (DMA transfer stop when number of conversions is reached)
 
                                       or in Continuous mode (DMA transfer unlimited, whatever number of conversions).
 
                                       Note: In continuous mode, DMA must be configured in circular mode. Otherwise an overrun will be triggered when DMA buffer maximum pointer is reached.
 
                                       This parameter can be set to ENABLE or DISABLE. */
 
  uint32_t Overrun;               /*!< Select the behaviour in case of overrun: data preserved or overwritten 
 
                                       This parameter has an effect on regular group only, including in DMA mode.
 
                                       This parameter can be a value of @ref ADC_Overrun */
 
}ADC_InitTypeDef;
 
 
/** 
 
  * @brief  Structure definition of ADC channel for regular group  
 
  * @note   The setting of these parameters with function HAL_ADC_ConfigChannel() is conditioned to ADC state.
 
  *         ADC state can be either:
 
  *          - For all parameters: ADC disabled or enabled without conversion on going on regular group.
 
  *         If ADC is not in the appropriate state to modify some parameters, these parameters setting is bypassed
 
  *         without error reporting (as it can be the expected behaviour in case of intended action to update another parameter (which fulfills the ADC state condition) on the fly).
 
  */
 
typedef struct 
 
{
 
  uint32_t Channel;                /*!< Specifies the channel to configure into ADC regular group.
 
                                        This parameter can be a value of @ref ADC_channels
 
                                        Note: Depending on devices, some channels may not be available on package pins. Refer to device datasheet for channels availability. */
 
  uint32_t Rank;                   /*!< Add or remove the channel from ADC regular group sequencer. 
 
                                        On STM32F0 devices, rank is defined by each channel number (channel 0 fixed on rank 0, channel 1 fixed on rank1, ...).
 
                                        Despite the channel rank is fixed, this parameter allow an additional possibility: to remove the selected rank (selected channel) from sequencer.
 
                                        This parameter can be a value of @ref ADC_rank */
 
  uint32_t SamplingTime;           /*!< Sampling time value to be set for the selected channel.
 
                                        Unit: ADC clock cycles
 
                                        Conversion time is the addition of sampling time and processing time (12.5 ADC clock cycles at ADC resolution 12 bits, 10.5 cycles at 10 bits, 8.5 cycles at 8 bits, 6.5 cycles at 6 bits).
 
                                        This parameter can be a value of @ref ADC_sampling_times
 
                                        Caution: this setting impacts the entire regular group. Therefore, call of HAL_ADC_ConfigChannel() to configure a channel can impact the configuration of other channels previously set.
 
                                        Note: In case of usage of internal measurement channels (VrefInt/Vbat/TempSensor),
 
                                              sampling time constraints must be respected (sampling time can be adjusted in function of ADC clock frequency and sampling time setting)
 
                                              Refer to device datasheet for timings values, parameters TS_vrefint, TS_vbat, TS_temp (values rough order: 5us to 17us). */
 
}ADC_ChannelConfTypeDef;
 
 
/** 
 
  * @brief  Structure definition of ADC analog watchdog
 
  * @note   The setting of these parameters with function HAL_ADC_AnalogWDGConfig() is conditioned to ADC state.
 
  *         ADC state can be either: ADC disabled or ADC enabled without conversion on going on regular group.
 
  */
 
typedef struct
 
{
 
  uint32_t WatchdogMode;      /*!< Configures the ADC analog watchdog mode: single/all/none channels.
 
                                   This parameter can be a value of @ref ADC_analog_watchdog_mode. */
 
  uint32_t Channel;           /*!< Selects which ADC channel to monitor by analog watchdog.
 
                                   This parameter has an effect only if parameter 'WatchdogMode' is configured on single channel. Only 1 channel can be monitored.
 
                                   This parameter can be a value of @ref ADC_channels. */
 
  uint32_t ITMode;            /*!< Specifies whether the analog watchdog is configured in interrupt or polling mode.
 
                                   This parameter can be set to ENABLE or DISABLE */
 
  uint32_t HighThreshold;     /*!< Configures the ADC analog watchdog High threshold value.
 
                                   Depending of ADC resolution selected (12, 10, 8 or 6 bits), this parameter must be a number between Min_Data = 0x000 and Max_Data = 0xFFF, 0x3FF, 0xFF or 0x3F respectively. */
 
  uint32_t LowThreshold;      /*!< Configures the ADC analog watchdog High threshold value.
 
                                   Depending of ADC resolution selected (12, 10, 8 or 6 bits), this parameter must be a number between Min_Data = 0x000 and Max_Data = 0xFFF, 0x3FF, 0xFF or 0x3F respectively. */
 
}ADC_AnalogWDGConfTypeDef;
 
 
/** 
 
  * @brief  HAL ADC state machine: ADC States structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_ADC_STATE_RESET                   = 0x00,    /*!< ADC not yet initialized or disabled */
 
  HAL_ADC_STATE_READY                   = 0x01,    /*!< ADC peripheral ready for use */
 
  HAL_ADC_STATE_BUSY                    = 0x02,    /*!< An internal process is ongoing */ 
 
  HAL_ADC_STATE_BUSY_REG                = 0x12,    /*!< Regular conversion is ongoing */
 
  HAL_ADC_STATE_BUSY_INJ                = 0x22,    /*!< Not used on STM32F0xx devices (kept for compatibility with other devices featuring an injected group) */
 
  HAL_ADC_STATE_BUSY_INJ_REG            = 0x32,    /*!< Not used on STM32F0xx devices (kept for compatibility with other devices featuring an injected group) */
 
  HAL_ADC_STATE_TIMEOUT                 = 0x03,    /*!< Timeout state */
 
  HAL_ADC_STATE_ERROR                   = 0x04,    /*!< ADC state error */
 
  HAL_ADC_STATE_EOC                     = 0x05,    /*!< Conversion is completed */
 
  HAL_ADC_STATE_EOC_REG                 = 0x15,    /*!< Regular conversion is completed */
 
  HAL_ADC_STATE_EOC_INJ                 = 0x25,    /*!< Not used on STM32F0xx devices (kept for compatibility with other devices featuring an injected group) */
 
  HAL_ADC_STATE_EOC_INJ_REG             = 0x35,    /*!< Not used on STM32F0xx devices (kept for compatibility with other devices featuring an injected group) */
 
  HAL_ADC_STATE_AWD                     = 0x06,    /*!< ADC state analog watchdog */
 
  HAL_ADC_STATE_AWD2                    = 0x07,    /*!< Not used on STM32F0xx devices (kept for compatibility with other devices featuring several AWD) */
 
  HAL_ADC_STATE_AWD3                    = 0x08,    /*!< Not used on STM32F0xx devices (kept for compatibility with other devices featuring several AWD) */ 
 
}HAL_ADC_StateTypeDef;
 
 
/** 
 
  * @brief  ADC handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  ADC_TypeDef                   *Instance;              /*!< Register base address */
 
 
  ADC_InitTypeDef               Init;                   /*!< ADC required parameters */
 
 
  __IO uint32_t                 NbrOfConversionRank ;   /*!< ADC conversion rank counter */
 
 
  DMA_HandleTypeDef             *DMA_Handle;            /*!< Pointer DMA Handler */
 
 
  HAL_LockTypeDef               Lock;                   /*!< ADC locking object */
 
 
  __IO HAL_ADC_StateTypeDef     State;                  /*!< ADC communication state */
 
 
  __IO uint32_t                 ErrorCode;              /*!< ADC Error code */
 
}ADC_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
 
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup ADC_Exported_Constants ADC Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup ADC_Error_Code ADC Error Code
 
  * @{
 
  */ 
 
#define HAL_ADC_ERROR_NONE        ((uint32_t)0x00)   /*!< No error                                              */
 
#define HAL_ADC_ERROR_INTERNAL    ((uint32_t)0x01)   /*!< ADC IP internal error: if problem of clocking, 
 
                                                          enable/disable, erroneous state                       */
 
#define HAL_ADC_ERROR_OVR         ((uint32_t)0x02)   /*!< Overrun error                                         */
 
#define HAL_ADC_ERROR_DMA         ((uint32_t)0x04)   /*!< DMA transfer error                                    */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_ClockPrescaler ADC ClockPrescaler
 
  * @{
 
  */     
 
#define ADC_CLOCK_ASYNC               ((uint32_t)0x00000000)          /*!< ADC asynchronous clock derived from ADC dedicated HSI */
 
 
#define ADC_CLOCK_SYNC_PCLK_DIV2      ((uint32_t)ADC_CFGR2_CKMODE_0)  /*!< ADC synchronous clock derived from AHB clock divided by a prescaler of 2 */
 
#define ADC_CLOCK_SYNC_PCLK_DIV4      ((uint32_t)ADC_CFGR2_CKMODE_1)  /*!< ADC synchronous clock derived from AHB clock divided by a prescaler of 4 */
 
 
#define ADC_CLOCKPRESCALER_PCLK_DIV2   ADC_CLOCK_SYNC_PCLK_DIV2   /* Obsolete naming, kept for compatibility with some other devices */
 
#define ADC_CLOCKPRESCALER_PCLK_DIV4   ADC_CLOCK_SYNC_PCLK_DIV4   /* Obsolete naming, kept for compatibility with some other devices */
 
 
#define IS_ADC_CLOCKPRESCALER(ADC_CLOCK) (((ADC_CLOCK) == ADC_CLOCK_ASYNC)          || \
 
                                          ((ADC_CLOCK) == ADC_CLOCK_SYNC_PCLK_DIV2) || \
 
                                          ((ADC_CLOCK) == ADC_CLOCK_SYNC_PCLK_DIV4)   )
 
  
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_Resolution ADC Resolution
 
  * @{
 
  */ 
 
#define ADC_RESOLUTION12b      ((uint32_t)0x00000000)           /*!<  ADC 12-bit resolution */
 
#define ADC_RESOLUTION10b      ((uint32_t)ADC_CFGR1_RES_0)      /*!<  ADC 10-bit resolution */
 
#define ADC_RESOLUTION8b       ((uint32_t)ADC_CFGR1_RES_1)      /*!<  ADC 8-bit resolution */
 
#define ADC_RESOLUTION6b       ((uint32_t)ADC_CFGR1_RES)        /*!<  ADC 6-bit resolution */
 
 
#define IS_ADC_RESOLUTION(RESOLUTION) (((RESOLUTION) == ADC_RESOLUTION12b) || \
 
                                       ((RESOLUTION) == ADC_RESOLUTION10b) || \
 
                                       ((RESOLUTION) == ADC_RESOLUTION8b)  || \
 
                                       ((RESOLUTION) == ADC_RESOLUTION6b)    )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_Data_align ADC Data_align
 
  * @{
 
  */ 
 
#define ADC_DATAALIGN_RIGHT      ((uint32_t)0x00000000)
 
#define ADC_DATAALIGN_LEFT       ((uint32_t)ADC_CFGR1_ALIGN)
 
 
#define IS_ADC_DATA_ALIGN(ALIGN) (((ALIGN) == ADC_DATAALIGN_RIGHT) || \
 
                                  ((ALIGN) == ADC_DATAALIGN_LEFT)    )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_Scan_mode ADC Scan mode
 
  * @{
 
  */
 
/* Note: Scan mode values must be compatible with other STM32 devices having  */
 
/*       a configurable sequencer.                                            */
 
/*       Scan direction setting values are defined by taking in account       */
 
/*       already defined values for other STM32 devices:                      */
 
/*         ADC_SCAN_DISABLE         ((uint32_t)0x00000000)                    */
 
/*         ADC_SCAN_ENABLE          ((uint32_t)0x00000001)                    */
 
/*       Scan direction forward is considered as default setting equivalent   */
 
/*       to scan enable.                                                      */
 
/*       Scan direction backward is considered as additional setting.         */
 
/*       In case of migration from another STM32 device, the user will be     */
 
/*       warned of change of setting choices with assert check.               */
 
#define ADC_SCAN_DIRECTION_FORWARD        ((uint32_t)0x00000001)        /*!< Scan direction forward: from channel 0 to channel 18 */
 
#define ADC_SCAN_DIRECTION_BACKWARD       ((uint32_t)0x00000002)        /*!< Scan direction backward: from channel 18 to channel 0 */
 
 
#define ADC_SCAN_ENABLE         ADC_SCAN_DIRECTION_FORWARD       /* For compatibility with other STM32 devices */
 
 
#define IS_ADC_SCAN_MODE(SCAN_MODE) (((SCAN_MODE) == ADC_SCAN_DIRECTION_FORWARD) || \
 
                                     ((SCAN_MODE) == ADC_SCAN_DIRECTION_BACKWARD)  )
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_External_trigger_edge_Regular ADC External trigger edge Regular
 
  * @{
 
  */ 
 
#define ADC_EXTERNALTRIGCONVEDGE_NONE           ((uint32_t)0x00000000)
 
#define ADC_EXTERNALTRIGCONVEDGE_RISING         ((uint32_t)ADC_CFGR1_EXTEN_0)         
 
#define ADC_EXTERNALTRIGCONVEDGE_FALLING        ((uint32_t)ADC_CFGR1_EXTEN_1)
 
#define ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING  ((uint32_t)ADC_CFGR1_EXTEN)
 
 
#define IS_ADC_EXTTRIG_EDGE(EDGE) (((EDGE) == ADC_EXTERNALTRIGCONVEDGE_NONE)         || \
 
                                   ((EDGE) == ADC_EXTERNALTRIGCONVEDGE_RISING)       || \
 
                                   ((EDGE) == ADC_EXTERNALTRIGCONVEDGE_FALLING)      || \
 
                                   ((EDGE) == ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING)  )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_External_trigger_source_Regular ADC External trigger source Regular
 
  * @{
 
  */
 
/* List of external triggers with generic trigger name, sorted by trigger     */
 
/* name:                                                                      */
 
 
/* External triggers of regular group for ADC1 */
 
#define ADC_EXTERNALTRIGCONV_T1_TRGO        ADC1_2_EXTERNALTRIG_T1_TRGO
 
#define ADC_EXTERNALTRIGCONV_T1_CC4         ADC1_2_EXTERNALTRIG_T1_CC4
 
#define ADC_EXTERNALTRIGCONV_T2_TRGO        ADC1_2_EXTERNALTRIG_T2_TRGO
 
#define ADC_EXTERNALTRIGCONV_T3_TRGO        ADC1_2_EXTERNALTRIG_T3_TRGO
 
#define ADC_EXTERNALTRIGCONV_T15_TRGO       ADC1_2_EXTERNALTRIG_T15_TRGO
 
#define ADC_SOFTWARE_START                  ((uint32_t)0x00000010)
 
 
#define IS_ADC_EXTTRIG(REGTRIG) (((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_TRGO)  || \
 
                                 ((REGTRIG) == ADC_EXTERNALTRIGCONV_T1_CC4)   || \
 
                                 ((REGTRIG) == ADC_EXTERNALTRIGCONV_T2_TRGO)  || \
 
                                 ((REGTRIG) == ADC_EXTERNALTRIGCONV_T3_TRGO)  || \
 
                                 ((REGTRIG) == ADC_EXTERNALTRIGCONV_T15_TRGO) || \
 
                                 ((REGTRIG) == ADC_SOFTWARE_START)              )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_Internal_HAL_driver_Ext_trig_src_Regular ADC Internal HAL driver Ext trig src Regular
 
  * @{
 
  */
 
 
/* List of external triggers of regular group for ADC1:                       */
 
/* (used internally by HAL driver. To not use into HAL structure parameters)  */
 
#define ADC1_2_EXTERNALTRIG_T1_TRGO           ((uint32_t)0x00000000)
 
#define ADC1_2_EXTERNALTRIG_T1_CC4            ((uint32_t)ADC_CFGR1_EXTSEL_0)
 
#define ADC1_2_EXTERNALTRIG_T2_TRGO           ((uint32_t)ADC_CFGR1_EXTSEL_1)
 
#define ADC1_2_EXTERNALTRIG_T3_TRGO           ((uint32_t)(ADC_CFGR1_EXTSEL_1 | ADC_CFGR1_EXTSEL_0))
 
#define ADC1_2_EXTERNALTRIG_T15_TRGO          ((uint32_t)ADC_CFGR1_EXTSEL_2)
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_EOCSelection ADC EOCSelection
 
  * @{
 
  */ 
 
#define EOC_SINGLE_CONV         ((uint32_t) ADC_ISR_EOC)
 
#define EOC_SEQ_CONV            ((uint32_t) ADC_ISR_EOS)
 
#define EOC_SINGLE_SEQ_CONV     ((uint32_t)(ADC_ISR_EOC | ADC_ISR_EOS))  /*!< reserved for future use */
 
 
#define IS_ADC_EOC_SELECTION(EOC_SELECTION) (((EOC_SELECTION) == EOC_SINGLE_CONV)    || \
 
                                             ((EOC_SELECTION) == EOC_SEQ_CONV)       || \
 
                                             ((EOC_SELECTION) == EOC_SINGLE_SEQ_CONV)  )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_Overrun ADC Overrun
 
  * @{
 
  */ 
 
#define OVR_DATA_OVERWRITTEN            ((uint32_t)0x00000000)
 
#define OVR_DATA_PRESERVED              ((uint32_t)0x00000001)
 
 
#define IS_ADC_OVERRUN(OVR) (((OVR) == OVR_DATA_PRESERVED)  || \
 
                             ((OVR) == OVR_DATA_OVERWRITTEN)  )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_channels ADC channels
 
  * @{
 
  */
 
/* Note: Depending on devices, some channels may not be available on package  */
 
/*       pins. Refer to device datasheet for channels availability.           */
 
/* Note: Channels are used by bitfields for setting of channel selection      */
 
/* (register ADC_CHSELR) and used by number for setting of analog watchdog    */
 
/* channel (bits AWDCH in register ADC_CFGR1).                                */
 
/* Channels are defined with decimal numbers and converted them to bitfields  */
 
/* when needed.                                                               */
 
#define ADC_CHANNEL_0           ((uint32_t) 0x00000000)
 
#define ADC_CHANNEL_1           ((uint32_t) 0x00000001)
 
#define ADC_CHANNEL_2           ((uint32_t) 0x00000002)
 
#define ADC_CHANNEL_3           ((uint32_t) 0x00000003)
 
#define ADC_CHANNEL_4           ((uint32_t) 0x00000004)
 
#define ADC_CHANNEL_5           ((uint32_t) 0x00000005)
 
#define ADC_CHANNEL_6           ((uint32_t) 0x00000006)
 
#define ADC_CHANNEL_7           ((uint32_t) 0x00000007)
 
#define ADC_CHANNEL_8           ((uint32_t) 0x00000008)
 
#define ADC_CHANNEL_9           ((uint32_t) 0x00000009)
 
#define ADC_CHANNEL_10          ((uint32_t) 0x0000000A)
 
#define ADC_CHANNEL_11          ((uint32_t) 0x0000000B)
 
#define ADC_CHANNEL_12          ((uint32_t) 0x0000000C)
 
#define ADC_CHANNEL_13          ((uint32_t) 0x0000000D)
 
#define ADC_CHANNEL_14          ((uint32_t) 0x0000000E)
 
#define ADC_CHANNEL_15          ((uint32_t) 0x0000000F)
 
#define ADC_CHANNEL_16          ((uint32_t) 0x00000010)
 
#define ADC_CHANNEL_17          ((uint32_t) 0x00000011)
 
#define ADC_CHANNEL_18          ((uint32_t) 0x00000012)
 
 
#define ADC_CHANNEL_TEMPSENSOR  ADC_CHANNEL_16
 
#define ADC_CHANNEL_VREFINT     ADC_CHANNEL_17
 
#define ADC_CHANNEL_VBAT        ADC_CHANNEL_18
 
 
#define IS_ADC_CHANNEL(CHANNEL) (((CHANNEL) == ADC_CHANNEL_0)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_1)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_2)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_3)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_4)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_5)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_6)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_7)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_8)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_9)           || \
 
                                 ((CHANNEL) == ADC_CHANNEL_10)          || \
 
                                 ((CHANNEL) == ADC_CHANNEL_11)          || \
 
                                 ((CHANNEL) == ADC_CHANNEL_12)          || \
 
                                 ((CHANNEL) == ADC_CHANNEL_13)          || \
 
                                 ((CHANNEL) == ADC_CHANNEL_14)          || \
 
                                 ((CHANNEL) == ADC_CHANNEL_15)          || \
 
                                 ((CHANNEL) == ADC_CHANNEL_TEMPSENSOR)  || \
 
                                 ((CHANNEL) == ADC_CHANNEL_VREFINT)     || \
 
                                 ((CHANNEL) == ADC_CHANNEL_VBAT)          )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_rank ADC rank
 
  * @{
 
  */ 
 
#define ADC_RANK_CHANNEL_NUMBER                 ((uint32_t)0x00001000)  /*!< Enable the rank of the selected channels. Rank is defined by each channel number (channel 0 fixed on rank 0, channel 1 fixed on rank1, ...) */
 
#define ADC_RANK_NONE                           ((uint32_t)0x00001001)  /*!< Disable the selected rank (selected channel) from sequencer */
 
 
#define IS_ADC_RANK(WATCHDOG) (((WATCHDOG) == ADC_RANK_CHANNEL_NUMBER) || \
 
                               ((WATCHDOG) == ADC_RANK_NONE)             )
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_sampling_times ADC sampling times
 
  * @{
 
  */ 
 
#define ADC_SAMPLETIME_1CYCLE_5       ((uint32_t)0x00000000)                        /*!< Sampling time 1.5 ADC clock cycle */
 
#define ADC_SAMPLETIME_7CYCLES_5      ((uint32_t) ADC_SMPR_SMP_0)                   /*!< Sampling time 7.5 ADC clock cycles */
 
#define ADC_SAMPLETIME_13CYCLES_5     ((uint32_t) ADC_SMPR_SMP_1)                   /*!< Sampling time 13.5 ADC clock cycles */
 
#define ADC_SAMPLETIME_28CYCLES_5     ((uint32_t)(ADC_SMPR_SMP_1 | ADC_SMPR_SMP_0)) /*!< Sampling time 28.5 ADC clock cycles */
 
#define ADC_SAMPLETIME_41CYCLES_5     ((uint32_t) ADC_SMPR_SMP_2)                   /*!< Sampling time 41.5 ADC clock cycles */
 
#define ADC_SAMPLETIME_55CYCLES_5     ((uint32_t)(ADC_SMPR_SMP_2 | ADC_SMPR_SMP_0)) /*!< Sampling time 55.5 ADC clock cycles */
 
#define ADC_SAMPLETIME_71CYCLES_5     ((uint32_t)(ADC_SMPR_SMP_2 | ADC_SMPR_SMP_1)) /*!< Sampling time 71.5 ADC clock cycles */
 
#define ADC_SAMPLETIME_239CYCLES_5    ((uint32_t) ADC_SMPR_SMP)                     /*!< Sampling time 239.5 ADC clock cycles */
 
 
#define IS_ADC_SAMPLE_TIME(TIME) (((TIME) == ADC_SAMPLETIME_1CYCLE_5)    || \
 
                                  ((TIME) == ADC_SAMPLETIME_7CYCLES_5)   || \
 
                                  ((TIME) == ADC_SAMPLETIME_13CYCLES_5)  || \
 
                                  ((TIME) == ADC_SAMPLETIME_28CYCLES_5)  || \
 
                                  ((TIME) == ADC_SAMPLETIME_41CYCLES_5)  || \
 
                                  ((TIME) == ADC_SAMPLETIME_55CYCLES_5)  || \
 
                                  ((TIME) == ADC_SAMPLETIME_71CYCLES_5)  || \
 
                                  ((TIME) == ADC_SAMPLETIME_239CYCLES_5)   )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_analog_watchdog_mode ADC analog watchdog mode
 
  * @{
 
  */ 
 
#define ADC_ANALOGWATCHDOG_NONE                 ((uint32_t) 0x00000000)
 
#define ADC_ANALOGWATCHDOG_SINGLE_REG           ((uint32_t)(ADC_CFGR1_AWDSGL | ADC_CFGR1_AWDEN))
 
#define ADC_ANALOGWATCHDOG_ALL_REG              ((uint32_t) ADC_CFGR1_AWDEN)
 
 
 
#define IS_ADC_ANALOG_WATCHDOG_MODE(WATCHDOG) (((WATCHDOG) == ADC_ANALOGWATCHDOG_NONE)             || \
 
                                               ((WATCHDOG) == ADC_ANALOGWATCHDOG_SINGLE_REG)       || \
 
                                               ((WATCHDOG) == ADC_ANALOGWATCHDOG_ALL_REG)            )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_Event_type ADC Event type
 
  * @{
 
  */
 
#define AWD_EVENT              ((uint32_t)ADC_FLAG_AWD)  /*!< ADC Analog watchdog 1 event */
 
#define OVR_EVENT              ((uint32_t)ADC_FLAG_OVR)  /*!< ADC overrun event */
 
    
 
#define IS_ADC_EVENT_TYPE(EVENT) (((EVENT) == AWD_EVENT) || \
 
                                  ((EVENT) == OVR_EVENT)   )
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_interrupts_definition ADC interrupts definition
 
  * @{
 
  */
 
#define ADC_IT_AWD           ADC_IER_AWDIE      /*!< ADC Analog watchdog interrupt source */
 
#define ADC_IT_OVR           ADC_IER_OVRIE      /*!< ADC overrun interrupt source */
 
#define ADC_IT_EOS           ADC_IER_EOSEQIE    /*!< ADC End of Regular sequence of Conversions interrupt source */
 
#define ADC_IT_EOC           ADC_IER_EOCIE      /*!< ADC End of Regular Conversion interrupt source */
 
#define ADC_IT_EOSMP         ADC_IER_EOSMPIE    /*!< ADC End of Sampling interrupt source */
 
#define ADC_IT_RDY           ADC_IER_ADRDYIE    /*!< ADC Ready interrupt source */
 
/**
 
  * @}
 
  */ 
 
    
 
/** @defgroup ADC_flags_definition ADC flags definition
 
  * @{
 
  */
 
#define ADC_FLAG_AWD           ADC_ISR_AWD      /*!< ADC Analog watchdog flag */
 
#define ADC_FLAG_OVR           ADC_ISR_OVR      /*!< ADC overrun flag */
 
#define ADC_FLAG_EOS           ADC_ISR_EOSEQ    /*!< ADC End of Regular sequence of Conversions flag */
 
#define ADC_FLAG_EOC           ADC_ISR_EOC      /*!< ADC End of Regular Conversion flag */
 
#define ADC_FLAG_EOSMP         ADC_ISR_EOSMP    /*!< ADC End of Sampling flag */
 
#define ADC_FLAG_RDY           ADC_ISR_ADRDY    /*!< ADC Ready flag */
 
 
#define ADC_FLAG_ALL    (ADC_FLAG_AWD   | ADC_FLAG_OVR | ADC_FLAG_EOS | ADC_FLAG_EOC | \
 
                         ADC_FLAG_EOSMP | ADC_FLAG_RDY                                )
 
 
/* Combination of all post-conversion flags bits: EOC/EOS, OVR, AWD */
 
#define ADC_FLAG_POSTCONV_ALL    (ADC_FLAG_AWD | ADC_FLAG_OVR | ADC_FLAG_EOS | ADC_FLAG_EOC)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_range_verification ADC range verification
 
  * in function of ADC resolution selected (12, 10, 8 or 6 bits)
 
  * @{
 
  */ 
 
#define IS_ADC_RANGE(RESOLUTION, ADC_VALUE)                                         \
 
   ((((RESOLUTION) == ADC_RESOLUTION12b) && ((ADC_VALUE) <= ((uint32_t)0x0FFF))) || \
 
    (((RESOLUTION) == ADC_RESOLUTION10b) && ((ADC_VALUE) <= ((uint32_t)0x03FF))) || \
 
    (((RESOLUTION) == ADC_RESOLUTION8b)  && ((ADC_VALUE) <= ((uint32_t)0x00FF))) || \
 
    (((RESOLUTION) == ADC_RESOLUTION6b)  && ((ADC_VALUE) <= ((uint32_t)0x003F)))   )
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup ADC_regular_rank_verification ADC regular rank verification
 
  * @{
 
  */ 
 
#define IS_ADC_REGULAR_RANK(RANK) (((RANK) >= ((uint32_t)1)) && ((RANK) <= ((uint32_t)16)))
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup ADC_Exported_Macros ADC Exported Macros
 
  * @{
 
  */
 
/** @brief  Reset ADC handle state
 
  * @param  __HANDLE__: ADC handle
 
  * @retval None
 
  */
 
#define __HAL_ADC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_ADC_STATE_RESET)
 
 
/* Macro for internal HAL driver usage, and possibly can be used into code of */
 
/* final user.                                                                */
 
 
/**
 
  * @brief Verification of ADC state: enabled or disabled
 
  * @param __HANDLE__: ADC handle
 
  * @retval SET (ADC enabled) or RESET (ADC disabled)
 
  */
 
/* Note: If low power mode AutoPowerOff is enabled, power-on/off phases are   */
 
/*       performed automatically by hardware and flag ADC_FLAG_RDY is not     */
 
/*       set.                                                                 */
 
#define __HAL_ADC_IS_ENABLED(__HANDLE__)                                                     \
 
       (( ((((__HANDLE__)->Instance->CR) & (ADC_CR_ADEN | ADC_CR_ADDIS)) == ADC_CR_ADEN)  && \
 
          (((((__HANDLE__)->Instance->ISR) & ADC_FLAG_RDY) == ADC_FLAG_RDY)          ||      \
 
           ((((__HANDLE__)->Instance->CFGR1) & ADC_CFGR1_AUTOFF) == ADC_CFGR1_AUTOFF)  )     \
 
        ) ? SET : RESET)
 
 
/**
 
  * @brief Test if conversion trigger of regular group is software start
 
  *        or external trigger.
 
  * @param __HANDLE__: ADC handle
 
  * @retval SET (software start) or RESET (external trigger)
 
  */
 
#define __HAL_ADC_IS_SOFTWARE_START_REGULAR(__HANDLE__)                        \
 
       (((__HANDLE__)->Instance->CFGR1 & ADC_CFGR1_EXTEN) == RESET)
 
 
/**
 
  * @brief Check if no conversion on going on regular group
 
  * @param __HANDLE__: ADC handle
 
  * @retval SET (conversion is on going) or RESET (no conversion is on going)
 
  */
 
#define __HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(__HANDLE__)                    \
 
       (( (((__HANDLE__)->Instance->CR) & ADC_CR_ADSTART) == RESET             \
 
        ) ? RESET : SET)
 
 
/**
 
  * @brief Returns resolution bits in CFGR1 register: RES[1:0].
 
  *        Returned value is among parameters to @ref ADC_Resolution.
 
  * @param __HANDLE__: ADC handle
 
  * @retval None
 
  */
 
#define __HAL_ADC_GET_RESOLUTION(__HANDLE__) (((__HANDLE__)->Instance->CFGR1) & ADC_CFGR1_RES)
 
 
/**
 
  * @brief Returns ADC sample time bits in SMPR register: SMP[2:0].
 
  *        Returned value is among parameters to @ref ADC_Resolution.
 
  * @param __HANDLE__: ADC handle
 
  * @retval None
 
  */
 
#define __HAL_ADC_GET_SAMPLINGTIME(__HANDLE__) (((__HANDLE__)->Instance->SMPR) & ADC_SMPR_SMP)
 
    
 
/** @brief  Checks if the specified ADC interrupt source is enabled or disabled.
 
  * @param __HANDLE__: ADC handle
 
  * @param __INTERRUPT__: ADC interrupt source to check
 
  * @retval State ofinterruption (SET or RESET)
 
  */
 
#define __HAL_ADC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__)                     \
 
    (( ((__HANDLE__)->Instance->IER & (__INTERRUPT__)) == (__INTERRUPT__)      \
 
     )? SET : RESET                                                            \
 
    )
 
 
/**
 
  * @brief Enable the ADC end of conversion interrupt.
 
  * @param __HANDLE__: ADC handle
 
  * @param __INTERRUPT__: ADC Interrupt
 
  * @retval None
 
  */
 
#define __HAL_ADC_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) |= (__INTERRUPT__))
 
 
/**
 
  * @brief Disable the ADC end of conversion interrupt.
 
  * @param __HANDLE__: ADC handle
 
  * @param __INTERRUPT__: ADC Interrupt
 
  * @retval None
 
  */
 
#define __HAL_ADC_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) &= ~(__INTERRUPT__))
 
 
/**
 
  * @brief Get the selected ADC's flag status.
 
  * @param __HANDLE__: ADC handle
 
  * @param __FLAG__: ADC flag
 
  * @retval None
 
  */
 
#define __HAL_ADC_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->ISR) & (__FLAG__)) == (__FLAG__))
 
 
/**
 
  * @brief Clear the ADC's pending flags
 
  * @param __HANDLE__: ADC handle
 
  * @param __FLAG__: ADC flag
 
  * @retval None
 
  */
 
/* Note: bit cleared bit by writing 1 (writing 0 has no effect on any bit of register ISR) */
 
#define __HAL_ADC_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->ISR) = (__FLAG__))
 
 
/**
 
  * @brief Clear ADC error code (set it to error code: "no error")
 
  * @param __HANDLE__: ADC handle
 
  * @retval None
 
  */
 
#define __HAL_ADC_CLEAR_ERRORCODE(__HANDLE__) ((__HANDLE__)->ErrorCode = HAL_ADC_ERROR_NONE)
 
 
 
/**
 
  * @brief Configure the channel number into channel selection register
 
  * @param _CHANNEL_: ADC Channel
 
  * @retval None
 
  */
 
/* This function converts ADC channels from numbers (see defgroup ADC_channels) 
 
   to bitfields, to get the equivalence of CMSIS channels:
 
        ADC_CHANNEL_0           ((uint32_t) ADC_CHSELR_CHSEL0)
 
        ADC_CHANNEL_1           ((uint32_t) ADC_CHSELR_CHSEL1)
 
        ADC_CHANNEL_2           ((uint32_t) ADC_CHSELR_CHSEL2)
 
        ADC_CHANNEL_3           ((uint32_t) ADC_CHSELR_CHSEL3)
 
        ADC_CHANNEL_4           ((uint32_t) ADC_CHSELR_CHSEL4)
 
        ADC_CHANNEL_5           ((uint32_t) ADC_CHSELR_CHSEL5)
 
        ADC_CHANNEL_6           ((uint32_t) ADC_CHSELR_CHSEL6)
 
        ADC_CHANNEL_7           ((uint32_t) ADC_CHSELR_CHSEL7)
 
        ADC_CHANNEL_8           ((uint32_t) ADC_CHSELR_CHSEL8)
 
        ADC_CHANNEL_9           ((uint32_t) ADC_CHSELR_CHSEL9)
 
        ADC_CHANNEL_10          ((uint32_t) ADC_CHSELR_CHSEL10)
 
        ADC_CHANNEL_11          ((uint32_t) ADC_CHSELR_CHSEL11)
 
        ADC_CHANNEL_12          ((uint32_t) ADC_CHSELR_CHSEL12)
 
        ADC_CHANNEL_13          ((uint32_t) ADC_CHSELR_CHSEL13)
 
        ADC_CHANNEL_14          ((uint32_t) ADC_CHSELR_CHSEL14)
 
        ADC_CHANNEL_15          ((uint32_t) ADC_CHSELR_CHSEL15)
 
        ADC_CHANNEL_16          ((uint32_t) ADC_CHSELR_CHSEL16)
 
        ADC_CHANNEL_17          ((uint32_t) ADC_CHSELR_CHSEL17)
 
        ADC_CHANNEL_18          ((uint32_t) ADC_CHSELR_CHSEL18)
 
*/
 
#define __HAL_ADC_CHSELR_CHANNEL(_CHANNEL_) ( 1U << (_CHANNEL_))       
 
      
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_Exported_Macro_internal_HAL_driver ADC Exported Macro internal HAL driver
 
  * @{
 
  */
 
/* Macro reserved for internal HAL driver usage, not intended to be used in   */
 
/* code of final user.                                                        */
 
 
/**
 
  * @brief Set the Analog Watchdog 1 channel.
 
  * @param _CHANNEL_: channel to be monitored by Analog Watchdog 1.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR_AWDCH(_CHANNEL_) ((_CHANNEL_) << 26)
 
 
/**
 
  * @brief Enable ADC discontinuous conversion mode for regular group
 
  * @param _REG_DISCONTINUOUS_MODE_: Regulat discontinuous mode.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR1_REG_DISCCONTINUOUS(_REG_DISCONTINUOUS_MODE_) ((_REG_DISCONTINUOUS_MODE_) << 16)
 
  
 
/**
 
  * @brief Enable the ADC auto off mode.
 
  * @param _AUTOOFF_: Auto off bit enable or disable.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR1_AUTOOFF(_AUTOOFF_) ((_AUTOOFF_) << 15)
 
      
 
/**
 
  * @brief Enable the ADC auto delay mode.
 
  * @param _AUTOWAIT_: Auto delay bit enable or disable.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR1_AUTOWAIT(_AUTOWAIT_) ((_AUTOWAIT_) << 14)
 
 
/**
 
  * @brief Enable ADC continuous conversion mode.
 
  * @param _CONTINUOUS_MODE_: Continuous mode.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR1_CONTINUOUS(_CONTINUOUS_MODE_) ((_CONTINUOUS_MODE_) << 13)
 
    
 
/**
 
  * @brief Enable ADC overrun mode.
 
  * @param _OVERRUN_MODE_: Overrun mode.
 
  * @retval Overun bit setting to be programmed into CFGR register
 
  */
 
/* Note: Bit ADC_CFGR1_OVRMOD not used directly in constant                   */
 
/* "OVR_DATA_OVERWRITTEN" to have this case defined to 0x00, to set it as the */
 
/* default case to be compliant with other STM32 devices.                     */
 
#define __HAL_ADC_CFGR1_OVERRUN(_OVERRUN_MODE_)                                \
 
  ( ( (_OVERRUN_MODE_) != (OVR_DATA_PRESERVED)                                 \
 
    )? (ADC_CFGR1_OVRMOD) : (0x00000000)                                       \
 
  )
 
 
/**
 
  * @brief Enable ADC scan mode to convert multiple ranks with sequencer.
 
  * @param _SCAN_MODE_: Scan conversion mode.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR1_SCANDIR(_SCAN_MODE_)                                   \
 
  ( ( (_SCAN_MODE_) == (ADC_SCAN_DIRECTION_BACKWARD)                           \
 
    )? (ADC_CFGR1_SCANDIR) : (0x00000000)                                      \
 
  )
 
    
 
/**
 
  * @brief Enable the ADC DMA continuous request.
 
  * @param _DMACONTREQ_MODE_: DMA continuous request mode.
 
  * @retval None
 
  */
 
#define __HAL_ADC_CFGR1_DMACONTREQ(_DMACONTREQ_MODE_) ((_DMACONTREQ_MODE_) << 1)
 
        
 
/**
 
  * @brief Configure the channel number into offset OFRx register
 
  * @param _CHANNEL_: ADC Channel
 
  * @retval None
 
  */
 
#define __HAL_ADC_OFR_CHANNEL(_CHANNEL_) ((_CHANNEL_) << 26)
 
    
 
/**
 
  * @brief Configure the analog watchdog high threshold into register TR.
 
  * @param _Threshold_: Threshold value
 
  * @retval None
 
  */
 
#define __HAL_ADC_TRX_HIGHTHRESHOLD(_Threshold_) ((_Threshold_) << 16) 
 
 
/**
 
  * @brief Enable the ADC peripheral
 
  * @param __HANDLE__: ADC handle
 
  * @retval None
 
  */
 
#define __HAL_ADC_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR |= ADC_CR_ADEN)
 
 
/**
 
  * @brief Verification of hardware constraints before ADC can be enabled
 
  * @param __HANDLE__: ADC handle
 
  * @retval SET (ADC can be enabled) or RESET (ADC cannot be enabled)
 
  */
 
#define __HAL_ADC_ENABLING_CONDITIONS(__HANDLE__)                             \
 
       (( ( ((__HANDLE__)->Instance->CR) &                                    \
 
            (ADC_CR_ADCAL | ADC_CR_ADSTP |  \
 
             ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN                    ) \
 
           ) == RESET                                                         \
 
        ) ? SET : RESET)
 
         
 
/**
 
  * @brief Disable the ADC peripheral
 
  * @param __HANDLE__: ADC handle
 
  * @retval None
 
  */
 
#define __HAL_ADC_DISABLE(__HANDLE__)                                          \
 
  do{                                                                          \
 
         (__HANDLE__)->Instance->CR |= ADC_CR_ADDIS;                           \
 
          __HAL_ADC_CLEAR_FLAG((__HANDLE__), (ADC_FLAG_EOSMP | ADC_FLAG_RDY)); \
 
  } while(0)
 
    
 
/**
 
  * @brief Verification of hardware constraints before ADC can be disabled
 
  * @param __HANDLE__: ADC handle
 
  * @retval SET (ADC can be disabled) or RESET (ADC cannot be disabled)
 
  */
 
#define __HAL_ADC_DISABLING_CONDITIONS(__HANDLE__)                             \
 
       (( ( ((__HANDLE__)->Instance->CR) &                                     \
 
            (ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN   \
 
        ) ? SET : RESET)
 
         
 
/**
 
  * @brief Shift the AWD threshold in function of the selected ADC resolution.
 
  *        Thresholds have to be left-aligned on bit 11, the LSB (right bits) are set to 0.
 
  *        If resolution 12 bits, no shift.
 
  *        If resolution 10 bits, shift of 2 ranks on the left.
 
  *        If resolution 8 bits, shift of 4 ranks on the left.
 
  *        If resolution 6 bits, shift of 6 ranks on the left.
 
  *        therefore, shift = (12 - resolution) = 12 - (12- (((RES[1:0]) >> 3)*2))
 
  * @param __HANDLE__: ADC handle
 
  * @param _Threshold_: Value to be shifted
 
  * @retval None
 
  */
 
#define __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(__HANDLE__, _Threshold_) \
 
        ((_Threshold_) << ((((__HANDLE__)->Instance->CFGR1 & ADC_CFGR1_RES) >> 3)*2))
 
 
/**
 
  * @}
 
  */   
 
 
/* Include ADC HAL Extension module */
 
#include "stm32f0xx_hal_adc_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup ADC_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup ADC_Exported_Functions_Group1
 
  * @{
 
  */
 
 
 
/* Initialization and de-initialization functions  **********************************/
 
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc);
 
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc);
 
void              HAL_ADC_MspInit(ADC_HandleTypeDef* hadc);
 
void              HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc);
 
/**
 
  * @}
 
  */
 
 
/* IO operation functions  *****************************************************/
 
 
/** @addtogroup ADC_Exported_Functions_Group2
 
  * @{
 
  */
 
 
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef       HAL_ADC_Start(ADC_HandleTypeDef* hadc);
 
HAL_StatusTypeDef       HAL_ADC_Stop(ADC_HandleTypeDef* hadc);
 
HAL_StatusTypeDef       HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout);
 
HAL_StatusTypeDef       HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout);
 
 
/* Non-blocking mode: Interruption */
 
HAL_StatusTypeDef       HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc);
 
HAL_StatusTypeDef       HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc);
 
 
/* Non-blocking mode: DMA */
 
HAL_StatusTypeDef       HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length);
 
HAL_StatusTypeDef       HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc);
 
 
/* ADC retrieve conversion value intended to be used with polling or interruption */
 
uint32_t                HAL_ADC_GetValue(ADC_HandleTypeDef* hadc);
 
 
/* ADC IRQHandler and Callbacks used in non-blocking modes (Interruption and DMA) */
 
void                    HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc);
 
void                    HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc);
 
void                    HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc);
 
void                    HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc);
 
void                    HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc);
 
/**
 
  * @}
 
  */
 
 
 
/* Peripheral Control functions ***********************************************/
 
/** @addtogroup ADC_Exported_Functions_Group3
 
  * @{
 
  */
 
HAL_StatusTypeDef       HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig);
 
HAL_StatusTypeDef       HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig);
 
/**
 
  * @}
 
  */
 
 
 
/* Peripheral State functions *************************************************/
 
/** @addtogroup ADC_Exported_Functions_Group4
 
  * @{
 
  */
 
HAL_ADC_StateTypeDef    HAL_ADC_GetState(ADC_HandleTypeDef* hadc);
 
uint32_t                HAL_ADC_GetError(ADC_HandleTypeDef *hadc);
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_ADC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_adc_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_adc_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of ADC HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_ADC_EX_H
 
#define __STM32F0xx_HAL_ADC_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"  
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup ADCEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/* Exported constants --------------------------------------------------------*/
 
/* Exported macro ------------------------------------------------------------*/
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup ADCEx_Exported_Functions
 
  * @{
 
  */
 
 
/* IO operation functions  *****************************************************/
 
/** @addtogroup ADCEx_Exported_Functions_Group1
 
  * @{
 
  */
 
 
/* ADC calibration */
 
HAL_StatusTypeDef       HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc);
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
    
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_ADC_EX_H */
 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_can.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_can.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of CAN HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_CAN_H
 
#define __STM32F0xx_HAL_CAN_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F072xB) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F091xC) || defined(STM32F098xx) 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup CAN CAN HAL Module Driver 
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/
 
/** @defgroup CAN_Exported_Types CAN Exported Types
 
  * @{
 
  */
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_CAN_STATE_RESET             = 0x00,  /*!< CAN not yet initialized or disabled */
 
  HAL_CAN_STATE_READY             = 0x01,  /*!< CAN initialized and ready for use   */  
 
  HAL_CAN_STATE_BUSY              = 0x02,  /*!< CAN process is ongoing              */     
 
  HAL_CAN_STATE_BUSY_TX           = 0x12,  /*!< CAN process is ongoing              */   
 
  HAL_CAN_STATE_BUSY_RX           = 0x22,  /*!< CAN process is ongoing              */ 
 
  HAL_CAN_STATE_BUSY_TX_RX        = 0x32,  /*!< CAN process is ongoing              */
 
  HAL_CAN_STATE_TIMEOUT           = 0x03,  /*!< CAN in Timeout state                */
 
  HAL_CAN_STATE_ERROR             = 0x04   /*!< CAN error state                     */  
 
 
}HAL_CAN_StateTypeDef;
 
 
/** 
 
  * @brief  HAL CAN Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_CAN_ERROR_NONE              = 0x00,  /*!< No error             */
 
  HAL_CAN_ERROR_EWG               = 0x01,  /*!< EWG error            */   
 
  HAL_CAN_ERROR_EPV               = 0x02,  /*!< EPV error            */
 
  HAL_CAN_ERROR_BOF               = 0x04,  /*!< BOF error            */
 
  HAL_CAN_ERROR_STF               = 0x08,  /*!< Stuff error          */
 
  HAL_CAN_ERROR_FOR               = 0x10,  /*!< Form error           */
 
  HAL_CAN_ERROR_ACK               = 0x20,  /*!< Acknowledgment error */
 
  HAL_CAN_ERROR_BR                = 0x40,  /*!< Bit recessive        */
 
  HAL_CAN_ERROR_BD                = 0x80,  /*!< LEC dominant         */
 
  HAL_CAN_ERROR_CRC               = 0x100  /*!< LEC transfer error   */
 
}HAL_CAN_ErrorTypeDef;
 
 
/** 
 
  * @brief  CAN init structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t Prescaler;  /*!< Specifies the length of a time quantum. 
 
                            This parameter must be a number between Min_Data = 1 and Max_Data = 1024. */
 
  
 
  uint32_t Mode;       /*!< Specifies the CAN operating mode.
 
                            This parameter can be a value of @ref CAN_operating_mode */
 
 
  uint32_t SJW;        /*!< Specifies the maximum number of time quanta 
 
                            the CAN hardware is allowed to lengthen or 
 
                            shorten a bit to perform resynchronization.
 
                            This parameter can be a value of @ref CAN_synchronisation_jump_width */
 
 
  uint32_t BS1;        /*!< Specifies the number of time quanta in Bit Segment 1.
 
                            This parameter can be a value of @ref CAN_time_quantum_in_bit_segment_1 */
 
 
  uint32_t BS2;        /*!< Specifies the number of time quanta in Bit Segment 2.
 
                            This parameter can be a value of @ref CAN_time_quantum_in_bit_segment_2 */
 
  
 
  uint32_t TTCM;       /*!< Enable or disable the time triggered communication mode.
 
                            This parameter can be set to ENABLE or DISABLE. */
 
  
 
  uint32_t ABOM;       /*!< Enable or disable the automatic bus-off management.
 
                            This parameter can be set to ENABLE or DISABLE. */
 
 
  uint32_t AWUM;       /*!< Enable or disable the automatic wake-up mode. 
 
                            This parameter can be set to ENABLE or DISABLE. */
 
 
  uint32_t NART;       /*!< Enable or disable the non-automatic retransmission mode.
 
                            This parameter can be set to ENABLE or DISABLE. */
 
 
  uint32_t RFLM;       /*!< Enable or disable the Receive FIFO Locked mode.
 
                            This parameter can be set to ENABLE or DISABLE. */
 
 
  uint32_t TXFP;       /*!< Enable or disable the transmit FIFO priority.
 
                            This parameter can be set to ENABLE or DISABLE. */
 
}CAN_InitTypeDef;
 
 
/** 
 
  * @brief  CAN filter configuration structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t FilterIdHigh;          /*!< Specifies the filter identification number (MSBs for a 32-bit
 
                                       configuration, first one for a 16-bit configuration).
 
                                       This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */ 
 
                                              
 
  uint32_t FilterIdLow;           /*!< Specifies the filter identification number (LSBs for a 32-bit
 
                                       configuration, second one for a 16-bit configuration).
 
                                       This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */ 
 
 
  uint32_t FilterMaskIdHigh;      /*!< Specifies the filter mask number or identification number,
 
                                       according to the mode (MSBs for a 32-bit configuration,
 
                                       first one for a 16-bit configuration).
 
                                       This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */ 
 
 
  uint32_t FilterMaskIdLow;       /*!< Specifies the filter mask number or identification number,
 
                                       according to the mode (LSBs for a 32-bit configuration,
 
                                       second one for a 16-bit configuration).
 
                                       This parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */ 
 
 
  uint32_t FilterFIFOAssignment;  /*!< Specifies the FIFO (0 or 1) which will be assigned to the filter.
 
                                       This parameter can be a value of @ref CAN_filter_FIFO */
 
  
 
  uint32_t FilterNumber;          /*!< Specifies the filter which will be initialized. 
 
                                       This parameter must be a number between Min_Data = 0 and Max_Data = 27. */
 
 
  uint32_t FilterMode;            /*!< Specifies the filter mode to be initialized.
 
                                       This parameter can be a value of @ref CAN_filter_mode */
 
 
  uint32_t FilterScale;           /*!< Specifies the filter scale.
 
                                       This parameter can be a value of @ref CAN_filter_scale */
 
 
  uint32_t FilterActivation;      /*!< Enable or disable the filter.
 
                                       This parameter can be set to ENABLE or DISABLE. */
 
                                       
 
  uint32_t BankNumber;            /*!< Select the start slave bank filter
 
                                       This parameter must be a number between Min_Data = 0 and Max_Data = 28. */ 
 
  
 
}CAN_FilterConfTypeDef;
 
 
/** 
 
  * @brief  CAN Tx message structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t StdId;    /*!< Specifies the standard identifier.
 
                          This parameter must be a number between Min_Data = 0 and Max_Data = 0x7FF. */ 
 
                        
 
  uint32_t ExtId;    /*!< Specifies the extended identifier.
 
                          This parameter must be a number between Min_Data = 0 and Max_Data = 0x1FFFFFFF. */ 
 
                        
 
  uint32_t IDE;      /*!< Specifies the type of identifier for the message that will be transmitted.
 
                          This parameter can be a value of @ref CAN_identifier_type */
 
 
  uint32_t RTR;      /*!< Specifies the type of frame for the message that will be transmitted.
 
                          This parameter can be a value of @ref CAN_remote_transmission_request */
 
 
  uint32_t DLC;      /*!< Specifies the length of the frame that will be transmitted.
 
                          This parameter must be a number between Min_Data = 0 and Max_Data = 8. */
 
 
  uint32_t Data[8];  /*!< Contains the data to be transmitted. 
 
                          This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF. */
 
   
 
}CanTxMsgTypeDef;
 
 
/** 
 
  * @brief  CAN Rx message structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t StdId;       /*!< Specifies the standard identifier.
 
                             This parameter must be a number between Min_Data = 0 and Max_Data = 0x7FF. */ 
 
 
  uint32_t ExtId;       /*!< Specifies the extended identifier.
 
                             This parameter must be a number between Min_Data = 0 and Max_Data = 0x1FFFFFFF. */ 
 
 
  uint32_t IDE;         /*!< Specifies the type of identifier for the message that will be received.
 
                             This parameter can be a value of @ref CAN_identifier_type */
 
 
  uint32_t RTR;         /*!< Specifies the type of frame for the received message.
 
                             This parameter can be a value of @ref CAN_remote_transmission_request */
 
 
  uint32_t DLC;         /*!< Specifies the length of the frame that will be received.
 
                             This parameter must be a number between Min_Data = 0 and Max_Data = 8. */
 
 
  uint32_t Data[8];     /*!< Contains the data to be received. 
 
                             This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF. */
 
 
  uint32_t FMI;         /*!< Specifies the index of the filter the message stored in the mailbox passes through.
 
                             This parameter must be a number between Min_Data = 0 and Max_Data = 0xFF. */
 
                        
 
  uint32_t FIFONumber;  /*!< Specifies the receive FIFO number. 
 
                             This parameter can be CAN_FIFO0 or CAN_FIFO1 */
 
                       
 
}CanRxMsgTypeDef;
 
 
/** 
 
  * @brief  CAN handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  CAN_TypeDef                 *Instance;  /*!< Register base address          */
 
  
 
  CAN_InitTypeDef             Init;       /*!< CAN required parameters        */
 
  
 
  CanTxMsgTypeDef*            pTxMsg;     /*!< Pointer to transmit structure  */
 
 
  CanRxMsgTypeDef*            pRxMsg;     /*!< Pointer to reception structure */
 
  
 
  HAL_LockTypeDef             Lock;       /*!< CAN locking object             */
 
  
 
  __IO HAL_CAN_StateTypeDef   State;      /*!< CAN communication state        */
 
  
 
  __IO HAL_CAN_ErrorTypeDef   ErrorCode;  /*!< CAN Error code                 */
 
  
 
}CAN_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup CAN_Exported_Constants CAN Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup CAN_InitStatus CAN InitStatus
 
  * @{
 
  */
 
#define CAN_INITSTATUS_FAILED       ((uint32_t)0x00000000)  /*!< CAN initialization failed */
 
#define CAN_INITSTATUS_SUCCESS      ((uint32_t)0x00000001)  /*!< CAN initialization OK */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_operating_mode CAN operating mode
 
  * @{
 
  */
 
#define CAN_MODE_NORMAL             ((uint32_t)0x00000000)                     /*!< Normal mode   */
 
#define CAN_MODE_LOOPBACK           ((uint32_t)CAN_BTR_LBKM)                   /*!< Loopback mode */
 
#define CAN_MODE_SILENT             ((uint32_t)CAN_BTR_SILM)                   /*!< Silent mode   */
 
#define CAN_MODE_SILENT_LOOPBACK    ((uint32_t)(CAN_BTR_LBKM | CAN_BTR_SILM))  /*!< Loopback combined with silent mode */
 
 
#define IS_CAN_MODE(MODE) (((MODE) == CAN_MODE_NORMAL) || \
 
                           ((MODE) == CAN_MODE_LOOPBACK)|| \
 
                           ((MODE) == CAN_MODE_SILENT) || \
 
                           ((MODE) == CAN_MODE_SILENT_LOOPBACK))
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup CAN_synchronisation_jump_width CAN synchronisation jump width
 
  * @{
 
  */
 
#define CAN_SJW_1TQ                 ((uint32_t)0x00000000)     /*!< 1 time quantum */
 
#define CAN_SJW_2TQ                 ((uint32_t)CAN_BTR_SJW_0)  /*!< 2 time quantum */
 
#define CAN_SJW_3TQ                 ((uint32_t)CAN_BTR_SJW_1)  /*!< 3 time quantum */
 
#define CAN_SJW_4TQ                 ((uint32_t)CAN_BTR_SJW)    /*!< 4 time quantum */
 
 
#define IS_CAN_SJW(SJW) (((SJW) == CAN_SJW_1TQ) || ((SJW) == CAN_SJW_2TQ)|| \
 
                         ((SJW) == CAN_SJW_3TQ) || ((SJW) == CAN_SJW_4TQ))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_time_quantum_in_bit_segment_1 CAN time quantum in bit segment 1
 
  * @{
 
  */
 
#define CAN_BS1_1TQ                 ((uint32_t)0x00000000)                                       /*!< 1 time quantum  */
 
#define CAN_BS1_2TQ                 ((uint32_t)CAN_BTR_TS1_0)                                    /*!< 2 time quantum  */
 
#define CAN_BS1_3TQ                 ((uint32_t)CAN_BTR_TS1_1)                                    /*!< 3 time quantum  */
 
#define CAN_BS1_4TQ                 ((uint32_t)(CAN_BTR_TS1_1 | CAN_BTR_TS1_0))                  /*!< 4 time quantum  */
 
#define CAN_BS1_5TQ                 ((uint32_t)CAN_BTR_TS1_2)                                    /*!< 5 time quantum  */
 
#define CAN_BS1_6TQ                 ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_0))                  /*!< 6 time quantum  */
 
#define CAN_BS1_7TQ                 ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_1))                  /*!< 7 time quantum  */
 
#define CAN_BS1_8TQ                 ((uint32_t)(CAN_BTR_TS1_2 | CAN_BTR_TS1_1 | CAN_BTR_TS1_0))  /*!< 8 time quantum  */
 
#define CAN_BS1_9TQ                 ((uint32_t)CAN_BTR_TS1_3)                                    /*!< 9 time quantum  */
 
#define CAN_BS1_10TQ                ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_0))                  /*!< 10 time quantum */
 
#define CAN_BS1_11TQ                ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_1))                  /*!< 11 time quantum */
 
#define CAN_BS1_12TQ                ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_1 | CAN_BTR_TS1_0))  /*!< 12 time quantum */
 
#define CAN_BS1_13TQ                ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2))                  /*!< 13 time quantum */
 
#define CAN_BS1_14TQ                ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2 | CAN_BTR_TS1_0))  /*!< 14 time quantum */
 
#define CAN_BS1_15TQ                ((uint32_t)(CAN_BTR_TS1_3 | CAN_BTR_TS1_2 | CAN_BTR_TS1_1))  /*!< 15 time quantum */
 
#define CAN_BS1_16TQ                ((uint32_t)CAN_BTR_TS1) /*!< 16 time quantum */
 
 
#define IS_CAN_BS1(BS1) ((BS1) <= CAN_BS1_16TQ)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_time_quantum_in_bit_segment_2 CAN time quantum in bit segment 2
 
  * @{
 
  */
 
#define CAN_BS2_1TQ                 ((uint32_t)0x00000000)                       /*!< 1 time quantum */
 
#define CAN_BS2_2TQ                 ((uint32_t)CAN_BTR_TS2_0)                    /*!< 2 time quantum */
 
#define CAN_BS2_3TQ                 ((uint32_t)CAN_BTR_TS2_1)                    /*!< 3 time quantum */
 
#define CAN_BS2_4TQ                 ((uint32_t)(CAN_BTR_TS2_1 | CAN_BTR_TS2_0))  /*!< 4 time quantum */
 
#define CAN_BS2_5TQ                 ((uint32_t)CAN_BTR_TS2_2)                    /*!< 5 time quantum */
 
#define CAN_BS2_6TQ                 ((uint32_t)(CAN_BTR_TS2_2 | CAN_BTR_TS2_0))  /*!< 6 time quantum */
 
#define CAN_BS2_7TQ                 ((uint32_t)(CAN_BTR_TS2_2 | CAN_BTR_TS2_1))  /*!< 7 time quantum */
 
#define CAN_BS2_8TQ                 ((uint32_t)CAN_BTR_TS2)                      /*!< 8 time quantum */
 
 
#define IS_CAN_BS2(BS2) ((BS2) <= CAN_BS2_8TQ)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_clock_prescaler CAN clock prescaler
 
  * @{
 
  */
 
#define IS_CAN_PRESCALER(PRESCALER) (((PRESCALER) >= 1) && ((PRESCALER) <= 1024))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_filter_number CAN filter number
 
  * @{
 
  */
 
#define IS_CAN_FILTER_NUMBER(NUMBER) ((NUMBER) <= 27)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_filter_mode CAN filter mode
 
  * @{
 
  */
 
#define CAN_FILTERMODE_IDMASK       ((uint8_t)0x00)  /*!< Identifier mask mode */
 
#define CAN_FILTERMODE_IDLIST       ((uint8_t)0x01)  /*!< Identifier list mode */
 
 
#define IS_CAN_FILTER_MODE(MODE) (((MODE) == CAN_FILTERMODE_IDMASK) || \
 
                                  ((MODE) == CAN_FILTERMODE_IDLIST))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_filter_scale CAN filter scale
 
  * @{
 
  */
 
#define CAN_FILTERSCALE_16BIT       ((uint8_t)0x00)  /*!< Two 16-bit filters */
 
#define CAN_FILTERSCALE_32BIT       ((uint8_t)0x01)  /*!< One 32-bit filter  */
 
 
#define IS_CAN_FILTER_SCALE(SCALE) (((SCALE) == CAN_FILTERSCALE_16BIT) || \
 
                                    ((SCALE) == CAN_FILTERSCALE_32BIT))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_filter_FIFO CAN filter FIFO
 
  * @{
 
  */
 
#define CAN_FILTER_FIFO0             ((uint8_t)0x00)  /*!< Filter FIFO 0 assignment for filter x */
 
#define CAN_FILTER_FIFO1             ((uint8_t)0x01)  /*!< Filter FIFO 1 assignment for filter x */
 
 
#define IS_CAN_FILTER_FIFO(FIFO) (((FIFO) == CAN_FILTER_FIFO0) || \
 
                                  ((FIFO) == CAN_FILTER_FIFO1))
 
 
/* Legacy defines */
 
#define CAN_FilterFIFO0  CAN_FILTER_FIFO0
 
#define CAN_FilterFIFO1  CAN_FILTER_FIFO1
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_Start_bank_filter_for_slave_CAN CAN Start bank filter for slave CAN
 
  * @{
 
  */
 
#define IS_CAN_BANKNUMBER(BANKNUMBER) ((BANKNUMBER) <= 28)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_Tx CAN Tx
 
  * @{
 
  */
 
#define IS_CAN_TRANSMITMAILBOX(TRANSMITMAILBOX) ((TRANSMITMAILBOX) <= ((uint8_t)0x02))
 
#define IS_CAN_STDID(STDID)   ((STDID) <= ((uint32_t)0x7FF))
 
#define IS_CAN_EXTID(EXTID)   ((EXTID) <= ((uint32_t)0x1FFFFFFF))
 
#define IS_CAN_DLC(DLC)       ((DLC) <= ((uint8_t)0x08))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_identifier_type  CAN identifier type
 
  * @{
 
  */
 
#define CAN_ID_STD             ((uint32_t)0x00000000)  /*!< Standard Id */
 
#define CAN_ID_EXT             ((uint32_t)0x00000004)  /*!< Extended Id */
 
#define IS_CAN_IDTYPE(IDTYPE)  (((IDTYPE) == CAN_ID_STD) || \
 
                                ((IDTYPE) == CAN_ID_EXT))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_remote_transmission_request CAN remote transmission request
 
  * @{
 
  */
 
#define CAN_RTR_DATA                ((uint32_t)0x00000000)  /*!< Data frame */
 
#define CAN_RTR_REMOTE              ((uint32_t)0x00000002)  /*!< Remote frame */
 
#define IS_CAN_RTR(RTR) (((RTR) == CAN_RTR_DATA) || ((RTR) == CAN_RTR_REMOTE))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_transmit_constants CAN transmit constants
 
  * @{
 
  */
 
#define CAN_TXSTATUS_FAILED         ((uint8_t)0x00)  /*!< CAN transmission failed */
 
#define CAN_TXSTATUS_OK             ((uint8_t)0x01)  /*!< CAN transmission succeeded */
 
#define CAN_TXSTATUS_PENDING        ((uint8_t)0x02)  /*!< CAN transmission pending */
 
#define CAN_TXSTATUS_NOMAILBOX      ((uint8_t)0x04)  /*!< CAN cell did not provide CAN_TxStatus_NoMailBox */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_receive_FIFO_number_constants CAN receive FIFO number constants
 
  * @{
 
  */
 
#define CAN_FIFO0                   ((uint8_t)0x00)  /*!< CAN FIFO 0 used to receive */
 
#define CAN_FIFO1                   ((uint8_t)0x01)  /*!< CAN FIFO 1 used to receive */
 
 
#define IS_CAN_FIFO(FIFO) (((FIFO) == CAN_FIFO0) || ((FIFO) == CAN_FIFO1))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_flags CAN flags
 
  * @{
 
  */
 
/* If the flag is 0x3XXXXXXX, it means that it can be used with CAN_GetFlagStatus()
 
   and CAN_ClearFlag() functions. */
 
/* If the flag is 0x1XXXXXXX, it means that it can only be used with 
 
   CAN_GetFlagStatus() function.  */
 
 
/* Transmit Flags */
 
#define CAN_FLAG_RQCP0             ((uint32_t)0x00000500)  /*!< Request MailBox0 flag         */
 
#define CAN_FLAG_RQCP1             ((uint32_t)0x00000508)  /*!< Request MailBox1 flag         */
 
#define CAN_FLAG_RQCP2             ((uint32_t)0x00000510)  /*!< Request MailBox2 flag         */
 
#define CAN_FLAG_TXOK0             ((uint32_t)0x00000501)  /*!< Transmission OK MailBox0 flag */
 
#define CAN_FLAG_TXOK1             ((uint32_t)0x00000509)  /*!< Transmission OK MailBox1 flag */
 
#define CAN_FLAG_TXOK2             ((uint32_t)0x00000511)  /*!< Transmission OK MailBox2 flag */
 
#define CAN_FLAG_TME0              ((uint32_t)0x0000051A)  /*!< Transmit mailbox 0 empty flag */
 
#define CAN_FLAG_TME1              ((uint32_t)0x0000051B)  /*!< Transmit mailbox 0 empty flag */
 
#define CAN_FLAG_TME2              ((uint32_t)0x0000051C)  /*!< Transmit mailbox 0 empty flag */
 
 
/* Receive Flags */
 
#define CAN_FLAG_FF0               ((uint32_t)0x00000203)  /*!< FIFO 0 Full flag    */
 
#define CAN_FLAG_FOV0              ((uint32_t)0x00000204)  /*!< FIFO 0 Overrun flag */
 
 
#define CAN_FLAG_FF1               ((uint32_t)0x00000403)  /*!< FIFO 1 Full flag    */
 
#define CAN_FLAG_FOV1              ((uint32_t)0x00000404)  /*!< FIFO 1 Overrun flag */
 
 
/* Operating Mode Flags */
 
#define CAN_FLAG_WKU               ((uint32_t)0x00000103)  /*!< Wake up flag           */
 
#define CAN_FLAG_SLAK              ((uint32_t)0x00000101)  /*!< Sleep acknowledge flag */
 
#define CAN_FLAG_SLAKI             ((uint32_t)0x00000104)  /*!< Sleep acknowledge flag */
 
/* @note When SLAK interrupt is disabled (SLKIE=0), no polling on SLAKI is possible. 
 
         In this case the SLAK bit can be polled.*/
 
 
/* Error Flags */
 
#define CAN_FLAG_EWG               ((uint32_t)0x00000300)  /*!< Error warning flag   */
 
#define CAN_FLAG_EPV               ((uint32_t)0x00000301)  /*!< Error passive flag   */
 
#define CAN_FLAG_BOF               ((uint32_t)0x00000302)  /*!< Bus-Off flag         */
 
/**
 
  * @}
 
  */
 
 
  
 
/** @defgroup CAN_interrupts CAN interrupts
 
  * @{
 
  */ 
 
#define CAN_IT_TME                  ((uint32_t)CAN_IER_TMEIE)   /*!< Transmit mailbox empty interrupt */
 
 
/* Receive Interrupts */
 
#define CAN_IT_FMP0                 ((uint32_t)CAN_IER_FMPIE0)  /*!< FIFO 0 message pending interrupt */
 
#define CAN_IT_FF0                  ((uint32_t)CAN_IER_FFIE0)   /*!< FIFO 0 full interrupt            */
 
#define CAN_IT_FOV0                 ((uint32_t)CAN_IER_FOVIE0)  /*!< FIFO 0 overrun interrupt         */
 
#define CAN_IT_FMP1                 ((uint32_t)CAN_IER_FMPIE1)  /*!< FIFO 1 message pending interrupt */
 
#define CAN_IT_FF1                  ((uint32_t)CAN_IER_FFIE1)   /*!< FIFO 1 full interrupt            */
 
#define CAN_IT_FOV1                 ((uint32_t)CAN_IER_FOVIE1)  /*!< FIFO 1 overrun interrupt         */
 
 
/* Operating Mode Interrupts */
 
#define CAN_IT_WKU                  ((uint32_t)CAN_IER_WKUIE)  /*!< Wake-up interrupt           */
 
#define CAN_IT_SLK                  ((uint32_t)CAN_IER_SLKIE)  /*!< Sleep acknowledge interrupt */
 
 
/* Error Interrupts */
 
#define CAN_IT_EWG                  ((uint32_t)CAN_IER_EWGIE) /*!< Error warning interrupt   */
 
#define CAN_IT_EPV                  ((uint32_t)CAN_IER_EPVIE) /*!< Error passive interrupt   */
 
#define CAN_IT_BOF                  ((uint32_t)CAN_IER_BOFIE) /*!< Bus-off interrupt         */
 
#define CAN_IT_LEC                  ((uint32_t)CAN_IER_LECIE) /*!< Last error code interrupt */
 
#define CAN_IT_ERR                  ((uint32_t)CAN_IER_ERRIE) /*!< Error Interrupt           */
 
 
/* Flags named as Interrupts : kept only for FW compatibility */
 
#define CAN_IT_RQCP0   CAN_IT_TME
 
#define CAN_IT_RQCP1   CAN_IT_TME
 
#define CAN_IT_RQCP2   CAN_IT_TME
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup CAN_Timeouts CAN Timeouts
 
* @{
 
*/ 
 
 
/* Time out for INAK bit */
 
#define INAK_TIMEOUT      ((uint32_t)0x00FFFFFF)
 
/* Time out for SLAK bit */
 
#define SLAK_TIMEOUT      ((uint32_t)0x00FFFFFF)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_Mailboxes CAN Mailboxes
 
* @{
 
*/   
 
/* Mailboxes definition */
 
#define CAN_TXMAILBOX_0   ((uint8_t)0x00)
 
#define CAN_TXMAILBOX_1   ((uint8_t)0x01)
 
#define CAN_TXMAILBOX_2   ((uint8_t)0x02)
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup CAN_Exported_Macros CAN Exported Macros
 
  * @{
 
  */
 
  
 
/** @brief  Reset CAN handle state
 
  * @param  __HANDLE__: CAN handle.
 
  * @retval None
 
  */
 
#define __HAL_CAN_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CAN_STATE_RESET)
 
 
/**
 
  * @brief  Enable the specified CAN interrupts.
 
  * @param  __HANDLE__: CAN handle.
 
  * @param  __INTERRUPT__: CAN Interrupt
 
  * @retval None
 
  */
 
#define __HAL_CAN_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) |= (__INTERRUPT__))
 
 
/**
 
  * @brief  Disable the specified CAN interrupts.
 
  * @param  __HANDLE__: CAN handle.
 
  * @param  __INTERRUPT__: CAN Interrupt
 
  * @retval None
 
  */
 
#define __HAL_CAN_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->IER) &= ~(__INTERRUPT__))
 
 
/**
 
  * @brief  Return the number of pending received messages.
 
  * @param  __HANDLE__: CAN handle.
 
  * @param  __FIFONUMBER__: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
 
  * @retval The number of pending message.
 
  */
 
#define __HAL_CAN_MSG_PENDING(__HANDLE__, __FIFONUMBER__) (((__FIFONUMBER__) == CAN_FIFO0)? \
 
((uint8_t)((__HANDLE__)->Instance->RF0R&(uint32_t)0x03)) : ((uint8_t)((__HANDLE__)->Instance->RF1R&(uint32_t)0x03)))
 
 
/** @brief  Check whether the specified CAN flag is set or not.
 
  * @param  __HANDLE__: specifies the CAN Handle.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg CAN_TSR_RQCP0: Request MailBox0 Flag
 
  *            @arg CAN_TSR_RQCP1: Request MailBox1 Flag
 
  *            @arg CAN_TSR_RQCP2: Request MailBox2 Flag
 
  *            @arg CAN_FLAG_TXOK0: Transmission OK MailBox0 Flag
 
  *            @arg CAN_FLAG_TXOK1: Transmission OK MailBox1 Flag
 
  *            @arg CAN_FLAG_TXOK2: Transmission OK MailBox2 Flag
 
  *            @arg CAN_FLAG_TME0: Transmit mailbox 0 empty Flag
 
  *            @arg CAN_FLAG_TME1: Transmit mailbox 1 empty Flag
 
  *            @arg CAN_FLAG_TME2: Transmit mailbox 2 empty Flag
 
  *            @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag
 
  *            @arg CAN_FLAG_FF0: FIFO 0 Full Flag
 
  *            @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
 
  *            @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag
 
  *            @arg CAN_FLAG_FF1: FIFO 1 Full Flag
 
  *            @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
 
  *            @arg CAN_FLAG_WKU: Wake up Flag
 
  *            @arg CAN_FLAG_SLAK: Sleep acknowledge Flag
 
  *            @arg CAN_FLAG_SLAKI: Sleep acknowledge Flag
 
  *            @arg CAN_FLAG_EWG: Error Warning Flag
 
  *            @arg CAN_FLAG_EPV: Error Passive Flag
 
  *            @arg CAN_FLAG_BOF: Bus-Off Flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define CAN_FLAG_MASK  ((uint32_t)0x000000FF)
 
#define __HAL_CAN_GET_FLAG(__HANDLE__, __FLAG__) \
 
((((__FLAG__) >> 8) == 5)? ((((__HANDLE__)->Instance->TSR) & (1 << ((__FLAG__) & CAN_FLAG_MASK))) == (1 << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 (((__FLAG__) >> 8) == 2)? ((((__HANDLE__)->Instance->RF0R) & (1 << ((__FLAG__) & CAN_FLAG_MASK))) == (1 << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 (((__FLAG__) >> 8) == 4)? ((((__HANDLE__)->Instance->RF1R) & (1 << ((__FLAG__) & CAN_FLAG_MASK))) == (1 << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 (((__FLAG__) >> 8) == 1)? ((((__HANDLE__)->Instance->MSR) & (1 << ((__FLAG__) & CAN_FLAG_MASK))) == (1 << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 ((((__HANDLE__)->Instance->ESR) & (1 << ((__FLAG__) & CAN_FLAG_MASK))) == (1 << ((__FLAG__) & CAN_FLAG_MASK))))
 
 
/** @brief  Clear the specified CAN pending flag.
 
  * @param  __HANDLE__: specifies the CAN Handle.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg CAN_TSR_RQCP0: Request MailBox0 Flag
 
  *            @arg CAN_TSR_RQCP1: Request MailBox1 Flag
 
  *            @arg CAN_TSR_RQCP2: Request MailBox2 Flag
 
  *            @arg CAN_FLAG_TXOK0: Transmission OK MailBox0 Flag
 
  *            @arg CAN_FLAG_TXOK1: Transmission OK MailBox1 Flag
 
  *            @arg CAN_FLAG_TXOK2: Transmission OK MailBox2 Flag
 
  *            @arg CAN_FLAG_TME0: Transmit mailbox 0 empty Flag
 
  *            @arg CAN_FLAG_TME1: Transmit mailbox 1 empty Flag
 
  *            @arg CAN_FLAG_TME2: Transmit mailbox 2 empty Flag
 
  *            @arg CAN_FLAG_FMP0: FIFO 0 Message Pending Flag
 
  *            @arg CAN_FLAG_FF0: FIFO 0 Full Flag
 
  *            @arg CAN_FLAG_FOV0: FIFO 0 Overrun Flag
 
  *            @arg CAN_FLAG_FMP1: FIFO 1 Message Pending Flag
 
  *            @arg CAN_FLAG_FF1: FIFO 1 Full Flag
 
  *            @arg CAN_FLAG_FOV1: FIFO 1 Overrun Flag
 
  *            @arg CAN_FLAG_WKU: Wake up Flag
 
  *            @arg CAN_FLAG_SLAKI: Sleep acknowledge Flag
 
  *            @arg CAN_FLAG_EWG: Error Warning Flag
 
  *            @arg CAN_FLAG_EPV: Error Passive Flag
 
  *            @arg CAN_FLAG_BOF: Bus-Off Flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_CAN_CLEAR_FLAG(__HANDLE__, __FLAG__) \
 
((((__FLAG__) >> 8U) == 5)? (((__HANDLE__)->Instance->TSR)  = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 (((__FLAG__) >> 8U) == 2)? (((__HANDLE__)->Instance->RF0R) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 (((__FLAG__) >> 8U) == 4)? (((__HANDLE__)->Instance->RF1R) = (1U << ((__FLAG__) & CAN_FLAG_MASK))): \
 
 (((__FLAG__) >> 8U) == 1)? (((__HANDLE__)->Instance->MSR)  = (1U << ((__FLAG__) & CAN_FLAG_MASK))): 0)
 
 
 
/** @brief  Check if the specified CAN interrupt source is enabled or disabled.
 
  * @param  __HANDLE__: specifies the CAN Handle.
 
  * @param  __INTERRUPT__: specifies the CAN interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg CAN_IT_TME: Transmit mailbox empty interrupt enable
 
  *            @arg CAN_IT_FMP0: FIFO0 message pending interrupt enablev
 
  *            @arg CAN_IT_FMP1: FIFO1 message pending interrupt enable
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_CAN_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->IER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/**
 
  * @brief  Check the transmission status of a CAN Frame.
 
  * @param  __HANDLE__: CAN handle.
 
  * @param  __TRANSMITMAILBOX__: the number of the mailbox that is used for transmission.
 
  * @retval The new status of transmission  (TRUE or FALSE).
 
  */
 
#define __HAL_CAN_TRANSMIT_STATUS(__HANDLE__, __TRANSMITMAILBOX__)\
 
(((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_0)? ((((__HANDLE__)->Instance->TSR) & (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0)) == (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0)) :\
 
 ((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_1)? ((((__HANDLE__)->Instance->TSR) & (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1)) == (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1)) :\
 
 ((((__HANDLE__)->Instance->TSR) & (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2)) == (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2)))
 
 
 
 
/**
 
  * @brief  Release the specified receive FIFO.
 
  * @param  __HANDLE__: CAN handle.
 
  * @param  __FIFONUMBER__: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
 
  * @retval None
 
  */
 
#define __HAL_CAN_FIFO_RELEASE(__HANDLE__, __FIFONUMBER__) (((__FIFONUMBER__) == CAN_FIFO0)? \
 
((__HANDLE__)->Instance->RF0R |= CAN_RF0R_RFOM0) : ((__HANDLE__)->Instance->RF1R |= CAN_RF1R_RFOM1)) 
 
 
/**
 
  * @brief  Cancel a transmit request.
 
  * @param  __HANDLE__: specifies the CAN Handle.
 
  * @param  __TRANSMITMAILBOX__: the number of the mailbox that is used for transmission.
 
  * @retval None
 
  */
 
#define __HAL_CAN_CANCEL_TRANSMIT(__HANDLE__, __TRANSMITMAILBOX__)\
 
(((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_0)? ((__HANDLE__)->Instance->TSR |= CAN_TSR_ABRQ0) :\
 
 ((__TRANSMITMAILBOX__) == CAN_TXMAILBOX_1)? ((__HANDLE__)->Instance->TSR |= CAN_TSR_ABRQ1) :\
 
 ((__HANDLE__)->Instance->TSR |= CAN_TSR_ABRQ2))
 
 
/**
 
  * @brief  Enable or disables the DBG Freeze for CAN.
 
  * @param  __HANDLE__: specifies the CAN Handle.
 
  * @param  __NEWSTATE__: new state of the CAN peripheral. 
 
  *         This parameter can be: ENABLE (CAN reception/transmission is frozen
 
  *         during debug. Reception FIFOs can still be accessed/controlled normally) 
 
  *         or DISABLE (CAN is working during debug).
 
  * @retval None
 
  */
 
#define __HAL_CAN_DBG_FREEZE(__HANDLE__, __NEWSTATE__) (((__NEWSTATE__) == ENABLE)? \
 
((__HANDLE__)->Instance->MCR |= CAN_MCR_DBF) : ((__HANDLE__)->Instance->MCR &= ~CAN_MCR_DBF)) 
 
 
/**
 
  * @}
 
  */
 
   
 
/* Exported functions --------------------------------------------------------*/  
 
/** @addtogroup CAN_Exported_Functions CAN Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 * @{
 
 */
 
  
 
/* Initialization and de-initialization functions *****************************/ 
 
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan);
 
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig);
 
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan);
 
void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan);
 
void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup CAN_Exported_Functions_Group2 I/O operation functions
 
 *  @brief    I/O operation functions
 
 * @{
 
 */
 
  
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef *hcan, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef *hcan);
 
HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef *hcan, uint8_t FIFONumber, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef *hcan, uint8_t FIFONumber);
 
HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef *hcan);
 
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan);
 
 
void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan);
 
 
void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan);
 
void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan);
 
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup CAN_Exported_Functions_Group3 Peripheral State and Error functions
 
 *  @brief   CAN Peripheral State functions 
 
 * @{
 
 */  
 
/* Peripheral State and Error functions ***************************************/
 
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan);
 
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */  
 
 
#endif /* STM32F072xB || STM32F042x6 || STM32F048xx || STM32F091xC || STM32F098xx */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_CAN_H */
 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_cec.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_cec.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of CEC HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_CEC_H
 
#define __STM32F0xx_HAL_CEC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||\
 
    defined(STM32F051x8) || defined(STM32F058xx) ||\
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) ||\
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup CEC CEC HAL Module Driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup CEC_Exported_Types CEC Exported Types
 
  * @{
 
  */
 
  
 
/** 
 
  * @brief CEC Init Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t SignalFreeTime;               /*!< Set SFT field, specifies the Signal Free Time.
 
                                              It can be one of @ref CEC_Signal_Free_Time 
 
                                              and belongs to the set {0,...,7} where  
 
                                              0x0 is the default configuration 
 
                                              else means 0.5 + (SignalFreeTime - 1) nominal data bit periods */
 
 
  uint32_t Tolerance;                    /*!< Set RXTOL bit, specifies the tolerance accepted on the received waveforms,
 
                                              it can be a value of @ref CEC_Tolerance : it is either CEC_STANDARD_TOLERANCE 
 
                                              or CEC_EXTENDED_TOLERANCE */
 
 
  uint32_t BRERxStop;                    /*!< Set BRESTP bit @ref CEC_BRERxStop : specifies whether or not a Bit Rising Error stops the reception. 
 
                                              CEC_NO_RX_STOP_ON_BRE: reception is not stopped. 
 
                                              CEC_RX_STOP_ON_BRE:    reception is stopped. */
 
 
  uint32_t BREErrorBitGen;               /*!< Set BREGEN bit @ref CEC_BREErrorBitGen : specifies whether or not an Error-Bit is generated on the
 
                                              CEC line upon Bit Rising Error detection.
 
                                              CEC_BRE_ERRORBIT_NO_GENERATION: no error-bit generation.
 
                                              CEC_BRE_ERRORBIT_GENERATION:    error-bit generation if BRESTP is set. */
 
                                              
 
  uint32_t LBPEErrorBitGen;              /*!< Set LBPEGEN bit @ref CEC_LBPEErrorBitGen : specifies whether or not an Error-Bit is generated on the
 
                                              CEC line upon Long Bit Period Error detection.
 
                                              CEC_LBPE_ERRORBIT_NO_GENERATION:  no error-bit generation. 
 
                                              CEC_LBPE_ERRORBIT_GENERATION:     error-bit generation. */  
 
                                              
 
  uint32_t BroadcastMsgNoErrorBitGen;    /*!< Set BRDNOGEN bit @ref CEC_BroadCastMsgErrorBitGen : allows to avoid an Error-Bit generation on the CEC line
 
                                              upon an error detected on a broadcast message. 
 
                                              
 
                                              It supersedes BREGEN and LBPEGEN bits for a broadcast message error handling. It can take two values:
 
                                              
 
                                              1) CEC_BROADCASTERROR_ERRORBIT_GENERATION.
 
                                                 a) BRE detection: error-bit generation on the CEC line if BRESTP=CEC_RX_STOP_ON_BRE 
 
                                                    and BREGEN=CEC_BRE_ERRORBIT_NO_GENERATION.
 
                                                 b) LBPE detection: error-bit generation on the CEC line 
 
                                                    if LBPGEN=CEC_LBPE_ERRORBIT_NO_GENERATION.
 
                                                    
 
                                              2) CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION.
 
                                                 no error-bit generation in case neither a) nor b) are satisfied. Additionally,
 
                                                 there is no error-bit generation in case of Short Bit Period Error detection in 
 
                                                 a broadcast message while LSTN bit is set. */
 
 
 
  uint32_t SignalFreeTimeOption;         /*!< Set SFTOP bit @ref CEC_SFT_Option : specifies when SFT timer starts.
 
                                              CEC_SFT_START_ON_TXSOM SFT:    timer starts when TXSOM is set by software.
 
                                              CEC_SFT_START_ON_TX_RX_END:  SFT timer starts automatically at the end of message transmission/reception. */
 
 
  uint32_t OwnAddress;                   /*!< Set OAR field, specifies CEC device address within a 15-bit long field */
 
  
 
  uint32_t ListenMode;                   /*!< Set LSTN bit @ref CEC_Listening_Mode : specifies device listening mode. It can take two values:
 
  
 
                                              CEC_REDUCED_LISTENING_MODE: CEC peripheral receives only message addressed to its 
 
                                                own address (OAR). Messages addressed to different destination are ignored. 
 
                                                Broadcast messages are always received.
 
                                                
 
                                              CEC_FULL_LISTENING_MODE: CEC peripheral receives messages addressed to its own 
 
                                                address (OAR) with positive acknowledge. Messages addressed to different destination 
 
                                                are received, but without interfering with the CEC bus: no acknowledge sent.  */
 
 
  uint8_t  InitiatorAddress;             /* Initiator address (source logical address, sent in each header) */
 
 
}CEC_InitTypeDef;
 
 
/** 
 
  * @brief HAL CEC State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_CEC_STATE_RESET             = 0x00,    /*!< Peripheral Reset state                              */
 
  HAL_CEC_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use            */
 
  HAL_CEC_STATE_BUSY              = 0x02,    /*!< an internal process is ongoing                      */
 
  HAL_CEC_STATE_BUSY_TX           = 0x03,    /*!< Data Transmission process is ongoing                */
 
  HAL_CEC_STATE_BUSY_RX           = 0x04,    /*!< Data Reception process is ongoing                   */
 
  HAL_CEC_STATE_STANDBY_RX        = 0x05,    /*!< IP ready to receive, doesn't prevent IP to transmit */
 
  HAL_CEC_STATE_TIMEOUT           = 0x06,    /*!< Timeout state                                       */
 
  HAL_CEC_STATE_ERROR             = 0x07     /*!< State Error                                         */
 
}HAL_CEC_StateTypeDef;
 
 
/** 
 
  * @brief  HAL Error structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_CEC_ERROR_NONE   = (uint32_t) 0x0,         /*!< no error                      */
 
  HAL_CEC_ERROR_RXOVR  = CEC_ISR_RXOVR,          /*!< CEC Rx-Overrun                */
 
  HAL_CEC_ERROR_BRE    = CEC_ISR_BRE,            /*!< CEC Rx Bit Rising Error       */
 
  HAL_CEC_ERROR_SBPE   = CEC_ISR_SBPE,           /*!< CEC Rx Short Bit period Error */
 
  HAL_CEC_ERROR_LBPE   = CEC_ISR_LBPE,           /*!< CEC Rx Long Bit period Error  */
 
  HAL_CEC_ERROR_RXACKE = CEC_ISR_RXACKE,         /*!< CEC Rx Missing Acknowledge    */
 
  HAL_CEC_ERROR_ARBLST = CEC_ISR_ARBLST,         /*!< CEC Arbitration Lost          */
 
  HAL_CEC_ERROR_TXUDR  = CEC_ISR_TXUDR,          /*!< CEC Tx-Buffer Underrun        */
 
  HAL_CEC_ERROR_TXERR  = CEC_ISR_TXERR,          /*!< CEC Tx-Error                  */
 
  HAL_CEC_ERROR_TXACKE = CEC_ISR_TXACKE          /*!< CEC Tx Missing Acknowledge    */
 
}
 
HAL_CEC_ErrorTypeDef;
 
 
/** 
 
  * @brief  CEC handle Structure definition  
 
  */  
 
typedef struct
 
{
 
  CEC_TypeDef             *Instance;      /* CEC registers base address */
 
  
 
  CEC_InitTypeDef         Init;           /* CEC communication parameters */
 
  
 
  uint8_t                 *pTxBuffPtr;    /* Pointer to CEC Tx transfer Buffer */
 
  
 
  uint16_t                TxXferCount;    /* CEC Tx Transfer Counter */
 
  
 
  uint8_t                 *pRxBuffPtr;    /* Pointer to CEC Rx transfer Buffer */
 
  
 
  uint16_t                RxXferSize;     /* CEC Rx Transfer size, 0: header received only */
 
  
 
  uint32_t                ErrorCode;      /* For errors handling purposes, copy of ISR register 
 
                                            in case error is reported */
 
  
 
  HAL_LockTypeDef         Lock;           /* Locking object */
 
  
 
  HAL_CEC_StateTypeDef    State;          /* CEC communication state */
 
    
 
}CEC_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup CEC_Exported_Constants CEC Exported Constants
 
  * @{
 
  */
 
     
 
/** @defgroup CEC_Signal_Free_Time  Signal Free Time setting parameter
 
  * @{
 
  */
 
#define CEC_DEFAULT_SFT                    ((uint32_t)0x00000000)
 
#define CEC_0_5_BITPERIOD_SFT              ((uint32_t)0x00000001)
 
#define CEC_1_5_BITPERIOD_SFT              ((uint32_t)0x00000002)
 
#define CEC_2_5_BITPERIOD_SFT              ((uint32_t)0x00000003)
 
#define CEC_3_5_BITPERIOD_SFT              ((uint32_t)0x00000004)
 
#define CEC_4_5_BITPERIOD_SFT              ((uint32_t)0x00000005)
 
#define CEC_5_5_BITPERIOD_SFT              ((uint32_t)0x00000006)
 
#define CEC_6_5_BITPERIOD_SFT              ((uint32_t)0x00000007)
 
#define IS_CEC_SIGNALFREETIME(SFT)         ((SFT) <= CEC_CFGR_SFT)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CEC_Tolerance   Receiver Tolerance
 
  * @{
 
  */
 
#define CEC_STANDARD_TOLERANCE             ((uint32_t)0x00000000)
 
#define CEC_EXTENDED_TOLERANCE             ((uint32_t)CEC_CFGR_RXTOL)
 
#define IS_CEC_TOLERANCE(RXTOL)            (((RXTOL) == CEC_STANDARD_TOLERANCE) || \
 
                                            ((RXTOL) == CEC_EXTENDED_TOLERANCE))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup CEC_BRERxStop   Reception Stop on Error
 
  * @{
 
  */
 
#define CEC_NO_RX_STOP_ON_BRE             ((uint32_t)0x00000000)
 
#define CEC_RX_STOP_ON_BRE                ((uint32_t)CEC_CFGR_BRESTP)
 
#define IS_CEC_BRERXSTOP(BRERXSTOP)       (((BRERXSTOP) == CEC_NO_RX_STOP_ON_BRE) || \
 
                                           ((BRERXSTOP) == CEC_RX_STOP_ON_BRE))
 
/**
 
  * @}
 
  */            
 
             
 
/** @defgroup CEC_BREErrorBitGen   Error Bit Generation if Bit Rise Error reported
 
  * @{
 
  */ 
 
#define CEC_BRE_ERRORBIT_NO_GENERATION     ((uint32_t)0x00000000)
 
#define CEC_BRE_ERRORBIT_GENERATION        ((uint32_t)CEC_CFGR_BREGEN)
 
#define IS_CEC_BREERRORBITGEN(ERRORBITGEN) (((ERRORBITGEN) == CEC_BRE_ERRORBIT_NO_GENERATION) || \
 
                                            ((ERRORBITGEN) == CEC_BRE_ERRORBIT_GENERATION))
 
/**
 
  * @}
 
  */ 
 
                        
 
/** @defgroup CEC_LBPEErrorBitGen   Error Bit Generation if Long Bit Period Error reported
 
  * @{
 
  */ 
 
#define CEC_LBPE_ERRORBIT_NO_GENERATION     ((uint32_t)0x00000000)
 
#define CEC_LBPE_ERRORBIT_GENERATION        ((uint32_t)CEC_CFGR_LBPEGEN)
 
#define IS_CEC_LBPEERRORBITGEN(ERRORBITGEN) (((ERRORBITGEN) == CEC_LBPE_ERRORBIT_NO_GENERATION) || \
 
                                             ((ERRORBITGEN) == CEC_LBPE_ERRORBIT_GENERATION))
 
/**
 
  * @}
 
  */    
 
 
/** @defgroup CEC_BroadCastMsgErrorBitGen   Error Bit Generation on Broadcast message
 
  * @{
 
  */ 
 
#define CEC_BROADCASTERROR_ERRORBIT_GENERATION     ((uint32_t)0x00000000)
 
#define CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION  ((uint32_t)CEC_CFGR_BRDNOGEN)
 
#define IS_CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION(ERRORBITGEN) (((ERRORBITGEN) == CEC_BROADCASTERROR_ERRORBIT_GENERATION) || \
 
                                                                   ((ERRORBITGEN) == CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup CEC_SFT_Option         Signal Free Time start option
 
  * @{
 
  */ 
 
#define CEC_SFT_START_ON_TXSOM           ((uint32_t)0x00000000)
 
#define CEC_SFT_START_ON_TX_RX_END       ((uint32_t)CEC_CFGR_SFTOPT)
 
#define IS_CEC_SFTOP(SFTOP)              (((SFTOP) == CEC_SFT_START_ON_TXSOM) || \
 
                                          ((SFTOP) == CEC_SFT_START_ON_TX_RX_END))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup CEC_Listening_Mode        Listening mode option
 
  * @{
 
  */ 
 
#define CEC_REDUCED_LISTENING_MODE          ((uint32_t)0x00000000)
 
#define CEC_FULL_LISTENING_MODE             ((uint32_t)CEC_CFGR_LSTN)
 
#define IS_CEC_LISTENING_MODE(MODE)         (((MODE) == CEC_REDUCED_LISTENING_MODE) || \
 
                                             ((MODE) == CEC_FULL_LISTENING_MODE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CEC_ALL_ERROR all RX or TX errors flags in CEC ISR register 
 
  * @{
 
  */
 
#define CEC_ISR_ALL_ERROR              ((uint32_t)CEC_ISR_RXOVR|CEC_ISR_BRE|CEC_ISR_SBPE|CEC_ISR_LBPE|CEC_ISR_RXACKE|\
 
                                                  CEC_ISR_ARBLST|CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CEC_IER_ALL_RX all RX errors interrupts enabling flag 
 
  * @{
 
  */
 
#define CEC_IER_RX_ALL_ERR              ((uint32_t)CEC_IER_RXACKEIE|CEC_IER_LBPEIE|CEC_IER_SBPEIE|CEC_IER_BREIE|CEC_IER_RXOVRIE)
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup CEC_IER_ALL_TX all TX errors interrupts enabling flag 
 
  * @{
 
  */
 
#define CEC_IER_TX_ALL_ERR              ((uint32_t)CEC_IER_TXACKEIE|CEC_IER_TXERRIE|CEC_IER_TXUDRIE|CEC_IER_ARBLSTIE)
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup CEC_OAR_Position    Device Own Address position in CEC CFGR register     
 
  * @{
 
  */
 
#define CEC_CFGR_OAR_LSB_POS            ((uint32_t) 16)
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup CEC_Initiator_Position    Initiator logical address position in message header     
 
  * @{
 
  */
 
#define CEC_INITIATOR_LSB_POS           ((uint32_t) 4)
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */  
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup CEC_Exported_Macros CEC Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset CEC handle state
 
  * @param  __HANDLE__: CEC handle.
 
  * @retval None
 
  */
 
#define __HAL_CEC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CEC_STATE_RESET)
 
 
/** @brief  Checks whether or not the specified CEC interrupt flag is set.
 
  * @param  __HANDLE__: specifies the CEC Handle.
 
  * @param  __INTERRUPT__: specifies the interrupt to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg CEC_ISR_RXBR      : Rx-Byte Received
 
  *            @arg CEC_ISR_RXEND     : End of Reception
 
  *            @arg CEC_ISR_RXOVR     : Rx Overrun
 
  *            @arg CEC_ISR_BRE       : Rx Bit Rising Error
 
  *            @arg CEC_ISR_SBPE      : Rx Short Bit Period Error
 
  *            @arg CEC_ISR_LBPE      : Rx Long Bit Period Error
 
  *            @arg CEC_ISR_RXACKE    : Rx Missing Acknowledge
 
  *            @arg CEC_ISR_ARBLST    : Arbitration lost
 
  *            @arg CEC_ISR_TXBR      : Tx-Byte Request
 
  *            @arg CEC_ISR_TXEND     : End of Transmission   
 
  *            @arg CEC_ISR_TXUDR     : Tx-buffer Underrun                  
 
  *            @arg CEC_ISR_TXERR     : Tx Error
 
  *            @arg CEC_ISR_TXACKE    : Tx Missing Acknowledge
 
  * @retval ITStatus
 
  */
 
#define __HAL_CEC_GET_IT(__HANDLE__, __INTERRUPT__)        ((__HANDLE__)->Instance->ISR & (__INTERRUPT__)) 
 
 
/** @brief  Clears the interrupt or status flag when raised (write at 1)
 
  * @param  __HANDLE__: specifies the CEC Handle.
 
  * @param  __FLAG__: specifies the interrupt/status flag to clear.
 
  *        This parameter can be one of the following values:
 
  *            @arg CEC_ISR_RXBR      : Rx-Byte Received
 
  *            @arg CEC_ISR_RXEND     : End of Reception
 
  *            @arg CEC_ISR_RXOVR     : Rx Overrun
 
  *            @arg CEC_ISR_BRE       : Rx Bit Rising Error
 
  *            @arg CEC_ISR_SBPE      : Rx Short Bit Period Error
 
  *            @arg CEC_ISR_LBPE      : Rx Long Bit Period Error
 
  *            @arg CEC_ISR_RXACKE    : Rx Missing Acknowledge
 
  *            @arg CEC_ISR_ARBLST    : Arbitration lost
 
  *            @arg CEC_ISR_TXBR      : Tx-Byte Request
 
  *            @arg CEC_ISR_TXEND     : End of Transmission   
 
  *            @arg CEC_ISR_TXUDR     : Tx-buffer Underrun                  
 
  *            @arg CEC_ISR_TXERR     : Tx Error
 
  *            @arg CEC_ISR_TXACKE    : Tx Missing Acknowledge
 
  * @retval none  
 
  */
 
#define __HAL_CEC_CLEAR_FLAG(__HANDLE__, __FLAG__)         ((__HANDLE__)->Instance->ISR = (__FLAG__)) 
 
 
/** @brief  Enables the specified CEC interrupt.
 
  * @param  __HANDLE__: specifies the CEC Handle.
 
  * @param  __INTERRUPT__: specifies the CEC interrupt to enable.
 
  *          This parameter can be one of the following values:
 
  *            @arg CEC_IER_RXBRIE         : Rx-Byte Received IT Enable         
 
  *            @arg CEC_IER_RXENDIE        : End Of Reception IT Enable         
 
  *            @arg CEC_IER_RXOVRIE        : Rx-Overrun IT Enable               
 
  *            @arg CEC_IER_BREIE          : Rx Bit Rising Error IT Enable      
 
  *            @arg CEC_IER_SBPEIE         : Rx Short Bit period Error IT Enable
 
  *            @arg CEC_IER_LBPEIE         : Rx Long Bit period Error IT Enable 
 
  *            @arg CEC_IER_RXACKEIE       : Rx Missing Acknowledge IT Enable   
 
  *            @arg CEC_IER_ARBLSTIE       : Arbitration Lost IT Enable         
 
  *            @arg CEC_IER_TXBRIE         : Tx Byte Request IT Enable         
 
  *            @arg CEC_IER_TXENDIE        : End of Transmission IT Enable      
 
  *            @arg CEC_IER_TXUDRIE        : Tx-Buffer Underrun IT Enable       
 
  *            @arg CEC_IER_TXERRIE        : Tx-Error IT Enable                 
 
  *            @arg CEC_IER_TXACKEIE       : Tx Missing Acknowledge IT Enable                   
 
  * @retval none
 
  */
 
#define __HAL_CEC_ENABLE_IT(__HANDLE__, __INTERRUPT__)     ((__HANDLE__)->Instance->IER |= (__INTERRUPT__))  
 
 
/** @brief  Disables the specified CEC interrupt.
 
  * @param  __HANDLE__: specifies the CEC Handle.
 
  * @param  __INTERRUPT__: specifies the CEC interrupt to disable.
 
  *          This parameter can be one of the following values:
 
  *            @arg CEC_IER_RXBRIE         : Rx-Byte Received IT Enable         
 
  *            @arg CEC_IER_RXENDIE        : End Of Reception IT Enable         
 
  *            @arg CEC_IER_RXOVRIE        : Rx-Overrun IT Enable               
 
  *            @arg CEC_IER_BREIE          : Rx Bit Rising Error IT Enable      
 
  *            @arg CEC_IER_SBPEIE         : Rx Short Bit period Error IT Enable
 
  *            @arg CEC_IER_LBPEIE         : Rx Long Bit period Error IT Enable 
 
  *            @arg CEC_IER_RXACKEIE       : Rx Missing Acknowledge IT Enable   
 
  *            @arg CEC_IER_ARBLSTIE       : Arbitration Lost IT Enable         
 
  *            @arg CEC_IER_TXBRIE         : Tx Byte Request IT Enable         
 
  *            @arg CEC_IER_TXENDIE        : End of Transmission IT Enable      
 
  *            @arg CEC_IER_TXUDRIE        : Tx-Buffer Underrun IT Enable       
 
  *            @arg CEC_IER_TXERRIE        : Tx-Error IT Enable                 
 
  *            @arg CEC_IER_TXACKEIE       : Tx Missing Acknowledge IT Enable                   
 
  * @retval none
 
  */   
 
#define __HAL_CEC_DISABLE_IT(__HANDLE__, __INTERRUPT__)    ((__HANDLE__)->Instance->IER &= (~(__INTERRUPT__)))  
 
 
/** @brief  Checks whether or not the specified CEC interrupt is enabled.
 
  * @param  __HANDLE__: specifies the CEC Handle.
 
  * @param  __INTERRUPT__: specifies the CEC interrupt to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg CEC_IER_RXBRIE         : Rx-Byte Received IT Enable         
 
  *            @arg CEC_IER_RXENDIE        : End Of Reception IT Enable         
 
  *            @arg CEC_IER_RXOVRIE        : Rx-Overrun IT Enable               
 
  *            @arg CEC_IER_BREIE          : Rx Bit Rising Error IT Enable      
 
  *            @arg CEC_IER_SBPEIE         : Rx Short Bit period Error IT Enable
 
  *            @arg CEC_IER_LBPEIE         : Rx Long Bit period Error IT Enable 
 
  *            @arg CEC_IER_RXACKEIE       : Rx Missing Acknowledge IT Enable   
 
  *            @arg CEC_IER_ARBLSTIE       : Arbitration Lost IT Enable         
 
  *            @arg CEC_IER_TXBRIE         : Tx Byte Request IT Enable         
 
  *            @arg CEC_IER_TXENDIE        : End of Transmission IT Enable      
 
  *            @arg CEC_IER_TXUDRIE        : Tx-Buffer Underrun IT Enable       
 
  *            @arg CEC_IER_TXERRIE        : Tx-Error IT Enable                 
 
  *            @arg CEC_IER_TXACKEIE       : Tx Missing Acknowledge IT Enable                   
 
  * @retval FlagStatus  
 
  */
 
#define __HAL_CEC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->IER & (__INTERRUPT__))
 
 
/** @brief  Enables the CEC device
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval none 
 
  */
 
#define __HAL_CEC_ENABLE(__HANDLE__)                   ((__HANDLE__)->Instance->CR |=  CEC_CR_CECEN)
 
 
/** @brief  Disables the CEC device
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval none 
 
  */
 
#define __HAL_CEC_DISABLE(__HANDLE__)                  ((__HANDLE__)->Instance->CR &=  ~CEC_CR_CECEN)
 
 
/** @brief  Set Transmission Start flag
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval none 
 
  */
 
#define __HAL_CEC_FIRST_BYTE_TX_SET(__HANDLE__)        ((__HANDLE__)->Instance->CR |=  CEC_CR_TXSOM)
 
 
/** @brief  Set Transmission End flag
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval none 
 
  * If the CEC message consists of only one byte, TXEOM must be set before of TXSOM.  
 
  */
 
#define __HAL_CEC_LAST_BYTE_TX_SET(__HANDLE__)         ((__HANDLE__)->Instance->CR |=  CEC_CR_TXEOM)
 
 
/** @brief  Get Transmission Start flag
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval FlagStatus 
 
  */
 
#define __HAL_CEC_GET_TRANSMISSION_START_FLAG(__HANDLE__) ((__HANDLE__)->Instance->CR & CEC_CR_TXSOM)
 
 
/** @brief  Get Transmission End flag
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval FlagStatus 
 
  */
 
#define __HAL_CEC_GET_TRANSMISSION_END_FLAG(__HANDLE__)   ((__HANDLE__)->Instance->CR & CEC_CR_TXEOM)   
 
 
/** @brief  Clear OAR register
 
  * @param  __HANDLE__: specifies the CEC Handle.               
 
  * @retval none 
 
  */
 
#define __HAL_CEC_CLEAR_OAR(__HANDLE__)   CLEAR_BIT((__HANDLE__)->Instance->CFGR, CEC_CFGR_OAR)
 
 
/** @brief  Set OAR register (without resetting previously set address in case of multi-address mode)
 
  *          To reset OAR, __HAL_CEC_CLEAR_OAR() needs to be called beforehand
 
  * @param  __HANDLE__: specifies the CEC Handle. 
 
  * @param  __ADDRESS__: Own Address value (CEC logical address is identified by bit position)                   
 
  * @retval none 
 
  */
 
#define __HAL_CEC_SET_OAR(__HANDLE__,__ADDRESS__)   SET_BIT((__HANDLE__)->Instance->CFGR, (__ADDRESS__)<< CEC_CFGR_OAR_LSB_POS)
 
 
/** @brief Check CEC device Own Address Register (OAR) setting.
 
  *        OAR address is written in a 15-bit field within CEC_CFGR register. 
 
  * @param  __ADDRESS__: CEC own address.               
 
  * @retval Test result (TRUE or FALSE).
 
  */
 
#define IS_CEC_OAR_ADDRESS(__ADDRESS__) ((__ADDRESS__) <= 0x07FFF)  
 
 
/** @brief Check CEC initiator or destination logical address setting.
 
  *        Initiator and destination addresses are coded over 4 bits. 
 
  * @param  __ADDRESS__: CEC initiator or logical address.               
 
  * @retval Test result (TRUE or FALSE).
 
  */
 
#define IS_CEC_ADDRESS(__ADDRESS__) ((__ADDRESS__) <= 0xF)    
 
 
/** @brief Check CEC message size.
 
  *       The message size is the payload size: without counting the header, 
 
  *       it varies from 0 byte (ping operation, one header only, no payload) to 
 
  *       15 bytes (1 opcode and up to 14 operands following the header). 
 
  * @param  __SIZE__: CEC message size.               
 
  * @retval Test result (TRUE or FALSE).
 
  */
 
#define IS_CEC_MSGSIZE(__SIZE__) ((__SIZE__) <= 0xF)   
 
 
/**
 
  * @}
 
  */                       
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup CEC_Exported_Functions CEC Exported Functions
 
  * @{
 
  */
 
/** @addtogroup CEC_Exported_Functions_Group1 Initialization/de-initialization function 
 
  *  @brief    Initialization and Configuration functions 
 
  * @{
 
  */
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_CEC_Init(CEC_HandleTypeDef *hcec);
 
HAL_StatusTypeDef HAL_CEC_DeInit(CEC_HandleTypeDef *hcec);
 
void HAL_CEC_MspInit(CEC_HandleTypeDef *hcec);
 
void HAL_CEC_MspDeInit(CEC_HandleTypeDef *hcec);
 
/**
 
  * @}
 
  */                       
 
 
/** @addtogroup CEC_Exported_Functions_Group2 IO operation function 
 
  *  @brief CEC Transmit/Receive functions
 
  * @{
 
  */   
 
/* I/O operation functions  ***************************************************/
 
HAL_StatusTypeDef HAL_CEC_Transmit(CEC_HandleTypeDef *hcec, uint8_t DestinationAddress, uint8_t *pData, uint32_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_CEC_Receive(CEC_HandleTypeDef *hcec, uint8_t *pData, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_CEC_Transmit_IT(CEC_HandleTypeDef *hcec, uint8_t DestinationAddress, uint8_t *pData, uint32_t Size);
 
HAL_StatusTypeDef HAL_CEC_Receive_IT(CEC_HandleTypeDef *hcec, uint8_t *pData);
 
void HAL_CEC_IRQHandler(CEC_HandleTypeDef *hcec);
 
void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec);
 
void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec);
 
void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup CEC_Exported_Functions_Group3 Peripheral Control function 
 
  *  @brief   CEC control functions 
 
  * @{
 
  */ 
 
/* Peripheral State functions  ************************************************/
 
HAL_CEC_StateTypeDef HAL_CEC_GetState(CEC_HandleTypeDef *hcec);
 
uint32_t HAL_CEC_GetError(CEC_HandleTypeDef *hcec);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
    
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#endif /* defined(STM32F042x6) || defined(STM32F048xx) ||                         */
 
       /* defined(STM32F051x8) || defined(STM32F058xx) ||                         */
 
       /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || */
 
       /* defined(STM32F091xC) || defined(STM32F098xx) */
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_CEC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_comp.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_comp.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of COMP HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_COMP_H
 
#define __STM32F0xx_HAL_COMP_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup COMP COMP HAL Module Driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup COMP_Exported_Types COMP Exported Types
 
  * @{
 
  */
 
    
 
/** 
 
  * @brief  COMP Init structure definition  
 
  */ 
 
typedef struct
 
{
 
 
  uint32_t InvertingInput;     /*!< Selects the inverting input of the comparator.
 
                                    This parameter can be a value of @ref COMP_InvertingInput */
 
 
  uint32_t NonInvertingInput;  /*!< Selects the non inverting input of the comparator.
 
                                    This parameter can be a value of @ref COMP_NonInvertingInput */
 
 
  uint32_t Output;             /*!< Selects the output redirection of the comparator.
 
                                    This parameter can be a value of @ref COMP_Output */
 
 
  uint32_t OutputPol;          /*!< Selects the output polarity of the comparator.
 
                                    This parameter can be a value of @ref COMP_OutputPolarity */
 
 
  uint32_t Hysteresis;         /*!< Selects the hysteresis voltage of the comparator.
 
                                    This parameter can be a value of @ref COMP_Hysteresis */
 
 
  uint32_t Mode;               /*!< Selects the operating comsumption mode of the comparator
 
                                    to adjust the speed/consumption.
 
                                    This parameter can be a value of @ref COMP_Mode */
 
 
  uint32_t WindowMode;         /*!< Selects the window mode of the comparator 1 & 2.
 
                                    This parameter can be a value of @ref COMP_WindowMode */
 
  
 
  uint32_t TriggerMode;        /*!< Selects the trigger mode of the comparator (interrupt mode).
 
                                    This parameter can be a value of @ref COMP_TriggerMode */
 
 
}COMP_InitTypeDef;
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_COMP_STATE_RESET             = 0x00,    /*!< COMP not yet initialized or disabled             */
 
  HAL_COMP_STATE_READY             = 0x01,    /*!< COMP initialized and ready for use               */
 
  HAL_COMP_STATE_READY_LOCKED      = 0x11,    /*!< COMP initialized but the configuration is locked */
 
  HAL_COMP_STATE_BUSY              = 0x02,    /*!< COMP is running                                  */
 
  HAL_COMP_STATE_BUSY_LOCKED       = 0x12     /*!< COMP is running and the configuration is locked  */
 
}HAL_COMP_StateTypeDef;
 
 
/** 
 
  * @brief  COMP Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  COMP_TypeDef                *Instance; /*!< Register base address    */
 
  COMP_InitTypeDef            Init;      /*!< COMP required parameters */
 
  HAL_LockTypeDef             Lock;      /*!< Locking object           */
 
  __IO HAL_COMP_StateTypeDef  State;     /*!< COMP communication state */
 
}COMP_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup COMP_Exported_Constants COMP Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup COMP_OutputPolarity COMP OutputPolarity
 
  * @{
 
  */
 
#define COMP_OUTPUTPOL_NONINVERTED             ((uint32_t)0x00000000)  /*!< COMP output on GPIO isn't inverted */
 
#define COMP_OUTPUTPOL_INVERTED                COMP_CSR_COMP1POL       /*!< COMP output on GPIO is inverted  */
 
 
#define IS_COMP_OUTPUTPOL(POL)  (((POL) == COMP_OUTPUTPOL_NONINVERTED)  || \
 
                                 ((POL) == COMP_OUTPUTPOL_INVERTED))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup COMP_Hysteresis COMP Hysteresis
 
  * @{
 
  */
 
#define COMP_HYSTERESIS_NONE                   ((uint32_t)0x00000000)  /*!< No hysteresis */
 
#define COMP_HYSTERESIS_LOW                    COMP_CSR_COMP1HYST_0    /*!< Hysteresis level low */
 
#define COMP_HYSTERESIS_MEDIUM                 COMP_CSR_COMP1HYST_1    /*!< Hysteresis level medium */
 
#define COMP_HYSTERESIS_HIGH                   COMP_CSR_COMP1HYST      /*!< Hysteresis level high */
 
 
#define IS_COMP_HYSTERESIS(HYSTERESIS)    (((HYSTERESIS) == COMP_HYSTERESIS_NONE)   || \
 
                                           ((HYSTERESIS) == COMP_HYSTERESIS_LOW)    || \
 
                                           ((HYSTERESIS) == COMP_HYSTERESIS_MEDIUM) || \
 
                                           ((HYSTERESIS) == COMP_HYSTERESIS_HIGH))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_Mode COMP Mode
 
  * @{
 
  */
 
/* Please refer to the electrical characteristics in the device datasheet for
 
   the power consumption values */
 
#define COMP_MODE_HIGHSPEED                    ((uint32_t)0x00000000) /*!< High Speed */
 
#define COMP_MODE_MEDIUMSPEED                  COMP_CSR_COMP1MODE_0   /*!< Medium Speed */
 
#define COMP_MODE_LOWPOWER                     COMP_CSR_COMP1MODE_1   /*!< Low power mode */
 
#define COMP_MODE_ULTRALOWPOWER                COMP_CSR_COMP1MODE     /*!< Ultra-low power mode */
 
 
#define IS_COMP_MODE(MODE)  (((MODE) == COMP_MODE_HIGHSPEED)     || \
 
                             ((MODE) == COMP_MODE_MEDIUMSPEED)   || \
 
                             ((MODE) == COMP_MODE_LOWPOWER)      || \
 
                             ((MODE) == COMP_MODE_ULTRALOWPOWER))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_InvertingInput COMP InvertingInput
 
  * @{
 
  */
 
 
#define COMP_INVERTINGINPUT_1_4VREFINT         ((uint32_t)0x00000000) /*!< 1/4 VREFINT connected to comparator inverting input */
 
#define COMP_INVERTINGINPUT_1_2VREFINT         COMP_CSR_COMP1INSEL_0                         /*!< 1/2 VREFINT connected to comparator inverting input    */
 
#define COMP_INVERTINGINPUT_3_4VREFINT         COMP_CSR_COMP1INSEL_1                         /*!< 3/4 VREFINT connected to comparator inverting input    */
 
#define COMP_INVERTINGINPUT_VREFINT            (COMP_CSR_COMP1INSEL_1|COMP_CSR_COMP1INSEL_0) /*!< VREFINT connected to comparator inverting input        */
 
#define COMP_INVERTINGINPUT_DAC1               COMP_CSR_COMP1INSEL_2                         /*!< DAC_OUT1 (PA4) connected to comparator inverting input */
 
#define COMP_INVERTINGINPUT_DAC1SWITCHCLOSED   (COMP_CSR_COMP1INSEL_2|COMP_CSR_COMP1SW1)     /*!< DAC_OUT1 (PA4) connected to comparator inverting input 
 
                                                                                                  and close switch (PA0 for COMP1 only) */
 
#define COMP_INVERTINGINPUT_DAC2               (COMP_CSR_COMP1INSEL_2|COMP_CSR_COMP1INSEL_0) /*!< DAC_OUT2 (PA5) connected to comparator inverting input */
 
#define COMP_INVERTINGINPUT_IO1                (COMP_CSR_COMP1INSEL_2|COMP_CSR_COMP1INSEL_1) /*!< IO (PA0 for COMP1 and PA2 for COMP2) connected to comparator inverting input */
 
 
#define IS_COMP_INVERTINGINPUT(INPUT) (((INPUT) == COMP_INVERTINGINPUT_1_4VREFINT)       || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_1_2VREFINT)       || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_3_4VREFINT)       || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_VREFINT)          || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_DAC1)             || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_DAC1SWITCHCLOSED) || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_DAC2)             || \
 
                                       ((INPUT) == COMP_INVERTINGINPUT_IO1))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup COMP_NonInvertingInput COMP NonInvertingInput
 
  * @{
 
  */
 
#define COMP_NONINVERTINGINPUT_IO1               ((uint32_t)0x00000000) /*!< I/O1 (PA1 for COMP1, PA3 for COMP2) 
 
                                                                             connected to comparator non inverting input */
 
#define COMP_NONINVERTINGINPUT_DAC1SWITCHCLOSED  COMP_CSR_COMP1SW1  /*!< DAC ouput connected to comparator COMP1 non inverting input */
 
 
#define IS_COMP_NONINVERTINGINPUT(INPUT) (((INPUT) == COMP_NONINVERTINGINPUT_IO1) || \
 
                                          ((INPUT) == COMP_NONINVERTINGINPUT_DAC1SWITCHCLOSED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_Output COMP Output
 
  * @{
 
  */
 
 
/* Output Redirection common for COMP1 and COMP2 */
 
#define COMP_OUTPUT_NONE                       ((uint32_t)0x00000000)                          /*!< COMP output isn't connected to other peripherals */
 
#define COMP_OUTPUT_TIM1BKIN                   COMP_CSR_COMP1OUTSEL_0                          /*!< COMP output connected to TIM1 Break Input (BKIN) */
 
#define COMP_OUTPUT_TIM1IC1                    COMP_CSR_COMP1OUTSEL_1                          /*!< COMP output connected to TIM1 Input Capture 1 */
 
#define COMP_OUTPUT_TIM1OCREFCLR               (COMP_CSR_COMP1OUTSEL_1|COMP_CSR_COMP1OUTSEL_0) /*!< COMP output connected to TIM1 OCREF Clear */
 
#define COMP_OUTPUT_TIM2IC4                    COMP_CSR_COMP1OUTSEL_2                          /*!< COMP output connected to TIM2 Input Capture 4 */
 
#define COMP_OUTPUT_TIM2OCREFCLR               (COMP_CSR_COMP1OUTSEL_2|COMP_CSR_COMP1OUTSEL_0) /*!< COMP output connected to TIM2 OCREF Clear */
 
#define COMP_OUTPUT_TIM3IC1                    (COMP_CSR_COMP1OUTSEL_2|COMP_CSR_COMP1OUTSEL_1) /*!< COMP output connected to TIM3 Input Capture 1 */
 
#define COMP_OUTPUT_TIM3OCREFCLR               COMP_CSR_COMP1OUTSEL                            /*!< COMP output connected to TIM3 OCREF Clear */
 
 
#define IS_COMP_OUTPUT(OUTPUT) (((OUTPUT) == COMP_OUTPUT_NONE)                || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM1BKIN)            || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM1IC1)             || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM1OCREFCLR)        || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM2IC4)             || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM2OCREFCLR)        || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM3IC1)             || \
 
                                ((OUTPUT) == COMP_OUTPUT_TIM3OCREFCLR))
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup COMP_OutputLevel COMP OutputLevel
 
  * @{
 
  */ 
 
/* When output polarity is not inverted, comparator output is low when
 
   the non-inverting input is at a lower voltage than the inverting input*/
 
#define COMP_OUTPUTLEVEL_LOW                   ((uint32_t)0x00000000)
 
/* When output polarity is not inverted, comparator output is high when
 
   the non-inverting input is at a higher voltage than the inverting input */
 
#define COMP_OUTPUTLEVEL_HIGH                  COMP_CSR_COMP1OUT
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup COMP_TriggerMode COMP TriggerMode
 
  * @{
 
  */
 
#define COMP_TRIGGERMODE_NONE                  ((uint32_t)0x00000000)  /*!< No External Interrupt trigger detection */
 
#define COMP_TRIGGERMODE_IT_RISING             ((uint32_t)0x00000001)  /*!< External Interrupt Mode with Rising edge trigger detection */
 
#define COMP_TRIGGERMODE_IT_FALLING            ((uint32_t)0x00000002)  /*!< External Interrupt Mode with Falling edge trigger detection */
 
#define COMP_TRIGGERMODE_IT_RISING_FALLING     ((uint32_t)0x00000003)  /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
 
 
#define IS_COMP_TRIGGERMODE(MODE)  (((MODE) == COMP_TRIGGERMODE_NONE)       || \
 
                                    ((MODE) == COMP_TRIGGERMODE_IT_RISING)  || \
 
                                    ((MODE) == COMP_TRIGGERMODE_IT_FALLING) || \
 
                                    ((MODE) == COMP_TRIGGERMODE_IT_RISING_FALLING))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup COMP_WindowMode COMP WindowMode
 
  * @{
 
  */
 
#define COMP_WINDOWMODE_DISABLED               ((uint32_t)0x00000000)  /*!< Window mode disabled */
 
#define COMP_WINDOWMODE_ENABLED                COMP_CSR_WNDWEN         /*!< Window mode enabled: non inverting input of comparator 2
 
                                                                            is connected to the non inverting input of comparator 1 (PA1) */
 
 
#define IS_COMP_WINDOWMODE(WINDOWMODE) (((WINDOWMODE) == COMP_WINDOWMODE_DISABLED) || \
 
                                        ((WINDOWMODE) == COMP_WINDOWMODE_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_ExtiLineEvent COMP ExtiLineEvent
 
  *        Elements values convention: XXXX0000
 
  *           - XXXX : Interrupt mask in the EMR/IMR/RTSR/FTSR register
 
  * @{   
 
  */  
 
#define COMP_EXTI_LINE_COMP1_EVENT             ((uint32_t)0x00200000)  /*!< External interrupt line 21 Connected to COMP1 */
 
#define COMP_EXTI_LINE_COMP2_EVENT             ((uint32_t)0x00400000)  /*!< External interrupt line 22 Connected to COMP2 */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_Lock COMP Lock
 
  * @{   
 
  */  
 
#define COMP_LOCK_DISABLE                      ((uint32_t)0x00000000)
 
#define COMP_LOCK_ENABLE                       COMP_CSR_COMP1LOCK
 
 
#define COMP_STATE_BIT_LOCK                    ((uint32_t)0x10)
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup COMP_Exported_Macros COMP Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset COMP handle state
 
  * @param  __HANDLE__: COMP handle.
 
  * @retval None
 
  */
 
#define __HAL_COMP_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_COMP_STATE_RESET)
 
 
/**
 
  * @brief  Checks whether the specified EXTI line flag is set or not.
 
  * @param  __FLAG__: specifies the COMP Exti sources to be checked.
 
  *          This parameter can be a value of @ref COMP_ExtiLineEvent
 
  * @retval The state of __FLAG__ (SET or RESET).
 
  */
 
#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__)  (EXTI->PR & (__FLAG__))
 
     
 
/**
 
  * @brief Clear the COMP Exti flags.
 
  * @param  __FLAG__: specifies the COMP Exti sources to be cleared.
 
  *          This parameter can be a value of @ref COMP_ExtiLineEvent
 
  * @retval None.
 
  */
 
#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__)   (EXTI->PR = (__FLAG__))
 
 
/**
 
  * @brief  Enable the COMP Exti Line.
 
  * @param  __EXTILINE__: specifies the COMP Exti sources to be enabled.
 
  *         This parameter can be a value of @ref COMP_ExtiLineEvent 
 
  * @retval None.
 
  */                                         
 
#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__)   (EXTI->IMR |= (__EXTILINE__))
 
                                             
 
/**
 
  * @brief  Disable the COMP Exti Line.
 
  * @param  __EXTILINE__: specifies the COMP Exti sources to be disabled.
 
  *         This parameter can be a value of @ref COMP_ExtiLineEvent 
 
  * @retval None.
 
  */
 
#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__)  (EXTI->IMR &= ~(__EXTILINE__))
 
 
/**
 
  * @brief  Enable the Exti Line rising edge trigger.
 
  * @param  __EXTILINE__: specifies the COMP Exti sources to be enabled.
 
  *         This parameter can be a value of @ref COMP_ExtiLineEvent 
 
  * @retval None.
 
  */                                         
 
#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (EXTI->RTSR |= (__EXTILINE__))
 
 
/**
 
  * @brief  Disable the Exti Line rising edge trigger.
 
  * @param  __EXTILINE__: specifies the COMP Exti sources to be disabled.
 
  *         This parameter can be a value of @ref COMP_ExtiLineEvent 
 
  * @retval None.
 
  */                                         
 
#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (EXTI->RTSR &= ~(__EXTILINE__))
 
 
/**
 
  * @brief  Enable the Exti Line falling edge trigger.
 
  * @param  __EXTILINE__: specifies the COMP Exti sources to be enabled.
 
  *         This parameter can be a value of @ref COMP_ExtiLineEvent 
 
  * @retval None.
 
  */                                         
 
#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (EXTI->FTSR |= (__EXTILINE__))
 
 
/**
 
  * @brief  Disable the Exti Line falling edge trigger.
 
  * @param  __EXTILINE__: specifies the COMP Exti sources to be disabled.
 
  *         This parameter can be a value of @ref COMP_ExtiLineEvent 
 
  * @retval None.
 
  */                                         
 
#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (EXTI->FTSR &= ~(__EXTILINE__))
 
 
/**
 
  * @brief  Get the specified EXTI line for a comparator instance
 
  * @param  __INSTANCE__: specifies the COMP instance.
 
  * @retval value of @ref COMP_ExtiLineEvent
 
  */
 
#define __HAL_COMP_GET_EXTI_LINE(__INSTANCE__) (((__INSTANCE__) == COMP1) ? COMP_EXTI_LINE_COMP1_EVENT : \
 
                                                COMP_EXTI_LINE_COMP2_EVENT)
 
/**
 
  * @}
 
  */ 
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup COMP_Exported_Functions COMP Exported Functions
 
  * @{
 
  */
 
/** @addtogroup COMP_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 * @{
 
 */ 
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef     HAL_COMP_Init(COMP_HandleTypeDef *hcomp);
 
HAL_StatusTypeDef     HAL_COMP_DeInit (COMP_HandleTypeDef *hcomp);
 
void                  HAL_COMP_MspInit(COMP_HandleTypeDef *hcomp);
 
void                  HAL_COMP_MspDeInit(COMP_HandleTypeDef *hcomp);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup COMP_Exported_Functions_Group2 I/O operation functions 
 
 *  @brief   Data transfers functions 
 
 * @{
 
 */   
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef     HAL_COMP_Start(COMP_HandleTypeDef *hcomp);
 
HAL_StatusTypeDef     HAL_COMP_Stop(COMP_HandleTypeDef *hcomp);
 
HAL_StatusTypeDef     HAL_COMP_Start_IT(COMP_HandleTypeDef *hcomp);
 
HAL_StatusTypeDef     HAL_COMP_Stop_IT(COMP_HandleTypeDef *hcomp);
 
void                  HAL_COMP_IRQHandler(COMP_HandleTypeDef *hcomp);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup COMP_Exported_Functions_Group3 Peripheral Control functions 
 
 *  @brief   management functions
 
 * @{
 
 */   
 
/* Peripheral Control functions ***********************************************/
 
HAL_StatusTypeDef     HAL_COMP_Lock(COMP_HandleTypeDef *hcomp);
 
uint32_t              HAL_COMP_GetOutputLevel(COMP_HandleTypeDef *hcomp);
 
 
/* Callback in Interrupt mode */
 
void                  HAL_COMP_TriggerCallback(COMP_HandleTypeDef *hcomp);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup COMP_Exported_Functions_Group4 Peripheral State functions 
 
 *  @brief   Peripheral State functions
 
 * @{
 
 */   
 
/* Peripheral State and Error functions ***************************************/
 
HAL_COMP_StateTypeDef HAL_COMP_GetState(COMP_HandleTypeDef *hcomp);
 
/**
 
  * @}
 
  */ 
 
  
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#endif /* STM32F051x8 || STM32F058xx || */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_COMP_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_conf_template.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_conf_template.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   HAL configuration file.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_CONF_H
 
#define __STM32F0xx_HAL_CONF_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
 
/* ########################## Module Selection ############################## */
 
/**
 
  * @brief This is the list of modules to be used in the HAL driver 
 
  */
 
#define HAL_MODULE_ENABLED
 
#define HAL_ADC_MODULE_ENABLED
 
#define HAL_CAN_MODULE_ENABLED
 
#define HAL_CEC_MODULE_ENABLED
 
#define HAL_COMP_MODULE_ENABLED
 
#define HAL_CORTEX_MODULE_ENABLED
 
#define HAL_CRC_MODULE_ENABLED
 
#define HAL_DAC_MODULE_ENABLED
 
#define HAL_DMA_MODULE_ENABLED
 
#define HAL_FLASH_MODULE_ENABLED
 
#define HAL_GPIO_MODULE_ENABLED
 
#define HAL_I2C_MODULE_ENABLED
 
#define HAL_I2S_MODULE_ENABLED
 
#define HAL_IRDA_MODULE_ENABLED
 
#define HAL_IWDG_MODULE_ENABLED
 
#define HAL_PCD_MODULE_ENABLED
 
#define HAL_PWR_MODULE_ENABLED
 
#define HAL_RCC_MODULE_ENABLED
 
#define HAL_RTC_MODULE_ENABLED
 
#define HAL_SMARTCARD_MODULE_ENABLED
 
#define HAL_SMBUS_MODULE_ENABLED
 
#define HAL_SPI_MODULE_ENABLED
 
#define HAL_TIM_MODULE_ENABLED
 
#define HAL_TSC_MODULE_ENABLED
 
#define HAL_UART_MODULE_ENABLED
 
#define HAL_USART_MODULE_ENABLED
 
#define HAL_WWDG_MODULE_ENABLED
 
 
/* ######################### Oscillator Values adaptation ################### */
 
/**
 
  * @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
 
  *        This value is used by the RCC HAL module to compute the system frequency
 
  *        (when HSE is used as system clock source, directly or through the PLL).  
 
  */
 
#if !defined  (HSE_VALUE) 
 
  #define HSE_VALUE    ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */
 
#endif /* HSE_VALUE */
 
 
/**
 
  * @brief In the following line adjust the External High Speed oscillator (HSE) Startup 
 
  *        Timeout value 
 
  */
 
#if !defined  (HSE_STARTUP_TIMEOUT)
 
  #define HSE_STARTUP_TIMEOUT    ((uint32_t)5000)   /*!< Time out for HSE start up, in ms */
 
#endif /* HSE_STARTUP_TIMEOUT */
 
 
/**
 
  * @brief Internal High Speed oscillator (HSI) value.
 
  *        This value is used by the RCC HAL module to compute the system frequency
 
  *        (when HSI is used as system clock source, directly or through the PLL). 
 
  */
 
#if !defined  (HSI_VALUE)
 
  #define HSI_VALUE    ((uint32_t)8000000) /*!< Value of the Internal oscillator in Hz*/
 
#endif /* HSI_VALUE */
 
 
/**
 
  * @brief In the following line adjust the Internal High Speed oscillator (HSI) Startup 
 
  *        Timeout value 
 
  */
 
#if !defined  (HSI_STARTUP_TIMEOUT) 
 
 #define HSI_STARTUP_TIMEOUT   ((uint32_t)5000) /*!< Time out for HSI start up */
 
#endif /* HSI_STARTUP_TIMEOUT */  
 
 
/**
 
  * @brief Internal High Speed oscillator for ADC (HSI14) value.
 
  */
 
#if !defined  (HSI14_VALUE) 
 
#define HSI14_VALUE ((uint32_t)14000000) /*!< Value of the Internal High Speed oscillator for ADC in Hz.
 
                                             The real value may vary depending on the variations
 
                                             in voltage and temperature.  */
 
#endif /* HSI14_VALUE */
 
 
/**
 
  * @brief Internal High Speed oscillator for USB (HSI48) value.
 
  */
 
#if !defined  (HSI48_VALUE) 
 
#define HSI48_VALUE ((uint32_t)48000000) /*!< Value of the Internal High Speed oscillator for USB in Hz.
 
                                             The real value may vary depending on the variations
 
                                             in voltage and temperature.  */
 
#endif /* HSI48_VALUE */
 
 
/**
 
  * @brief Internal Low Speed oscillator (LSI) value.
 
  */
 
#if !defined  (LSI_VALUE) 
 
 #define LSI_VALUE  ((uint32_t)40000)    
 
#endif /* LSI_VALUE */                      /*!< Value of the Internal Low Speed oscillator in Hz
 
                                             The real value may vary depending on the variations
 
                                             in voltage and temperature.  */
 
/**
 
  * @brief External Low Speed oscillator (LSE) value.
 
  */
 
#if !defined  (LSE_VALUE)
 
 #define LSE_VALUE  ((uint32_t)32768)    /*!< Value of the External Low Speed oscillator in Hz */
 
#endif /* LSE_VALUE */     
 
 
 
/* Tip: To avoid modifying this file each time you need to use different HSE,
 
   ===  you can define the HSE value in your toolchain compiler preprocessor. */
 
 
/* ########################### System Configuration ######################### */
 
/**
 
  * @brief This is the HAL system configuration section
 
  */     
 
#define  VDD_VALUE                    ((uint32_t)3300) /*!< Value of VDD in mv */           
 
#define  TICK_INT_PRIORITY            ((uint32_t)(1<<__NVIC_PRIO_BITS) - 1)   /*!< tick interrupt priority (lowest by default)             */
 
                                                                              /*  Warning: Must be set to higher priority for HAL_Delay()  */
 
                                                                              /*  and HAL_GetTick() usage under interrupt context          */
 
#define  USE_RTOS                     0
 
#define  PREFETCH_ENABLE              1
 
#define  INSTRUCTION_CACHE_ENABLE     0
 
#define  DATA_CACHE_ENABLE            0
 
 
/* ########################## Assert Selection ############################## */
 
/**
 
  * @brief Uncomment the line below to expanse the "assert_param" macro in the 
 
  *        HAL drivers code
 
  */
 
/*#define USE_FULL_ASSERT    1*/
 
 
/* Includes ------------------------------------------------------------------*/
 
/**
 
  * @brief Include module's header file 
 
  */
 
 
#ifdef HAL_RCC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_rcc.h"
 
#endif /* HAL_RCC_MODULE_ENABLED */
 
 
#ifdef HAL_GPIO_MODULE_ENABLED
 
 #include "stm32f0xx_hal_gpio.h"
 
#endif /* HAL_GPIO_MODULE_ENABLED */
 
 
#ifdef HAL_DMA_MODULE_ENABLED
 
  #include "stm32f0xx_hal_dma.h"
 
#endif /* HAL_DMA_MODULE_ENABLED */
 
 
#ifdef HAL_CORTEX_MODULE_ENABLED
 
 #include "stm32f0xx_hal_cortex.h"
 
#endif /* HAL_CORTEX_MODULE_ENABLED */
 
 
#ifdef HAL_ADC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_adc.h"
 
#endif /* HAL_ADC_MODULE_ENABLED */
 
 
#ifdef HAL_CAN_MODULE_ENABLED
 
 #include "stm32f0xx_hal_can.h"
 
#endif /* HAL_CAN_MODULE_ENABLED */
 
 
#ifdef HAL_CEC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_cec.h"
 
#endif /* HAL_CEC_MODULE_ENABLED */
 
 
#ifdef HAL_COMP_MODULE_ENABLED
 
 #include "stm32f0xx_hal_comp.h"
 
#endif /* HAL_COMP_MODULE_ENABLED */
 
 
#ifdef HAL_CRC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_crc.h"
 
#endif /* HAL_CRC_MODULE_ENABLED */
 
 
#ifdef HAL_DAC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_dac.h"
 
#endif /* HAL_DAC_MODULE_ENABLED */
 
 
#ifdef HAL_FLASH_MODULE_ENABLED
 
 #include "stm32f0xx_hal_flash.h"
 
#endif /* HAL_FLASH_MODULE_ENABLED */
 
 
#ifdef HAL_I2C_MODULE_ENABLED
 
 #include "stm32f0xx_hal_i2c.h"
 
#endif /* HAL_I2C_MODULE_ENABLED */
 
 
#ifdef HAL_I2S_MODULE_ENABLED
 
 #include "stm32f0xx_hal_i2s.h"
 
#endif /* HAL_I2S_MODULE_ENABLED */
 
 
#ifdef HAL_IRDA_MODULE_ENABLED
 
 #include "stm32f0xx_hal_irda.h"
 
#endif /* HAL_IRDA_MODULE_ENABLED */
 
 
#ifdef HAL_IWDG_MODULE_ENABLED
 
 #include "stm32f0xx_hal_iwdg.h"
 
#endif /* HAL_IWDG_MODULE_ENABLED */
 
 
#ifdef HAL_PCD_MODULE_ENABLED
 
 #include "stm32f0xx_hal_pcd.h"
 
#endif /* HAL_PCD_MODULE_ENABLED */
 
 
#ifdef HAL_PWR_MODULE_ENABLED
 
 #include "stm32f0xx_hal_pwr.h"
 
#endif /* HAL_PWR_MODULE_ENABLED */
 
 
#ifdef HAL_RTC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_rtc.h"
 
#endif /* HAL_RTC_MODULE_ENABLED */
 
 
#ifdef HAL_SMARTCARD_MODULE_ENABLED
 
 #include "stm32f0xx_hal_smartcard.h"
 
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
 
 
#ifdef HAL_SMBUS_MODULE_ENABLED
 
 #include "stm32f0xx_hal_smbus.h"
 
#endif /* HAL_SMBUS_MODULE_ENABLED */
 
 
#ifdef HAL_SPI_MODULE_ENABLED
 
 #include "stm32f0xx_hal_spi.h"
 
#endif /* HAL_SPI_MODULE_ENABLED */
 
 
#ifdef HAL_TIM_MODULE_ENABLED
 
 #include "stm32f0xx_hal_tim.h"
 
#endif /* HAL_TIM_MODULE_ENABLED */
 
 
#ifdef HAL_TSC_MODULE_ENABLED
 
 #include "stm32f0xx_hal_tsc.h"
 
#endif /* HAL_TSC_MODULE_ENABLED */
 
 
#ifdef HAL_UART_MODULE_ENABLED
 
 #include "stm32f0xx_hal_uart.h"
 
#endif /* HAL_UART_MODULE_ENABLED */
 
 
#ifdef HAL_USART_MODULE_ENABLED
 
 #include "stm32f0xx_hal_usart.h"
 
#endif /* HAL_USART_MODULE_ENABLED */
 
 
#ifdef HAL_WWDG_MODULE_ENABLED
 
 #include "stm32f0xx_hal_wwdg.h"
 
#endif /* HAL_WWDG_MODULE_ENABLED */
 
 
/* Exported macro ------------------------------------------------------------*/
 
#ifdef  USE_FULL_ASSERT
 
/**
 
  * @brief  The assert_param macro is used for function's parameters check.
 
  * @param  expr: If expr is false, it calls assert_failed function
 
  *         which reports the name of the source file and the source
 
  *         line number of the call that failed. 
 
  *         If expr is true, it returns no value.
 
  * @retval None
 
  */
 
  #define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__))
 
/* Exported functions ------------------------------------------------------- */
 
  void assert_failed(uint8_t* file, uint32_t line);
 
#else
 
  #define assert_param(expr) ((void)0)
 
#endif /* USE_FULL_ASSERT */    
 
    
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_CONF_H */
 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_cortex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_cortex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of CORTEX HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_CORTEX_H
 
#define __STM32F0xx_HAL_CORTEX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup CORTEX CORTEX HAL module driver
 
  * @{
 
  */ 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup CORTEX_Exported_Constants CORTEX Exported Constants
 
  * @{
 
  */
 
  
 
/** @defgroup CORTEX_Priority CORTEX Priority
 
  * @{
 
  */
 
#define IS_NVIC_PREEMPTION_PRIORITY(PRIORITY)  ((PRIORITY) < 0x4)
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup CORTEX_SysTick_clock_source CORTEX SysTick clock source
 
  * @{
 
  */
 
#define SYSTICK_CLKSOURCE_HCLK_DIV8    ((uint32_t)0x00000000)
 
#define SYSTICK_CLKSOURCE_HCLK         ((uint32_t)0x00000004)
 
#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SYSTICK_CLKSOURCE_HCLK) || \
 
                                      ((SOURCE) == SYSTICK_CLKSOURCE_HCLK_DIV8))
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/* Exported Macros -----------------------------------------------------------*/
 
/** @defgroup CORTEX_Exported_Macro CORTEX Exported Macro
 
  * @{
 
  */
 
 
/** @brief Configures the SysTick clock source.
 
  * @param __CLKSRC__: specifies the SysTick clock source.
 
  *   This parameter can be one of the following values:
 
  *     @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
 
  *     @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
 
  * @retval None
 
  */
 
#define __HAL_CORTEX_SYSTICKCLK_CONFIG(__CLKSRC__)                             \
 
                            do {                                               \
 
                                 if ((__CLKSRC__) == SYSTICK_CLKSOURCE_HCLK)   \
 
                                  {                                            \
 
                                    SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;   \
 
                                  }                                            \
 
                                 else                                          \
 
                                    SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;  \
 
                                } while(0)
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup CORTEX_Exported_Functions CORTEX Exported Functions
 
  * @{
 
  */
 
/** @addtogroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions
 
 * @{
 
 */
 
/* Initialization and de-initialization functions *******************************/
 
void HAL_NVIC_SetPriority(IRQn_Type IRQn,uint32_t PreemptPriority, uint32_t SubPriority);
 
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn);
 
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn);
 
void HAL_NVIC_SystemReset(void);
 
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup CORTEX_Exported_Functions_Group2 Peripheral Control functions 
 
 *  @brief   Cortex control functions
 
 * @{
 
 */
 
 
 
/* Peripheral Control functions *************************************************/
 
uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn);
 
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn);
 
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn);
 
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn);
 
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource);
 
void HAL_SYSTICK_IRQHandler(void);
 
void HAL_SYSTICK_Callback(void);
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
    
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_CORTEX_H */
 
 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_crc.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_crc.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of CRC HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_CRC_H
 
#define __STM32F0xx_HAL_CRC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup CRC CRC HAL module driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup CRC_Exported_Types CRC Exported Types
 
  * @{
 
  */
 
/** 
 
  * @brief  CRC HAL State Structure definition  
 
  */ 
 
typedef enum
 
{                                            
 
  HAL_CRC_STATE_RESET     = 0x00,  /*!< CRC not yet initialized or disabled */
 
  HAL_CRC_STATE_READY     = 0x01,  /*!< CRC initialized and ready for use   */
 
  HAL_CRC_STATE_BUSY      = 0x02,  /*!< CRC internal process is ongoing     */
 
  HAL_CRC_STATE_TIMEOUT   = 0x03,  /*!< CRC timeout state                   */
 
  HAL_CRC_STATE_ERROR     = 0x04   /*!< CRC error state                     */
 
}HAL_CRC_StateTypeDef;
 
 
 
/** 
 
  * @brief CRC Init Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint8_t DefaultPolynomialUse;       /*!< This parameter is a value of @ref CRC_Default_Polynomial and indicates if default polynomial is used.  
 
                                            If set to DEFAULT_POLYNOMIAL_ENABLE, resort to default 
 
                                            X^32 + X^26 + X^23 + X^22 + X^16 + X^12 + X^11 + X^10 +X^8 + X^7 + X^5 + X^4 + X^2+ X +1. 
 
                                            In that case, there is no need to set GeneratingPolynomial field.
 
                                            If otherwise set to DEFAULT_POLYNOMIAL_DISABLE, GeneratingPolynomial and CRCLength fields must be set */
 
 
  uint8_t DefaultInitValueUse;        /*!< This parameter is a value of @ref CRC_Default_InitValue_Use and indicates if default init value is used. 
 
                                           If set to DEFAULT_INIT_VALUE_ENABLE, resort to default
 
                                           0xFFFFFFFF value. In that case, there is no need to set InitValue field.   
 
                                           If otherwise set to DEFAULT_INIT_VALUE_DISABLE,  InitValue field must be set */
 
 
  uint32_t GeneratingPolynomial;      /*!< Set CRC generating polynomial. 7, 8, 16 or 32-bit long value for a polynomial degree
 
                                           respectively equal to 7, 8, 16 or 32. This field is written in normal representation, 
 
                                           e.g., for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65.
 
                                           No need to specify it if DefaultPolynomialUse is set to DEFAULT_POLYNOMIAL_ENABLE   */                                                
 
 
  uint32_t CRCLength;                 /*!< This parameter is a value of @ref CRCEx_Polynomial_Size_Definitions and indicates CRC length.
 
                                           Value can be either one of
 
                                           CRC_POLYLENGTH_32B                  (32-bit CRC)
 
                                           CRC_POLYLENGTH_16B                  (16-bit CRC)
 
                                           CRC_POLYLENGTH_8B                   (8-bit CRC)
 
                                           CRC_POLYLENGTH_7B                   (7-bit CRC) */
 
                                              
 
  uint32_t InitValue;                 /*!< Init value to initiate CRC computation. No need to specify it if DefaultInitValueUse 
 
                                           is set to DEFAULT_INIT_VALUE_ENABLE   */                                                
 
  
 
  uint32_t InputDataInversionMode;    /*!< This parameter is a value of @ref CRCEx_Input_Data_Inversion and specifies input data inversion mode. 
 
                                           Can be either one of the following values 
 
                                           CRC_INPUTDATA_INVERSION_NONE      no input data inversion
 
                                           CRC_INPUTDATA_INVERSION_BYTE      byte-wise inversion, 0x1A2B3C4D becomes 0x58D43CB2
 
                                           CRC_INPUTDATA_INVERSION_HALFWORD  halfword-wise inversion, 0x1A2B3C4D becomes 0xD458B23C
 
                                           CRC_INPUTDATA_INVERSION_WORD      word-wise inversion, 0x1A2B3C4D becomes 0xB23CD458 */  
 
                                              
 
  uint32_t OutputDataInversionMode;   /*!< This parameter is a value of @ref CRCEx_Output_Data_Inversion and specifies output data (i.e. CRC) inversion mode.
 
                                            Can be either 
 
                                            CRC_OUTPUTDATA_INVERSION_DISABLED   no CRC inversion, or 
 
                                            CRC_OUTPUTDATA_INVERSION_ENABLED    CRC 0x11223344 is converted into 0x22CC4488 */                                           
 
}CRC_InitTypeDef;
 
 
 
/** 
 
  * @brief  CRC Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  CRC_TypeDef                 *Instance;   /*!< Register base address        */ 
 
  
 
  CRC_InitTypeDef             Init;        /*!< CRC configuration parameters */
 
  
 
  HAL_LockTypeDef             Lock;        /*!< CRC Locking object           */
 
    
 
  __IO HAL_CRC_StateTypeDef   State;       /*!< CRC communication state      */
 
  
 
  uint32_t InputDataFormat;                /*!< This parameter is a value of @ref CRC_Input_Buffer_Format and specifies input data format. 
 
                                            Can be either 
 
                                            CRC_INPUTDATA_FORMAT_BYTES       input data is a stream of bytes (8-bit data)
 
                                            CRC_INPUTDATA_FORMAT_HALFWORDS   input data is a stream of half-words (16-bit data)
 
                                            CRC_INPUTDATA_FORMAT_WORDS       input data is a stream of words (32-bits data)                                                                                        
 
                                           Note that constant CRC_INPUT_FORMAT_UNDEFINED is defined but an initialization error
 
                                           must occur if InputBufferFormat is not one of the three values listed above  */ 
 
}CRC_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup CRC_Exported_Constants CRC Exported Constants
 
  * @{
 
  */
 
/** @defgroup CRC_Default_Polynomial_Value Default CRC generating polynomial
 
  * @{
 
  */
 
#define DEFAULT_CRC32_POLY      0x04C11DB7
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRC_Default_InitValue Default CRC computation initialization value
 
  * @{
 
  */
 
#define DEFAULT_CRC_INITVALUE   0xFFFFFFFF
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRC_Default_Polynomial Indicates whether or not default polynomial is used
 
  * @{
 
  */
 
#define DEFAULT_POLYNOMIAL_ENABLE       ((uint8_t)0x00)
 
#define DEFAULT_POLYNOMIAL_DISABLE      ((uint8_t)0x01)
 
 
#define IS_DEFAULT_POLYNOMIAL(DEFAULT) (((DEFAULT) == DEFAULT_POLYNOMIAL_ENABLE) || \
 
                                        ((DEFAULT) == DEFAULT_POLYNOMIAL_DISABLE))
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup CRC_Default_InitValue_Use    Indicates whether or not default init value is used
 
  * @{
 
  */                                      
 
#define DEFAULT_INIT_VALUE_ENABLE      ((uint8_t)0x00)
 
#define DEFAULT_INIT_VALUE_DISABLE     ((uint8_t)0x01)
 
 
#define IS_DEFAULT_INIT_VALUE(VALUE)  (((VALUE) == DEFAULT_INIT_VALUE_ENABLE) || \
 
                                       ((VALUE) == DEFAULT_INIT_VALUE_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRC_Input_Buffer_Format Input Buffer Format
 
  * @{
 
  */
 
/* WARNING: CRC_INPUT_FORMAT_UNDEFINED is created for reference purposes but
 
 * an error is triggered in HAL_CRC_Init() if InputDataFormat field is set 
 
 * to CRC_INPUT_FORMAT_UNDEFINED: the format MUST be defined by the user for 
 
 * the CRC APIs to provide a correct result */   
 
#define CRC_INPUTDATA_FORMAT_UNDEFINED             ((uint32_t)0x00000000)
 
#define CRC_INPUTDATA_FORMAT_BYTES                 ((uint32_t)0x00000001)
 
#define CRC_INPUTDATA_FORMAT_HALFWORDS             ((uint32_t)0x00000002)
 
#define CRC_INPUTDATA_FORMAT_WORDS                 ((uint32_t)0x00000003)
 
 
#define IS_CRC_INPUTDATA_FORMAT(FORMAT)           (((FORMAT) == CRC_INPUTDATA_FORMAT_BYTES) || \
 
                                                   ((FORMAT) == CRC_INPUTDATA_FORMAT_HALFWORDS) || \
 
                                                   ((FORMAT) == CRC_INPUTDATA_FORMAT_WORDS))                                                  
 
/**                                               
 
  * @}
 
  */   
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup CRC_Exported_Macros CRC Exported Macros
 
  * @{
 
  */
 
 
/** @brief Reset CRC handle state
 
  * @param  __HANDLE__: CRC handle.
 
  * @retval None
 
  */
 
#define __HAL_CRC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CRC_STATE_RESET)
 
 
/**
 
  * @brief  Reset CRC Data Register.
 
  * @param  __HANDLE__: CRC handle
 
  * @retval None.
 
  */
 
#define __HAL_CRC_DR_RESET(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRC_CR_RESET)
 
 
/**
 
  * @brief  Set CRC INIT non-default value
 
  * @param  __HANDLE__    : CRC handle
 
  * @param  __INIT__      : 32-bit initial value  
 
  * @retval None.
 
  */
 
#define __HAL_CRC_INITIALCRCVALUE_CONFIG(__HANDLE__, __INIT__) ((__HANDLE__)->Instance->INIT = (__INIT__))    
 
 
/**
 
  * @}
 
  */
 
 
 
/* Include CRC HAL Extension module */
 
#include "stm32f0xx_hal_crc_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup CRC_Exported_Functions CRC Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup CRC_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions. 
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc);
 
HAL_StatusTypeDef HAL_CRC_DeInit (CRC_HandleTypeDef *hcrc);
 
void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc);
 
void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc);
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup CRC_Exported_Functions_Group2 Peripheral Control functions 
 
 *  @brief    management functions.
 
 * @{
 
 */ 
 
 
 
/* Peripheral Control functions ***********************************************/
 
uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength);
 
uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength);
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup CRC_Exported_Functions_Group3 Peripheral State functions 
 
 *  @brief    Peripheral State functions.
 
 * @{
 
 */     
 
/* Peripheral State and Error functions ***************************************/
 
HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc);
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup CRC_Exported_Constants CRC Exported Constants 
 
 *  @brief    aliases for inter STM32 series compatibility
 
 * @{
 
 */
 
/** @defgroup CRC_Aliases Aliases for inter STM32 series compatibility
 
  * @{
 
  */     
 
/* Aliases for inter STM32 series compatibility */
 
#define HAL_CRC_Input_Data_Reverse   HAL_CRCEx_Input_Data_Reverse
 
#define HAL_CRC_Output_Data_Reverse  HAL_CRCEx_Output_Data_Reverse
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_CRC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_crc_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_crc_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of CRC HAL extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_CRC_EX_H
 
#define __STM32F0xx_HAL_CRC_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup CRCEx CRCEx Extended HAL Module Driver 
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup CRCEx_Exported_Constants CRCEx Exported Constants
 
  * @{
 
  */
 
/** @defgroup CRCEx_Input_Data_Inversion Input Data Inversion Modes
 
  * @{
 
  */
 
#define CRC_INPUTDATA_INVERSION_NONE              ((uint32_t)0x00000000)
 
#define CRC_INPUTDATA_INVERSION_BYTE              ((uint32_t)CRC_CR_REV_IN_0)
 
#define CRC_INPUTDATA_INVERSION_HALFWORD          ((uint32_t)CRC_CR_REV_IN_1)
 
#define CRC_INPUTDATA_INVERSION_WORD              ((uint32_t)CRC_CR_REV_IN)
 
 
#define IS_CRC_INPUTDATA_INVERSION_MODE(MODE)     (((MODE) == CRC_INPUTDATA_INVERSION_NONE) || \
 
                                                   ((MODE) == CRC_INPUTDATA_INVERSION_BYTE) || \
 
                                                   ((MODE) == CRC_INPUTDATA_INVERSION_HALFWORD) || \
 
                                                   ((MODE) == CRC_INPUTDATA_INVERSION_WORD))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRCEx_Output_Data_Inversion Output Data Inversion Modes
 
  * @{
 
  */
 
#define CRC_OUTPUTDATA_INVERSION_DISABLED         ((uint32_t)0x00000000)
 
#define CRC_OUTPUTDATA_INVERSION_ENABLED          ((uint32_t)CRC_CR_REV_OUT)
 
 
#define IS_CRC_OUTPUTDATA_INVERSION_MODE(MODE)    (((MODE) == CRC_OUTPUTDATA_INVERSION_DISABLED) || \
 
                                                   ((MODE) == CRC_OUTPUTDATA_INVERSION_ENABLED))
 
/**                                               
 
  * @}
 
  */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/** @defgroup CRCEx_Polynomial_Sizes Polynomial sizes to configure the IP
 
  * @{
 
  */
 
#define CRC_POLYLENGTH_32B                  ((uint32_t)0x00000000)
 
#define CRC_POLYLENGTH_16B                  ((uint32_t)CRC_CR_POLYSIZE_0)
 
#define CRC_POLYLENGTH_8B                   ((uint32_t)CRC_CR_POLYSIZE_1)
 
#define CRC_POLYLENGTH_7B                   ((uint32_t)CRC_CR_POLYSIZE)
 
#define IS_CRC_POL_LENGTH(LENGTH)     (((LENGTH) == CRC_POLYLENGTH_32B) || \
 
                                       ((LENGTH) == CRC_POLYLENGTH_16B) || \
 
                                       ((LENGTH) == CRC_POLYLENGTH_8B)  || \
 
                                       ((LENGTH) == CRC_POLYLENGTH_7B))  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRCEx_Polynomial_Size_Definitions CRC polynomial possible sizes actual definitions
 
  * @{
 
  */
 
#define HAL_CRC_LENGTH_32B     32
 
#define HAL_CRC_LENGTH_16B     16
 
#define HAL_CRC_LENGTH_8B       8
 
#define HAL_CRC_LENGTH_7B       7
 
/**
 
  * @}
 
  */  
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */   
 
/**
 
  * @}
 
  */  
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup CRCEx_Exported_Macros CRCEx Exported Macros
 
  * @{
 
  */
 
    
 
/**
 
  * @brief  Set CRC output reversal
 
  * @param  __HANDLE__    : CRC handle
 
  * @retval None.
 
  */
 
#define  __HAL_CRC_OUTPUTREVERSAL_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRC_CR_REV_OUT)   
 
 
/**
 
  * @brief  Unset CRC output reversal
 
  * @param  __HANDLE__    : CRC handle
 
  * @retval None.
 
  */
 
#define __HAL_CRC_OUTPUTREVERSAL_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR &= ~(CRC_CR_REV_OUT))   
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Set CRC non-default polynomial
 
  * @param  __HANDLE__    : CRC handle
 
  * @param  __POLYNOMIAL__: 7, 8, 16 or 32-bit polynomial  
 
  * @retval None.
 
  */
 
#define __HAL_CRC_POLYNOMIAL_CONFIG(__HANDLE__, __POLYNOMIAL__) ((__HANDLE__)->Instance->POL = (__POLYNOMIAL__))
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */ 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup CRCEx_Exported_Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup CRCEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions
 
  * @brief    Extended Initialization and Configuration functions.
 
  * @{
 
  */
 
     
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_CRCEx_Init(CRC_HandleTypeDef *hcrc);
 
HAL_StatusTypeDef HAL_CRCEx_Input_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t InputReverseMode);
 
HAL_StatusTypeDef HAL_CRCEx_Output_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t OutputReverseMode);
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
HAL_StatusTypeDef HAL_CRCEx_Polynomial_Set(CRC_HandleTypeDef *hcrc, uint32_t Pol, uint32_t PolyLength);
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */ 
 
/**
 
  * @}
 
  */
 
/* Peripheral Control functions ***********************************************/
 
/* Peripheral State and Error functions ***************************************/
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_CRC_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_dac.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dac.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of DAC HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_DAC_H
 
#define __STM32F0xx_HAL_DAC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup DAC
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/
 
 
/** @defgroup DAC_Exported_Types DAC Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_DAC_STATE_RESET             = 0x00,  /*!< DAC not yet initialized or disabled  */
 
  HAL_DAC_STATE_READY             = 0x01,  /*!< DAC initialized and ready for use    */
 
  HAL_DAC_STATE_BUSY              = 0x02,  /*!< DAC internal processing is ongoing   */
 
  HAL_DAC_STATE_TIMEOUT           = 0x03,  /*!< DAC timeout state                    */
 
  HAL_DAC_STATE_ERROR             = 0x04   /*!< DAC error state                      */
 
 
 
}HAL_DAC_StateTypeDef;
 
 
 
/** 
 
  * @brief  DAC handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  DAC_TypeDef                 *Instance;     /*!< Register base address             */
 
  
 
  __IO HAL_DAC_StateTypeDef   State;         /*!< DAC communication state           */
 
 
  HAL_LockTypeDef             Lock;          /*!< DAC locking object                */
 
  
 
  DMA_HandleTypeDef           *DMA_Handle1;  /*!< Pointer DMA handler for channel 1 */
 
  
 
  DMA_HandleTypeDef           *DMA_Handle2;  /*!< Pointer DMA handler for channel 2 */ 
 
  
 
  __IO uint32_t               ErrorCode;     /*!< DAC Error code                    */
 
  
 
}DAC_HandleTypeDef;
 
 
/** 
 
  * @brief   DAC Configuration regular Channel structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t DAC_Trigger;       /*!< Specifies the external trigger for the selected DAC channel.
 
                                   This parameter can be a value of @ref DAC_trigger_selection */
 
  
 
  uint32_t DAC_OutputBuffer;  /*!< Specifies whether the DAC channel output buffer is enabled or disabled.
 
                                   This parameter can be a value of @ref DAC_output_buffer */
 
  
 
}DAC_ChannelConfTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup DAC_Exported_Constants DAC Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup DAC_Error_Code DAC Error Code
 
  * @{
 
  */
 
#define  HAL_DAC_ERROR_NONE              0x00    /*!< No error                          */
 
#define  HAL_DAC_ERROR_DMAUNDERRUNCH1    0x01    /*!< DAC channel1 DAM underrun error   */
 
#define  HAL_DAC_ERROR_DMAUNDERRUNCH2    0x02    /*!< DAC channel2 DAM underrun error   */
 
#define  HAL_DAC_ERROR_DMA               0x04    /*!< DMA error                         */   
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup DAC_output_buffer DAC output buffer
 
  * @{
 
  */
 
#define DAC_OUTPUTBUFFER_ENABLE            ((uint32_t)0x00000000)
 
#define DAC_OUTPUTBUFFER_DISABLE           ((uint32_t)DAC_CR_BOFF1)
 
 
#define IS_DAC_OUTPUT_BUFFER_STATE(STATE) (((STATE) == DAC_OUTPUTBUFFER_ENABLE) || \
 
                                           ((STATE) == DAC_OUTPUTBUFFER_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_data_alignement DAC data alignement
 
  * @{
 
  */
 
#define DAC_ALIGN_12B_R                    ((uint32_t)0x00000000)
 
#define DAC_ALIGN_12B_L                    ((uint32_t)0x00000004)
 
#define DAC_ALIGN_8B_R                     ((uint32_t)0x00000008)
 
 
#define IS_DAC_ALIGN(ALIGN) (((ALIGN) == DAC_ALIGN_12B_R) || \
 
                             ((ALIGN) == DAC_ALIGN_12B_L) || \
 
                             ((ALIGN) == DAC_ALIGN_8B_R))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_data DAC data
 
  * @{
 
  */
 
#define IS_DAC_DATA(DATA) ((DATA) <= 0xFFF0) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_flags_definition DAC flags definition
 
  * @{
 
  */ 
 
#define DAC_FLAG_DMAUDR1                   ((uint32_t)DAC_SR_DMAUDR1)
 
#define DAC_FLAG_DMAUDR2                   ((uint32_t)DAC_SR_DMAUDR2)   
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_IT_definition  DAC IT definition
 
  * @{
 
  */ 
 
#define DAC_IT_DMAUDR1                   ((uint32_t)DAC_SR_DMAUDR1)
 
#define DAC_IT_DMAUDR2                   ((uint32_t)DAC_SR_DMAUDR2)   
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup DAC_Exported_Macros DAC Exported Macros
 
  * @{
 
  */
 
 
/** @brief Reset DAC handle state
 
  * @param  __HANDLE__: specifies the DAC handle.
 
  * @retval None
 
  */
 
#define __HAL_DAC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DAC_STATE_RESET)
 
 
/** @brief Enable the DAC channel
 
  * @param  __HANDLE__: specifies the DAC handle.
 
  * @param  __DAC_Channel__: specifies the DAC channel
 
  * @retval None
 
  */
 
#define __HAL_DAC_ENABLE(__HANDLE__, __DAC_Channel__) \
 
((__HANDLE__)->Instance->CR |=  (DAC_CR_EN1 << (__DAC_Channel__)))
 
 
/** @brief Disable the DAC channel
 
  * @param  __HANDLE__: specifies the DAC handle
 
  * @param  __DAC_Channel__: specifies the DAC channel.
 
  * @retval None
 
  */
 
#define __HAL_DAC_DISABLE(__HANDLE__, __DAC_Channel__) \
 
((__HANDLE__)->Instance->CR &=  ~(DAC_CR_EN1 << (__DAC_Channel__)))
 
 
 
/** @brief Set DHR12R1 alignment
 
  * @param  __ALIGNEMENT__: specifies the DAC alignement
 
  * @retval None
 
  */
 
#define __HAL_DHR12R1_ALIGNEMENT(__ALIGNEMENT__) (((uint32_t)0x00000008) + (__ALIGNEMENT__))
 
 
/** @brief  Set DHR12R2 alignment
 
  * @param  __ALIGNEMENT__: specifies the DAC alignement
 
  * @retval None
 
  */
 
#define __HAL_DHR12R2_ALIGNEMENT(__ALIGNEMENT__) (((uint32_t)0x00000014) + (__ALIGNEMENT__))
 
 
/** @brief  Set DHR12RD alignment
 
  * @param  __ALIGNEMENT__: specifies the DAC alignement
 
  * @retval None
 
  */
 
#define __HAL_DHR12RD_ALIGNEMENT(__ALIGNEMENT__) (((uint32_t)0x00000020) + (__ALIGNEMENT__))
 
 
/** @brief Enable the DAC interrupt
 
  * @param  __HANDLE__: specifies the DAC handle
 
  * @param  __INTERRUPT__: specifies the DAC interrupt.
 
  * @retval None
 
  */
 
#define __HAL_DAC_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CR) |= (__INTERRUPT__))
 
 
/** @brief Disable the DAC interrupt
 
  * @param  __HANDLE__: specifies the DAC handle
 
  * @param  __INTERRUPT__: specifies the DAC interrupt.
 
  * @retval None
 
  */
 
#define __HAL_DAC_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CR) &= ~(__INTERRUPT__))
 
 
/** @brief  Get the selected DAC's flag status.
 
  * @param  __HANDLE__: specifies the DAC handle.
 
  * @param  __FLAG__: specifies the FLAG.
 
  * @retval None
 
  */
 
#define __HAL_DAC_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
 
 
/** @brief  Clear the DAC's flag.
 
  * @param  __HANDLE__: specifies the DAC handle.
 
  * @param  __FLAG__: specifies the FLAG.
 
  * @retval None
 
  */
 
#define __HAL_DAC_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR) = (__FLAG__))
 
 
/**
 
  * @}
 
  */
 
  
 
 
/* Include DAC HAL Extension module */
 
#include "stm32f0xx_hal_dac_ex.h"   
 
 
/* Exported functions --------------------------------------------------------*/  
 
 
/** @addtogroup DAC_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup DAC_Exported_Functions_Group1
 
  * @{
 
  */  
 
/* Initialization and de-initialization functions *****************************/ 
 
HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef* hdac);
 
HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef* hdac);
 
void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac);
 
void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup DAC_Exported_Functions_Group2
 
 * @{
 
 */    
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel);
 
HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef* hdac, uint32_t Channel);
 
HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment);
 
HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel);
 
 
void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef* hdac);
 
void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef* hdac);
 
void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac);
 
void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup DAC_Exported_Functions_Group3
 
  * @{
 
  */ 
 
/* Peripheral Control functions ***********************************************/
 
HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel);
 
HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data);
 
uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup DAC_Exported_Functions_Group4
 
  * @{
 
  */     
 
/* Peripheral State and Error functions ***************************************/
 
HAL_DAC_StateTypeDef HAL_DAC_GetState(DAC_HandleTypeDef* hdac);
 
void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac);
 
uint32_t HAL_DAC_GetError(DAC_HandleTypeDef *hdac);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
    
 
#endif /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
  
 
#ifdef __cplusplus
 
}
 
#endif 
 
  
 
 
#endif /*__STM32F0xx_HAL_DAC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_dac_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dac_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of DAC HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_DAC_EX_H
 
#define __STM32F0xx_HAL_DAC_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
           
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup DACEx
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/
 
   
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup DACEx_Exported_Constants DACEx Exported Constants
 
  * @{
 
  */  
 
/** @defgroup DACEx_wave_generation DACEx wave generation
 
  * @{
 
  */
 
#define DAC_WAVEGENERATION_NONE            ((uint32_t)0x00000000)
 
#define DAC_WAVEGENERATION_NOISE           ((uint32_t)DAC_CR_WAVE1_0)
 
#define DAC_WAVEGENERATION_TRIANGLE        ((uint32_t)DAC_CR_WAVE1_1)
 
 
#define IS_DAC_GENERATE_WAVE(WAVE) (((WAVE) == DAC_WAVEGENERATION_NONE) || \
 
                                    ((WAVE) == DAC_WAVEGENERATION_NOISE) || \
 
                                    ((WAVE) == DAC_WAVEGENERATION_TRIANGLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DACEx_lfsrunmask_triangleamplitude DACEx lfsrunmask triangleamplitude
 
  * @{
 
  */
 
#define DAC_LFSRUNMASK_BIT0                ((uint32_t)0x00000000) /*!< Unmask DAC channel LFSR bit0 for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS1_0             ((uint32_t)DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[1:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS2_0             ((uint32_t)DAC_CR_MAMP1_1) /*!< Unmask DAC channel LFSR bit[2:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS3_0             ((uint32_t)DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0)/*!< Unmask DAC channel LFSR bit[3:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS4_0             ((uint32_t)DAC_CR_MAMP1_2) /*!< Unmask DAC channel LFSR bit[4:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS5_0             ((uint32_t)DAC_CR_MAMP1_2 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[5:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS6_0             ((uint32_t)DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1) /*!< Unmask DAC channel LFSR bit[6:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS7_0             ((uint32_t)DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[7:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS8_0             ((uint32_t)DAC_CR_MAMP1_3) /*!< Unmask DAC channel LFSR bit[8:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS9_0             ((uint32_t)DAC_CR_MAMP1_3 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[9:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS10_0            ((uint32_t)DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1) /*!< Unmask DAC channel LFSR bit[10:0] for noise wave generation */
 
#define DAC_LFSRUNMASK_BITS11_0            ((uint32_t)DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Unmask DAC channel LFSR bit[11:0] for noise wave generation */
 
#define DAC_TRIANGLEAMPLITUDE_1            ((uint32_t)0x00000000) /*!< Select max triangle amplitude of 1 */
 
#define DAC_TRIANGLEAMPLITUDE_3            ((uint32_t)DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 3 */
 
#define DAC_TRIANGLEAMPLITUDE_7            ((uint32_t)DAC_CR_MAMP1_1) /*!< Select max triangle amplitude of 7 */
 
#define DAC_TRIANGLEAMPLITUDE_15           ((uint32_t)DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 15 */
 
#define DAC_TRIANGLEAMPLITUDE_31           ((uint32_t)DAC_CR_MAMP1_2) /*!< Select max triangle amplitude of 31 */
 
#define DAC_TRIANGLEAMPLITUDE_63           ((uint32_t)DAC_CR_MAMP1_2 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 63 */
 
#define DAC_TRIANGLEAMPLITUDE_127          ((uint32_t)DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1) /*!< Select max triangle amplitude of 127 */
 
#define DAC_TRIANGLEAMPLITUDE_255          ((uint32_t)DAC_CR_MAMP1_2 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 255 */
 
#define DAC_TRIANGLEAMPLITUDE_511          ((uint32_t)DAC_CR_MAMP1_3) /*!< Select max triangle amplitude of 511 */
 
#define DAC_TRIANGLEAMPLITUDE_1023         ((uint32_t)DAC_CR_MAMP1_3 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 1023 */
 
#define DAC_TRIANGLEAMPLITUDE_2047         ((uint32_t)DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1) /*!< Select max triangle amplitude of 2047 */
 
#define DAC_TRIANGLEAMPLITUDE_4095         ((uint32_t)DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0) /*!< Select max triangle amplitude of 4095 */
 
 
#define IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(VALUE) (((VALUE) == DAC_LFSRUNMASK_BIT0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS1_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS2_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS3_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS4_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS5_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS6_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS7_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS8_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS9_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS10_0) || \
 
                                                      ((VALUE) == DAC_LFSRUNMASK_BITS11_0) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_1) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_3) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_7) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_15) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_31) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_63) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_127) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_255) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_511) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_1023) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_2047) || \
 
                                                      ((VALUE) == DAC_TRIANGLEAMPLITUDE_4095))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DACEx_wave_generationbis DACEx wave generation bis
 
  * @{
 
  */
 
#define DAC_WAVE_NOISE                     ((uint32_t)DAC_CR_WAVE1_0)
 
#define DAC_WAVE_TRIANGLE                  ((uint32_t)DAC_CR_WAVE1_1)
 
 
#define IS_DAC_WAVE(WAVE) (((WAVE) == DAC_WAVE_NOISE) || \
 
                           ((WAVE) == DAC_WAVE_TRIANGLE))
 
                           
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup DACEx_Exported_Macros DACEx Exported Macros
 
  * @{
 
  */
 
  
 
/** @defgroup DAC_trigger_selection DAC trigger selection
 
  * @{
 
  */
 
#if defined(STM32F051x8) || defined(STM32F058xx)
 
 
#define DAC_TRIGGER_NONE                   ((uint32_t)0x00000000) /*!< Conversion is automatic once the DAC1_DHRxxxx register 
 
                                                                       has been loaded, and not by external trigger */
 
#define DAC_TRIGGER_T2_TRGO                ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TEN1)) /*!< TIM2 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T3_TRGO                ((uint32_t)(DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM3 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T6_TRGO                ((uint32_t)DAC_CR_TEN1) /*!< TIM6 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T15_TRGO                ((uint32_t)(DAC_CR_TSEL1_1 | DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM15 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_EXT_IT9                ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TSEL1_1 | DAC_CR_TEN1)) /*!< EXTI Line9 event selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_SOFTWARE               ((uint32_t)(DAC_CR_TSEL1 | DAC_CR_TEN1)) /*!< Conversion started by software trigger for DAC channel */
 
 
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_TRIGGER_NONE) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T2_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T3_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T6_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T15_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_EXT_IT9) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_SOFTWARE))
 
 
#endif /* STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define DAC_TRIGGER_NONE                   ((uint32_t)0x00000000) /*!< Conversion is automatic once the DAC1_DHRxxxx register 
 
                                                                       has been loaded, and not by external trigger */
 
#define DAC_TRIGGER_T2_TRGO                ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TEN1)) /*!< TIM2 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T3_TRGO                ((uint32_t)(DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM3 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T6_TRGO                ((uint32_t)DAC_CR_TEN1) /*!< TIM6 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T7_TRGO                ((uint32_t)(DAC_CR_TSEL1_1 | DAC_CR_TEN1)) /*!< TIM7 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_T15_TRGO                ((uint32_t)(DAC_CR_TSEL1_1 | DAC_CR_TSEL1_0 | DAC_CR_TEN1)) /*!< TIM15 TRGO selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_EXT_IT9                ((uint32_t)(DAC_CR_TSEL1_2 | DAC_CR_TSEL1_1 | DAC_CR_TEN1)) /*!< EXTI Line9 event selected as external conversion trigger for DAC channel */
 
#define DAC_TRIGGER_SOFTWARE               ((uint32_t)(DAC_CR_TSEL1 | DAC_CR_TEN1)) /*!< Conversion started by software trigger for DAC channel */
 
      
 
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_TRIGGER_NONE) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T2_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T3_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T6_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T7_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_T15_TRGO) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_EXT_IT9) || \
 
                                 ((TRIGGER) == DAC_TRIGGER_SOFTWARE))      
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_Channel_selection DAC Channel selection
 
  * @{
 
  */
 
  
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define DAC_CHANNEL_1                      ((uint32_t)0x00000000)
 
#define DAC_CHANNEL_2                      ((uint32_t)0x00000010)
 
 
#define IS_DAC_CHANNEL(CHANNEL) (((CHANNEL) == DAC_CHANNEL_1) || \
 
                                 ((CHANNEL) == DAC_CHANNEL_2))
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F051x8) || defined(STM32F058xx)
 
 
#define DAC_CHANNEL_1                      ((uint32_t)0x00000000)
 
#define IS_DAC_CHANNEL(CHANNEL) (((CHANNEL) == DAC_CHANNEL_1))
 
 
#endif  /* STM32F051x8 || STM32F058xx */ 
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/  
 
/* Extension features functions ***********************************************/
 
 
/** @addtogroup DACEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup DACEx_Exported_Functions_Group1 Extended features functions
 
 *  @brief    Extended features functions
 
   * @{
 
  */
 
  
 
uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac);
 
HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude);
 
HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude);
 
HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef* hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2);
 
 
void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac);
 
void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac);
 
void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef* hdac);
 
void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef* hdac);
 
 
void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma);
 
void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma);
 
void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma); 
 
/**
 
  * @}
 
  */
 
  
 
 /**
 
 * @}
 
 */
 
#endif /*  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
#ifdef __cplusplus
 
}
 
#endif   /* STM32F051x8 || STM32F058xx ||                */
 
         /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
         /* STM32F091xC || STM32F098xx */
 
 
#endif /*__STM32F0xx_HAL_DAC_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_def.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_def.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file contains HAL common defines, enumeration, macros and 
 
  *          structures definitions. 
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_DEF
 
#define __STM32F0xx_HAL_DEF
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx.h"
 
 
/* Exported types ------------------------------------------------------------*/
 
 
/** 
 
  * @brief  HAL Status structures definition  
 
  */  
 
typedef enum 
 
{
 
  HAL_OK       = 0x00,
 
  HAL_ERROR    = 0x01,
 
  HAL_BUSY     = 0x02,
 
  HAL_TIMEOUT  = 0x03
 
} HAL_StatusTypeDef;
 
 
/** 
 
  * @brief  HAL Lock structures definition  
 
  */
 
typedef enum 
 
{
 
  HAL_UNLOCKED = 0x00,
 
  HAL_LOCKED   = 0x01  
 
} HAL_LockTypeDef;
 
 
/* Exported macro ------------------------------------------------------------*/
 
#ifndef NULL
 
  #define NULL      (void *) 0
 
#endif
 
 
#define HAL_MAX_DELAY      0xFFFFFFFF
 
 
#define HAL_IS_BIT_SET(REG, BIT)         (((REG) & (BIT)) != RESET)
 
#define HAL_IS_BIT_CLR(REG, BIT)         (((REG) & (BIT)) == RESET)
 
 
#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD_, __DMA_HANDLE_)                 \
 
                        do{                                                        \
 
                              (__HANDLE__)->__PPP_DMA_FIELD_ = &(__DMA_HANDLE_);   \
 
                              (__DMA_HANDLE_).Parent = (__HANDLE__);               \
 
                          } while(0)
 
 
/** @brief Reset the Handle's State field.
 
  * @param __HANDLE__: specifies the Peripheral Handle.
 
  * @note  This macro can be used for the following purpose:
 
  *          - When the Handle is declared as local variable; before passing it as parameter
 
  *            to HAL_PPP_Init() for the first time, it is mandatory to use this macro
 
  *            to set to 0 the Handle's "State" field.
 
  *            Otherwise, "State" field may have any random value and the first time the function
 
  *            HAL_PPP_Init() is called, the low level hardware initialization will be missed
 
  *            (i.e. HAL_PPP_MspInit() will not be executed).
 
  *          - When there is a need to reconfigure the low level hardware: instead of calling
 
  *            HAL_PPP_DeInit() then HAL_PPP_Init(), user can make a call to this macro then HAL_PPP_Init().
 
  *            In this later function, when the Handle's "State" field is set to 0, it will execute the function
 
  *            HAL_PPP_MspInit() which will reconfigure the low level hardware.
 
  * @retval None
 
  */
 
#define __HAL_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = 0)
 
 
#if (USE_RTOS == 1)
 
  #error " USE_RTOS should be 0 in the current HAL release "
 
#else
 
  #define __HAL_LOCK(__HANDLE__)                                           \
 
                                do{                                        \
 
                                    if((__HANDLE__)->Lock == HAL_LOCKED)   \
 
                                    {                                      \
 
                                       return HAL_BUSY;                    \
 
                                    }                                      \
 
                                    else                                   \
 
                                    {                                      \
 
                                       (__HANDLE__)->Lock = HAL_LOCKED;    \
 
                                    }                                      \
 
       	                          }while (0)
 
 
  #define __HAL_UNLOCK(__HANDLE__)                                          \
 
                                  do{                                       \
 
                                      (__HANDLE__)->Lock = HAL_UNLOCKED;    \
 
                                    }while (0)
 
#endif /* USE_RTOS */
 
 
#if  defined ( __GNUC__ )
 
  #ifndef __weak
 
    #define __weak   __attribute__((weak))
 
  #endif /* __weak */
 
  #ifndef __packed
 
    #define __packed __attribute__((__packed__))
 
  #endif /* __packed */
 
#endif /* __GNUC__ */
 
 
 
/* Macro to get variable aligned on 4-bytes, for __ICCARM__ the directive "#pragma data_alignment=4" must be used instead */
 
#if defined   (__GNUC__)        /* GNU Compiler */
 
  #ifndef __ALIGN_END
 
    #define __ALIGN_END    __attribute__ ((aligned (4)))
 
  #endif /* __ALIGN_END */
 
  #ifndef __ALIGN_BEGIN  
 
    #define __ALIGN_BEGIN
 
  #endif /* __ALIGN_BEGIN */
 
#else
 
  #ifndef __ALIGN_END
 
    #define __ALIGN_END
 
  #endif /* __ALIGN_END */
 
  #ifndef __ALIGN_BEGIN      
 
    #if defined   (__CC_ARM)      /* ARM Compiler */
 
      #define __ALIGN_BEGIN    __align(4)  
 
    #elif defined (__ICCARM__)    /* IAR Compiler */
 
      #define __ALIGN_BEGIN 
 
    #endif /* __CC_ARM */
 
  #endif /* __ALIGN_BEGIN */
 
#endif /* __GNUC__ */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* ___STM32F0xx_HAL_DEF */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_dma.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dma.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of DMA HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_DMA_H
 
#define __STM32F0xx_HAL_DMA_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup DMA
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup DMA_Exported_Types DMA Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  DMA Configuration Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Direction;                 /*!< Specifies if the data will be transferred from memory to peripheral, 
 
                                           from memory to memory or from peripheral to memory.
 
                                           This parameter can be a value of @ref DMA_Data_transfer_direction */
 
 
  uint32_t PeriphInc;                 /*!< Specifies whether the Peripheral address register should be incremented or not.
 
                                           This parameter can be a value of @ref DMA_Peripheral_incremented_mode */
 
                               
 
  uint32_t MemInc;                    /*!< Specifies whether the memory address register should be incremented or not.
 
                                           This parameter can be a value of @ref DMA_Memory_incremented_mode */
 
  
 
  uint32_t PeriphDataAlignment;       /*!< Specifies the Peripheral data width.
 
                                           This parameter can be a value of @ref DMA_Peripheral_data_size */
 
 
  uint32_t MemDataAlignment;          /*!< Specifies the Memory data width.
 
                                           This parameter can be a value of @ref DMA_Memory_data_size */
 
                               
 
  uint32_t Mode;                      /*!< Specifies the operation mode of the DMAy Channelx.
 
                                           This parameter can be a value of @ref DMA_mode
 
                                           @note The circular buffer mode cannot be used if the memory-to-memory
 
                                                 data transfer is configured on the selected Channel */ 
 
 
  uint32_t Priority;                   /*!< Specifies the software priority for the DMAy Channelx.
 
                                            This parameter can be a value of @ref DMA_Priority_level */
 
 
} DMA_InitTypeDef;
 
 
/** 
 
  * @brief DMA Configuration enumeration values definition 
 
  */  
 
typedef enum 
 
{
 
  DMA_MODE            = 0,      /*!< Control related DMA mode Parameter in DMA_InitTypeDef        */
 
  DMA_PRIORITY        = 1,      /*!< Control related priority level Parameter in DMA_InitTypeDef  */
 
  
 
} DMA_ControlTypeDef;
 
 
/**
 
  * @brief  HAL DMA State structures definition  
 
  */
 
typedef enum
 
{
 
  HAL_DMA_STATE_RESET             = 0x00,  /*!< DMA not yet initialized or disabled */  
 
  HAL_DMA_STATE_READY             = 0x01,  /*!< DMA process success and ready for use   */
 
  HAL_DMA_STATE_READY_HALF        = 0x11,  /*!< DMA Half process success            */
 
  HAL_DMA_STATE_BUSY              = 0x02,  /*!< DMA process is ongoing              */     
 
  HAL_DMA_STATE_TIMEOUT           = 0x03,  /*!< DMA timeout state                   */  
 
  HAL_DMA_STATE_ERROR             = 0x04,  /*!< DMA error state                     */
 
                                                                        
 
}HAL_DMA_StateTypeDef;
 
 
/** 
 
  * @brief  HAL DMA Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_DMA_FULL_TRANSFER      = 0x00,    /*!< Full transfer     */
 
  HAL_DMA_HALF_TRANSFER      = 0x01,    /*!< Half Transfer     */
 
 
}HAL_DMA_LevelCompleteTypeDef;
 
                                                                        
 
 
/** 
 
  * @brief  DMA handle Structure definition  
 
  */ 
 
typedef struct __DMA_HandleTypeDef
 
{  
 
  DMA_Channel_TypeDef   *Instance;                                                    /*!< Register base address                  */
 
  
 
  DMA_InitTypeDef       Init;                                                         /*!< DMA communication parameters           */ 
 
  
 
  HAL_LockTypeDef       Lock;                                                         /*!< DMA locking object                     */  
 
  
 
  HAL_DMA_StateTypeDef  State;                                                        /*!< DMA transfer state                     */
 
  
 
  void                  *Parent;                                                      /*!< Parent object state                    */  
 
  
 
  void                  (* XferCpltCallback)( struct __DMA_HandleTypeDef * hdma);     /*!< DMA transfer complete callback         */
 
  
 
  void                  (* XferHalfCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA Half transfer complete callback    */
 
  
 
  void                  (* XferErrorCallback)( struct __DMA_HandleTypeDef * hdma);    /*!< DMA transfer error callback            */
 
  
 
  __IO uint32_t         ErrorCode;                                                    /*!< DMA Error code                         */
 
  
 
} DMA_HandleTypeDef;    
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup DMA_Exported_Constants DMA Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup DMA_Error_Code DMA Error Code
 
  * @{
 
  */ 
 
#define HAL_DMA_ERROR_NONE      ((uint32_t)0x00000000)    /*!< No error             */
 
#define HAL_DMA_ERROR_TE        ((uint32_t)0x00000001)    /*!< Transfer error       */
 
#define HAL_DMA_ERROR_TIMEOUT   ((uint32_t)0x00000020)    /*!< Timeout error        */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Data_transfer_direction DMA Data transfer direction
 
  * @{
 
  */ 
 
#define DMA_PERIPH_TO_MEMORY         ((uint32_t)0x00000000)        /*!< Peripheral to memory direction */
 
#define DMA_MEMORY_TO_PERIPH         ((uint32_t)DMA_CCR_DIR)       /*!< Memory to peripheral direction */
 
#define DMA_MEMORY_TO_MEMORY         ((uint32_t)(DMA_CCR_MEM2MEM)) /*!< Memory to memory direction     */
 
 
#define IS_DMA_DIRECTION(DIRECTION) (((DIRECTION) == DMA_PERIPH_TO_MEMORY ) || \
 
                                     ((DIRECTION) == DMA_MEMORY_TO_PERIPH)  || \
 
                                     ((DIRECTION) == DMA_MEMORY_TO_MEMORY)) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Data_buffer_size DMA Data buffer size
 
  * @{
 
  */ 
 
#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x1) && ((SIZE) < 0x10000))
 
/**
 
  * @}
 
  */     
 
    
 
/** @defgroup DMA_Peripheral_incremented_mode DMA Peripheral incremented mode
 
  * @{
 
  */ 
 
#define DMA_PINC_ENABLE        ((uint32_t)DMA_CCR_PINC)  /*!< Peripheral increment mode Enable */
 
#define DMA_PINC_DISABLE       ((uint32_t)0x00000000)    /*!< Peripheral increment mode Disable */
 
 
#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PINC_ENABLE) || \
 
                                            ((STATE) == DMA_PINC_DISABLE))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup DMA_Memory_incremented_mode DMA Memory incremented mode
 
  * @{
 
  */ 
 
#define DMA_MINC_ENABLE         ((uint32_t)DMA_CCR_MINC)  /*!< Memory increment mode Enable  */
 
#define DMA_MINC_DISABLE        ((uint32_t)0x00000000)    /*!< Memory increment mode Disable */
 
 
#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MINC_ENABLE)  || \
 
                                        ((STATE) == DMA_MINC_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Peripheral_data_size DMA Peripheral data size
 
  * @{
 
  */ 
 
#define DMA_PDATAALIGN_BYTE          ((uint32_t)0x00000000)       /*!< Peripheral data alignment : Byte     */
 
#define DMA_PDATAALIGN_HALFWORD      ((uint32_t)DMA_CCR_PSIZE_0)  /*!< Peripheral data alignment : HalfWord */
 
#define DMA_PDATAALIGN_WORD          ((uint32_t)DMA_CCR_PSIZE_1)  /*!< Peripheral data alignment : Word     */
 
 
#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PDATAALIGN_BYTE)     || \
 
                                           ((SIZE) == DMA_PDATAALIGN_HALFWORD) || \
 
                                           ((SIZE) == DMA_PDATAALIGN_WORD))
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup DMA_Memory_data_size DMA Memory data size
 
  * @{ 
 
  */
 
#define DMA_MDATAALIGN_BYTE          ((uint32_t)0x00000000)       /*!< Memory data alignment : Byte     */
 
#define DMA_MDATAALIGN_HALFWORD      ((uint32_t)DMA_CCR_MSIZE_0)  /*!< Memory data alignment : HalfWord */
 
#define DMA_MDATAALIGN_WORD          ((uint32_t)DMA_CCR_MSIZE_1)  /*!< Memory data alignment : Word     */
 
 
#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MDATAALIGN_BYTE)     || \
 
                                       ((SIZE) == DMA_MDATAALIGN_HALFWORD) || \
 
                                       ((SIZE) == DMA_MDATAALIGN_WORD ))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_mode DMA mode
 
  * @{
 
  */ 
 
#define DMA_NORMAL         ((uint32_t)0x00000000)      /*!< Normal Mode                  */
 
#define DMA_CIRCULAR       ((uint32_t)DMA_CCR_CIRC)    /*!< Circular Mode                */
 
 
#define IS_DMA_MODE(MODE) (((MODE) == DMA_NORMAL )  || \
 
                           ((MODE) == DMA_CIRCULAR)) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Priority_level DMA Priority level
 
  * @{
 
  */
 
#define DMA_PRIORITY_LOW             ((uint32_t)0x00000000)    /*!< Priority level : Low       */
 
#define DMA_PRIORITY_MEDIUM          ((uint32_t)DMA_CCR_PL_0)  /*!< Priority level : Medium    */
 
#define DMA_PRIORITY_HIGH            ((uint32_t)DMA_CCR_PL_1)  /*!< Priority level : High      */
 
#define DMA_PRIORITY_VERY_HIGH       ((uint32_t)DMA_CCR_PL)    /*!< Priority level : Very_High */
 
 
#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_PRIORITY_LOW )   || \
 
                                   ((PRIORITY) == DMA_PRIORITY_MEDIUM) || \
 
                                   ((PRIORITY) == DMA_PRIORITY_HIGH)   || \
 
                                   ((PRIORITY) == DMA_PRIORITY_VERY_HIGH)) 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup DMA_interrupt_enable_definitions DMA interrupt enable definitions
 
  * @{
 
  */
 
 
#define DMA_IT_TC                         ((uint32_t)DMA_CCR_TCIE)
 
#define DMA_IT_HT                         ((uint32_t)DMA_CCR_HTIE)
 
#define DMA_IT_TE                         ((uint32_t)DMA_CCR_TEIE)
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_flag_definitions DMA flag definitions
 
  * @{
 
  */ 
 
 
#define DMA_FLAG_GL1                      ((uint32_t)0x00000001)
 
#define DMA_FLAG_TC1                      ((uint32_t)0x00000002)
 
#define DMA_FLAG_HT1                      ((uint32_t)0x00000004)
 
#define DMA_FLAG_TE1                      ((uint32_t)0x00000008)
 
#define DMA_FLAG_GL2                      ((uint32_t)0x00000010)
 
#define DMA_FLAG_TC2                      ((uint32_t)0x00000020)
 
#define DMA_FLAG_HT2                      ((uint32_t)0x00000040)
 
#define DMA_FLAG_TE2                      ((uint32_t)0x00000080)
 
#define DMA_FLAG_GL3                      ((uint32_t)0x00000100)
 
#define DMA_FLAG_TC3                      ((uint32_t)0x00000200)
 
#define DMA_FLAG_HT3                      ((uint32_t)0x00000400)
 
#define DMA_FLAG_TE3                      ((uint32_t)0x00000800)
 
#define DMA_FLAG_GL4                      ((uint32_t)0x00001000)
 
#define DMA_FLAG_TC4                      ((uint32_t)0x00002000)
 
#define DMA_FLAG_HT4                      ((uint32_t)0x00004000)
 
#define DMA_FLAG_TE4                      ((uint32_t)0x00008000)
 
#define DMA_FLAG_GL5                      ((uint32_t)0x00010000)
 
#define DMA_FLAG_TC5                      ((uint32_t)0x00020000)
 
#define DMA_FLAG_HT5                      ((uint32_t)0x00040000)
 
#define DMA_FLAG_TE5                      ((uint32_t)0x00080000)
 
#define DMA_FLAG_GL6                      ((uint32_t)0x00100000)
 
#define DMA_FLAG_TC6                      ((uint32_t)0x00200000)
 
#define DMA_FLAG_HT6                      ((uint32_t)0x00400000)
 
#define DMA_FLAG_TE6                      ((uint32_t)0x00800000)
 
#define DMA_FLAG_GL7                      ((uint32_t)0x01000000)
 
#define DMA_FLAG_TC7                      ((uint32_t)0x02000000)
 
#define DMA_FLAG_HT7                      ((uint32_t)0x04000000)
 
#define DMA_FLAG_TE7                      ((uint32_t)0x08000000)
 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup DMA_Exported_Macros DMA Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset DMA handle state
 
  * @param  __HANDLE__: DMA handle.
 
  * @retval None
 
  */
 
#define __HAL_DMA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DMA_STATE_RESET)
 
 
/**
 
  * @brief  Enable the specified DMA Channel.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval None.
 
  */
 
#define __HAL_DMA_ENABLE(__HANDLE__)        (SET_BIT((__HANDLE__)->Instance->CCR, DMA_CCR_EN))
 
 
/**
 
  * @brief  Disable the specified DMA Channel.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval None.
 
  */
 
#define __HAL_DMA_DISABLE(__HANDLE__)       (CLEAR_BIT((__HANDLE__)->Instance->CCR, DMA_CCR_EN))
 
 
 
/* Interrupt & Flag management */
 
 
/**
 
  * @brief  Enables the specified DMA Channel interrupts.
 
  * @param  __HANDLE__: DMA handle
 
  * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. 
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_IT_TC:  Transfer complete interrupt mask
 
  *            @arg DMA_IT_HT:  Half transfer complete interrupt mask
 
  *            @arg DMA_IT_TE:  Transfer error interrupt mask
 
  * @retval None
 
  */
 
#define __HAL_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__)   (SET_BIT((__HANDLE__)->Instance->CCR, (__INTERRUPT__)))
 
 
/**
 
  * @brief  Disables the specified DMA Channel interrupts.
 
  * @param  __HANDLE__: DMA handle
 
  * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. 
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_IT_TC:  Transfer complete interrupt mask
 
  *            @arg DMA_IT_HT:  Half transfer complete interrupt mask
 
  *            @arg DMA_IT_TE:  Transfer error interrupt mask
 
  * @retval None
 
  */
 
#define __HAL_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__)  (CLEAR_BIT((__HANDLE__)->Instance->CCR , (__INTERRUPT__)))
 
 
/**
 
  * @brief  Checks whether the specified DMA Channel interrupt has occurred or not.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __INTERRUPT__: specifies the DMA interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg DMA_IT_TC:  Transfer complete interrupt mask
 
  *            @arg DMA_IT_HT:  Half transfer complete interrupt mask
 
  *            @arg DMA_IT_TE:  Transfer error interrupt mask
 
  * @retval The state of DMA_IT (SET or RESET).
 
  */
 
#define __HAL_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__)  ((((__HANDLE__)->Instance->CCR & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/**
 
  * @}
 
  */
 
 
/* Include DMA HAL Extension module */
 
#include "stm32f0xx_hal_dma_ex.h"   
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup DMA_Exported_Functions DMA Exported Functions
 
  * @{
 
  */
 
/** @addtogroup DMA_Exported_Functions_Group1
 
 *  @brief   Initialization and de-initialization functions
 
  * @{
 
  */
 
/* Initialization and de-initialization functions *****************************/
 
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma);
 
HAL_StatusTypeDef HAL_DMA_DeInit (DMA_HandleTypeDef *hdma);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup DMA_Exported_Functions_Group2
 
 *  @brief   I/O operation functions
 
  * @{
 
  */
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_DMA_Start (DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
 
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
 
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma);
 
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout);
 
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma);
 
/**
 
  * @}
 
  */
 
 
/* Peripheral State and Error functions ***************************************/
 
/** @addtogroup DMA_Exported_Functions_Group3
 
  *  @brief    Peripheral State functions
 
  * @{
 
  */
 
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma);
 
uint32_t             HAL_DMA_GetError(DMA_HandleTypeDef *hdma);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_DMA_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_dma_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dma_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of DMA HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_DMA_EX_H
 
#define __STM32F0xx_HAL_DMA_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup DMAEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/* Exported constants --------------------------------------------------------*/
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
/** @defgroup DMAEx_Exported_Constants DMAEx Exported Constants
 
  * @{
 
  */ 
 
#define DMA1_CHANNEL1_RMP                                     0x00000000
 
#define DMA1_CHANNEL2_RMP                                     0x10000000
 
#define DMA1_CHANNEL3_RMP                                     0x20000000
 
#define DMA1_CHANNEL4_RMP                                     0x30000000
 
#define DMA1_CHANNEL5_RMP                                     0x40000000
 
#define DMA1_CHANNEL6_RMP                                     0x50000000
 
#define DMA1_CHANNEL7_RMP                                     0x60000000
 
#define DMA2_CHANNEL1_RMP                                     0x00000000
 
#define DMA2_CHANNEL2_RMP                                     0x10000000
 
#define DMA2_CHANNEL3_RMP                                     0x20000000
 
#define DMA2_CHANNEL4_RMP                                     0x30000000
 
#define DMA2_CHANNEL5_RMP                                     0x40000000
 
 
/****************** DMA1 remap bit field definition********************/
 
/* DMA1 - Channel 1 */
 
#define HAL_DMA1_CH1_DEFAULT      (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH1_ADC          (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_ADC)       /*!< Remap ADC on DMA1 Channel 1*/   
 
#define HAL_DMA1_CH1_TIM17_CH1    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_TIM17_CH1) /*!< Remap TIM17 channel 1 on DMA1 channel 1 */
 
#define HAL_DMA1_CH1_TIM17_UP     (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_TIM17_UP)  /*!< Remap TIM17 up on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART1_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART1_RX) /*!< Remap USART1 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART2_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART2_RX) /*!< Remap USART2 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART3_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART3_RX) /*!< Remap USART3 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART4_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART4_RX) /*!< Remap USART4 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART5_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART5_RX) /*!< Remap USART5 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART6_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART6_RX) /*!< Remap USART6 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART7_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART7_RX) /*!< Remap USART7 Rx on DMA1 channel 1 */ 
 
#define HAL_DMA1_CH1_USART8_RX    (uint32_t) (DMA1_CHANNEL1_RMP | DMA_RMPCR1_CH1_USART8_RX) /*!< Remap USART8 Rx on DMA1 channel 1 */ 
 
/* DMA1 - Channel 2 */
 
#define HAL_DMA1_CH2_DEFAULT      (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH2_ADC          (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_ADC)       /*!< Remap ADC on DMA1 channel 2 */  
 
#define HAL_DMA1_CH2_I2C1_TX      (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_I2C1_TX)   /*!< Remap I2C1 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_SPI1_RX      (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_SPI1_RX)   /*!< Remap SPI1 Rx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_TIM1_CH1     (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_TIM1_CH1)  /*!< Remap TIM1 channel 1 on DMA1 channel 2 */
 
#define HAL_DMA1_CH2_TIM17_CH1    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_TIM17_CH1) /*!< Remap TIM17 channel 1 on DMA1 channel 2 */
 
#define HAL_DMA1_CH2_TIM17_UP     (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_TIM17_UP)  /*!< Remap TIM17 up on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART1_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART1_TX) /*!< Remap USART1 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART2_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART2_TX) /*!< Remap USART2 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART3_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART3_TX) /*!< Remap USART3 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART4_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART4_TX) /*!< Remap USART4 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART5_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART5_TX) /*!< Remap USART5 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART6_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART6_TX) /*!< Remap USART6 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART7_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART7_TX) /*!< Remap USART7 Tx on DMA1 channel 2 */ 
 
#define HAL_DMA1_CH2_USART8_TX    (uint32_t) (DMA1_CHANNEL2_RMP | DMA_RMPCR1_CH2_USART8_TX) /*!< Remap USART8 Tx on DMA1 channel 2 */ 
 
/* DMA1 - Channel 3 */
 
#define HAL_DMA1_CH3_DEFAULT      (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH3_TIM6_UP      (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_TIM6_UP)   /*!< Remap TIM6 up on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_DAC_CH1      (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_DAC_CH1)   /*!< Remap DAC Channel 1on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_I2C1_RX      (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_I2C1_RX)   /*!< Remap I2C1 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_SPI1_TX      (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_SPI1_TX)   /*!< Remap SPI1 Tx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_TIM1_CH2     (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_TIM1_CH2)  /*!< Remap TIM1 channel 2 on DMA1 channel 3 */
 
#define HAL_DMA1_CH3_TIM2_CH2     (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_TIM2_CH2)  /*!< Remap TIM2 channel 2 on DMA1 channel 3 */
 
#define HAL_DMA1_CH3_TIM16_CH1    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_TIM16_CH1) /*!< Remap TIM16 channel 1 on DMA1 channel 3 */
 
#define HAL_DMA1_CH3_TIM16_UP     (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_TIM16_UP)  /*!< Remap TIM16 up on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART1_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART1_RX) /*!< Remap USART1 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART2_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART2_RX) /*!< Remap USART2 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART3_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART3_RX) /*!< Remap USART3 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART4_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART4_RX) /*!< Remap USART4 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART5_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART5_RX) /*!< Remap USART5 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART6_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART6_RX) /*!< Remap USART6 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART7_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART7_RX) /*!< Remap USART7 Rx on DMA1 channel 3 */ 
 
#define HAL_DMA1_CH3_USART8_RX    (uint32_t) (DMA1_CHANNEL3_RMP | DMA_RMPCR1_CH3_USART8_RX) /*!< Remap USART8 Rx on DMA1 channel 3 */ 
 
/* DMA1 - Channel 4 */
 
#define HAL_DMA1_CH4_DEFAULT      (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH4_TIM7_UP      (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_TIM7_UP)   /*!< Remap TIM7 up on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_DAC_CH2      (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_DAC_CH2)   /*!< Remap DAC Channel 2 on DMA1 channel 4 */
 
#define HAL_DMA1_CH4_I2C2_TX      (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_I2C2_TX)   /*!< Remap I2C2 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_SPI2_RX      (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_SPI2_RX)   /*!< Remap SPI2 Rx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_TIM2_CH4     (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_TIM2_CH4)  /*!< Remap TIM2 channel 4 on DMA1 channel 4 */
 
#define HAL_DMA1_CH4_TIM3_CH1     (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_TIM3_CH1)  /*!< Remap TIM3 channel 1 on DMA1 channel 4 */
 
#define HAL_DMA1_CH4_TIM3_TRIG    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_TIM3_TRIG) /*!< Remap TIM3 Trig on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_TIM16_CH1    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_TIM16_CH1) /*!< Remap TIM16 channel 1 on DMA1 channel 4 */
 
#define HAL_DMA1_CH4_TIM16_UP     (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_TIM16_UP)  /*!< Remap TIM16 up on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART1_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART1_TX) /*!< Remap USART1 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART2_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART2_TX) /*!< Remap USART2 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART3_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART3_TX) /*!< Remap USART3 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART4_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART4_TX) /*!< Remap USART4 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART5_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART5_TX) /*!< Remap USART5 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART6_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART6_TX) /*!< Remap USART6 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART7_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART7_TX) /*!< Remap USART7 Tx on DMA1 channel 4 */ 
 
#define HAL_DMA1_CH4_USART8_TX    (uint32_t) (DMA1_CHANNEL4_RMP | DMA_RMPCR1_CH4_USART8_TX) /*!< Remap USART8 Tx on DMA1 channel 4 */ 
 
/* DMA1 - Channel 5 */
 
#define HAL_DMA1_CH5_DEFAULT      (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH5_I2C2_RX      (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_I2C2_RX)   /*!< Remap I2C2 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_SPI2_TX      (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_SPI2_TX)   /*!< Remap SPI1 Tx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_TIM1_CH3     (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_TIM1_CH3)  /*!< Remap TIM1 channel 3 on DMA1 channel 5 */
 
#define HAL_DMA1_CH5_USART1_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART1_RX) /*!< Remap USART1 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART2_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART2_RX) /*!< Remap USART2 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART3_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART3_RX) /*!< Remap USART3 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART4_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART4_RX) /*!< Remap USART4 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART5_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART5_RX) /*!< Remap USART5 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART6_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART6_RX) /*!< Remap USART6 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART7_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART7_RX) /*!< Remap USART7 Rx on DMA1 channel 5 */ 
 
#define HAL_DMA1_CH5_USART8_RX    (uint32_t) (DMA1_CHANNEL5_RMP | DMA_RMPCR1_CH5_USART8_RX) /*!< Remap USART8 Rx on DMA1 channel 5 */ 
 
/* DMA1 - Channel 6 */
 
#define HAL_DMA1_CH6_DEFAULT      (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH6_I2C1_TX      (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_I2C1_TX)   /*!< Remap I2C1 Tx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_SPI2_RX      (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_SPI2_RX)   /*!< Remap SPI2 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_TIM1_CH1     (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM1_CH1)  /*!< Remap TIM1 channel 1 on DMA1 channel 6 */
 
#define HAL_DMA1_CH6_TIM1_CH2     (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM1_CH2)  /*!< Remap TIM1 channel 2 on DMA1 channel 6 */
 
#define HAL_DMA1_CH6_TIM1_CH3     (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM1_CH3)  /*!< Remap TIM1 channel 3 on DMA1 channel 6 */
 
#define HAL_DMA1_CH6_TIM3_CH1     (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM3_CH1)  /*!< Remap TIM3 channel 1 on DMA1 channel 6 */
 
#define HAL_DMA1_CH6_TIM3_TRIG    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM3_TRIG) /*!< Remap TIM3 Trig on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_TIM16_CH1    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM16_CH1) /*!< Remap TIM16 channel 1 on DMA1 channel 6 */
 
#define HAL_DMA1_CH6_TIM16_UP     (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_TIM16_UP)  /*!< Remap TIM16 up on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART1_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART1_RX) /*!< Remap USART1 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART2_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART2_RX) /*!< Remap USART2 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART3_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART3_RX) /*!< Remap USART3 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART4_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART4_RX) /*!< Remap USART4 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART5_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART5_RX) /*!< Remap USART5 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART6_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART6_RX) /*!< Remap USART6 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART7_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART7_RX) /*!< Remap USART7 Rx on DMA1 channel 6 */ 
 
#define HAL_DMA1_CH6_USART8_RX    (uint32_t) (DMA1_CHANNEL6_RMP | DMA_RMPCR1_CH6_USART8_RX) /*!< Remap USART8 Rx on DMA1 channel 6 */ 
 
/* DMA1 - Channel 7 */
 
#define HAL_DMA1_CH7_DEFAULT      (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_DEFAULT)       /*!< Default remap position for DMA1 */   
 
#define HAL_DMA1_CH7_I2C1_RX      (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_I2C1_RX)   /*!< Remap I2C1 Rx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_SPI2_TX      (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_SPI2_TX)   /*!< Remap SPI2 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_TIM2_CH2     (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_TIM2_CH2)  /*!< Remap TIM2 channel 2 on DMA1 channel 7 */
 
#define HAL_DMA1_CH7_TIM2_CH4     (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_TIM2_CH4)  /*!< Remap TIM2 channel 4 on DMA1 channel 7 */
 
#define HAL_DMA1_CH7_TIM17_CH1    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_TIM17_CH1) /*!< Remap TIM17 channel 1 on DMA1 channel 7 */
 
#define HAL_DMA1_CH7_TIM17_UP     (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_TIM17_UP)  /*!< Remap TIM17 up on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART1_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART1_TX) /*!< Remap USART1 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART2_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART2_TX) /*!< Remap USART2 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART3_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART3_TX) /*!< Remap USART3 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART4_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART4_TX) /*!< Remap USART4 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART5_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART5_TX) /*!< Remap USART5 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART6_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART6_TX) /*!< Remap USART6 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART7_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART7_TX) /*!< Remap USART7 Tx on DMA1 channel 7 */ 
 
#define HAL_DMA1_CH7_USART8_TX    (uint32_t) (DMA1_CHANNEL7_RMP | DMA_RMPCR1_CH7_USART8_TX) /*!< Remap USART8 Tx on DMA1 channel 7 */
 
 
/****************** DMA2 remap bit field definition********************/
 
/* DMA2 - Channel 1 */
 
#define HAL_DMA2_CH1_DEFAULT      (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_DEFAULT)       /*!< Default remap position for DMA2 */   
 
#define HAL_DMA2_CH1_I2C2_TX      (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_I2C2_TX)   /*!< Remap I2C2 TX on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART1_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART1_TX) /*!< Remap USART1 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART2_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART2_TX) /*!< Remap USART2 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART3_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART3_TX) /*!< Remap USART3 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART4_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART4_TX) /*!< Remap USART4 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART5_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART5_TX) /*!< Remap USART5 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART6_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART6_TX) /*!< Remap USART6 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART7_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART7_TX) /*!< Remap USART7 Tx on DMA2 channel 1 */ 
 
#define HAL_DMA2_CH1_USART8_TX    (uint32_t) (DMA2_CHANNEL1_RMP | DMA_RMPCR2_CH1_USART8_TX) /*!< Remap USART8 Tx on DMA2 channel 1 */ 
 
/* DMA2 - Channel 2 */
 
#define HAL_DMA2_CH2_DEFAULT      (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_DEFAULT)       /*!< Default remap position for DMA2 */   
 
#define HAL_DMA2_CH2_I2C2_RX      (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_I2C2_RX)   /*!< Remap I2C2 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART1_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART1_RX) /*!< Remap USART1 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART2_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART2_RX) /*!< Remap USART2 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART3_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART3_RX) /*!< Remap USART3 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART4_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART4_RX) /*!< Remap USART4 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART5_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART5_RX) /*!< Remap USART5 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART6_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART6_RX) /*!< Remap USART6 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART7_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART7_RX) /*!< Remap USART7 Rx on DMA2 channel 2 */ 
 
#define HAL_DMA2_CH2_USART8_RX    (uint32_t) (DMA2_CHANNEL2_RMP | DMA_RMPCR2_CH2_USART8_RX) /*!< Remap USART8 Rx on DMA2 channel 2 */ 
 
/* DMA2 - Channel 3 */
 
#define HAL_DMA2_CH3_DEFAULT      (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_DEFAULT)       /*!< Default remap position for DMA2 */   
 
#define HAL_DMA2_CH3_TIM6_UP      (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_TIM6_UP)   /*!< Remap TIM6 up on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_DAC_CH1      (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_DAC_CH1)   /*!< Remap DAC channel 1 on DMA2 channel 3 */
 
#define HAL_DMA2_CH3_SPI1_RX      (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_SPI1_RX)   /*!< Remap SPI1 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART1_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART1_RX) /*!< Remap USART1 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART2_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART2_RX) /*!< Remap USART2 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART3_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART3_RX) /*!< Remap USART3 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART4_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART4_RX) /*!< Remap USART4 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART5_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART5_RX) /*!< Remap USART5 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART6_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART6_RX) /*!< Remap USART6 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART7_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART7_RX) /*!< Remap USART7 Rx on DMA2 channel 3 */ 
 
#define HAL_DMA2_CH3_USART8_RX    (uint32_t) (DMA2_CHANNEL3_RMP | DMA_RMPCR2_CH3_USART8_RX) /*!< Remap USART8 Rx on DMA2 channel 3 */ 
 
/* DMA2 - Channel 4 */
 
#define HAL_DMA2_CH4_DEFAULT      (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_DEFAULT)       /*!< Default remap position for DMA2 */   
 
#define HAL_DMA2_CH4_TIM7_UP      (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_TIM7_UP)   /*!< Remap TIM7 up on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_DAC_CH2      (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_DAC_CH2)   /*!< Remap DAC channel 2 on DMA2 channel 4 */
 
#define HAL_DMA2_CH4_SPI1_TX      (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_SPI1_TX)   /*!< Remap SPI1 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART1_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART1_TX) /*!< Remap USART1 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART2_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART2_TX) /*!< Remap USART2 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART3_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART3_TX) /*!< Remap USART3 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART4_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART4_TX) /*!< Remap USART4 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART5_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART5_TX) /*!< Remap USART5 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART6_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART6_TX) /*!< Remap USART6 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART7_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART7_TX) /*!< Remap USART7 Tx on DMA2 channel 4 */ 
 
#define HAL_DMA2_CH4_USART8_TX    (uint32_t) (DMA2_CHANNEL4_RMP | DMA_RMPCR2_CH4_USART8_TX) /*!< Remap USART8 Tx on DMA2 channel 4 */ 
 
/* DMA2 - Channel 5 */
 
#define HAL_DMA2_CH5_DEFAULT      (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_DEFAULT)       /*!< Default remap position for DMA2 */   
 
#define HAL_DMA2_CH5_ADC          (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_ADC)       /*!< Remap ADC on DMA2 channel 5 */  
 
#define HAL_DMA2_CH5_USART1_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART1_TX) /*!< Remap USART1 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART2_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART2_TX) /*!< Remap USART2 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART3_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART3_TX) /*!< Remap USART3 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART4_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART4_TX) /*!< Remap USART4 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART5_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART5_TX) /*!< Remap USART5 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART6_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART6_TX) /*!< Remap USART6 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART7_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART7_TX) /*!< Remap USART7 Tx on DMA2 channel 5 */ 
 
#define HAL_DMA2_CH5_USART8_TX    (uint32_t) (DMA2_CHANNEL5_RMP | DMA_RMPCR2_CH5_USART8_TX) /*!< Remap USART8 Tx on DMA2 channel 5 */ 
 
 
#define IS_HAL_DMA1_REMAP(REQUEST)  (((REQUEST) == HAL_DMA1_CH1_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_ADC)       ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_TIM17_CH1) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_TIM17_UP)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART1_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART2_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART3_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART4_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART5_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART6_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART7_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH1_USART8_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_ADC)       ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_I2C1_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_SPI1_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_TIM1_CH1)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_I2C1_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_TIM17_CH1) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_TIM17_UP)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART1_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART2_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART3_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART4_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART5_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART6_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART7_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH2_USART8_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_TIM6_UP)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_DAC_CH1)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_I2C1_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_SPI1_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_TIM1_CH2)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_TIM2_CH2)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_TIM16_CH1) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_TIM16_UP)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART1_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART2_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART3_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART4_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART5_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART6_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART7_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH3_USART8_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_TIM7_UP)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_DAC_CH2)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_I2C2_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_SPI2_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_TIM2_CH4)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_TIM3_CH1)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_TIM3_TRIG) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_TIM16_CH1) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_TIM16_UP)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART1_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART2_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART3_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART4_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART5_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART6_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART7_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH4_USART8_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_I2C2_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_SPI2_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_TIM1_CH3)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART1_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART2_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART3_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART4_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART5_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART6_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART7_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH5_USART8_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_I2C1_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_SPI2_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM1_CH1)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM1_CH2)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM1_CH3)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM3_CH1)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM3_TRIG) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM16_CH1) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_TIM16_UP)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART1_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART2_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART3_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART4_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART5_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART6_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART7_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH6_USART8_RX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_I2C1_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_SPI2_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_TIM2_CH2)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_TIM2_CH4)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_TIM17_CH1) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_TIM17_UP)  ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART1_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART2_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART3_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART4_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART5_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART6_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART7_TX) ||\
 
                                    ((REQUEST) == HAL_DMA1_CH7_USART8_TX))
 
 
#define IS_HAL_DMA2_REMAP(REQUEST)  (((REQUEST) == HAL_DMA2_CH1_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_I2C2_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART1_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART2_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART3_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART4_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART5_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART6_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART7_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH1_USART8_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_I2C2_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART1_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART2_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART3_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART4_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART5_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART6_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART7_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH2_USART8_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_TIM6_UP)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_DAC_CH1)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_SPI1_RX)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART1_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART2_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART3_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART4_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART5_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART6_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART7_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH3_USART8_RX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_TIM7_UP)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_DAC_CH2)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_SPI1_TX)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART1_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART2_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART3_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART4_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART5_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART6_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART7_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH4_USART8_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_DEFAULT)   ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_ADC)       ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART1_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART2_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART3_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART4_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART5_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART6_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART7_TX) ||\
 
                                    ((REQUEST) == HAL_DMA2_CH5_USART8_TX ))
 
/**
 
  * @}
 
  */ 
 
#endif /* STM32F091xC  || STM32F098xx */
 
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup DMAEx_Exported_Macros DMAEx Exported Macros
 
  * @{
 
  */
 
/* Interrupt & Flag management */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
/**
 
  * @brief  Returns the current DMA Channel transfer complete flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified transfer complete flag index.
 
  */      
 
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TC5 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TC6 :\
 
   DMA_FLAG_TC7)
 
 
/**
 
  * @brief  Returns the current DMA Channel half transfer complete flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified half transfer complete flag index.
 
  */      
 
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_HT5 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_HT6 :\
 
   DMA_FLAG_HT7)
 
 
/**
 
  * @brief  Returns the current DMA Channel transfer error flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified transfer error flag index.
 
  */
 
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TE5 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TE6 :\
 
   DMA_FLAG_TE7)
 
 
/**
 
  * @brief  Get the DMA Channel pending flags.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __FLAG__: Get the specified flag.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_FLAG_TCIFx:  Transfer complete flag
 
  *            @arg DMA_FLAG_HTIFx:  Half transfer complete flag
 
  *            @arg DMA_FLAG_TEIFx:  Transfer error flag
 
  *         Where x can be 1_7 to select the DMA Channel flag.   
 
  * @retval The state of FLAG (SET or RESET).
 
  */
 
 
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)   (DMA1->ISR & (__FLAG__))
 
 
/**
 
  * @brief  Clears the DMA Channel pending flags.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_FLAG_TCIFx:  Transfer complete flag
 
  *            @arg DMA_FLAG_HTIFx:  Half transfer complete flag
 
  *            @arg DMA_FLAG_TEIFx:  Transfer error flag
 
  *         Where x can be 1_7 to select the DMA Channel flag.   
 
  * @retval None
 
  */
 
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (DMA1->IFCR = (__FLAG__))
 
 
#elif defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Returns the current DMA Channel transfer complete flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified transfer complete flag index.
 
  */      
 
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TC5 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TC6 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_TC7 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_TC1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_TC2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_TC3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_TC4 :\
 
   DMA_FLAG_TC5)
 
 
/**
 
  * @brief  Returns the current DMA Channel half transfer complete flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified half transfer complete flag index.
 
  */      
 
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_HT5 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_HT6 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_HT7 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_HT1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_HT2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_HT3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_HT4 :\
 
   DMA_FLAG_HT5)
 
 
/**
 
  * @brief  Returns the current DMA Channel transfer error flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified transfer error flag index.
 
  */
 
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TE5 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TE6 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel7))? DMA_FLAG_TE7 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_TE1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_TE2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_TE3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_TE4 :\
 
   DMA_FLAG_TE5)
 
 
/**
 
  * @brief  Get the DMA Channel pending flags.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __FLAG__: Get the specified flag.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_FLAG_TCIFx:  Transfer complete flag
 
  *            @arg DMA_FLAG_HTIFx:  Half transfer complete flag
 
  *            @arg DMA_FLAG_TEIFx:  Transfer error flag
 
  *         Where x can be 0_4, 1_5, 2_6 or 3_7 to select the DMA Channel flag.   
 
  * @retval The state of FLAG (SET or RESET).
 
  */
 
 
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)\
 
(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Channel7)? (DMA2->ISR & (__FLAG__)) :\
 
  (DMA1->ISR & (__FLAG__)))
 
 
/**
 
  * @brief  Clears the DMA Channel pending flags.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_FLAG_TCIFx:  Transfer complete flag
 
  *            @arg DMA_FLAG_HTIFx:  Half transfer complete flag
 
  *            @arg DMA_FLAG_TEIFx:  Transfer error flag
 
  *         Where x can be 0_4, 1_5, 2_6 or 3_7 to select the DMA Channel flag.   
 
  * @retval None
 
  */
 
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) \
 
(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Channel7)? (DMA2->IFCR = (__FLAG__)) :\
 
  (DMA1->IFCR = (__FLAG__)))
 
 
#else /* STM32F030x8_STM32F031x6_STM32F038xx_STM32F051x8_STM32F058xx Product devices */
 
/**
 
  * @brief  Returns the current DMA Channel transfer complete flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified transfer complete flag index.
 
  */      
 
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
 
   DMA_FLAG_TC5)
 
 
/**
 
  * @brief  Returns the current DMA Channel half transfer complete flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified half transfer complete flag index.
 
  */      
 
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
 
   DMA_FLAG_HT5)
 
 
/**
 
  * @brief  Returns the current DMA Channel transfer error flag.
 
  * @param  __HANDLE__: DMA handle
 
  * @retval The specified transfer error flag index.
 
  */
 
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
 
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
 
 ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
 
   DMA_FLAG_TE5)
 
 
/**
 
  * @brief  Get the DMA Channel pending flags.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __FLAG__: Get the specified flag.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_FLAG_TCIFx:  Transfer complete flag
 
  *            @arg DMA_FLAG_HTIFx:  Half transfer complete flag
 
  *            @arg DMA_FLAG_TEIFx:  Transfer error flag
 
  *         Where x can be 1_5 to select the DMA Channel flag.   
 
  * @retval The state of FLAG (SET or RESET).
 
  */
 
 
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)   (DMA1->ISR & (__FLAG__))
 
 
/**
 
  * @brief  Clears the DMA Channel pending flags.
 
  * @param  __HANDLE__: DMA handle
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg DMA_FLAG_TCIFx:  Transfer complete flag
 
  *            @arg DMA_FLAG_HTIFx:  Half transfer complete flag
 
  *            @arg DMA_FLAG_TEIFx:  Transfer error flag
 
  *         Where x can be 1_5 to select the DMA Channel flag.   
 
  * @retval None
 
  */
 
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (DMA1->IFCR = (__FLAG__))
 
 
#endif
 
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
#define __HAL_DMA1_REMAP(__REQUEST__)                                                              \
 
         do { assert_param(IS_HAL_DMA1_REMAP(__REQUEST__));                                             \
 
              DMA1->RMPCR &= ~((uint32_t)0x0F << (uint32_t)(((__REQUEST__) >> 28) * 4)); \
 
              DMA1->RMPCR |= (uint32_t)((__REQUEST__) & 0x0FFFFFFF);                                     \
 
  }while(0)
 
 
#define __HAL_DMA2_REMAP(__REQUEST__)                                                              \
 
         do { assert_param(IS_HAL_DMA2_REMAP(__REQUEST__));                                             \
 
              DMA2->RMPCR &= ~((uint32_t)0x0F << (uint32_t)(((__REQUEST__) >> 28) * 4)); \
 
              DMA2->RMPCR |= (uint32_t)((__REQUEST__) & 0x0FFFFFFF);                                     \
 
         }while(0)
 
 
 #endif /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_DMA_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_flash.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_flash.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of Flash HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_FLASH_H
 
#define __STM32F0xx_HAL_FLASH_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup FLASH
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup FLASH_Exported_Types FLASH Exported Types
 
  * @{
 
  */  
 
 
/** 
 
  * @brief FLASH Error source  
 
  */ 
 
typedef enum
 
{ 
 
  FLASH_ERROR_PG        = 0x01,
 
  FLASH_ERROR_WRP       = 0x02
 
} FLASH_ErrorTypeDef;
 
 
/**
 
  * @brief  FLASH Erase structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t TypeErase;   /*!< TypeErase: Mass erase or page erase.
 
                             This parameter can be a value of @ref FLASH_Type_Erase */
 
 
  uint32_t PageAddress; /*!< PageAdress: Initial FLASH page address to erase when mass erase is disabled
 
                             This parameter must be a value of @ref FLASHEx_Address */
 
  
 
  uint32_t NbPages;     /*!< NbPages: Number of pagess to be erased.
 
                             This parameter must be a value between 1 and (max number of pages - value of initial page)*/           
 
                                                          
 
} FLASH_EraseInitTypeDef;
 
 
/**
 
  * @brief  FLASH Options bytes program structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t OptionType;  /*!< OptionType: Option byte to be configured.
 
                             This parameter can be a value of @ref FLASH_OB_Type */
 
 
  uint32_t WRPState;    /*!< WRPState: Write protection activation or deactivation.
 
                             This parameter can be a value of @ref FLASH_OB_WRP_State */
 
 
  uint32_t WRPPage;     /*!< WRPSector: specifies the page(s) to be write protected
 
                             This parameter can be a value of @ref FLASHEx_OB_Write_Protection */
 
 
  uint8_t RDPLevel;     /*!< RDPLevel: Set the read protection level..
 
                             This parameter can be a value of @ref FLASH_OB_Read_Protection */
 
 
  uint8_t USERConfig;   /*!< USERConfig: Program the FLASH User Option Byte: 
 
                             IWDG / STOP / STDBY / BOOT1 / VDDA_ANALOG / SRAM_PARITY
 
                             This parameter can be a combination of @ref FLASH_OB_Watchdog, @ref FLASH_OB_nRST_STOP,
 
                             @ref FLASH_OB_nRST_STDBY, @ref FLASH_OB_BOOT1, @ref FLASH_OB_VDDA_Analog_Monitoring and
 
                             @ref FLASH_OB_RAM_Parity_Check_Enable */
 
 
  uint32_t DATAAddress; /*!< DATAAddress: Address of the option byte DATA to be prgrammed
 
                             This parameter can be a value of @ref FLASH_OB_Data_Address */
 
  
 
  uint8_t DATAData;     /*!< DATAData: Data to be stored in the option byte DATA
 
                             This parameter can have any value */
 
  
 
} FLASH_OBProgramInitTypeDef;
 
 
/**
 
  * @brief  FLASH Procedure structure definition
 
  */
 
typedef enum 
 
{
 
  FLASH_PROC_NONE              = 0, 
 
  FLASH_PROC_PAGEERASE         = 1,
 
  FLASH_PROC_MASSERASE         = 2,
 
  FLASH_PROC_PROGRAMHALFWORD   = 3,
 
  FLASH_PROC_PROGRAMWORD       = 4,
 
  FLASH_PROC_PROGRAMDOUBLEWORD = 5
 
} FLASH_ProcedureTypeDef;
 
 
/** 
 
  * @brief  FLASH handle Structure definition  
 
  */
 
typedef struct
 
{
 
  __IO FLASH_ProcedureTypeDef ProcedureOnGoing; /* Internal variable to indicate which procedure is ongoing or not in IT context */
 
  
 
  __IO uint32_t               DataRemaining;    /* Internal variable to save the remaining pages to erase or half-word to program in IT context */
 
  
 
  __IO uint32_t               Address;          /* Internal variable to save address selected for program or erase */
 
  
 
  __IO uint64_t               Data;             /* Internal variable to save data to be programmed */
 
 
  HAL_LockTypeDef             Lock;             /* FLASH locking object                */
 
 
  __IO FLASH_ErrorTypeDef     ErrorCode;        /* FLASH error code                    */
 
 
} FLASH_ProcessTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup FLASH_Exported_Constants FLASH Exported Constants
 
  * @{
 
  */  
 
 
/** @defgroup FLASH_Type_Erase FLASH Type Erase
 
  * @{
 
  */ 
 
#define TYPEERASE_PAGES     ((uint32_t)0x00)  /*!<Pages erase only*/
 
#define TYPEERASE_MASSERASE ((uint32_t)0x01)  /*!<Flash mass erase activation*/
 
 
#define IS_TYPEERASE(VALUE) (((VALUE) == TYPEERASE_PAGES) || \
 
                             ((VALUE) == TYPEERASE_MASSERASE))  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_Type_Program FLASH Type Program
 
  * @{
 
  */ 
 
#define TYPEPROGRAM_HALFWORD   ((uint32_t)0x01)  /*!<Program a half-word (16-bit) at a specified address.*/
 
#define TYPEPROGRAM_WORD       ((uint32_t)0x02)  /*!<Program a word (32-bit) at a specified address.*/
 
#define TYPEPROGRAM_DOUBLEWORD ((uint32_t)0x03)  /*!<Program a double word (64-bit) at a specified address*/
 
 
#define IS_TYPEPROGRAM(VALUE)  (((VALUE) == TYPEPROGRAM_HALFWORD) || \
 
                                ((VALUE) == TYPEPROGRAM_WORD)     || \
 
                                ((VALUE) == TYPEPROGRAM_DOUBLEWORD))  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_OB_WRP_State FLASH WRP State
 
  * @{
 
  */ 
 
#define WRPSTATE_DISABLE   ((uint32_t)0x00)  /*!<Disable the write protection of the desired pages*/
 
#define WRPSTATE_ENABLE    ((uint32_t)0x01)  /*!<Enable the write protection of the desired pagess*/
 
 
#define IS_WRPSTATE(VALUE) (((VALUE) == WRPSTATE_DISABLE) || \
 
                            ((VALUE) == WRPSTATE_ENABLE))  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_OB_Type FLASH Option Bytes Type
 
  * @{
 
  */
 
#define OPTIONBYTE_WRP       ((uint32_t)0x01)  /*!<WRP option byte configuration*/
 
#define OPTIONBYTE_RDP       ((uint32_t)0x02)  /*!<RDP option byte configuration*/
 
#define OPTIONBYTE_USER      ((uint32_t)0x04)  /*!<USER option byte configuration*/
 
#define OPTIONBYTE_DATA      ((uint32_t)0x08)  /*!<DATA option byte configuration*/
 
 
#define IS_OPTIONBYTE(VALUE) (((VALUE) < (OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER | OPTIONBYTE_DATA)))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_Latency FLASH Latency
 
  * @{
 
  */ 
 
#define FLASH_LATENCY_0            ((uint32_t)0x00000000)    /*!< FLASH Zero Latency cycle */
 
#define FLASH_LATENCY_1            FLASH_ACR_LATENCY         /*!< FLASH One Latency cycle */
 
 
#define IS_FLASH_LATENCY(LATENCY)  (((LATENCY) == FLASH_LATENCY_0) || \
 
                                    ((LATENCY) == FLASH_LATENCY_1))
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup FLASH_OB_Data_Address FLASH OB Data Address
 
  * @{
 
  */  
 
#define IS_OB_DATA_ADDRESS(ADDRESS) (((ADDRESS) == 0x1FFFF804) || ((ADDRESS) == 0x1FFFF806)) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_OB_Read_Protection FLASH OB Read Protection
 
  * @{
 
  */
 
#define OB_RDP_LEVEL_0             ((uint8_t)0xAA)
 
#define OB_RDP_LEVEL_1             ((uint8_t)0xBB)
 
#define OB_RDP_LEVEL_2             ((uint8_t)0xCC) /*!< Warning: When enabling read protection level 2 
 
                                                      it's no more possible to go back to level 1 or 0 */
 
#define IS_OB_RDP_LEVEL(LEVEL)     (((LEVEL) == OB_RDP_LEVEL_0)   ||\
 
                                    ((LEVEL) == OB_RDP_LEVEL_1))/*||\
 
                                    ((LEVEL) == OB_RDP_LEVEL_2))*/
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup FLASH_OB_Watchdog FLASH OB Watchdog
 
  * @{
 
  */ 
 
#define OB_WDG_SW                 ((uint8_t)0x01)  /*!< Software WDG selected */
 
#define OB_WDG_HW                 ((uint8_t)0x00)  /*!< Hardware WDG selected */
 
#define IS_OB_WDG_SOURCE(SOURCE)  (((SOURCE) == OB_WDG_SW) || ((SOURCE) == OB_WDG_HW))
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup FLASH_OB_nRST_STOP FLASH OB nRST STOP
 
  * @{
 
  */ 
 
#define OB_STOP_NO_RST             ((uint8_t)0x02) /*!< No reset generated when entering in STOP */
 
#define OB_STOP_RST                ((uint8_t)0x00) /*!< Reset generated when entering in STOP */
 
#define IS_OB_STOP_SOURCE(SOURCE)  (((SOURCE) == OB_STOP_NO_RST) || ((SOURCE) == OB_STOP_RST))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup FLASH_OB_nRST_STDBY FLASH OB nRST STDBY 
 
  * @{
 
  */ 
 
#define OB_STDBY_NO_RST            ((uint8_t)0x04) /*!< No reset generated when entering in STANDBY */
 
#define OB_STDBY_RST               ((uint8_t)0x00) /*!< Reset generated when entering in STANDBY */
 
#define IS_OB_STDBY_SOURCE(SOURCE) (((SOURCE) == OB_STDBY_NO_RST) || ((SOURCE) == OB_STDBY_RST))
 
/**
 
  * @}
 
  */    
 
 
/** @defgroup FLASH_OB_BOOT1 FLASH OB BOOT1
 
  * @{
 
  */
 
#define OB_BOOT1_RESET             ((uint8_t)0x00) /*!< BOOT1 Reset */
 
#define OB_BOOT1_SET               ((uint8_t)0x10) /*!< BOOT1 Set */
 
#define IS_OB_BOOT1(BOOT1)         (((BOOT1) == OB_BOOT1_RESET) || ((BOOT1) == OB_BOOT1_SET))
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup FLASH_OB_VDDA_Analog_Monitoring FLASH OB VDDA Analog Monitoring
 
  * @{
 
  */
 
#define OB_VDDA_ANALOG_ON          ((uint8_t)0x20) /*!< Analog monitoring on VDDA Power source ON */
 
#define OB_VDDA_ANALOG_OFF         ((uint8_t)0x00) /*!< Analog monitoring on VDDA Power source OFF */
 
#define IS_OB_VDDA_ANALOG(ANALOG)  (((ANALOG) == OB_VDDA_ANALOG_ON) || ((ANALOG) == OB_VDDA_ANALOG_OFF))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup FLASH_OB_RAM_Parity_Check_Enable FLASH OB RAM Parity Check Enable
 
  * @{
 
  */
 
#define OB_RAM_PARITY_CHECK_SET    ((uint8_t)0x00) /*!< RAM parity check enable set */
 
#define OB_RAM_PARITY_CHECK_RESET  ((uint8_t)0x40) /*!< RAM parity check enable reset */
 
#define IS_OB_SRAM_PARITY(PARITY)  (((PARITY) == OB_RAM_PARITY_CHECK_SET) || ((PARITY) == OB_RAM_PARITY_CHECK_RESET))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup FLASH_Flag_definition FLASH Flag definition
 
  * @{
 
  */ 
 
#define FLASH_FLAG_BSY             FLASH_SR_BSY            /*!< FLASH Busy flag                           */ 
 
#define FLASH_FLAG_PGERR           FLASH_SR_PGERR          /*!< FLASH Programming error flag    */
 
#define FLASH_FLAG_WRPERR          FLASH_SR_WRPERR         /*!< FLASH Write protected error flag          */
 
#define FLASH_FLAG_EOP             FLASH_SR_EOP            /*!< FLASH End of Operation flag               */
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup FLASH_Interrupt_definition FLASH Interrupt definition
 
  * @{
 
  */ 
 
#define FLASH_IT_EOP               FLASH_CR_EOPIE          /*!< End of FLASH Operation Interrupt source */
 
#define FLASH_IT_ERR               FLASH_CR_ERRIE  /*!< Error Interrupt source */
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup FLASH_Timeout_definition  FLASH Timeout definition
 
  * @brief FLASH Timeout definition
 
  * @{
 
  */ 
 
#define HAL_FLASH_TIMEOUT_VALUE   ((uint32_t)50000)/* 50 s */
 
/**
 
  * @}
 
  */  
 
 
/**
 
  * @}
 
  */  
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup FLASH_Exported_Macros FLASH Exported Macros
 
 *  @brief macros to control FLASH features 
 
 *  @{
 
 */
 
 
/** @defgroup FLASH_Latency FLASH Latency
 
 *  @brief macros to handle FLASH Latency
 
 * @{
 
 */ 
 
  
 
/**
 
  * @brief  Set the FLASH Latency.
 
  * @param  __LATENCY__: FLASH Latency                   
 
  *         The value of this parameter depend on device used within the same series
 
  * @retval None
 
  */ 
 
#define __HAL_FLASH_SET_LATENCY(__LATENCY__)    (FLASH->ACR = (FLASH->ACR&(~FLASH_ACR_LATENCY)) | (__LATENCY__))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_Prefetch FLASH Prefetch
 
 *  @brief macros to handle FLASH Prefetch buffer
 
 * @{
 
 */   
 
/**
 
  * @brief  Enable the FLASH prefetch buffer.
 
  * @retval None
 
  */ 
 
#define __HAL_FLASH_PREFETCH_BUFFER_ENABLE()    (FLASH->ACR |= FLASH_ACR_PRFTBE)
 
 
/**
 
  * @brief  Disable the FLASH prefetch buffer.
 
  * @retval None
 
  */
 
#define __HAL_FLASH_PREFETCH_BUFFER_DISABLE()   (FLASH->ACR &= (~FLASH_ACR_PRFTBE))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_Interrupt FLASH Interrupt
 
 *  @brief macros to handle FLASH interrupts
 
 * @{
 
 */ 
 
 
/**
 
  * @brief  Enable the specified FLASH interrupt.
 
  * @param  __INTERRUPT__ : FLASH interrupt 
 
  *         This parameter can be any combination of the following values:
 
  *     @arg FLASH_IT_EOP: End of FLASH Operation Interrupt
 
  *     @arg FLASH_IT_ERR: Error Interrupt    
 
  * @retval none
 
  */  
 
#define __HAL_FLASH_ENABLE_IT(__INTERRUPT__)  (FLASH->CR |= (__INTERRUPT__))
 
 
/**
 
  * @brief  Disable the specified FLASH interrupt.
 
  * @param  __INTERRUPT__ : FLASH interrupt 
 
  *         This parameter can be any combination of the following values:
 
  *     @arg FLASH_IT_EOP: End of FLASH Operation Interrupt
 
  *     @arg FLASH_IT_ERR: Error Interrupt    
 
  * @retval none
 
  */  
 
#define __HAL_FLASH_DISABLE_IT(__INTERRUPT__)  (FLASH->CR &= ~(uint32_t)(__INTERRUPT__))
 
 
/**
 
  * @brief  Get the specified FLASH flag status. 
 
  * @param  __FLAG__: specifies the FLASH flag to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg FLASH_FLAG_EOP   : FLASH End of Operation flag 
 
  *            @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag 
 
  *            @arg FLASH_FLAG_PGERR : FLASH Programming error flag
 
  *            @arg FLASH_FLAG_BSY   : FLASH Busy flag
 
  * @retval The new state of __FLAG__ (SET or RESET).
 
  */
 
#define __HAL_FLASH_GET_FLAG(__FLAG__)          ((FLASH->SR & (__FLAG__)) == (__FLAG__))
 
 
/**
 
  * @brief  Clear the specified FLASH flag.
 
  * @param  __FLAG__: specifies the FLASH flags to clear.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg FLASH_FLAG_EOP   : FLASH End of Operation flag 
 
  *            @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag 
 
  *            @arg FLASH_FLAG_PGERR : FLASH Programming error flag 
 
  * @retval none
 
  */
 
#define __HAL_FLASH_CLEAR_FLAG(__FLAG__)        (FLASH->SR = (__FLAG__))
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Include FLASH HAL Extension module */
 
#include "stm32f0xx_hal_flash_ex.h"  
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup FLASH_Exported_Functions
 
  * @{
 
  */  
 
 
/** @addtogroup FLASH_Exported_Functions_Group1 
 
 *  @brief   Data transfers functions
 
 * @{
 
 */
 
  
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef  HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
 
HAL_StatusTypeDef  HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
 
 
/* FLASH IRQ handler method */
 
void               HAL_FLASH_IRQHandler(void);
 
/* Callbacks in non blocking modes */ 
 
void               HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue);
 
void               HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue);
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup FLASH_Exported_Functions_Group2 
 
 *  @brief   management functions 
 
 * @{
 
 */
 
   
 
/* FLASH Memory Programming functions *****************************************/   
 
HAL_StatusTypeDef  HAL_FLASH_Unlock(void);
 
HAL_StatusTypeDef  HAL_FLASH_Lock(void);
 
 
/* Option Bytes Programming functions *****************************************/
 
HAL_StatusTypeDef  HAL_FLASH_OB_Unlock(void);
 
HAL_StatusTypeDef  HAL_FLASH_OB_Lock(void);
 
HAL_StatusTypeDef  HAL_FLASH_OB_Launch(void);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup FLASH_Exported_Functions_Group3 
 
 * @{
 
 */
 
/* Peripheral State and Error functions ***************************************/
 
FLASH_ErrorTypeDef HAL_FLASH_GetError(void);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_FLASH_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_flash_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_flash_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of FLASH HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_FLASH_EX_H
 
#define __STM32F0xx_HAL_FLASH_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup FLASHEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup FLASHEx_Exported_Constants FLASHEx Exported Constants
 
  * @{
 
  */  
 
/** @defgroup FLASHEx_Address FLASHEx Address
 
  * @{
 
  */
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F038xx)
 
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= 0x08000000) && ((ADDRESS) <= 0x08007FFF))
 
#endif /* STM32F030x6 || STM32F031x6 || STM32F042x6 || STM32F048xx || STM32F038xx */
 
   
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= 0x08000000) && ((ADDRESS) <= 0x0800FFFF))
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
   
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= 0x08000000) && ((ADDRESS) <= 0x0801FFFF))
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= 0x08000000) && ((ADDRESS) <= 0x0803FFFF))
 
#endif /* STM32F091xC || STM32F098xx */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASHEx_Page_Size FLASHEx Page Size
 
  * @{
 
  */
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F058xx)
 
#define FLASH_PAGE_SIZE          0x400
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F051x8 || STM32F042x6 || STM32F048xx || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
#define FLASH_PAGE_SIZE          0x800
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASHEx_Nb_Pages FLASHEx Nb Pages
 
  * @{
 
  */
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F038xx)
 
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x08007FFF)
 
#endif /* STM32F030x6 || STM32F031x6 || STM32F042x6 || STM32F048xx || STM32F038xx */
 
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0800FFFF)
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0801FFFF)
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx */
 
      
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
#define IS_FLASH_NB_PAGES(ADDRESS,NBPAGES) ((ADDRESS)+((NBPAGES)*FLASH_PAGE_SIZE)-1 <= 0x0803FFFF)
 
#endif /* STM32F091xC || STM32F098xx */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASHEx_OB_Write_Protection FLASHEx OB Write Protection
 
  * @{
 
  */
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F058xx)
 
#define OB_WRP_PAGES0TO3               ((uint32_t)0x00000001) /* Write protection of page 0 to 3 */
 
#define OB_WRP_PAGES4TO7               ((uint32_t)0x00000002) /* Write protection of page 4 to 7 */
 
#define OB_WRP_PAGES8TO11              ((uint32_t)0x00000004) /* Write protection of page 8 to 11 */
 
#define OB_WRP_PAGES12TO15             ((uint32_t)0x00000008) /* Write protection of page 12 to 15 */
 
#define OB_WRP_PAGES16TO19             ((uint32_t)0x00000010) /* Write protection of page 16 to 19 */
 
#define OB_WRP_PAGES20TO23             ((uint32_t)0x00000020) /* Write protection of page 20 to 23 */
 
#define OB_WRP_PAGES24TO27             ((uint32_t)0x00000040) /* Write protection of page 24 to 27 */
 
#define OB_WRP_PAGES28TO31             ((uint32_t)0x00000080) /* Write protection of page 28 to 31 */
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
#define OB_WRP_PAGES32TO35             ((uint32_t)0x00000100) /* Write protection of page 32 to 35 */
 
#define OB_WRP_PAGES36TO39             ((uint32_t)0x00000200) /* Write protection of page 36 to 39 */
 
#define OB_WRP_PAGES40TO43             ((uint32_t)0x00000400) /* Write protection of page 40 to 43 */
 
#define OB_WRP_PAGES44TO47             ((uint32_t)0x00000800) /* Write protection of page 44 to 47 */
 
#define OB_WRP_PAGES48TO51             ((uint32_t)0x00001000) /* Write protection of page 48 to 51 */
 
#define OB_WRP_PAGES52TO57             ((uint32_t)0x00002000) /* Write protection of page 52 to 57 */
 
#define OB_WRP_PAGES56TO59             ((uint32_t)0x00004000) /* Write protection of page 56 to 59 */
 
#define OB_WRP_PAGES60TO63             ((uint32_t)0x00008000) /* Write protection of page 60 to 63 */
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
 
#define OB_WRP_PAGES0TO31MASK          ((uint32_t)0x000000FF)
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
#define OB_WRP_PAGES32TO63MASK         ((uint32_t)0x0000FF00)
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F038xx)
 
#define OB_WRP_ALLPAGES                ((uint32_t)0x000000FF) /*!< Write protection of all pages */
 
#endif /* STM32F030x6 || STM32F031x6 || STM32F042x6 || STM32F048xx || STM32F038xx */
 
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
#define OB_WRP_ALLPAGES                ((uint32_t)0x0000FFFF) /*!< Write protection of all pages */
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F051x8 || STM32F042x6 || STM32F048xx || STM32F038xx || STM32F058xx */
 
      
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
#define OB_WRP_PAGES0TO1               ((uint32_t)0x00000001) /* Write protection of page 0 to 1 */
 
#define OB_WRP_PAGES2TO3               ((uint32_t)0x00000002) /* Write protection of page 2 to 3 */
 
#define OB_WRP_PAGES4TO5               ((uint32_t)0x00000004) /* Write protection of page 4 to 5 */
 
#define OB_WRP_PAGES6TO7               ((uint32_t)0x00000008) /* Write protection of page 6 to 7 */
 
#define OB_WRP_PAGES8TO9               ((uint32_t)0x00000010) /* Write protection of page 8 to 9 */
 
#define OB_WRP_PAGES10TO11             ((uint32_t)0x00000020) /* Write protection of page 10 to 11 */
 
#define OB_WRP_PAGES12TO13             ((uint32_t)0x00000040) /* Write protection of page 12 to 13 */
 
#define OB_WRP_PAGES14TO15             ((uint32_t)0x00000080) /* Write protection of page 14 to 15 */
 
#define OB_WRP_PAGES16TO17             ((uint32_t)0x00000100) /* Write protection of page 16 to 17 */
 
#define OB_WRP_PAGES18TO19             ((uint32_t)0x00000200) /* Write protection of page 18 to 19 */
 
#define OB_WRP_PAGES20TO21             ((uint32_t)0x00000400) /* Write protection of page 20 to 21 */
 
#define OB_WRP_PAGES22TO23             ((uint32_t)0x00000800) /* Write protection of page 22 to 23 */
 
#define OB_WRP_PAGES24TO25             ((uint32_t)0x00001000) /* Write protection of page 24 to 25 */
 
#define OB_WRP_PAGES26TO27             ((uint32_t)0x00002000) /* Write protection of page 26 to 27 */
 
#define OB_WRP_PAGES28TO29             ((uint32_t)0x00004000) /* Write protection of page 28 to 29 */
 
#define OB_WRP_PAGES30TO31             ((uint32_t)0x00008000) /* Write protection of page 30 to 31 */
 
#define OB_WRP_PAGES32TO33             ((uint32_t)0x00010000) /* Write protection of page 32 to 33 */
 
#define OB_WRP_PAGES34TO35             ((uint32_t)0x00020000) /* Write protection of page 34 to 35 */
 
#define OB_WRP_PAGES36TO37             ((uint32_t)0x00040000) /* Write protection of page 36 to 37 */
 
#define OB_WRP_PAGES38TO39             ((uint32_t)0x00080000) /* Write protection of page 38 to 39 */
 
#define OB_WRP_PAGES40TO41             ((uint32_t)0x00100000) /* Write protection of page 40 to 41 */
 
#define OB_WRP_PAGES42TO43             ((uint32_t)0x00200000) /* Write protection of page 42 to 43 */
 
#define OB_WRP_PAGES44TO45             ((uint32_t)0x00400000) /* Write protection of page 44 to 45 */
 
#define OB_WRP_PAGES46TO47             ((uint32_t)0x00800000) /* Write protection of page 46 to 47 */
 
#define OB_WRP_PAGES48TO49             ((uint32_t)0x01000000) /* Write protection of page 48 to 49 */
 
#define OB_WRP_PAGES50TO51             ((uint32_t)0x02000000) /* Write protection of page 50 to 51 */
 
#define OB_WRP_PAGES52TO53             ((uint32_t)0x04000000) /* Write protection of page 52 to 53 */
 
#define OB_WRP_PAGES54TO55             ((uint32_t)0x08000000) /* Write protection of page 54 to 55 */
 
#define OB_WRP_PAGES56TO57             ((uint32_t)0x10000000) /* Write protection of page 56 to 57 */
 
#define OB_WRP_PAGES58TO59             ((uint32_t)0x20000000) /* Write protection of page 58 to 59 */
 
#define OB_WRP_PAGES60TO61             ((uint32_t)0x40000000) /* Write protection of page 60 to 61 */
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define OB_WRP_PAGES62TO63             ((uint32_t)0x80000000) /* Write protection of page 62 to 63 */
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx */
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
#define OB_WRP_PAGES62TO127            ((uint32_t)0x80000000) /* Write protection of page 62 to 127 */
 
#endif /* STM32F091xC || STM32F098xx */
 
 
#define OB_WRP_PAGES0TO15MASK          ((uint32_t)0x000000FF)
 
#define OB_WRP_PAGES16TO31MASK         ((uint32_t)0x0000FF00)
 
#define OB_WRP_PAGES32TO47MASK         ((uint32_t)0x00FF0000)
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define OB_WRP_PAGES48TO63MASK         ((uint32_t)0xFF000000)
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx */
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
#define OB_WRP_PAGES48TO127MASK        ((uint32_t)0xFF000000)
 
#endif /* STM32F091xC || STM32F098xx */
 
 
#define OB_WRP_ALLPAGES                ((uint32_t)0xFFFFFFFF) /*!< Write protection of all pages */
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
 
#define IS_OB_WRP(PAGE) (((PAGE) != 0x0000000))
 
/**
 
  * @}
 
  */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/** @defgroup FLASHEx_OB_BOOT_SEL FLASHEx OB BOOT SEL
 
  * @{
 
  */
 
#define OB_BOOT_SEL_RESET          ((uint8_t)0x00) /*!< BOOT_SEL Reset */
 
#define OB_BOOT_SEL_SET            ((uint8_t)0x80) /*!< BOOT_SEL Set */
 
#define IS_OB_BOOT_SEL(BOOT_SEL)   (((BOOT_SEL) == OB_BOOT_SEL_RESET) || ((BOOT_SEL) == OB_BOOT_SEL_SET))
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup FLASHEx_OB_BOOT0 FLASHEx OB BOOT0
 
  * @{
 
  */
 
#define OB_BOOT0_RESET             ((uint8_t)0x00) /*!< BOOT0 Reset */
 
#define OB_BOOT0_SET               ((uint8_t)0x08) /*!< BOOT0 Set */
 
#define IS_OB_BOOT0(BOOT0)         (((BOOT0) == OB_BOOT0_RESET) || ((BOOT0) == OB_BOOT0_SET))
 
/**
 
  * @}
 
  */  
 
#endif /* STM32F042x6 || STM32F048xx || STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup FLASHEx_Exported_Functions FLASHEx Exported Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup FLASHEx_Exported_Functions_Group2 Extended I/O operation functions
 
  * @brief    Extended I/O operation functions
 
  * @{
 
  */   
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef  HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError);
 
HAL_StatusTypeDef  HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit);
 
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup FLASHEx_Exported_Functions_Group3 Extended Peripheral Control functions
 
  * @brief    Extended Peripheral Control functions
 
  * @{
 
  */   
 
/* Peripheral Control functions ***********************************************/
 
HAL_StatusTypeDef  HAL_FLASHEx_OBErase(void);
 
HAL_StatusTypeDef  HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit);
 
void               HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
    
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_FLASH_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_gpio.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_gpio.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of GPIO HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_GPIO_H
 
#define __STM32F0xx_HAL_GPIO_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup GPIO
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup GPIO_Exported_Types GPIO Exported Types
 
  * @{
 
  */
 
/** 
 
  * @brief   GPIO Init structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Pin;       /*!< Specifies the GPIO pins to be configured.
 
                           This parameter can be any value of @ref GPIO_pins */
 
 
  uint32_t Mode;      /*!< Specifies the operating mode for the selected pins.
 
                           This parameter can be a value of @ref GPIO_mode */
 
 
  uint32_t Pull;      /*!< Specifies the Pull-up or Pull-Down activation for the selected pins.
 
                           This parameter can be a value of @ref GPIO_pull */
 
 
  uint32_t Speed;     /*!< Specifies the speed for the selected pins.
 
                           This parameter can be a value of @ref GPIO_speed */
 
 
  uint32_t Alternate;  /*!< Peripheral to be connected to the selected pins 
 
                            This parameter can be a value of @ref GPIOEx_Alternate_function_selection */
 
}GPIO_InitTypeDef;
 
 
/** 
 
  * @brief  GPIO Bit SET and Bit RESET enumeration 
 
  */
 
typedef enum
 
{
 
  GPIO_PIN_RESET = 0,
 
  GPIO_PIN_SET
 
}GPIO_PinState;
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup GPIO_Exported_Constants GPIO Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup GPIO_pin_actions GPIO pin actions
 
  * @{
 
  */
 
#define IS_GPIO_PIN_ACTION(ACTION) (((ACTION) == GPIO_PIN_RESET) || ((ACTION) == GPIO_PIN_SET))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup GPIO_pins GPIO pins
 
  * @{
 
  */
 
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected    */
 
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected    */
 
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected    */
 
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected    */
 
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected    */
 
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected    */
 
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected    */
 
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected    */
 
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected    */
 
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected    */
 
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected   */
 
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected   */
 
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected   */
 
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected   */
 
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected   */
 
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected   */
 
#define GPIO_PIN_All               ((uint16_t)0xFFFF)  /* All pins selected */
 
 
#define GPIO_PIN_MASK              ((uint32_t)0x0000FFFF) /* PIN mask for assert test */
 
 
#define IS_GPIO_PIN(PIN)           (((PIN) & GPIO_PIN_MASK) != (uint32_t)0x00)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup GPIO_mode GPIO mode
 
  * @brief GPIO Configuration Mode 
 
  *        Elements values convention: 0xX0yz00YZ
 
  *           - X  : GPIO mode or EXTI Mode
 
  *           - y  : External IT or Event trigger detection 
 
  *           - z  : IO configuration on External IT or Event
 
  *           - Y  : Output type (Push Pull or Open Drain)
 
  *           - Z  : IO Direction mode (Input, Output, Alternate or Analog)
 
  * @{
 
  */ 
 
#define  GPIO_MODE_INPUT                        ((uint32_t)0x00000000)   /*!< Input Floating Mode                   */
 
#define  GPIO_MODE_OUTPUT_PP                    ((uint32_t)0x00000001)   /*!< Output Push Pull Mode                 */
 
#define  GPIO_MODE_OUTPUT_OD                    ((uint32_t)0x00000011)   /*!< Output Open Drain Mode                */
 
#define  GPIO_MODE_AF_PP                        ((uint32_t)0x00000002)   /*!< Alternate Function Push Pull Mode     */
 
#define  GPIO_MODE_AF_OD                        ((uint32_t)0x00000012)   /*!< Alternate Function Open Drain Mode    */
 
 
#define  GPIO_MODE_ANALOG                       ((uint32_t)0x00000003)   /*!< Analog Mode  */
 
    
 
#define  GPIO_MODE_IT_RISING                    ((uint32_t)0x10110000)   /*!< External Interrupt Mode with Rising edge trigger detection          */
 
#define  GPIO_MODE_IT_FALLING                   ((uint32_t)0x10210000)   /*!< External Interrupt Mode with Falling edge trigger detection         */
 
#define  GPIO_MODE_IT_RISING_FALLING            ((uint32_t)0x10310000)   /*!< External Interrupt Mode with Rising/Falling edge trigger detection  */
 
 
#define  GPIO_MODE_EVT_RISING                   ((uint32_t)0x10120000)   /*!< External Event Mode with Rising edge trigger detection               */
 
#define  GPIO_MODE_EVT_FALLING                  ((uint32_t)0x10220000)   /*!< External Event Mode with Falling edge trigger detection              */
 
#define  GPIO_MODE_EVT_RISING_FALLING           ((uint32_t)0x10320000)   /*!< External Event Mode with Rising/Falling edge trigger detection       */
 
  
 
#define IS_GPIO_MODE(MODE) (((MODE) == GPIO_MODE_INPUT)              ||\
 
                            ((MODE) == GPIO_MODE_OUTPUT_PP)          ||\
 
                            ((MODE) == GPIO_MODE_OUTPUT_OD)          ||\
 
                            ((MODE) == GPIO_MODE_AF_PP)              ||\
 
                            ((MODE) == GPIO_MODE_AF_OD)              ||\
 
                            ((MODE) == GPIO_MODE_IT_RISING)          ||\
 
                            ((MODE) == GPIO_MODE_IT_FALLING)         ||\
 
                            ((MODE) == GPIO_MODE_IT_RISING_FALLING)  ||\
 
                            ((MODE) == GPIO_MODE_EVT_RISING)         ||\
 
                            ((MODE) == GPIO_MODE_EVT_FALLING)        ||\
 
                            ((MODE) == GPIO_MODE_EVT_RISING_FALLING) ||\
 
                            ((MODE) == GPIO_MODE_ANALOG))
 
 
/**
 
  * @}
 
  */
 
                                                         
 
/** @defgroup GPIO_speed GPIO speed
 
  * @brief GPIO Output Maximum frequency
 
  * @{
 
  */  
 
#define  GPIO_SPEED_LOW         ((uint32_t)0x00000000)  /*!< Low speed     */
 
#define  GPIO_SPEED_MEDIUM      ((uint32_t)0x00000001)  /*!< Medium speed  */
 
#define  GPIO_SPEED_HIGH        ((uint32_t)0x00000003)  /*!< High speed    */
 
 
#define IS_GPIO_SPEED(SPEED) (((SPEED) == GPIO_SPEED_LOW)  || ((SPEED) == GPIO_SPEED_MEDIUM) || \
 
                              ((SPEED) == GPIO_SPEED_HIGH))
 
/**
 
  * @}
 
  */
 
 
 /** @defgroup GPIO_pull GPIO pull
 
   * @brief GPIO Pull-Up or Pull-Down Activation
 
   * @{
 
   */  
 
#define  GPIO_NOPULL        ((uint32_t)0x00000000)   /*!< No Pull-up or Pull-down activation  */
 
#define  GPIO_PULLUP        ((uint32_t)0x00000001)   /*!< Pull-up activation                  */
 
#define  GPIO_PULLDOWN      ((uint32_t)0x00000002)   /*!< Pull-down activation                */
 
 
#define IS_GPIO_PULL(PULL) (((PULL) == GPIO_NOPULL) || ((PULL) == GPIO_PULLUP) || \
 
                            ((PULL) == GPIO_PULLDOWN))
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup GPIO_Exported_Macros GPIO Exported Macros
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Checks whether the specified EXTI line flag is set or not.
 
  * @param  __EXTI_LINE__: specifies the EXTI line flag to check.
 
  *         This parameter can be GPIO_PIN_x where x can be(0..15)
 
  * @retval The new state of __EXTI_LINE__ (SET or RESET).
 
  */
 
#define __HAL_GPIO_EXTI_GET_FLAG(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__))
 
 
/**
 
  * @brief  Clears the EXTI's line pending flags.
 
  * @param  __EXTI_LINE__: specifies the EXTI lines flags to clear.
 
  *         This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
 
  * @retval None
 
  */
 
#define __HAL_GPIO_EXTI_CLEAR_FLAG(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__))
 
 
/**
 
  * @brief  Checks whether the specified EXTI line is asserted or not.
 
  * @param  __EXTI_LINE__: specifies the EXTI line to check.
 
  *          This parameter can be GPIO_PIN_x where x can be(0..15)
 
  * @retval The new state of __EXTI_LINE__ (SET or RESET).
 
  */
 
#define __HAL_GPIO_EXTI_GET_IT(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__))
 
 
/**
 
  * @brief  Clears the EXTI's line pending bits.
 
  * @param  __EXTI_LINE__: specifies the EXTI lines to clear.
 
  *          This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
 
  * @retval None
 
  */
 
#define __HAL_GPIO_EXTI_CLEAR_IT(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__))
 
 
/**
 
  * @brief  Generates a Software interrupt on selected EXTI line.
 
  * @param  __EXTI_LINE__: specifies the EXTI line to check.
 
  *          This parameter can be GPIO_PIN_x where x can be(0..15)
 
  * @retval None
 
  */
 
#define __HAL_GPIO_EXTI_GENERATE_SWIT(__EXTI_LINE__) (EXTI->SWIER |= (__EXTI_LINE__))
 
 
/**
 
  * @}
 
  */
 
 
/* Include GPIO HAL Extension module */
 
#include "stm32f0xx_hal_gpio_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/ 
 
/** @addtogroup GPIO_Exported_Functions GPIO Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup GPIO_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions
 
 * @{
 
 */
 
     
 
/* Initialization and de-initialization functions *****************************/
 
void              HAL_GPIO_Init(GPIO_TypeDef  *GPIOx, GPIO_InitTypeDef *GPIO_Init);
 
void              HAL_GPIO_DeInit(GPIO_TypeDef  *GPIOx, uint32_t GPIO_Pin);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup GPIO_Exported_Functions_Group2 IO operation functions 
 
 * @{
 
 */
 
   
 
/* IO operation functions *****************************************************/
 
GPIO_PinState     HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
 
void              HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState);
 
void              HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
 
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
 
void              HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin);
 
void              HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */  
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_GPIO_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_gpio_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_gpio_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of GPIO HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_GPIO_EX_H
 
#define __STM32F0xx_HAL_GPIO_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup GPIOEx GPIOEx Extended HAL module driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup GPIOEx_Exported_Constants GPIOEx Exported Constants
 
  * @{
 
  */ 
 
  
 
/** @defgroup GPIOEx_Alternate_function_selection GPIOEx Alternate function selection
 
  * @{
 
  */
 
  
 
#if defined (STM32F030x6)
 
/*------------------------- STM32F030x6---------------------------*/ 
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1 Alternate Function mapping      */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
#define GPIO_AF4_I2C1         ((uint8_t)0x04)  /*!< AF4: I2C1 Alternate Function mapping      */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x06)
 
 
#endif /* STM32F030x6 */
 
 
/*---------------------------------- STM32F030x8 -------------------------------------------*/
 
#if defined (STM32F030x8)
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1 Alternate Function mapping      */
 
#define GPIO_AF0_SPI2         ((uint8_t)0x00)  /*!< AF0: SPI2 Alternate Function mapping      */
 
#define GPIO_AF0_TIM15        ((uint8_t)0x00)  /*!< AF0: TIM15 Alternate Function mapping     */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_TIM15        ((uint8_t)0x01)  /*!< AF1: TIM15 Alternate Function mapping     */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_USART2       ((uint8_t)0x01)  /*!< AF1: USART2 Alternate Function mapping    */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_I2C2         ((uint8_t)0x01)  /*!< AF1: I2C2 Alternate Function mapping      */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
#define GPIO_AF3_TIM15        ((uint8_t)0x03)  /*!< AF3: TIM15 Alternate Function mapping     */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x06)
 
 
#endif /* STM32F030x8 */
 
 
#if defined (STM32F031x6) || defined (STM32F038xx)
 
/*--------------------------- STM32F031x6/STM32F038xx ---------------------------*/
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1/I2S1 Alternate Function mapping */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_SWDAT        ((uint8_t)0x00)  /*!< AF0: SWDAT Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM2         ((uint8_t)0x02)  /*!< AF2: TIM2 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
#define GPIO_AF4_I2C1         ((uint8_t)0x04)  /*!< AF4: I2C1 Alternate Function mapping      */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x06)
 
 
#endif /* STM32F031x6 || STM32F038xx */
 
 
#if defined (STM32F051x8) || defined (STM32F058xx)
 
/*--------------------------- STM32F051x8/STM32F058xx---------------------------*/
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1/I2S1 Alternate Function mapping */
 
#define GPIO_AF0_SPI2         ((uint8_t)0x00)  /*!< AF0: SPI2 Alternate Function mapping      */
 
#define GPIO_AF0_TIM15        ((uint8_t)0x00)  /*!< AF0: TIM15 Alternate Function mapping     */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
#define GPIO_AF0_CEC          ((uint8_t)0x00)  /*!< AF0: CEC Alternate Function mapping       */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_TIM15        ((uint8_t)0x01)  /*!< AF1: TIM15 Alternate Function mapping     */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_USART2       ((uint8_t)0x01)  /*!< AF1: USART2 Alternate Function mapping    */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_I2C2         ((uint8_t)0x01)  /*!< AF1: I2C2 Alternate Function mapping      */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
#define GPIO_AF1_CEC          ((uint8_t)0x01)  /*!< AF1: CEC Alternate Function mapping       */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM2         ((uint8_t)0x02)  /*!< AF2: TIM2 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
#define GPIO_AF3_TIM15        ((uint8_t)0x03)  /*!< AF3: TIM15 Alternate Function mapping     */
 
#define GPIO_AF3_TSC          ((uint8_t)0x03)  /*!< AF3: TSC Alternate Function mapping       */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
/* AF 7 */
 
#define GPIO_AF7_COMP1        ((uint8_t)0x07)  /*!< AF7: COMP1 Alternate Function mapping     */
 
#define GPIO_AF7_COMP2        ((uint8_t)0x07)  /*!< AF7: COMP2 Alternate Function mapping     */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x07)
 
 
#endif /* STM32F051x8/STM32F058xx */
 
 
#if defined (STM32F071xB)
 
/*--------------------------- STM32F071xB ---------------------------*/
 
/* AF 0 */ 
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: AEVENTOUT Alternate Function mapping */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_CEC          ((uint8_t)0x00)  /*!< AF0: CEC Alternate Function mapping       */
 
#define GPIO_AF0_CRS          ((uint8_t)0x00)  /*!< AF0: CRS Alternate Function mapping       */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1/I2S1 Alternate Function mapping */
 
#define GPIO_AF0_SPI2         ((uint8_t)0x00)  /*!< AF0: SPI2/I2S2 Alternate Function mapping */
 
#define GPIO_AF0_TIM1         ((uint8_t)0x00)  /*!< AF0: TIM1 Alternate Function mapping      */
 
#define GPIO_AF0_TIM3         ((uint8_t)0x00)  /*!< AF0: TIM3 Alternate Function mapping      */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_TIM15        ((uint8_t)0x00)  /*!< AF0: TIM15 Alternate Function mapping     */
 
#define GPIO_AF0_TIM16        ((uint8_t)0x00)  /*!< AF0: TIM16 Alternate Function mapping     */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_TSC          ((uint8_t)0x00)  /*!< AF0: TSC Alternate Function mapping       */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_USART2       ((uint8_t)0x00)  /*!< AF0: USART2 Alternate Function mapping    */
 
#define GPIO_AF0_USART3       ((uint8_t)0x00)  /*!< AF0: USART3 Alternate Function mapping    */
 
#define GPIO_AF0_USART4       ((uint8_t)0x00)  /*!< AF0: USART4 Alternate Function mapping    */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_TIM15        ((uint8_t)0x01)  /*!< AF1: TIM15 Alternate Function mapping     */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_USART2       ((uint8_t)0x01)  /*!< AF1: USART2 Alternate Function mapping    */
 
#define GPIO_AF1_USART3       ((uint8_t)0x01)  /*!< AF1: USART3 Alternate Function mapping    */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
#define GPIO_AF1_CEC          ((uint8_t)0x01)  /*!< AF1: CEC Alternate Function mapping       */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_I2C2         ((uint8_t)0x01)  /*!< AF1: I2C2 Alternate Function mapping      */
 
#define GPIO_AF1_TSC          ((uint8_t)0x01)  /*!< AF1: TSC Alternate Function mapping       */
 
#define GPIO_AF1_SPI1         ((uint8_t)0x01)  /*!< AF1: SPI1 Alternate Function mapping      */
 
#define GPIO_AF1_SPI2         ((uint8_t)0x01)  /*!< AF1: SPI2 Alternate Function mapping      */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM2         ((uint8_t)0x02)  /*!< AF2: TIM2 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_TSC          ((uint8_t)0x03)  /*!< AF3: TSC Alternate Function mapping       */
 
#define GPIO_AF3_TIM15        ((uint8_t)0x03)  /*!< AF3: TIM15 Alternate Function mapping     */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
#define GPIO_AF4_USART4       ((uint8_t)0x04)  /*!< AF4: USART4 Alternate Function mapping    */
 
#define GPIO_AF4_USART3       ((uint8_t)0x04)  /*!< AF4: USART3 Alternate Function mapping    */
 
#define GPIO_AF4_CRS          ((uint8_t)0x04)  /*!< AF4: CRS Alternate Function mapping       */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM15        ((uint8_t)0x05)  /*!< AF5: TIM15 Alternate Function mapping     */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
#define GPIO_AF5_SPI2         ((uint8_t)0x05)  /*!< AF5: SPI2 Alternate Function mapping      */
 
#define GPIO_AF5_I2C2         ((uint8_t)0x05)  /*!< AF5: I2C2 Alternate Function mapping      */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
/* AF 7 */
 
#define GPIO_AF7_COMP1        ((uint8_t)0x07)  /*!< AF7: COMP1 Alternate Function mapping     */
 
#define GPIO_AF7_COMP2        ((uint8_t)0x07)  /*!< AF7: COMP2 Alternate Function mapping     */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x07)
 
 
#endif /* STM32F071xB */
 
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
/*--------------------------- STM32F091xC || STM32F098xx ------------------------------*/
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_CEC          ((uint8_t)0x00)  /*!< AF0: CEC Alternate Function mapping       */
 
#define GPIO_AF0_CRS          ((uint8_t)0x00)  /*!< AF0: CRS Alternate Function mapping       */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1/I2S1 Alternate Function mapping */
 
#define GPIO_AF0_SPI2         ((uint8_t)0x00)  /*!< AF0: SPI2/I2S2 Alternate Function mapping */
 
#define GPIO_AF0_TIM1         ((uint8_t)0x00)  /*!< AF0: TIM1 Alternate Function mapping      */
 
#define GPIO_AF0_TIM3         ((uint8_t)0x00)  /*!< AF0: TIM3 Alternate Function mapping      */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_TIM15        ((uint8_t)0x00)  /*!< AF0: TIM15 Alternate Function mapping     */
 
#define GPIO_AF0_TIM16        ((uint8_t)0x00)  /*!< AF0: TIM16 Alternate Function mapping     */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_TSC          ((uint8_t)0x00)  /*!< AF0: TSC Alternate Function mapping       */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_USART2       ((uint8_t)0x00)  /*!< AF0: USART2 Alternate Function mapping    */
 
#define GPIO_AF0_USART3       ((uint8_t)0x00)  /*!< AF0: USART3 Alternate Function mapping    */
 
#define GPIO_AF0_USART4       ((uint8_t)0x00)  /*!< AF0: USART4 Alternate Function mapping    */
 
#define GPIO_AF0_USART8       ((uint8_t)0x00)  /*!< AF0: USART8 Alternate Function mapping    */
 
#define GPIO_AF0_CAN          ((uint8_t)0x00)  /*!< AF0: CAN Alternate Function mapping       */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_TIM15        ((uint8_t)0x01)  /*!< AF1: TIM15 Alternate Function mapping     */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_USART2       ((uint8_t)0x01)  /*!< AF1: USART2 Alternate Function mapping    */
 
#define GPIO_AF1_USART3       ((uint8_t)0x01)  /*!< AF1: USART3 Alternate Function mapping    */
 
#define GPIO_AF1_USART4       ((uint8_t)0x01)  /*!< AF1: USART4 Alternate Function mapping    */
 
#define GPIO_AF1_USART5       ((uint8_t)0x01)  /*!< AF1: USART5 Alternate Function mapping    */
 
#define GPIO_AF1_USART6       ((uint8_t)0x01)  /*!< AF1: USART6 Alternate Function mapping    */
 
#define GPIO_AF1_USART7       ((uint8_t)0x01)  /*!< AF1: USART7 Alternate Function mapping    */
 
#define GPIO_AF1_USART8       ((uint8_t)0x01)  /*!< AF1: USART8 Alternate Function mapping    */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
#define GPIO_AF1_CEC          ((uint8_t)0x01)  /*!< AF1: CEC Alternate Function mapping       */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_I2C2         ((uint8_t)0x01)  /*!< AF1: I2C2 Alternate Function mapping      */
 
#define GPIO_AF1_TSC          ((uint8_t)0x01)  /*!< AF1: TSC Alternate Function mapping       */
 
#define GPIO_AF1_SPI1         ((uint8_t)0x01)  /*!< AF1: SPI1 Alternate Function mapping      */
 
#define GPIO_AF1_SPI2         ((uint8_t)0x01)  /*!< AF1: SPI2 Alternate Function mapping      */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM2         ((uint8_t)0x02)  /*!< AF2: TIM2 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF2_USART5       ((uint8_t)0x02)  /*!< AF2: USART5 Alternate Function mapping    */
 
#define GPIO_AF2_USART6       ((uint8_t)0x02)  /*!< AF2: USART6 Alternate Function mapping    */
 
#define GPIO_AF2_USART7       ((uint8_t)0x02)  /*!< AF2: USART7 Alternate Function mapping    */
 
#define GPIO_AF2_USART8       ((uint8_t)0x02)  /*!< AF2: USART8 Alternate Function mapping    */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_TSC          ((uint8_t)0x03)  /*!< AF3: TSC Alternate Function mapping       */
 
#define GPIO_AF3_TIM15        ((uint8_t)0x03)  /*!< AF3: TIM15 Alternate Function mapping     */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
#define GPIO_AF4_USART4       ((uint8_t)0x04)  /*!< AF4: USART4 Alternate Function mapping    */
 
#define GPIO_AF4_USART3       ((uint8_t)0x04)  /*!< AF4: USART3 Alternate Function mapping    */
 
#define GPIO_AF4_CRS          ((uint8_t)0x04)  /*!< AF4: CRS Alternate Function mapping       */
 
#define GPIO_AF4_CAN          ((uint8_t)0x04)  /*!< AF4: CAN Alternate Function mapping       */
 
#define GPIO_AF4_I2C1         ((uint8_t)0x04)  /*!< AF4: I2C1 Alternate Function mapping      */
 
#define GPIO_AF4_USART5       ((uint8_t)0x04)  /*!< AF4: USART5 Alternate Function mapping    */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM15        ((uint8_t)0x05)  /*!< AF5: TIM15 Alternate Function mapping     */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
#define GPIO_AF5_SPI2         ((uint8_t)0x05)  /*!< AF5: SPI2 Alternate Function mapping      */
 
#define GPIO_AF5_I2C2         ((uint8_t)0x05)  /*!< AF5: I2C2 Alternate Function mapping      */
 
#define GPIO_AF5_MCO          ((uint8_t)0x05)  /*!< AF5: MCO Alternate Function mapping       */
 
#define GPIO_AF5_USART6       ((uint8_t)0x05)  /*!< AF5: USART6 Alternate Function mapping    */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
/* AF 7 */
 
#define GPIO_AF7_COMP1        ((uint8_t)0x07)  /*!< AF7: COMP1 Alternate Function mapping     */
 
#define GPIO_AF7_COMP2        ((uint8_t)0x07)  /*!< AF7: COMP2 Alternate Function mapping     */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x07)
 
 
#endif /* STM32F091xC  || STM32F098xx */
 
 
#if defined (STM32F072xB) || defined (STM32F078xx)
 
/*--------------------------- STM32F072xB/STM32F078xx ---------------------------*/
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_CEC          ((uint8_t)0x00)  /*!< AF0: CEC Alternate Function mapping       */
 
#define GPIO_AF0_CRS          ((uint8_t)0x00)  /*!< AF0: CRS Alternate Function mapping       */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1/I2S1 Alternate Function mapping */
 
#define GPIO_AF0_SPI2         ((uint8_t)0x00)  /*!< AF0: SPI2/I2S2 Alternate Function mapping */
 
#define GPIO_AF0_TIM1         ((uint8_t)0x00)  /*!< AF0: TIM1 Alternate Function mapping      */
 
#define GPIO_AF0_TIM3         ((uint8_t)0x00)  /*!< AF0: TIM3 Alternate Function mapping      */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_TIM15        ((uint8_t)0x00)  /*!< AF0: TIM15 Alternate Function mapping     */
 
#define GPIO_AF0_TIM16        ((uint8_t)0x00)  /*!< AF0: TIM16 Alternate Function mapping     */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_TSC          ((uint8_t)0x00)  /*!< AF0: TSC Alternate Function mapping       */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
#define GPIO_AF0_USART2       ((uint8_t)0x00)  /*!< AF0: USART2 Alternate Function mapping    */
 
#define GPIO_AF0_USART3       ((uint8_t)0x00)  /*!< AF0: USART2 Alternate Function mapping    */
 
#define GPIO_AF0_USART4       ((uint8_t)0x00)  /*!< AF0: USART4 Alternate Function mapping    */
 
#define GPIO_AF0_CAN          ((uint8_t)0x00)  /*!< AF0: CAN Alternate Function mapping       */
 
 
/* AF 1 */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
#define GPIO_AF1_TIM15        ((uint8_t)0x01)  /*!< AF1: TIM15 Alternate Function mapping     */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_USART2       ((uint8_t)0x01)  /*!< AF1: USART2 Alternate Function mapping    */
 
#define GPIO_AF1_USART3       ((uint8_t)0x01)  /*!< AF1: USART3 Alternate Function mapping    */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
#define GPIO_AF1_CEC          ((uint8_t)0x01)  /*!< AF1: CEC Alternate Function mapping       */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_I2C2         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_TSC          ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_SPI1         ((uint8_t)0x01)  /*!< AF1: SPI1 Alternate Function mapping      */
 
#define GPIO_AF1_SPI2         ((uint8_t)0x01)  /*!< AF1: SPI2 Alternate Function mapping      */
 
 
/* AF 2 */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM2         ((uint8_t)0x02)  /*!< AF2: TIM2 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF2_USB          ((uint8_t)0x02)  /*!< AF2: USB Alternate Function mapping       */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_TSC          ((uint8_t)0x03)  /*!< AF3: TSC Alternate Function mapping       */
 
#define GPIO_AF3_TIM15        ((uint8_t)0x03)  /*!< AF3: TIM15 Alternate Function mapping     */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
#define GPIO_AF4_USART4       ((uint8_t)0x04)  /*!< AF4: USART4 Alternate Function mapping    */
 
#define GPIO_AF4_USART3       ((uint8_t)0x04)  /*!< AF4: USART3 Alternate Function mapping    */
 
#define GPIO_AF4_CRS          ((uint8_t)0x04)  /*!< AF4: CRS Alternate Function mapping       */
 
#define GPIO_AF4_CAN          ((uint8_t)0x04)  /*!< AF4: CAN Alternate Function mapping       */
 
 
/* AF 5 */
 
#define GPIO_AF5_TIM15        ((uint8_t)0x05)  /*!< AF5: TIM15 Alternate Function mapping     */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
#define GPIO_AF5_SPI2         ((uint8_t)0x05)  /*!< AF5: SPI2 Alternate Function mapping      */
 
#define GPIO_AF5_I2C2         ((uint8_t)0x05)  /*!< AF5: I2C2 Alternate Function mapping      */
 
 
/* AF 6 */
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
/* AF 7 */
 
#define GPIO_AF7_COMP1        ((uint8_t)0x07)  /*!< AF7: COMP1 Alternate Function mapping     */
 
#define GPIO_AF7_COMP2        ((uint8_t)0x07)  /*!< AF7: COMP2 Alternate Function mapping     */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x07)
 
 
#endif /* STM32F072xB || STM32F078xx */
 
 
#if defined (STM32F042x6) || defined (STM32F048xx)
 
/*--------------------------- STM32F042x6/STM32F048xx ---------------------------*/
 
/* AF 0 */
 
#define GPIO_AF0_EVENTOUT     ((uint8_t)0x00)  /*!< AF0: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF0_CEC          ((uint8_t)0x00)  /*!< AF0: CEC Alternate Function mapping       */
 
#define GPIO_AF0_CRS          ((uint8_t)0x00)  /*!< AF0: CRS Alternate Function mapping       */
 
#define GPIO_AF0_IR           ((uint8_t)0x00)  /*!< AF0: IR Alternate Function mapping        */
 
#define GPIO_AF0_MCO          ((uint8_t)0x00)  /*!< AF0: MCO Alternate Function mapping       */
 
#define GPIO_AF0_SPI1         ((uint8_t)0x00)  /*!< AF0: SPI1/I2S1 Alternate Function mapping */
 
#define GPIO_AF0_SPI2         ((uint8_t)0x00)  /*!< AF0: SPI2/I2S2 Alternate Function mapping */
 
#define GPIO_AF0_SWDIO        ((uint8_t)0x00)  /*!< AF0: SWDIO Alternate Function mapping     */
 
#define GPIO_AF0_SWCLK        ((uint8_t)0x00)  /*!< AF0: SWCLK Alternate Function mapping     */
 
#define GPIO_AF0_TIM14        ((uint8_t)0x00)  /*!< AF0: TIM14 Alternate Function mapping     */
 
#define GPIO_AF0_TIM17        ((uint8_t)0x00)  /*!< AF0: TIM17 Alternate Function mapping     */
 
#define GPIO_AF0_USART1       ((uint8_t)0x00)  /*!< AF0: USART1 Alternate Function mapping    */
 
 
/* AF 1 */
 
#define GPIO_AF1_CEC          ((uint8_t)0x01)  /*!< AF1: CEC Alternate Function mapping       */
 
#define GPIO_AF1_EVENTOUT     ((uint8_t)0x01)  /*!< AF1: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF1_I2C1         ((uint8_t)0x01)  /*!< AF1: I2C1 Alternate Function mapping      */
 
#define GPIO_AF1_IR           ((uint8_t)0x01)  /*!< AF1: IR Alternate Function mapping        */
 
#define GPIO_AF1_USART1       ((uint8_t)0x01)  /*!< AF1: USART1 Alternate Function mapping    */
 
#define GPIO_AF1_USART2       ((uint8_t)0x01)  /*!< AF1: USART2 Alternate Function mapping    */
 
#define GPIO_AF1_TIM3         ((uint8_t)0x01)  /*!< AF1: TIM3 Alternate Function mapping      */
 
 
/* AF 2 */
 
#define GPIO_AF2_EVENTOUT     ((uint8_t)0x02)  /*!< AF2: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF2_TIM1         ((uint8_t)0x02)  /*!< AF2: TIM1 Alternate Function mapping      */
 
#define GPIO_AF2_TIM2         ((uint8_t)0x02)  /*!< AF2: TIM2 Alternate Function mapping      */
 
#define GPIO_AF2_TIM16        ((uint8_t)0x02)  /*!< AF2: TIM16 Alternate Function mapping     */
 
#define GPIO_AF2_TIM17        ((uint8_t)0x02)  /*!< AF2: TIM17 Alternate Function mapping     */
 
#define GPIO_AF2_USB          ((uint8_t)0x02)  /*!< AF2: USB Alternate Function mapping       */
 
 
/* AF 3 */
 
#define GPIO_AF3_EVENTOUT     ((uint8_t)0x03)  /*!< AF3: EVENTOUT Alternate Function mapping  */
 
#define GPIO_AF3_I2C1         ((uint8_t)0x03)  /*!< AF3: I2C1 Alternate Function mapping      */
 
#define GPIO_AF3_TSC          ((uint8_t)0x03)  /*!< AF3: TSC Alternate Function mapping       */
 
 
/* AF 4 */
 
#define GPIO_AF4_TIM14        ((uint8_t)0x04)  /*!< AF4: TIM14 Alternate Function mapping     */
 
#define GPIO_AF4_CAN          ((uint8_t)0x04)  /*!< AF4: CAN Alternate Function mapping       */
 
#define GPIO_AF4_CRS          ((uint8_t)0x04)  /*!< AF4: CRS Alternate Function mapping       */
 
#define GPIO_AF4_I2C1         ((uint8_t)0x04)  /*!< AF4: I2C1 Alternate Function mapping      */
 
 
/* AF 5 */ 
 
#define GPIO_AF5_MCO          ((uint8_t)0x05)  /*!< AF5: MCO Alternate Function mapping       */
 
#define GPIO_AF5_I2C1         ((uint8_t)0x05)  /*!< AF5: I2C1 Alternate Function mapping      */
 
#define GPIO_AF5_I2C2         ((uint8_t)0x05)  /*!< AF5: I2C2 Alternate Function mapping      */
 
#define GPIO_AF5_SPI2         ((uint8_t)0x05)  /*!< AF5: SPI2 Alternate Function mapping      */
 
#define GPIO_AF5_TIM16        ((uint8_t)0x05)  /*!< AF5: TIM16 Alternate Function mapping     */
 
#define GPIO_AF5_TIM17        ((uint8_t)0x05)  /*!< AF5: TIM17 Alternate Function mapping     */
 
#define GPIO_AF5_USB          ((uint8_t)0x05)  /*!< AF5: USB Alternate Function mapping       */
 
 
/* AF 6 */ 
 
#define GPIO_AF6_EVENTOUT     ((uint8_t)0x06)  /*!< AF6: EVENTOUT Alternate Function mapping  */
 
 
#define IS_GPIO_AF(AF)        ((AF) <= (uint8_t)0x06)
 
 
#endif /* STM32F042x6 || STM32F048xx */
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup GPIOEx_Exported_Macros GPIOEx Exported Macros
 
  * @{
 
  */
 
 
/** @defgroup GPIOEx_Get_Port_Index GPIOEx_Get Port Index
 
* @{
 
  */
 
#if defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define GET_GPIO_INDEX(__GPIOx__)    (((__GPIOx__) == (GPIOA))? 0U :\
 
                                      ((__GPIOx__) == (GPIOB))? 1U :\
 
                                      ((__GPIOx__) == (GPIOC))? 2U :\
 
                                      ((__GPIOx__) == (GPIOD))? 3U :\
 
                                      ((__GPIOx__) == (GPIOE))? 4U : 5U)
 
#endif
 
 
#if defined (STM32F030x6) || defined (STM32F030x8) || \
 
    defined (STM32F051x8) || defined (STM32F058xx)
 
#define GET_GPIO_INDEX(__GPIOx__)    (((__GPIOx__) == (GPIOA))? 0U :\
 
                                      ((__GPIOx__) == (GPIOB))? 1U :\
 
                                      ((__GPIOx__) == (GPIOC))? 2U :\
 
                                      ((__GPIOx__) == (GPIOD))? 3U : 5U)
 
#endif
 
 
#if defined (STM32F031x6) || defined (STM32F038xx) || \
 
    defined (STM32F042x6) || defined (STM32F048xx)
 
#define GET_GPIO_INDEX(__GPIOx__)    (((__GPIOx__) == (GPIOA))? 0U :\
 
                                      ((__GPIOx__) == (GPIOB))? 1U :\
 
                                      ((__GPIOx__) == (GPIOC))? 2U : 5U)
 
#endif
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/ 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_GPIO_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_i2c.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_i2c.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of I2C HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_I2C_H
 
#define __STM32F0xx_HAL_I2C_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"  
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup I2C
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup I2C_Exported_Types I2C Exported Types
 
  * @{
 
  */
 
 
/** @defgroup I2C_Configuration_Structure_definition I2C Configuration Structure definition
 
  * @brief  I2C Configuration Structure definition    
 
  * @{
 
  */
 
typedef struct
 
{
 
  uint32_t Timing;              /*!< Specifies the I2C_TIMINGR_register value.
 
                                  This parameter calculated by referring to I2C initialization 
 
                                         section in Reference manual */
 
 
  uint32_t OwnAddress1;         /*!< Specifies the first device own address.
 
                                  This parameter can be a 7-bit or 10-bit address. */
 
 
  uint32_t AddressingMode;      /*!< Specifies if 7-bit or 10-bit addressing mode is selected.
 
                                  This parameter can be a value of @ref I2C_addressing_mode */
 
 
  uint32_t DualAddressMode;     /*!< Specifies if dual addressing mode is selected.
 
                                  This parameter can be a value of @ref I2C_dual_addressing_mode */
 
 
  uint32_t OwnAddress2;         /*!< Specifies the second device own address if dual addressing mode is selected
 
                                  This parameter can be a 7-bit address. */
 
 
  uint32_t OwnAddress2Masks;    /*!< Specifies the acknoledge mask address second device own address if dual addressing mode is selected
 
                                  This parameter can be a value of @ref I2C_own_address2_masks. */
 
 
  uint32_t GeneralCallMode;     /*!< Specifies if general call mode is selected.
 
                                  This parameter can be a value of @ref I2C_general_call_addressing_mode. */
 
 
  uint32_t NoStretchMode;       /*!< Specifies if nostretch mode is selected.
 
                                  This parameter can be a value of @ref I2C_nostretch_mode */
 
 
}I2C_InitTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup HAL_state_structure_definition HAL state structure definition
 
  * @brief  HAL State structure definition  
 
  * @{
 
  */
 
 
typedef enum
 
{
 
  HAL_I2C_STATE_RESET           = 0x00,  /*!< I2C not yet initialized or disabled         */
 
  HAL_I2C_STATE_READY           = 0x01,  /*!< I2C initialized and ready for use           */
 
  HAL_I2C_STATE_BUSY            = 0x02,  /*!< I2C internal process is ongoing             */
 
  HAL_I2C_STATE_MASTER_BUSY_TX  = 0x12,  /*!< Master Data Transmission process is ongoing */ 
 
  HAL_I2C_STATE_MASTER_BUSY_RX  = 0x22,  /*!< Master Data Reception process is ongoing    */
 
  HAL_I2C_STATE_SLAVE_BUSY_TX   = 0x32,  /*!< Slave Data Transmission process is ongoing  */ 
 
  HAL_I2C_STATE_SLAVE_BUSY_RX   = 0x42,  /*!< Slave Data Reception process is ongoing     */
 
  HAL_I2C_STATE_MEM_BUSY_TX     = 0x52,  /*!< Memory Data Transmission process is ongoing */ 
 
  HAL_I2C_STATE_MEM_BUSY_RX     = 0x62,  /*!< Memory Data Reception process is ongoing    */  
 
  HAL_I2C_STATE_TIMEOUT         = 0x03,  /*!< Timeout state                               */  
 
  HAL_I2C_STATE_ERROR           = 0x04   /*!< Reception process is ongoing                */      
 
                                                                        
 
}HAL_I2C_StateTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_Error_Code_structure_definition I2C Error Code structure definition
 
  * @brief  I2C Error Code structure definition  
 
  * @{
 
  */  
 
 
typedef enum
 
{
 
  HAL_I2C_ERROR_NONE      = 0x00,    /*!< No error              */
 
  HAL_I2C_ERROR_BERR      = 0x01,    /*!< BERR error            */
 
  HAL_I2C_ERROR_ARLO      = 0x02,    /*!< ARLO error            */   
 
  HAL_I2C_ERROR_AF        = 0x04,    /*!< AF error              */
 
  HAL_I2C_ERROR_OVR       = 0x08,    /*!< OVR error             */
 
  HAL_I2C_ERROR_DMA       = 0x10,    /*!< DMA transfer error    */
 
  HAL_I2C_ERROR_TIMEOUT   = 0x20,    /*!< Timeout error         */
 
  HAL_I2C_ERROR_SIZE      = 0x40     /*!< Size Management error */
 
}HAL_I2C_ErrorTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_handle_Structure_definition I2C handle Structure definition 
 
  * @brief  I2C handle Structure definition   
 
  * @{
 
  */ 
 
 
typedef struct
 
{
 
  I2C_TypeDef                *Instance;  /*!< I2C registers base address     */
 
 
  I2C_InitTypeDef            Init;       /*!< I2C communication parameters   */
 
 
  uint8_t                    *pBuffPtr;  /*!< Pointer to I2C transfer buffer */
 
 
  uint16_t                   XferSize;   /*!< I2C transfer size              */
 
 
  __IO uint16_t              XferCount;  /*!< I2C transfer counter           */
 
 
  DMA_HandleTypeDef          *hdmatx;    /*!< I2C Tx DMA handle parameters   */
 
 
  DMA_HandleTypeDef          *hdmarx;    /*!< I2C Rx DMA handle parameters   */
 
 
  HAL_LockTypeDef            Lock;       /*!< I2C locking object             */
 
 
  __IO HAL_I2C_StateTypeDef  State;      /*!< I2C communication state        */
 
 
  __IO HAL_I2C_ErrorTypeDef  ErrorCode;  /* I2C Error code                   */
 
 
}I2C_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup I2C_Exported_Constants I2C Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup I2C_addressing_mode I2C addressing mode
 
  * @{
 
  */
 
#define I2C_ADDRESSINGMODE_7BIT          ((uint32_t)0x00000001) 
 
#define I2C_ADDRESSINGMODE_10BIT         ((uint32_t)0x00000002)
 
 
#define IS_I2C_ADDRESSING_MODE(MODE) (((MODE) == I2C_ADDRESSINGMODE_7BIT)                                        || \
 
                                         ((MODE) == I2C_ADDRESSINGMODE_10BIT))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_dual_addressing_mode I2C dual addressing mode
 
  * @{
 
  */
 
 
#define I2C_DUALADDRESS_DISABLED        ((uint32_t)0x00000000)
 
#define I2C_DUALADDRESS_ENABLED         I2C_OAR2_OA2EN
 
 
#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLED) || \
 
                                      ((ADDRESS) == I2C_DUALADDRESS_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_own_address2_masks I2C own address2 masks
 
  * @{
 
  */
 
 
#define I2C_OA2_NOMASK                  ((uint8_t)0x00)
 
#define I2C_OA2_MASK01                  ((uint8_t)0x01)
 
#define I2C_OA2_MASK02                  ((uint8_t)0x02)
 
#define I2C_OA2_MASK03                  ((uint8_t)0x03)
 
#define I2C_OA2_MASK04                  ((uint8_t)0x04)
 
#define I2C_OA2_MASK05                  ((uint8_t)0x05)
 
#define I2C_OA2_MASK06                  ((uint8_t)0x06)
 
#define I2C_OA2_MASK07                  ((uint8_t)0x07)
 
 
#define IS_I2C_OWN_ADDRESS2_MASK(MASK)  (((MASK) == I2C_OA2_NOMASK) || \
 
                                         ((MASK) == I2C_OA2_MASK01) || \
 
                                         ((MASK) == I2C_OA2_MASK02) || \
 
                                         ((MASK) == I2C_OA2_MASK03) || \
 
                                         ((MASK) == I2C_OA2_MASK04) || \
 
                                         ((MASK) == I2C_OA2_MASK05) || \
 
                                         ((MASK) == I2C_OA2_MASK06) || \
 
                                         ((MASK) == I2C_OA2_MASK07))  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_general_call_addressing_mode I2C general call addressing mode
 
  * @{
 
  */
 
#define I2C_GENERALCALL_DISABLED        ((uint32_t)0x00000000)
 
#define I2C_GENERALCALL_ENABLED         I2C_CR1_GCEN
 
 
#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLED) || \
 
                                   ((CALL) == I2C_GENERALCALL_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_nostretch_mode I2C nostretch mode
 
  * @{
 
  */
 
#define I2C_NOSTRETCH_DISABLED          ((uint32_t)0x00000000)
 
#define I2C_NOSTRETCH_ENABLED           I2C_CR1_NOSTRETCH
 
 
#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLED) || \
 
                                    ((STRETCH) == I2C_NOSTRETCH_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_Memory_Address_Size I2C Memory Address Size
 
  * @{
 
  */
 
#define I2C_MEMADD_SIZE_8BIT            ((uint32_t)0x00000001)
 
#define I2C_MEMADD_SIZE_16BIT           ((uint32_t)0x00000002)
 
 
#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || \
 
                                  ((SIZE) == I2C_MEMADD_SIZE_16BIT))
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup I2C_ReloadEndMode_definition I2C ReloadEndMode definition
 
  * @{
 
  */
 
 
#define  I2C_RELOAD_MODE                I2C_CR2_RELOAD
 
#define  I2C_AUTOEND_MODE               I2C_CR2_AUTOEND
 
#define  I2C_SOFTEND_MODE               ((uint32_t)0x00000000)
 
 
#define IS_TRANSFER_MODE(MODE)        (((MODE) == I2C_RELOAD_MODE)  || \
 
                                       ((MODE) == I2C_AUTOEND_MODE) || \
 
                                       ((MODE) == I2C_SOFTEND_MODE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_StartStopMode_definition I2C StartStopMode definition
 
  * @{
 
  */
 
 
#define  I2C_NO_STARTSTOP                 ((uint32_t)0x00000000)
 
#define  I2C_GENERATE_STOP                I2C_CR2_STOP
 
#define  I2C_GENERATE_START_READ          (uint32_t)(I2C_CR2_START | I2C_CR2_RD_WRN)
 
#define  I2C_GENERATE_START_WRITE         I2C_CR2_START
 
                              
 
#define IS_TRANSFER_REQUEST(REQUEST)    (((REQUEST) == I2C_GENERATE_STOP)        || \
 
                                         ((REQUEST) == I2C_GENERATE_START_READ)  || \
 
                                         ((REQUEST) == I2C_GENERATE_START_WRITE) || \
 
                                         ((REQUEST) == I2C_NO_STARTSTOP))
 
                               
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition
 
  * @brief I2C Interrupt definition
 
  *        Elements values convention: 0xXXXXXXXX
 
  *           - XXXXXXXX  : Interrupt control mask
 
  * @{
 
  */
 
#define I2C_IT_ERRI                       I2C_CR1_ERRIE
 
#define I2C_IT_TCI                        I2C_CR1_TCIE
 
#define I2C_IT_STOPI                      I2C_CR1_STOPIE
 
#define I2C_IT_NACKI                      I2C_CR1_NACKIE
 
#define I2C_IT_ADDRI                      I2C_CR1_ADDRIE
 
#define I2C_IT_RXI                        I2C_CR1_RXIE
 
#define I2C_IT_TXI                        I2C_CR1_TXIE
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup I2C_Flag_definition I2C Flag definition
 
  * @{
 
  */ 
 
 
#define I2C_FLAG_TXE                      I2C_ISR_TXE
 
#define I2C_FLAG_TXIS                     I2C_ISR_TXIS
 
#define I2C_FLAG_RXNE                     I2C_ISR_RXNE
 
#define I2C_FLAG_ADDR                     I2C_ISR_ADDR
 
#define I2C_FLAG_AF                       I2C_ISR_NACKF
 
#define I2C_FLAG_STOPF                    I2C_ISR_STOPF
 
#define I2C_FLAG_TC                       I2C_ISR_TC
 
#define I2C_FLAG_TCR                      I2C_ISR_TCR
 
#define I2C_FLAG_BERR                     I2C_ISR_BERR
 
#define I2C_FLAG_ARLO                     I2C_ISR_ARLO
 
#define I2C_FLAG_OVR                      I2C_ISR_OVR
 
#define I2C_FLAG_PECERR                   I2C_ISR_PECERR
 
#define I2C_FLAG_TIMEOUT                  I2C_ISR_TIMEOUT
 
#define I2C_FLAG_ALERT                    I2C_ISR_ALERT
 
#define I2C_FLAG_BUSY                     I2C_ISR_BUSY
 
#define I2C_FLAG_DIR                      I2C_ISR_DIR
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup I2C_Exported_Macros I2C Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset I2C handle state
 
  * @param  __HANDLE__: I2C handle.
 
  * @retval None
 
  */
 
#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET)
 
 
/** @brief  Enables or disables the specified I2C interrupts.
 
  * @param  __HANDLE__: specifies the I2C Handle.
 
  *         This parameter can be I2Cx where x: 1 or 2 to select the I2C peripheral.
 
  * @param  __INTERRUPT__: specifies the interrupt source to enable or disable.
 
  *         This parameter can be one of the following values:
 
  *            @arg I2C_IT_ERRI: Errors interrupt enable
 
  *            @arg I2C_IT_TCI: Transfer complete interrupt enable
 
  *            @arg I2C_IT_STOPI: STOP detection interrupt enable
 
  *            @arg I2C_IT_NACKI: NACK received interrupt enable
 
  *            @arg I2C_IT_ADDRI: Address match interrupt enable
 
  *            @arg I2C_IT_RXI: RX interrupt enable
 
  *            @arg I2C_IT_TXI: TX interrupt enable
 
  *   
 
  * @retval None
 
  */
 
  
 
#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->CR1 |= (__INTERRUPT__))
 
#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__)  ((__HANDLE__)->Instance->CR1 &= (~(__INTERRUPT__)))
 
 
 
/** @brief  Checks if the specified I2C interrupt source is enabled or disabled.
 
  * @param  __HANDLE__: specifies the I2C Handle.
 
  *         This parameter can be I2Cx where x: 1 or 2 to select the I2C peripheral.
 
  * @param  __INTERRUPT__: specifies the I2C interrupt source to check.
 
  *         This parameter can be one of the following values:
 
  *            @arg I2C_IT_ERRI: Errors interrupt enable
 
  *            @arg I2C_IT_TCI: Transfer complete interrupt enable
 
  *            @arg I2C_IT_STOPI: STOP detection interrupt enable
 
  *            @arg I2C_IT_NACKI: NACK received interrupt enable
 
  *            @arg I2C_IT_ADDRI: Address match interrupt enable
 
  *            @arg I2C_IT_RXI: RX interrupt enable
 
  *            @arg I2C_IT_TXI: TX interrupt enable
 
  *   
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR1 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/** @brief  Checks whether the specified I2C flag is set or not.
 
  * @param  __HANDLE__: specifies the I2C Handle.
 
  *         This parameter can be I2Cx where x: 1 or 2 to select the I2C peripheral.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *         This parameter can be one of the following values:
 
  *            @arg I2C_FLAG_TXE: Transmit data register empty
 
  *            @arg I2C_FLAG_TXIS: Transmit interrupt status
 
  *            @arg I2C_FLAG_RXNE: Receive data register not empty
 
  *            @arg I2C_FLAG_ADDR: Address matched (slave mode)
 
  *            @arg I2C_FLAG_AF: Acknowledge failure received flag
 
  *            @arg I2C_FLAG_STOPF: STOP detection flag
 
  *            @arg I2C_FLAG_TC: Transfer complete (master mode)
 
  *            @arg I2C_FLAG_TCR: Transfer complete reload
 
  *            @arg I2C_FLAG_BERR: Bus error
 
  *            @arg I2C_FLAG_ARLO: Arbitration lost
 
  *            @arg I2C_FLAG_OVR: Overrun/Underrun            
 
  *            @arg I2C_FLAG_PECERR: PEC error in reception
 
  *            @arg I2C_FLAG_TIMEOUT: Timeout or Tlow detection flag 
 
  *            @arg I2C_FLAG_ALERT: SMBus alert
 
  *            @arg I2C_FLAG_BUSY: Bus busy
 
  *            @arg I2C_FLAG_DIR: Transfer direction (slave mode)
 
  *   
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->ISR) & (__FLAG__)) == (__FLAG__))
 
 
/** @brief  Clears the I2C pending flags which are cleared by writing 1 in a specific bit.
 
  * @param  __HANDLE__: specifies the I2C Handle.
 
  *         This parameter can be I2Cx where x: 1 or 2 to select the I2C peripheral.
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *         This parameter can be any combination of the following values:
 
  *            @arg I2C_FLAG_ADDR: Address matched (slave mode)
 
  *            @arg I2C_FLAG_AF: Acknowledge failure flag
 
  *            @arg I2C_FLAG_STOPF: STOP detection flag
 
  *            @arg I2C_FLAG_BERR: Bus error
 
  *            @arg I2C_FLAG_ARLO: Arbitration lost
 
  *            @arg I2C_FLAG_OVR: Overrun/Underrun            
 
  *            @arg I2C_FLAG_PECERR: PEC error in reception
 
  *            @arg I2C_FLAG_TIMEOUT: Timeout or Tlow detection flag 
 
  *            @arg I2C_FLAG_ALERT: SMBus alert
 
  *   
 
  * @retval None
 
  */
 
#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->ICR = (__FLAG__))
 
 
 
 
#define __HAL_I2C_ENABLE(__HANDLE__)                            ((__HANDLE__)->Instance->CR1 |=  I2C_CR1_PE)
 
#define __HAL_I2C_DISABLE(__HANDLE__)                           ((__HANDLE__)->Instance->CR1 &=  ~I2C_CR1_PE)
 
 
#define __HAL_I2C_RESET_CR2(__HANDLE__)				((__HANDLE__)->Instance->CR2 &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_HEAD10R | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_RD_WRN)))
 
 
#define __HAL_I2C_MEM_ADD_MSB(__ADDRESS__)                       ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)(0xFF00))) >> 8)))
 
#define __HAL_I2C_MEM_ADD_LSB(__ADDRESS__)                       ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)(0x00FF))))
 
 
#define __HAL_I2C_GENERATE_START(__ADDMODE__,__ADDRESS__)       (((__ADDMODE__) == I2C_ADDRESSINGMODE_7BIT) ? (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_START) | (I2C_CR2_AUTOEND)) & (~I2C_CR2_RD_WRN)) : \
 
                                                                  (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_ADD10) | (I2C_CR2_START)) & (~I2C_CR2_RD_WRN)))
 
 
#define IS_I2C_OWN_ADDRESS1(ADDRESS1)   ((ADDRESS1) <= (uint32_t)0x000003FF)
 
#define IS_I2C_OWN_ADDRESS2(ADDRESS2)   ((ADDRESS2) <= (uint16_t)0x00FF)
 
/**
 
  * @}
 
  */ 
 
  
 
/* Include I2C HAL Extended module */
 
#include "stm32f0xx_hal_i2c_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup I2C_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
 
  * @{
 
  */
 
  
 
/* Initialization/de-initialization functions  **********************************/
 
HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c);
 
HAL_StatusTypeDef HAL_I2C_DeInit (I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c);
 
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup I2C_Exported_Functions_Group2 Input and Output operation functions
 
  * @{
 
  */
 
   
 
/* IO operation functions  *****************************************************/
 
 
 /******* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);
 
 
 /******* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
 
 
 /******* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
 
 
 /******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */
 
void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
 
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
 
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup I2C_Exported_Functions_Group3 Peripheral State and Errors functions
 
  * @{
 
  */
 
 
/* Peripheral State and Errors functions  **************************************/
 
HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c);
 
uint32_t             HAL_I2C_GetError(I2C_HandleTypeDef *hi2c);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_I2C_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_i2c_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_i2c_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of I2C HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_I2C_EX_H
 
#define __STM32F0xx_HAL_I2C_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"  
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup I2CEx I2CEx Extended HAL module driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup I2CEx_Exported_Constants I2CEx Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup I2CEx_Analog_Filter I2CEx Analog Filter
 
  * @{
 
  */
 
#define I2C_ANALOGFILTER_ENABLED        ((uint32_t)0x00000000)
 
#define I2C_ANALOGFILTER_DISABLED       I2C_CR1_ANFOFF
 
 
#define IS_I2C_ANALOG_FILTER(FILTER) (((FILTER) == I2C_ANALOGFILTER_ENABLED) || \
 
                                      ((FILTER) == I2C_ANALOGFILTER_DISABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2CEx_Digital_Filter I2CEx Digital Filter
 
  * @{
 
  */
 
#define IS_I2C_DIGITAL_FILTER(FILTER)   ((FILTER) <= 0x0000000F)
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup I2CEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup I2CEx_Exported_Functions_Group1 Extended features functions
 
  * @brief    Extended features functions
 
  * @{
 
  */
 
  
 
/* Peripheral Control functions  ************************************************/
 
HAL_StatusTypeDef HAL_I2CEx_AnalogFilter_Config(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter);
 
HAL_StatusTypeDef HAL_I2CEx_DigitalFilter_Config(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter);
 
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp (I2C_HandleTypeDef *hi2c);
 
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp (I2C_HandleTypeDef *hi2c);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */   
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
    
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_I2C_EX_H */
 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_i2s.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_i2s.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of I2S HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_I2S_H
 
#define __STM32F0xx_HAL_I2S_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup I2S
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup I2S_Exported_Types I2S Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief I2S Init structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Mode;                /*!< Specifies the I2S operating mode.
 
                                     This parameter can be a value of @ref I2S_Mode */
 
 
  uint32_t Standard;            /*!< Specifies the standard used for the I2S communication.
 
                                     This parameter can be a value of @ref I2S_Standard */
 
 
  uint32_t DataFormat;          /*!< Specifies the data format for the I2S communication.
 
                                     This parameter can be a value of @ref I2S_Data_Format */
 
 
  uint32_t MCLKOutput;          /*!< Specifies whether the I2S MCLK output is enabled or not.
 
                                     This parameter can be a value of @ref I2S_MCLK_Output */
 
 
  uint32_t AudioFreq;           /*!< Specifies the frequency selected for the I2S communication.
 
                                     This parameter can be a value of @ref I2S_Audio_Frequency */
 
 
  uint32_t CPOL;                /*!< Specifies the idle state of the I2S clock.
 
                                     This parameter can be a value of @ref I2S_Clock_Polarity */
 
}I2S_InitTypeDef;
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_I2S_STATE_RESET      = 0x00,  /*!< I2S not yet initialized or disabled                */
 
  HAL_I2S_STATE_READY      = 0x01,  /*!< I2S initialized and ready for use                  */
 
  HAL_I2S_STATE_BUSY       = 0x02,  /*!< I2S internal process is ongoing                    */   
 
  HAL_I2S_STATE_BUSY_TX    = 0x03,  /*!< Data Transmission process is ongoing               */ 
 
  HAL_I2S_STATE_BUSY_RX    = 0x04,  /*!< Data Reception process is ongoing                  */
 
  HAL_I2S_STATE_PAUSE      = 0x06,  /*!< I2S pause state: used in case of DMA               */ 
 
  HAL_I2S_STATE_ERROR      = 0x07   /*!< I2S error state                                    */      
 
}HAL_I2S_StateTypeDef;
 
 
/** 
 
  * @brief  HAL I2S Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_I2S_ERROR_NONE      = 0x00,  /*!< No error           */
 
  HAL_I2S_ERROR_TIMEOUT   = 0x01,  /*!< Timeout error      */  
 
  HAL_I2S_ERROR_OVR       = 0x02,  /*!< OVR error          */
 
  HAL_I2S_ERROR_UDR       = 0x04,  /*!< UDR error          */
 
  HAL_I2S_ERROR_DMA       = 0x08,  /*!< DMA transfer error */
 
  HAL_I2S_ERROR_UNKNOW    = 0x10   /*!< Unknow Error error */  
 
}HAL_I2S_ErrorTypeDef;
 
 
/** 
 
  * @brief I2S handle Structure definition  
 
  */
 
typedef struct
 
{
 
  SPI_TypeDef                *Instance;    /* I2S registers base address */
 
 
  I2S_InitTypeDef            Init;         /* I2S communication parameters */
 
  
 
  uint16_t                   *pTxBuffPtr;  /* Pointer to I2S Tx transfer buffer */
 
  
 
  __IO uint16_t              TxXferSize;   /* I2S Tx transfer size */
 
  
 
  __IO uint16_t              TxXferCount;  /* I2S Tx transfer Counter */
 
  
 
  uint16_t                   *pRxBuffPtr;  /* Pointer to I2S Rx transfer buffer */
 
  
 
  __IO uint16_t              RxXferSize;   /* I2S Rx transfer size */
 
  
 
  __IO uint16_t              RxXferCount;  /* I2S Rx transfer counter 
 
                                              (This field is initialized at the 
 
                                               same value as transfer size at the 
 
                                               beginning of the transfer and 
 
                                               decremented when a sample is received. 
 
                                               NbSamplesReceived = RxBufferSize-RxBufferCount) */
 
 
  DMA_HandleTypeDef          *hdmatx;      /* I2S Tx DMA handle parameters */
 
 
  DMA_HandleTypeDef          *hdmarx;      /* I2S Rx DMA handle parameters */
 
  
 
  __IO HAL_LockTypeDef       Lock;         /* I2S locking object */
 
  
 
  __IO HAL_I2S_StateTypeDef  State;        /* I2S communication state */
 
 
  __IO HAL_I2S_ErrorTypeDef  ErrorCode;    /* I2S Error code                 */
 
 
}I2S_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup I2S_Exported_Constants I2S Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup I2S_Mode I2S Mode
 
  * @{
 
  */
 
#define I2S_MODE_SLAVE_TX                ((uint32_t)0x00000000)
 
#define I2S_MODE_SLAVE_RX                ((uint32_t)0x00000100)
 
#define I2S_MODE_MASTER_TX               ((uint32_t)0x00000200)
 
#define I2S_MODE_MASTER_RX               ((uint32_t)0x00000300)
 
 
#define IS_I2S_MODE(MODE) (((MODE) == I2S_MODE_SLAVE_TX) || \
 
                           ((MODE) == I2S_MODE_SLAVE_RX) || \
 
                           ((MODE) == I2S_MODE_MASTER_TX)|| \
 
                           ((MODE) == I2S_MODE_MASTER_RX))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup I2S_Standard I2S Standard
 
  * @{
 
  */
 
#define I2S_STANDARD_PHILIPS             ((uint32_t)0x00000000)
 
#define I2S_STANDARD_MSB                 ((uint32_t)0x00000010)
 
#define I2S_STANDARD_LSB                 ((uint32_t)0x00000020)
 
#define I2S_STANDARD_PCM_SHORT           ((uint32_t)0x00000030)
 
#define I2S_STANDARD_PCM_LONG            ((uint32_t)0x000000B0)
 
 
#define IS_I2S_STANDARD(STANDARD) (((STANDARD) == I2S_STANDARD_PHILIPS) || \
 
                                   ((STANDARD) == I2S_STANDARD_MSB) || \
 
                                   ((STANDARD) == I2S_STANDARD_LSB) || \
 
                                   ((STANDARD) == I2S_STANDARD_PCM_SHORT) || \
 
                                   ((STANDARD) == I2S_STANDARD_PCM_LONG))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup I2S_Data_Format I2S Data Format
 
  * @{
 
  */
 
#define I2S_DATAFORMAT_16B               ((uint32_t)0x00000000)
 
#define I2S_DATAFORMAT_16B_EXTENDED      ((uint32_t)0x00000001)
 
#define I2S_DATAFORMAT_24B               ((uint32_t)0x00000003)
 
#define I2S_DATAFORMAT_32B               ((uint32_t)0x00000005)
 
 
#define IS_I2S_DATA_FORMAT(FORMAT) (((FORMAT) == I2S_DATAFORMAT_16B) || \
 
                                    ((FORMAT) == I2S_DATAFORMAT_16B_EXTENDED) || \
 
                                    ((FORMAT) == I2S_DATAFORMAT_24B) || \
 
                                    ((FORMAT) == I2S_DATAFORMAT_32B))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2S_MCLK_Output I2S MCLK Output
 
  * @{
 
  */
 
#define I2S_MCLKOUTPUT_ENABLE           ((uint32_t)SPI_I2SPR_MCKOE)
 
#define I2S_MCLKOUTPUT_DISABLE          ((uint32_t)0x00000000)
 
 
#define IS_I2S_MCLK_OUTPUT(OUTPUT) (((OUTPUT) == I2S_MCLKOUTPUT_ENABLE) || \
 
                                    ((OUTPUT) == I2S_MCLKOUTPUT_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2S_Audio_Frequency I2S Audio Frequency
 
  * @{
 
  */
 
#define I2S_AUDIOFREQ_192K               ((uint32_t)192000)
 
#define I2S_AUDIOFREQ_96K                ((uint32_t)96000)
 
#define I2S_AUDIOFREQ_48K                ((uint32_t)48000)
 
#define I2S_AUDIOFREQ_44K                ((uint32_t)44100)
 
#define I2S_AUDIOFREQ_32K                ((uint32_t)32000)
 
#define I2S_AUDIOFREQ_22K                ((uint32_t)22050)
 
#define I2S_AUDIOFREQ_16K                ((uint32_t)16000)
 
#define I2S_AUDIOFREQ_11K                ((uint32_t)11025)
 
#define I2S_AUDIOFREQ_8K                 ((uint32_t)8000)
 
#define I2S_AUDIOFREQ_DEFAULT            ((uint32_t)2)
 
 
#define IS_I2S_AUDIO_FREQ(FREQ) ((((FREQ) >= I2S_AUDIOFREQ_8K) && \
 
                                 ((FREQ) <= I2S_AUDIOFREQ_192K)) || \
 
                                 ((FREQ) == I2S_AUDIOFREQ_DEFAULT))
 
/**
 
  * @}
 
  */
 
            
 
/** @defgroup I2S_Clock_Polarity I2S Clock Polarity
 
  * @{
 
  */
 
#define I2S_CPOL_LOW                    ((uint32_t)0x00000000)
 
#define I2S_CPOL_HIGH                   ((uint32_t)SPI_I2SCFGR_CKPOL)
 
 
#define IS_I2S_CPOL(CPOL) (((CPOL) == I2S_CPOL_LOW) || \
 
                           ((CPOL) == I2S_CPOL_HIGH))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2S_Interrupt_configuration_definition I2S Interrupt configuration definition
 
  * @{
 
  */
 
#define I2S_IT_TXE                      SPI_CR2_TXEIE
 
#define I2S_IT_RXNE                     SPI_CR2_RXNEIE
 
#define I2S_IT_ERR                      SPI_CR2_ERRIE
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2S_Flag_definition I2S Flag definition
 
  * @{
 
  */ 
 
#define I2S_FLAG_TXE                    SPI_SR_TXE
 
#define I2S_FLAG_RXNE                   SPI_SR_RXNE
 
 
#define I2S_FLAG_UDR                    SPI_SR_UDR
 
#define I2S_FLAG_OVR                    SPI_SR_OVR
 
#define I2S_FLAG_FRE                    SPI_SR_FRE
 
 
#define I2S_FLAG_CHSIDE                 SPI_SR_CHSIDE
 
#define I2S_FLAG_BSY                    SPI_SR_BSY
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup I2S_Exported_macros I2S Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset I2S handle state
 
  * @param  __HANDLE__: I2S handle.
 
  * @retval None
 
  */
 
#define __HAL_I2S_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2S_STATE_RESET)
 
 
/** @brief  Enable or disable the specified SPI peripheral (in I2S mode).
 
  * @param  __HANDLE__: specifies the I2S Handle. 
 
  * @retval None
 
  */
 
#define __HAL_I2S_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->I2SCFGR |= SPI_I2SCFGR_I2SE)
 
#define __HAL_I2S_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->I2SCFGR &= (uint16_t)(~SPI_I2SCFGR_I2SE))
 
 
/** @brief  Enable or disable the specified I2S interrupts.
 
  * @param  __HANDLE__: specifies the I2S Handle.
 
  * @param  __INTERRUPT__: specifies the interrupt source to enable or disable.
 
  *        This parameter can be one of the following values:
 
  *            @arg I2S_IT_TXE: Tx buffer empty interrupt enable
 
  *            @arg I2S_IT_RXNE: RX buffer not empty interrupt enable
 
  *            @arg I2S_IT_ERR: Error interrupt enable
 
  * @retval None
 
  */  
 
#define __HAL_I2S_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR2 |= (__INTERRUPT__))
 
#define __HAL_I2S_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR2 &= (uint16_t)(~(__INTERRUPT__)))
 
 
 
/** @brief  Checks if the specified I2S interrupt source is enabled or disabled.
 
  * @param  __HANDLE__: specifies the I2S Handle.
 
  *         This parameter can be I2S where x: 1, 2, or 3 to select the I2S peripheral.
 
  * @param  __INTERRUPT__: specifies the I2S interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg I2S_IT_TXE: Tx buffer empty interrupt enable
 
  *            @arg I2S_IT_RXNE: RX buffer not empty interrupt enable
 
  *            @arg I2S_IT_ERR: Error interrupt enable
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_I2S_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/** @brief  Checks whether the specified I2S flag is set or not.
 
  * @param  __HANDLE__: specifies the I2S Handle.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg I2S_FLAG_RXNE: Receive buffer not empty flag
 
  *            @arg I2S_FLAG_TXE: Transmit buffer empty flag
 
  *            @arg I2S_FLAG_UDR: Underrun flag
 
  *            @arg I2S_FLAG_OVR: Overrun flag
 
  *            @arg I2S_FLAG_FRE: Frame error flag
 
  *            @arg I2S_FLAG_CHSIDE: Channel Side flag
 
  *            @arg I2S_FLAG_BSY: Busy flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_I2S_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
 
 
/** @brief Clears the I2S OVR pending flag.
 
  * @param  __HANDLE__: specifies the I2S Handle.
 
  * @retval None
 
  */                                                                                                   
 
#define __HAL_I2S_CLEAR_OVRFLAG(__HANDLE__) do{__IO uint32_t tmpreg = (__HANDLE__)->Instance->DR;\
 
                                               tmpreg = (__HANDLE__)->Instance->SR;}while(0)
 
/** @brief Clears the I2S UDR pending flag.
 
  * @param  __HANDLE__: specifies the I2S Handle.
 
  * @retval None
 
  */                                                                                                   
 
#define __HAL_I2S_CLEAR_UDRFLAG(__HANDLE__)((__HANDLE__)->Instance->SR)    
 
/**
 
  * @}
 
  */ 
 
                                  
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup I2S_Exported_Functions
 
  * @{
 
  */
 
                                                
 
/** @addtogroup I2S_Exported_Functions_Group1
 
  * @{
 
  */
 
/* Initialization/de-initialization functions  **********************************/
 
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s);
 
HAL_StatusTypeDef HAL_I2S_DeInit (I2S_HandleTypeDef *hi2s);
 
void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s);
 
void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup I2S_Exported_Functions_Group2
 
  * @{
 
  */
 
/* I/O operation functions  ***************************************************/
 
 /* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout);
 
 
 /* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
 
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s);
 
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size);
 
 
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s);
 
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s);
 
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s);
 
 
/* Callbacks used in non blocking modes (Interrupt and DMA) *******************/
 
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s);
 
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s);
 
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s);
 
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s);
 
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup I2S_Exported_Functions_Group3
 
  * @{
 
  */
 
/* Peripheral Control and State functions  ************************************/
 
HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s);
 
HAL_I2S_ErrorTypeDef HAL_I2S_GetError(I2S_HandleTypeDef *hi2s);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
#endif 	/* defined(STM32F031x6) || defined(STM32F038xx) || */
 
        /* defined(STM32F051x8) || defined(STM32F058xx) || */
 
        /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) ||*/
 
        /* defined(STM32F042x6) || defined(STM32F048xx) || */
 
        /* defined(STM32F091xC)	|| defined(STM32F098xx) */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_I2S_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_irda.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_irda.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file contains all the functions prototypes for the IRDA 
 
  *          firmware library.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_IRDA_H
 
#define __STM32F0xx_HAL_IRDA_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup IRDA
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup IRDA_Exported_Types IRDA Exported Types
 
  * @{
 
  */ 
 
 
/** 
 
  * @brief IRDA Init Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t BaudRate;                  /*!< This member configures the IRDA communication baud rate.
 
                                           The baud rate register is computed using the following formula:
 
                                              Baud Rate Register = ((PCLKx) / ((hirda->Init.BaudRate))) */
 
 
  uint32_t WordLength;                /*!< Specifies the number of data bits transmitted or received in a frame.
 
                                           This parameter can be a value of @ref IRDAEx_Word_Length */
 
 
  uint16_t Parity;                    /*!< Specifies the parity mode.
 
                                           This parameter can be a value of @ref IRDA_Parity
 
                                           @note When parity is enabled, the computed parity is inserted
 
                                                 at the MSB position of the transmitted data (9th bit when
 
                                                 the word length is set to 9 data bits; 8th bit when the
 
                                                 word length is set to 8 data bits). */
 
 
 
  uint16_t Mode;                      /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
 
                                           This parameter can be a value of @ref IRDA_Mode */
 
  
 
  uint8_t  Prescaler;                 /*!< Specifies the Prescaler value for dividing the UART/USART source clock
 
                                           to achieve low-power frequency.
 
                                           @note Prescaler value 0 is forbidden */
 
  
 
  uint16_t PowerMode;                 /*!< Specifies the IRDA power mode.
 
                                           This parameter can be a value of @ref IRDA_Low_Power */
 
}IRDA_InitTypeDef;
 
 
/** 
 
  * @brief HAL IRDA State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_IRDA_STATE_RESET             = 0x00,    /*!< Peripheral is not initialized                      */
 
  HAL_IRDA_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use           */
 
  HAL_IRDA_STATE_BUSY              = 0x02,    /*!< an internal process is ongoing                     */
 
  HAL_IRDA_STATE_BUSY_TX           = 0x12,    /*!< Data Transmission process is ongoing */
 
  HAL_IRDA_STATE_BUSY_RX           = 0x22,    /*!< Data Reception process is ongoing */
 
  HAL_IRDA_STATE_BUSY_TX_RX        = 0x32,    /*!< Data Transmission and Reception process is ongoing */
 
  HAL_IRDA_STATE_TIMEOUT           = 0x03,    /*!< Timeout state */
 
  HAL_IRDA_STATE_ERROR             = 0x04     /*!< Error */
 
}HAL_IRDA_StateTypeDef;
 
 
/** 
 
  * @brief  HAL IRDA Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_IRDA_ERROR_NONE      = 0x00,    /*!< No error            */
 
  HAL_IRDA_ERROR_PE        = 0x01,    /*!< Parity error        */
 
  HAL_IRDA_ERROR_NE        = 0x02,    /*!< Noise error         */
 
  HAL_IRDA_ERROR_FE        = 0x04,    /*!< frame error         */
 
  HAL_IRDA_ERROR_ORE       = 0x08,    /*!< Overrun error       */
 
  HAL_IRDA_ERROR_DMA       = 0x10     /*!< DMA transfer error  */
 
}HAL_IRDA_ErrorTypeDef;
 
 
/**
 
  * @brief IRDA clock sources definition
 
  */
 
typedef enum
 
{
 
  IRDA_CLOCKSOURCE_PCLK1     = 0x00, /*!< PCLK1 clock source     */
 
  IRDA_CLOCKSOURCE_HSI       = 0x02, /*!< HSI clock source       */
 
  IRDA_CLOCKSOURCE_SYSCLK    = 0x04, /*!< SYSCLK clock source    */
 
  IRDA_CLOCKSOURCE_LSE       = 0x08, /*!< LSE clock source       */
 
  IRDA_CLOCKSOURCE_UNDEFINED = 0x10  /*!< undefined clock source */  
 
}IRDA_ClockSourceTypeDef;
 
 
/** 
 
  * @brief  IRDA handle Structure definition  
 
  */  
 
typedef struct
 
{
 
  USART_TypeDef            *Instance;        /* USART registers base address       */
 
  
 
  IRDA_InitTypeDef         Init;             /* IRDA communication parameters      */
 
  
 
  uint8_t                  *pTxBuffPtr;      /* Pointer to IRDA Tx transfer Buffer */
 
  
 
  uint16_t                 TxXferSize;       /* IRDA Tx Transfer size              */
 
  
 
  uint16_t                 TxXferCount;      /* IRDA Tx Transfer Counter           */
 
  
 
  uint8_t                  *pRxBuffPtr;      /* Pointer to IRDA Rx transfer Buffer */
 
  
 
  uint16_t                 RxXferSize;       /* IRDA Rx Transfer size              */
 
  
 
  uint16_t                 RxXferCount;      /* IRDA Rx Transfer Counter           */
 
  
 
  uint16_t                 Mask;             /* USART RX RDR register mask         */   
 
  
 
  DMA_HandleTypeDef        *hdmatx;          /* IRDA Tx DMA Handle parameters      */
 
    
 
  DMA_HandleTypeDef        *hdmarx;          /* IRDA Rx DMA Handle parameters      */
 
  
 
  HAL_LockTypeDef          Lock;             /* Locking object                     */
 
 
  HAL_IRDA_StateTypeDef    State;            /* IRDA communication state           */
 
  
 
  HAL_IRDA_ErrorTypeDef    ErrorCode;        /* IRDA Error code                    */
 
  
 
}IRDA_HandleTypeDef;
 
 
/** 
 
  * @brief  IRDA Configuration enumeration values definition  
 
  */
 
typedef enum 
 
{
 
  IRDA_BAUDRATE        = 0x00,
 
  IRDA_PARITY          = 0x01,
 
  IRDA_WORDLENGTH      = 0x02,
 
  IRDA_MODE            = 0x03,
 
  IRDA_PRESCALER       = 0x04,  
 
  IRDA_POWERMODE       = 0x05
 
}IRDA_ControlTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup IRDA_Exported_Constants  IRDA Exported constants
 
  * @{
 
  */
 
 
/** @defgroup IRDA_Parity IRDA Parity 
 
  * @{
 
  */ 
 
#define IRDA_PARITY_NONE                    ((uint16_t)0x0000)
 
#define IRDA_PARITY_EVEN                    ((uint16_t)USART_CR1_PCE)
 
#define IRDA_PARITY_ODD                     ((uint16_t)(USART_CR1_PCE | USART_CR1_PS)) 
 
#define IS_IRDA_PARITY(PARITY) (((PARITY) == IRDA_PARITY_NONE) || \
 
                                ((PARITY) == IRDA_PARITY_EVEN) || \
 
                                ((PARITY) == IRDA_PARITY_ODD))
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup IRDA_Transfer_Mode IRDA Transfer Mode  
 
  * @{
 
  */ 
 
#define IRDA_MODE_RX                        ((uint16_t)USART_CR1_RE)
 
#define IRDA_MODE_TX                        ((uint16_t)USART_CR1_TE)
 
#define IRDA_MODE_TX_RX                     ((uint16_t)(USART_CR1_TE |USART_CR1_RE))
 
#define IS_IRDA_TX_RX_MODE(MODE) ((((MODE) & ((uint16_t)(~((uint16_t)(IRDA_MODE_TX_RX))))) == (uint16_t)0x00) && ((MODE) != (uint16_t)0x00))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IRDA_Low_Power IRDA Low Power 
 
  * @{
 
  */
 
#define IRDA_POWERMODE_NORMAL                    ((uint16_t)0x0000)
 
#define IRDA_POWERMODE_LOWPOWER                  ((uint16_t)USART_CR3_IRLP)
 
#define IS_IRDA_POWERMODE(MODE) (((MODE) == IRDA_POWERMODE_LOWPOWER) || \
 
                                 ((MODE) == IRDA_POWERMODE_NORMAL))
 
/**
 
  * @}
 
  */
 
    
 
 /** @defgroup IRDA_State IRDA State 
 
  * @{
 
  */ 
 
#define IRDA_STATE_DISABLE                  ((uint16_t)0x0000)
 
#define IRDA_STATE_ENABLE                   ((uint16_t)USART_CR1_UE)
 
#define IS_IRDA_STATE(STATE) (((STATE) == IRDA_STATE_DISABLE) || \
 
                              ((STATE) == IRDA_STATE_ENABLE))
 
/**
 
  * @}
 
  */
 
 
 /** @defgroup IRDA_Mode  IRDA Mode
 
  * @{
 
  */ 
 
#define IRDA_MODE_DISABLE                  ((uint16_t)0x0000)
 
#define IRDA_MODE_ENABLE                   ((uint16_t)USART_CR3_IREN)
 
#define IS_IRDA_MODE(STATE)  (((STATE) == IRDA_MODE_DISABLE) || \
 
                              ((STATE) == IRDA_MODE_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IRDA_One_Bit  IRDA One Bit Sampling
 
  * @{
 
  */
 
#define IRDA_ONE_BIT_SAMPLE_DISABLED          ((uint16_t)0x00000000)
 
#define IRDA_ONE_BIT_SAMPLE_ENABLED           ((uint16_t)USART_CR3_ONEBIT)
 
#define IS_IRDA_ONEBIT_SAMPLE(ONEBIT)         (((ONEBIT) == IRDA_ONE_BIT_SAMPLE_DISABLED) || \
 
                                                  ((ONEBIT) == IRDA_ONE_BIT_SAMPLE_ENABLED))
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup IRDA_DMA_Tx IRDA DMA Tx
 
  * @{
 
  */
 
#define IRDA_DMA_TX_DISABLE          ((uint16_t)0x00000000)
 
#define IRDA_DMA_TX_ENABLE           ((uint16_t)USART_CR3_DMAT)
 
#define IS_IRDA_DMA_TX(DMATX)         (((DMATX) == IRDA_DMA_TX_DISABLE) || \
 
                                       ((DMATX) == IRDA_DMA_TX_ENABLE))
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup IRDA_DMA_Rx  IRDA DMA Rx
 
  * @{
 
  */
 
#define IRDA_DMA_RX_DISABLE           ((uint16_t)0x0000)
 
#define IRDA_DMA_RX_ENABLE            ((uint16_t)USART_CR3_DMAR)
 
#define IS_IRDA_DMA_RX(DMARX)         (((DMARX) == IRDA_DMA_RX_DISABLE) || \
 
                                       ((DMARX) == IRDA_DMA_RX_ENABLE))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup IRDA_Flags IRDA Flags
 
  *        Elements values convention: 0xXXXX
 
  *           - 0xXXXX  : Flag mask in the ISR register
 
  * @{
 
  */
 
#define IRDA_FLAG_REACK                     ((uint32_t)0x00400000)
 
#define IRDA_FLAG_TEACK                     ((uint32_t)0x00200000)  
 
#define IRDA_FLAG_BUSY                      ((uint32_t)0x00010000)
 
#define IRDA_FLAG_ABRF                      ((uint32_t)0x00008000)  
 
#define IRDA_FLAG_ABRE                      ((uint32_t)0x00004000)
 
#define IRDA_FLAG_TXE                       ((uint32_t)0x00000080)
 
#define IRDA_FLAG_TC                        ((uint32_t)0x00000040)
 
#define IRDA_FLAG_RXNE                      ((uint32_t)0x00000020)
 
#define IRDA_FLAG_ORE                       ((uint32_t)0x00000008)
 
#define IRDA_FLAG_NE                        ((uint32_t)0x00000004)
 
#define IRDA_FLAG_FE                        ((uint32_t)0x00000002)
 
#define IRDA_FLAG_PE                        ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup IRDA_Interrupt_definition IRDA Interrupt Definition
 
  *        Elements values convention: 0000ZZZZ0XXYYYYYb
 
  *           - YYYYY  : Interrupt source position in the XX register (5bits)
 
  *           - XX  : Interrupt source register (2bits)
 
  *                 - 01: CR1 register
 
  *                 - 10: CR2 register
 
  *                 - 11: CR3 register
 
  *           - ZZZZ  : Flag position in the ISR register(4bits)
 
  * @{   
 
  */  
 
#define IRDA_IT_PE                          ((uint16_t)0x0028)
 
#define IRDA_IT_TXE                         ((uint16_t)0x0727)
 
#define IRDA_IT_TC                          ((uint16_t)0x0626)
 
#define IRDA_IT_RXNE                        ((uint16_t)0x0525)
 
#define IRDA_IT_IDLE                        ((uint16_t)0x0424)
 
 
 
                                
 
/**       Elements values convention: 000000000XXYYYYYb
 
  *           - YYYYY  : Interrupt source position in the XX register (5bits)
 
  *           - XX  : Interrupt source register (2bits)
 
  *                 - 01: CR1 register
 
  *                 - 10: CR2 register
 
  *                 - 11: CR3 register
 
  */
 
#define IRDA_IT_ERR                         ((uint16_t)0x0060)
 
 
/**       Elements values convention: 0000ZZZZ00000000b
 
  *           - ZZZZ  : Flag position in the ISR register(4bits)
 
  */
 
#define IRDA_IT_ORE                         ((uint16_t)0x0300)
 
#define IRDA_IT_NE                          ((uint16_t)0x0200)
 
#define IRDA_IT_FE                          ((uint16_t)0x0100)
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup IRDA_IT_CLEAR_Flags   IRDA Interruption Clear Flags
 
  * @{
 
  */
 
#define IRDA_CLEAR_PEF                       USART_ICR_PECF            /*!< Parity Error Clear Flag */          
 
#define IRDA_CLEAR_FEF                       USART_ICR_FECF            /*!< Framing Error Clear Flag */         
 
#define IRDA_CLEAR_NEF                       USART_ICR_NCF             /*!< Noise detected Clear Flag */        
 
#define IRDA_CLEAR_OREF                      USART_ICR_ORECF           /*!< OverRun Error Clear Flag */         
 
#define IRDA_CLEAR_TCF                       USART_ICR_TCCF            /*!< Transmission Complete Clear Flag */ 
 
/**
 
  * @}
 
  */ 
 
 
 
 
/** @defgroup IRDA_Request_Parameters IRDA Request Parameters
 
  * @{
 
  */
 
#define IRDA_AUTOBAUD_REQUEST            ((uint16_t)USART_RQR_ABRRQ)        /*!< Auto-Baud Rate Request */     
 
#define IRDA_RXDATA_FLUSH_REQUEST        ((uint16_t)USART_RQR_RXFRQ)        /*!< Receive Data flush Request */ 
 
#define IRDA_TXDATA_FLUSH_REQUEST        ((uint16_t)USART_RQR_TXFRQ)        /*!< Transmit data flush Request */
 
#define IS_IRDA_REQUEST_PARAMETER(PARAM) (((PARAM) == IRDA_AUTOBAUD_REQUEST) || \
 
                                          ((PARAM) == IRDA_RXDATA_FLUSH_REQUEST) || \
 
                                          ((PARAM) == IRDA_TXDATA_FLUSH_REQUEST))   
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup IRDA_Interruption_Mask    IRDA interruptions flag mask
 
  * @{
 
  */ 
 
#define IRDA_IT_MASK  ((uint16_t)0x001F)  
 
/**
 
  * @}
 
  */
 
  
 
/**
 
 * @}
 
 */
 
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup IRDA_Exported_Macros IRDA Exported Macros
 
  * @{
 
  */
 
    
 
/** @brief  Reset IRDA handle state
 
  * @param  __HANDLE__: IRDA handle.
 
  * @retval None
 
  */
 
#define __HAL_IRDA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_IRDA_STATE_RESET)
 
 
/** @brief  Checks whether the specified IRDA flag is set or not.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg IRDA_FLAG_REACK: Receive enable ackowledge flag
 
  *            @arg IRDA_FLAG_TEACK: Transmit enable ackowledge flag
 
  *            @arg IRDA_FLAG_BUSY:  Busy flag
 
  *            @arg IRDA_FLAG_ABRF:  Auto Baud rate detection flag
 
  *            @arg IRDA_FLAG_ABRE:  Auto Baud rate detection error flag
 
  *            @arg IRDA_FLAG_TXE:   Transmit data register empty flag
 
  *            @arg IRDA_FLAG_TC:    Transmission Complete flag
 
  *            @arg IRDA_FLAG_RXNE:  Receive data register not empty flag
 
  *            @arg IRDA_FLAG_IDLE:  Idle Line detection flag
 
  *            @arg IRDA_FLAG_ORE:   OverRun Error flag
 
  *            @arg IRDA_FLAG_NE:    Noise Error flag
 
  *            @arg IRDA_FLAG_FE:    Framing Error flag
 
  *            @arg IRDA_FLAG_PE:    Parity Error flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_IRDA_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->ISR & (__FLAG__)) == (__FLAG__))   
 
 
/** @brief  Enables the specified IRDA interrupt.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __INTERRUPT__: specifies the IRDA interrupt source to enable.
 
  *          This parameter can be one of the following values:
 
  *            @arg IRDA_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg IRDA_IT_TC:   Transmission complete interrupt
 
  *            @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg IRDA_IT_IDLE: Idle line detection interrupt
 
  *            @arg IRDA_IT_PE:   Parity Error interrupt
 
  *            @arg IRDA_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_IRDA_ENABLE_IT(__HANDLE__, __INTERRUPT__)   (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 |= (1U << ((__INTERRUPT__) & IRDA_IT_MASK))): \
 
                                                           ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 |= (1U << ((__INTERRUPT__) & IRDA_IT_MASK))): \
 
                                                           ((__HANDLE__)->Instance->CR3 |= (1U << ((__INTERRUPT__) & IRDA_IT_MASK))))
 
 
/** @brief  Disables the specified IRDA interrupt.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __INTERRUPT__: specifies the IRDA interrupt source to disable.
 
  *          This parameter can be one of the following values:
 
  *            @arg IRDA_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg IRDA_IT_TC:   Transmission complete interrupt
 
  *            @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg IRDA_IT_IDLE: Idle line detection interrupt
 
  *            @arg IRDA_IT_PE:   Parity Error interrupt
 
  *            @arg IRDA_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_IRDA_DISABLE_IT(__HANDLE__, __INTERRUPT__)  (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 &= ~ (1U << ((__INTERRUPT__) & IRDA_IT_MASK))): \
 
                                                           ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 &= ~ (1U << ((__INTERRUPT__) & IRDA_IT_MASK))): \
 
                                                           ((__HANDLE__)->Instance->CR3 &= ~ (1U << ((__INTERRUPT__) & IRDA_IT_MASK))))
 
    
 
    
 
/** @brief  Checks whether the specified IRDA interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __IT__: specifies the IRDA interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg IRDA_IT_TXE: Transmit Data Register empty interrupt
 
  *            @arg IRDA_IT_TC:  Transmission complete interrupt
 
  *            @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg IRDA_IT_IDLE: Idle line detection interrupt
 
  *            @arg IRDA_IT_ORE: OverRun Error interrupt
 
  *            @arg IRDA_IT_NE: Noise Error interrupt
 
  *            @arg IRDA_IT_FE: Framing Error interrupt
 
  *            @arg IRDA_IT_PE: Parity Error interrupt  
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_IRDA_GET_IT(__HANDLE__, __IT__) ((__HANDLE__)->Instance->ISR & ((uint32_t)1U << ((__IT__)>> 0x08))) 
 
 
/** @brief  Checks whether the specified IRDA interrupt source is enabled.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __IT__: specifies the IRDA interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg IRDA_IT_TXE: Transmit Data Register empty interrupt
 
  *            @arg IRDA_IT_TC:  Transmission complete interrupt
 
  *            @arg IRDA_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg IRDA_IT_IDLE: Idle line detection interrupt
 
  *            @arg IRDA_IT_ORE: OverRun Error interrupt
 
  *            @arg IRDA_IT_NE: Noise Error interrupt
 
  *            @arg IRDA_IT_FE: Framing Error interrupt
 
  *            @arg IRDA_IT_PE: Parity Error interrupt  
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_IRDA_GET_IT_SOURCE(__HANDLE__, __IT__) ((((((uint8_t)(__IT__)) >> 5U) == 1)? (__HANDLE__)->Instance->CR1:(((((uint8_t)(__IT__)) >> 5U) == 2)? \
 
                                                       (__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & ((uint32_t)1 << (((uint16_t)(__IT__)) & IRDA_IT_MASK)))
 
 
 
/** @brief  Clears the specified IRDA ISR flag, in setting the proper ICR register flag.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __IT_CLEAR__: specifies the interrupt clear register flag that needs to be set
 
  *                       to clear the corresponding interrupt
 
  *          This parameter can be one of the following values:
 
  *            @arg IRDA_CLEAR_PEF: Parity Error Clear Flag          
 
  *            @arg IRDA_CLEAR_FEF: Framing Error Clear Flag         
 
  *            @arg IRDA_CLEAR_NEF: Noise detected Clear Flag        
 
  *            @arg IRDA_CLEAR_OREF: OverRun Error Clear Flag           
 
  *            @arg IRDA_CLEAR_TCF: Transmission Complete Clear Flag 
 
  * @retval None
 
  */
 
#define __HAL_IRDA_CLEAR_IT(__HANDLE__, __IT_CLEAR__) ((__HANDLE__)->Instance->ICR = (uint32_t)(__IT_CLEAR__)) 
 
 
 
/** @brief  Set a specific IRDA request flag.
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @param  __REQ__: specifies the request flag to set
 
  *          This parameter can be one of the following values:
 
  *            @arg IRDA_AUTOBAUD_REQUEST: Auto-Baud Rate Request     
 
  *            @arg IRDA_RXDATA_FLUSH_REQUEST: Receive Data flush Request 
 
  *            @arg IRDA_TXDATA_FLUSH_REQUEST: Transmit data flush Request 
 
  *
 
  * @retval None
 
  */ 
 
#define __HAL_IRDA_SEND_REQ(__HANDLE__, __REQ__) ((__HANDLE__)->Instance->RQR |= (uint16_t)(__REQ__)) 
 
 
 
 
/** @brief  Enable UART/USART associated to IRDA Handle
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @retval None
 
  */ 
 
#define __HAL_IRDA_ENABLE(__HANDLE__)                   ((__HANDLE__)->Instance->CR1 |=  USART_CR1_UE)
 
 
/** @brief  Disable UART/USART associated to IRDA Handle
 
  * @param  __HANDLE__: specifies the IRDA Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4, 5 to select the USART or 
 
  *         UART peripheral
 
  * @retval None
 
  */
 
#define __HAL_IRDA_DISABLE(__HANDLE__)                  ((__HANDLE__)->Instance->CR1 &=  ~USART_CR1_UE)
 
 
/** @brief  Ensure that IRDA Baud rate is less or equal to maximum value
 
  * @param  __BAUDRATE__: specifies the IRDA Baudrate set by the user.
 
  * @retval True or False
 
  */   
 
#define IS_IRDA_BAUDRATE(__BAUDRATE__) ((__BAUDRATE__) < 115201)
 
 
/** @brief  Ensure that IRDA prescaler value is strictly larger than 0
 
  * @param  __PRESCALER__: specifies the IRDA prescaler value set by the user.
 
  * @retval True or False
 
  */  
 
#define IS_IRDA_PRESCALER(__PRESCALER__) ((__PRESCALER__) > 0)                                
 
 
/**
 
 * @}
 
 */
 
 
/* Include IRDA HAL Extension module */
 
#include "stm32f0xx_hal_irda_ex.h"  
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup IRDA_Exported_Functions IRDA Exported Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda);
 
HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda);
 
void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda);
 
void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup IRDA_Exported_Functions_Group2 IO operation functions 
 
  * @{
 
  */
 
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size);
 
void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda);
 
void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda);
 
void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda);
 
void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup IRDA_Exported_Functions_Group3
 
  * @{
 
  */
 
 
/* Peripheral State and Error functions ***************************************/
 
HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda);
 
uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */  
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_IRDA_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_irda_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_irda_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of IRDA HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_IRDA_EX_H
 
#define __STM32F0xx_HAL_IRDA_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup IRDAEx IRDAEx Extended HAL module driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup IRDAEx_Exported_Constants IRDAEx Exported Constants
 
  * @{
 
  */
 
  
 
/** @defgroup IRDAEx_Word_Length IRDA Word Length
 
  * @{
 
  */
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define IRDA_WORDLENGTH_7B                  ((uint32_t)USART_CR1_M1)
 
#define IRDA_WORDLENGTH_8B                  ((uint32_t)0x00000000)
 
#define IRDA_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M0)
 
#define IS_IRDA_WORD_LENGTH(LENGTH) (((LENGTH) == IRDA_WORDLENGTH_7B) || \
 
                                     ((LENGTH) == IRDA_WORDLENGTH_8B) || \
 
                                     ((LENGTH) == IRDA_WORDLENGTH_9B))
 
#else
 
#define IRDA_WORDLENGTH_8B                  ((uint32_t)0x00000000)
 
#define IRDA_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M)
 
#define IS_IRDA_WORD_LENGTH(LENGTH) (((LENGTH) == IRDA_WORDLENGTH_8B) || \
 
                                     ((LENGTH) == IRDA_WORDLENGTH_9B))
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx)*/
 
/**
 
  * @}
 
  */
 
  
 
  
 
/**
 
  * @}
 
  */  
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup IRDAEx_Exported_Macros IRDAEx Exported Macros
 
  * @{
 
  */
 
  
 
/** @brief  Reports the IRDA clock source.
 
  * @param  __HANDLE__: specifies the IRDA Handle
 
  * @param  __CLOCKSOURCE__ : output variable   
 
  * @retval IRDA clocking source, written in __CLOCKSOURCE__.
 
  */
 
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx)
 
#define __HAL_IRDA_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
     switch(__HAL_RCC_GET_USART1_SOURCE())                    \
 
     {                                                        \
 
      case RCC_USART1CLKSOURCE_PCLK1:                         \
 
        (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;           \
 
        break;                                                \
 
      case RCC_USART1CLKSOURCE_HSI:                           \
 
        (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;             \
 
        break;                                                \
 
      case RCC_USART1CLKSOURCE_SYSCLK:                        \
 
        (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;          \
 
        break;                                                \
 
      case RCC_USART1CLKSOURCE_LSE:                           \
 
        (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;             \
 
        break;                                                \
 
      default:                                                \
 
        (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;       \
 
        break;                                                \
 
     }                                                        \
 
  } while(0) 
 
#elif defined (STM32F030x8) ||                                \
 
      defined (STM32F042x6) || defined (STM32F048xx) ||       \
 
      defined (STM32F051x8) || defined (STM32F058xx)
 
#define __HAL_IRDA_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
    if((__HANDLE__)->Instance == USART1)                      \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART1CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART2)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else                                                      \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                         \
 
  } while(0) 
 
#elif defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define __HAL_IRDA_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
    if((__HANDLE__)->Instance == USART1)                      \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART1CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART2)                 \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART2CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART3)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART4)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else                                                      \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                         \
 
  } while(0)   
 
#elif defined(STM32F091xC) || defined(STM32F098xx)
 
#define __HAL_IRDA_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
    if((__HANDLE__)->Instance == USART1)                      \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART1CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART2)                 \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART2CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART3)                 \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART3_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART3CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART3CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART3CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART3CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART4)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART5)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART6)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART7)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART8)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else                                                      \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = IRDA_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                         \
 
  } while(0)
 
  
 
#endif /* defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx) */
 
  
 
  
 
/** @brief  Computes the mask to apply to retrieve the received data
 
  *         according to the word length and to the parity bits activation.
 
  * @param  __HANDLE__: specifies the IRDA Handle
 
  * @retval none
 
  */  
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define __HAL_IRDA_MASK_COMPUTATION(__HANDLE__)                       \
 
  do {                                                                \
 
  if ((__HANDLE__)->Init.WordLength == IRDA_WORDLENGTH_9B)            \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == IRDA_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x01FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == IRDA_WORDLENGTH_8B)       \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == IRDA_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == IRDA_WORDLENGTH_7B)       \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == IRDA_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x003F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
} while(0) 
 
#else
 
#define __HAL_IRDA_MASK_COMPUTATION(__HANDLE__)                       \
 
  do {                                                                \
 
  if ((__HANDLE__)->Init.WordLength == IRDA_WORDLENGTH_9B)            \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == IRDA_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x01FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == IRDA_WORDLENGTH_8B)       \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == IRDA_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
} while(0) 
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined(STM32F098xx) */
 
/**
 
  * @}
 
  */
 
  
 
/* Exported functions --------------------------------------------------------*/
 
/* Initialization and de-initialization functions  ****************************/
 
/* IO operation functions *****************************************************/
 
/* Peripheral Control functions ***********************************************/
 
/* Peripheral State and Error functions ***************************************/
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_IRDA_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_iwdg.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_iwdg.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of IWDG HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_IWDG_H
 
#define __STM32F0xx_HAL_IWDG_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup IWDG
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup IWDG_Exported_Types IWDG Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  IWDG HAL State Structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_IWDG_STATE_RESET          = 0x00,   /*!< IWDG not yet initialized or disabled */
 
  HAL_IWDG_STATE_READY          = 0x01,    /*!< IWDG initialized and ready for use */
 
  HAL_IWDG_STATE_BUSY           = 0x02,    /*!< IWDG internal process is ongoing   */ 
 
  HAL_IWDG_STATE_TIMEOUT        = 0x03,    /*!< IWDG timeout state                 */
 
  HAL_IWDG_STATE_ERROR          = 0x04     /*!< IWDG error state                   */     
 
 
}HAL_IWDG_StateTypeDef;
 
 
/** 
 
  * @brief  IWDG Init structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Prescaler;      /*!< Select the prescaler of the IWDG.  
 
                                This parameter can be a value of @ref IWDG_Prescaler */
 
  
 
  uint32_t Reload;        /*!< Specifies the IWDG down-counter reload value. 
 
                               This parameter must be a number between Min_Data = 0 and Max_Data = 0x0FFF */
 
                               
 
  uint32_t Window;        /*!< Specifies the window value to be compared to the down-counter. 
 
                               This parameter must be a number between Min_Data = 0 and Max_Data = 0x0FFF */                                      
 
 
} IWDG_InitTypeDef;
 
 
/** 
 
  * @brief  IWDG Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  IWDG_TypeDef                  *Instance;  /*!< Register base address    */ 
 
  
 
  IWDG_InitTypeDef               Init;      /*!< IWDG required parameters */
 
  
 
  HAL_LockTypeDef                Lock;      /*!< IWDG Locking object      */
 
  
 
  __IO HAL_IWDG_StateTypeDef     State;     /*!< IWDG communication state */
 
 
}IWDG_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup IWDG_Exported_Constants IWDG Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup IWDG_Registers_BitMask IWDG Registers BitMask
 
  * @brief IWDG registers bit mask
 
  * @{
 
  */  
 
/* --- KR Register ---*/
 
/* KR register bit mask */
 
#define KR_KEY_RELOAD           ((uint32_t)0xAAAA)  /*!< IWDG Reload Counter Enable   */
 
#define KR_KEY_ENABLE           ((uint32_t)0xCCCC)  /*!< IWDG Peripheral Enable       */
 
#define KR_KEY_EWA              ((uint32_t)0x5555)  /*!< IWDG KR Write Access Enable  */
 
#define KR_KEY_DWA              ((uint32_t)0x0000)  /*!< IWDG KR Write Access Disable */
 
 
#define IS_IWDG_KR(__KR__) (((__KR__) == KR_KEY_RELOAD) || \
 
                            ((__KR__) == KR_KEY_ENABLE))|| \
 
                            ((__KR__) == KR_KEY_EWA))   || \
 
                            ((__KR__) == KR_KEY_DWA))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup IWDG_Flag_definition IWDG Flag definition
 
  * @{
 
  */ 
 
#define IWDG_FLAG_PVU   ((uint32_t)IWDG_SR_PVU)  /*!< Watchdog counter prescaler value update Flag */
 
#define IWDG_FLAG_RVU   ((uint32_t)IWDG_SR_RVU)  /*!< Watchdog counter reload value update Flag    */
 
#define IWDG_FLAG_WVU   ((uint32_t)IWDG_SR_WVU)  /*!< Watchdog counter window value update Flag    */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IWDG_Prescaler IWDG Prescaler
 
  * @{
 
  */ 
 
#define IWDG_PRESCALER_4            ((uint8_t)0x00)  /*!< IWDG prescaler set to 4   */
 
#define IWDG_PRESCALER_8     ((uint8_t)(IWDG_PR_PR_0))                  /*!< IWDG prescaler set to 8   */
 
#define IWDG_PRESCALER_16    ((uint8_t)(IWDG_PR_PR_1))                  /*!< IWDG prescaler set to 16  */
 
#define IWDG_PRESCALER_32    ((uint8_t)(IWDG_PR_PR_1 | IWDG_PR_PR_0))   /*!< IWDG prescaler set to 32  */
 
#define IWDG_PRESCALER_64    ((uint8_t)(IWDG_PR_PR_2))                  /*!< IWDG prescaler set to 64  */
 
#define IWDG_PRESCALER_128   ((uint8_t)(IWDG_PR_PR_2 | IWDG_PR_PR_0))   /*!< IWDG prescaler set to 128 */
 
#define IWDG_PRESCALER_256   ((uint8_t)(IWDG_PR_PR_2 | IWDG_PR_PR_1))   /*!< IWDG prescaler set to 256 */
 
 
#define IS_IWDG_PRESCALER(__PRESCALER__) (((__PRESCALER__) == IWDG_PRESCALER_4)  || \
 
                                          ((__PRESCALER__) == IWDG_PRESCALER_8)  || \
 
                                          ((__PRESCALER__) == IWDG_PRESCALER_16) || \
 
                                          ((__PRESCALER__) == IWDG_PRESCALER_32) || \
 
                                          ((__PRESCALER__) == IWDG_PRESCALER_64) || \
 
                                          ((__PRESCALER__) == IWDG_PRESCALER_128)|| \
 
                                          ((__PRESCALER__) == IWDG_PRESCALER_256))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IWDG_Reload_Value IWDG Reload Value
 
  * @{
 
  */ 
 
#define IS_IWDG_RELOAD(__RELOAD__) ((__RELOAD__) <= 0xFFF)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IWDG_CounterWindow_Value IWDG CounterWindow Value
 
  * @{
 
  */
 
#define IS_IWDG_WINDOW(__VALUE__) ((__VALUE__) <= 0xFFF)
 
/**
 
  * @}
 
  */ 
 
/** @defgroup IWDG_Window_option IWDG Window option
 
  * @{
 
  */
 
#define IWDG_WINDOW_DISABLE    0xFFF
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup IWDG_Exported_Macros IWDG Exported Macros
 
 * @{
 
 */
 
 
/** @brief  Reset IWDG handle state
 
  * @param  __HANDLE__: IWDG handle.
 
  * @retval None
 
  */
 
#define __HAL_IWDG_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_IWDG_STATE_RESET)
 
 
/**
 
  * @brief  Enables the IWDG peripheral.
 
  * @param  __HANDLE__: IWDG handle
 
  * @retval None
 
  */
 
#define __HAL_IWDG_START(__HANDLE__)                WRITE_REG((__HANDLE__)->Instance->KR, KR_KEY_ENABLE)
 
 
/**
 
  * @brief  Reloads IWDG counter with value defined in the reload register
 
  *         (write access to IWDG_PR and IWDG_RLR registers disabled).
 
  * @param  __HANDLE__: IWDG handle
 
  * @retval None
 
  */
 
#define __HAL_IWDG_RELOAD_COUNTER(__HANDLE__)       WRITE_REG((__HANDLE__)->Instance->KR, KR_KEY_RELOAD)
 
 
/**
 
  * @brief  Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers.
 
  * @param  __HANDLE__: IWDG handle
 
  * @retval None
 
  */
 
#define __HAL_IWDG_ENABLE_WRITE_ACCESS(__HANDLE__)  WRITE_REG((__HANDLE__)->Instance->KR, KR_KEY_EWA)
 
 
/**
 
  * @brief  Disable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers.
 
  * @param  __HANDLE__: IWDG handle
 
  * @retval None
 
  */
 
#define __HAL_IWDG_DISABLE_WRITE_ACCESS(__HANDLE__) WRITE_REG((__HANDLE__)->Instance->KR, KR_KEY_DWA)
 
 
/**
 
  * @brief  Gets the selected IWDG's flag status.
 
  * @param  __HANDLE__: IWDG handle
 
  * @param  __FLAG__: specifies the flag to check.
 
  *         This parameter can be one of the following values:
 
  *            @arg IWDG_FLAG_PVU:  Watchdog counter reload value update flag
 
  *            @arg IWDG_FLAG_RVU:  Watchdog counter prescaler value flag
 
  *            @arg IWDG_FLAG_WVU:  Watchdog counter window value flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_IWDG_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup IWDG_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup IWDG_Exported_Functions_Group1
 
  * @{
 
  */
 
/* Initialization/de-initialization functions  ********************************/
 
HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg);
 
void HAL_IWDG_MspInit(IWDG_HandleTypeDef *hiwdg);
 
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup IWDG_Exported_Functions_Group2
 
  * @{
 
  */
 
/* I/O operation functions ****************************************************/
 
HAL_StatusTypeDef HAL_IWDG_Start(IWDG_HandleTypeDef *hiwdg);
 
HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg);
 
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup IWDG_Exported_Functions_Group3
 
  * @{
 
  */
 
/* Peripheral State functions  ************************************************/
 
HAL_IWDG_StateTypeDef HAL_IWDG_GetState(IWDG_HandleTypeDef *hiwdg);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_IWDG_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_pcd.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pcd.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of PCD HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_PCD_H
 
#define __STM32F0xx_HAL_PCD_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup PCD
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup PCD_Exported_Types PCD Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  PCD State structures definition  
 
  */  
 
typedef enum 
 
{
 
  PCD_READY    = 0x00,
 
  PCD_ERROR    = 0x01,
 
  PCD_BUSY     = 0x02,
 
  PCD_TIMEOUT  = 0x03
 
} PCD_StateTypeDef;
 
 
typedef enum
 
{
 
  /* double buffered endpoint direction */
 
  PCD_EP_DBUF_OUT,
 
  PCD_EP_DBUF_IN,
 
  PCD_EP_DBUF_ERR,
 
}PCD_EP_DBUF_DIR;
 
 
/* endpoint buffer number */
 
typedef enum 
 
{
 
  PCD_EP_NOBUF,
 
  PCD_EP_BUF0,
 
  PCD_EP_BUF1
 
}PCD_EP_BUF_NUM;  
 
 
/** 
 
  * @brief  PCD Initialization Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t dev_endpoints;        /*!< Device Endpoints number.
 
                                      This parameter depends on the used USB core.   
 
                                      This parameter must be a number between Min_Data = 1 and Max_Data = 15 */    
 
 
  uint32_t speed;                /*!< USB Core speed.
 
                                      This parameter can be any value of @ref USB_Core_Speed                 */        
 
                             
 
  uint32_t ep0_mps;              /*!< Set the Endpoint 0 Max Packet size. 
 
                                      This parameter can be any value of @ref USB_EP0_MPS                    */              
 
                       
 
  uint32_t phy_itface;           /*!< Select the used PHY interface.
 
                                      This parameter can be any value of @ref USB_Core_PHY                   */ 
 
                                
 
  uint32_t Sof_enable;           /*!< Enable or disable the output of the SOF signal.                         
 
                                      This parameter can be set to ENABLE or DISABLE                      */
 
  
 
  uint32_t low_power_enable;     /*!< Enable or disable Low Power mode                                      
 
                                      This parameter can be set to ENABLE or DISABLE                      */
 
  
 
  uint32_t lpm_enable;           /*!< Enable or disable the Link Power Management .                                  
 
                                      This parameter can be set to ENABLE or DISABLE                      */
 
 
  uint32_t battery_charging_enable; /*!< Enable or disable Battery charging.                                  
 
                                      This parameter can be set to ENABLE or DISABLE                      */                                    
 
                                
 
}PCD_InitTypeDef;
 
 
typedef struct
 
{
 
  uint8_t   num;            /*!< Endpoint number
 
                                This parameter must be a number between Min_Data = 1 and Max_Data = 15    */ 
 
                                
 
  uint8_t   is_in;          /*!< Endpoint direction
 
                                This parameter must be a number between Min_Data = 0 and Max_Data = 1     */ 
 
  
 
  uint8_t   is_stall;       /*!< Endpoint stall condition
 
                                This parameter must be a number between Min_Data = 0 and Max_Data = 1     */ 
 
  
 
  uint8_t   type;           /*!< Endpoint type
 
                                 This parameter can be any value of @ref USB_EP_Type                      */ 
 
                                
 
  uint16_t  pmaadress;      /*!< PMA Address
 
                                 This parameter can be any value between Min_addr = 0 and Max_addr = 1K   */ 
 
  
 
  
 
  uint16_t  pmaaddr0;       /*!< PMA Address0
 
                                 This parameter can be any value between Min_addr = 0 and Max_addr = 1K   */   
 
  
 
  
 
  uint16_t  pmaaddr1;        /*!< PMA Address1
 
                                 This parameter can be any value between Min_addr = 0 and Max_addr = 1K   */   
 
  
 
  
 
  uint8_t   doublebuffer;    /*!< Double buffer enable
 
                                 This parameter can be 0 or 1                                             */    
 
                                
 
  uint32_t  maxpacket;      /*!< Endpoint Max packet size
 
                                 This parameter must be a number between Min_Data = 0 and Max_Data = 64KB */
 
 
  uint8_t   *xfer_buff;     /*!< Pointer to transfer buffer                                               */
 
                                
 
  
 
  uint32_t  xfer_len;       /*!< Current transfer length                                                  */
 
  
 
  uint32_t  xfer_count;     /*!< Partial transfer length in case of multi packet transfer                 */
 
 
}PCD_EPTypeDef;
 
 
typedef   USB_TypeDef PCD_TypeDef; 
 
 
/** 
 
  * @brief  PCD Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  PCD_TypeDef             *Instance;   /*!< Register base address              */ 
 
  PCD_InitTypeDef         Init;       /*!< PCD required parameters            */
 
  __IO uint8_t            USB_Address; /*!< USB Address            */  
 
  PCD_EPTypeDef           IN_ep[8];  /*!< IN endpoint parameters             */
 
  PCD_EPTypeDef           OUT_ep[8]; /*!< OUT endpoint parameters            */
 
  HAL_LockTypeDef         Lock;       /*!< PCD peripheral status              */
 
  __IO PCD_StateTypeDef   State;      /*!< PCD communication state            */
 
  uint32_t                Setup[12];  /*!< Setup packet buffer                */
 
  void                    *pData;      /*!< Pointer to upper stack Handler     */    
 
  
 
} PCD_HandleTypeDef;
 
 
/**
 
  * @}
 
  */ 
 
 
 
#include "stm32f0xx_hal_pcd_ex.h"    
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup PCD_Exported_Constants PCD Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup USB_Core_Speed USB Core Speed
 
  * @{
 
  */
 
#define PCD_SPEED_HIGH               0 /* Not Supported */
 
#define PCD_SPEED_FULL               2
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup USB_Core_PHY USB Core PHY
 
  * @{
 
  */
 
#define PCD_PHY_EMBEDDED             2
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USB_EP0_MPS USB EP0 MPS
 
  * @{
 
  */
 
#define DEP0CTL_MPS_64                         0
 
#define DEP0CTL_MPS_32                         1
 
#define DEP0CTL_MPS_16                         2
 
#define DEP0CTL_MPS_8                          3
 
 
#define PCD_EP0MPS_64                          DEP0CTL_MPS_64
 
#define PCD_EP0MPS_32                          DEP0CTL_MPS_32
 
#define PCD_EP0MPS_16                          DEP0CTL_MPS_16
 
#define PCD_EP0MPS_08                          DEP0CTL_MPS_8 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USB_EP_Type USB EP Type
 
  * @{
 
  */
 
#define PCD_EP_TYPE_CTRL                                 0
 
#define PCD_EP_TYPE_ISOC                                 1
 
#define PCD_EP_TYPE_BULK                                 2
 
#define PCD_EP_TYPE_INTR                                 3
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USB_ENDP USB ENDP
 
  * @{
 
  */
 
 
#define PCD_ENDP0                             ((uint8_t)0)
 
#define PCD_ENDP1                             ((uint8_t)1)
 
#define PCD_ENDP2                             ((uint8_t)2)
 
#define PCD_ENDP3                             ((uint8_t)3)
 
#define PCD_ENDP4                             ((uint8_t)4)
 
#define PCD_ENDP5                             ((uint8_t)5)
 
#define PCD_ENDP6                             ((uint8_t)6)
 
#define PCD_ENDP7                             ((uint8_t)7)
 
 
/*  Endpoint Kind */
 
#define PCD_SNG_BUF                                      0
 
#define PCD_DBL_BUF                                      1
 
 
#define IS_PCD_ALL_INSTANCE                              IS_USB_ALL_INSTANCE
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */   
 
 
/* Exported macros -----------------------------------------------------------*/
 
 
/** @defgroup PCD_Exported_Macros PCD Exported Macros
 
 *  @brief macros to handle interrupts and specific clock configurations
 
  * @{
 
  */
 
#define __HAL_PCD_GET_FLAG(__HANDLE__, __INTERRUPT__)      ((((__HANDLE__)->Instance->ISTR) & (__INTERRUPT__)) == (__INTERRUPT__))
 
#define __HAL_PCD_CLEAR_FLAG(__HANDLE__, __INTERRUPT__)    (((__HANDLE__)->Instance->ISTR) = ~(__INTERRUPT__))
 
 
#define  USB_EXTI_LINE_WAKEUP              ((uint32_t)0x00040000)  /*!< External interrupt line 18 Connected to the USB FS EXTI Line */
 
 
#define __HAL_USB_EXTI_ENABLE_IT()                 EXTI->IMR |= USB_EXTI_LINE_WAKEUP
 
#define __HAL_USB_EXTI_DISABLE_IT()                EXTI->IMR &= ~(USB_EXTI_LINE_WAKEUP)
 
#define __HAL_USB_EXTI_GENERATE_SWIT(__EXTILINE__) (EXTI->SWIER |= (__EXTILINE__))
 
 
 
/**
 
  * @}
 
  */                                                      
 
 
/* Internal macros -----------------------------------------------------------*/
 
 
/** @defgroup PCD_Private_Macros PCD Private Macros
 
 *  @brief macros to handle interrupts and specific clock configurations
 
  * @{
 
  */
 
 
/* SetENDPOINT */
 
#define PCD_SET_ENDPOINT(USBx, bEpNum,wRegValue)  (*(&(USBx)->EP0R + (bEpNum) * 2)= (uint16_t)(wRegValue))
 
 
/* GetENDPOINT */
 
#define PCD_GET_ENDPOINT(USBx, bEpNum)        (*(&(USBx)->EP0R + (bEpNum) * 2))
 
 
 
 
/**
 
  * @brief  sets the type in the endpoint register(bits EP_TYPE[1:0])
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wType: Endpoint Type.
 
  * @retval None
 
  */
 
#define PCD_SET_EPTYPE(USBx, bEpNum,wType) (PCD_SET_ENDPOINT((USBx), (bEpNum),\
 
                                  ((PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EP_T_MASK) | (wType) )))
 
 
/**
 
  * @brief  gets the type in the endpoint register(bits EP_TYPE[1:0])
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval Endpoint Type
 
  */
 
#define PCD_GET_EPTYPE(USBx, bEpNum) (PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EP_T_FIELD)
 
 
 
/**
 
  * @brief free buffer used from the application realizing it to the line
 
          toggles bit SW_BUF in the double buffered endpoint register
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  bDir: Direction
 
  * @retval None
 
  */
 
#define PCD_FreeUserBuffer(USBx, bEpNum, bDir)\
 
{\
 
  if ((bDir) == PCD_EP_DBUF_OUT)\
 
  { /* OUT double buffered endpoint */\
 
    PCD_TX_DTOG((USBx), (bEpNum));\
 
  }\
 
  else if ((bDir) == PCD_EP_DBUF_IN)\
 
  { /* IN double buffered endpoint */\
 
    PCD_RX_DTOG((USBx), (bEpNum));\
 
  }\
 
}
 
 
/**
 
  * @brief gets direction of the double buffered endpoint
 
  * @param   USBx: USB peripheral instance register address.
 
  * @param   bEpNum: Endpoint Number.
 
  * @retval EP_DBUF_OUT, EP_DBUF_IN,
 
  *         EP_DBUF_ERR if the endpoint counter not yet programmed.
 
  */
 
#define PCD_GET_DB_DIR(USBx, bEpNum)\
 
{\
 
  if ((uint16_t)(*PCD_EP_RX_CNT((USBx), (bEpNum)) & 0xFC00) != 0)\
 
    return(PCD_EP_DBUF_OUT);\
 
  else if (((uint16_t)(*PCD_EP_TX_CNT((USBx), (bEpNum))) & 0x03FF) != 0)\
 
    return(PCD_EP_DBUF_IN);\
 
  else\
 
    return(PCD_EP_DBUF_ERR);\
 
}
 
 
/**
 
  * @brief  sets the status for tx transfer (bits STAT_TX[1:0]).
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wState: new state
 
  * @retval None
 
  */
 
#define PCD_SET_EP_TX_STATUS(USBx, bEpNum, wState) {\
 
   register uint16_t _wRegVal;       \
 
   \
 
    _wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPTX_DTOGMASK;\
 
   /* toggle first bit ? */     \
 
   if((USB_EPTX_DTOG1 & (wState))!= 0)      \
 
     _wRegVal ^= USB_EPTX_DTOG1;        \
 
   /* toggle second bit ?  */         \
 
   if((USB_EPTX_DTOG2 & (wState))!= 0)      \
 
     _wRegVal ^= USB_EPTX_DTOG2;        \
 
   PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX|USB_EP_CTR_TX));    \
 
  } /* PCD_SET_EP_TX_STATUS */
 
 
/**
 
  * @brief  sets the status for rx transfer (bits STAT_TX[1:0])
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wState: new state
 
  * @retval None
 
  */
 
#define PCD_SET_EP_RX_STATUS(USBx, bEpNum,wState) {\
 
    register uint16_t _wRegVal;   \
 
    \
 
    _wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPRX_DTOGMASK;\
 
    /* toggle first bit ? */  \
 
    if((USB_EPRX_DTOG1 & (wState))!= 0) \
 
      _wRegVal ^= USB_EPRX_DTOG1;  \
 
    /* toggle second bit ? */  \
 
    if((USB_EPRX_DTOG2 & (wState))!= 0) \
 
      _wRegVal ^= USB_EPRX_DTOG2;  \
 
    PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX|USB_EP_CTR_TX)); \
 
  } /* PCD_SET_EP_RX_STATUS */
 
 
/**
 
  * @brief  sets the status for rx & tx (bits STAT_TX[1:0] & STAT_RX[1:0])
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wStaterx: new state.
 
  * @param  wStatetx: new state.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_TXRX_STATUS(USBx,bEpNum,wStaterx,wStatetx) {\
 
    register uint32_t _wRegVal;   \
 
    \
 
    _wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & (USB_EPRX_DTOGMASK |USB_EPTX_STAT) ;\
 
    /* toggle first bit ? */  \
 
    if((USB_EPRX_DTOG1 & ((wStaterx)))!= 0) \
 
      _wRegVal ^= USB_EPRX_DTOG1;  \
 
    /* toggle second bit ? */  \
 
    if((USB_EPRX_DTOG2 & (wStaterx))!= 0) \
 
      _wRegVal ^= USB_EPRX_DTOG2;  \
 
    /* toggle first bit ? */     \
 
    if((USB_EPTX_DTOG1 & (wStatetx))!= 0)      \
 
      _wRegVal ^= USB_EPTX_DTOG1;        \
 
    /* toggle second bit ?  */         \
 
    if((USB_EPTX_DTOG2 & (wStatetx))!= 0)      \
 
      _wRegVal ^= USB_EPTX_DTOG2;        \
 
    PCD_SET_ENDPOINT((USBx), (bEpNum), _wRegVal | USB_EP_CTR_RX|USB_EP_CTR_TX);    \
 
  } /* PCD_SET_EP_TXRX_STATUS */
 
 
/**
 
  * @brief  gets the status for tx/rx transfer (bits STAT_TX[1:0]
 
  *         /STAT_RX[1:0])
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval status
 
  */
 
#define PCD_GET_EP_TX_STATUS(USBx, bEpNum) ((uint16_t)PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPTX_STAT)
 
 
#define PCD_GET_EP_RX_STATUS(USBx, bEpNum) ((uint16_t)PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPRX_STAT)
 
 
/**
 
  * @brief  sets directly the VALID tx/rx-status into the endpoint register
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_TX_VALID(USBx, bEpNum)     (PCD_SET_EP_TX_STATUS((USBx), (bEpNum), USB_EP_TX_VALID))
 
 
#define PCD_SET_EP_RX_VALID(USBx, bEpNum)     (PCD_SET_EP_RX_STATUS((USBx), (bEpNum), USB_EP_RX_VALID))
 
 
/**
 
  * @brief  checks stall condition in an endpoint.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval TRUE = endpoint in stall condition.
 
  */
 
#define PCD_GET_EP_TX_STALL_STATUS(USBx, bEpNum) (PCD_GET_EP_TX_STATUS((USBx), (bEpNum)) \
 
                                   == USB_EP_TX_STALL)
 
#define PCD_GET_EP_RX_STALL_STATUS(USBx, bEpNum) (PCD_GET_EP_RX_STATUS((USBx), (bEpNum)) \
 
                                   == USB_EP_RX_STALL)
 
 
/**
 
  * @brief  set & clear EP_KIND bit.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_KIND(USBx, bEpNum)    (PCD_SET_ENDPOINT((USBx), (bEpNum), \
 
                                (USB_EP_CTR_RX|USB_EP_CTR_TX|((PCD_GET_ENDPOINT((USBx), (bEpNum)) | USB_EP_KIND) & USB_EPREG_MASK))))
 
#define PCD_CLEAR_EP_KIND(USBx, bEpNum)  (PCD_SET_ENDPOINT((USBx), (bEpNum), \
 
                                (USB_EP_CTR_RX|USB_EP_CTR_TX|(PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPKIND_MASK))))
 
 
/**
 
  * @brief  Sets/clears directly STATUS_OUT bit in the endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_SET_OUT_STATUS(USBx, bEpNum)    PCD_SET_EP_KIND((USBx), (bEpNum))
 
#define PCD_CLEAR_OUT_STATUS(USBx, bEpNum)  PCD_CLEAR_EP_KIND((USBx), (bEpNum))
 
 
/**
 
  * @brief  Sets/clears directly EP_KIND bit in the endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_DBUF(USBx, bEpNum)   PCD_SET_EP_KIND((USBx), (bEpNum))
 
#define PCD_CLEAR_EP_DBUF(USBx, bEpNum) PCD_CLEAR_EP_KIND((USBx), (bEpNum))
 
 
/**
 
  * @brief  Clears bit CTR_RX / CTR_TX in the endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_CLEAR_RX_EP_CTR(USBx, bEpNum)   (PCD_SET_ENDPOINT((USBx), (bEpNum),\
 
                                   PCD_GET_ENDPOINT((USBx), (bEpNum)) & 0x7FFF & USB_EPREG_MASK))
 
#define PCD_CLEAR_TX_EP_CTR(USBx, bEpNum)   (PCD_SET_ENDPOINT((USBx), (bEpNum),\
 
                                   PCD_GET_ENDPOINT((USBx), (bEpNum)) & 0xFF7F & USB_EPREG_MASK))
 
 
/**
 
  * @brief  Toggles DTOG_RX / DTOG_TX bit in the endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_RX_DTOG(USBx, bEpNum)    (PCD_SET_ENDPOINT((USBx), (bEpNum), \
 
                                   USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_RX | (PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK)))
 
#define PCD_TX_DTOG(USBx, bEpNum)    (PCD_SET_ENDPOINT((USBx), (bEpNum), \
 
                                   USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_TX | (PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK)))
 
 
/**
 
  * @brief  Clears DTOG_RX / DTOG_TX bit in the endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_CLEAR_RX_DTOG(USBx, bEpNum)  if((PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EP_DTOG_RX) != 0)\
 
    PCD_RX_DTOG((USBx), (bEpNum))
 
#define PCD_CLEAR_TX_DTOG(USBx, bEpNum)  if((PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EP_DTOG_TX) != 0)\
 
    PCD_TX_DTOG((USBx), (bEpNum))
 
      
 
/**
 
  * @brief  Sets address in an endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  bAddr: Address.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_ADDRESS(USBx, bEpNum,bAddr) PCD_SET_ENDPOINT((USBx), (bEpNum),\
 
    USB_EP_CTR_RX|USB_EP_CTR_TX|(PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK) | (bAddr))
 
 
/**
 
  * @brief  Gets address in an endpoint register.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_GET_EP_ADDRESS(USBx, bEpNum) ((uint8_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPADDR_FIELD))
 
 
#define PCD_EP_TX_ADDRESS(USBx, bEpNum) ((uint16_t *)(((USBx)->BTABLE+(bEpNum)*8)+     ((uint32_t)(USBx) + 0x400)))
 
#define PCD_EP_TX_CNT(USBx, bEpNum) ((uint16_t *)(((USBx)->BTABLE+(bEpNum)*8+2)+  ((uint32_t)(USBx) + 0x400)))
 
#define PCD_EP_RX_ADDRESS(USBx, bEpNum) ((uint16_t *)(((USBx)->BTABLE+(bEpNum)*8+4)+  ((uint32_t)(USBx) + 0x400)))
 
#define PCD_EP_RX_CNT(USBx, bEpNum) ((uint16_t *)(((USBx)->BTABLE+(bEpNum)*8+6)+  ((uint32_t)(USBx) + 0x400)))
 
 
/**
 
  * @brief  sets address of the tx/rx buffer.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wAddr: address to be set (must be word aligned).
 
  * @retval None
 
  */
 
#define PCD_SET_EP_TX_ADDRESS(USBx, bEpNum,wAddr) (*PCD_EP_TX_ADDRESS((USBx), (bEpNum)) = (((wAddr) >> 1) << 1))
 
#define PCD_SET_EP_RX_ADDRESS(USBx, bEpNum,wAddr) (*PCD_EP_RX_ADDRESS((USBx), (bEpNum)) = (((wAddr) >> 1) << 1))
 
 
/**
 
  * @brief  Gets address of the tx/rx buffer.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval address of the buffer.
 
  */
 
#define PCD_GET_EP_TX_ADDRESS(USBx, bEpNum) ((uint16_t)*PCD_EP_TX_ADDRESS((USBx), (bEpNum)))
 
#define PCD_GET_EP_RX_ADDRESS(USBx, bEpNum) ((uint16_t)*PCD_EP_RX_ADDRESS((USBx), (bEpNum)))
 
 
/**
 
  * @brief  Sets counter of rx buffer with no. of blocks.
 
  * @param  dwReg: Register
 
  * @param  wCount: Counter.
 
  * @param  wNBlocks: no. of Blocks.
 
  * @retval None
 
  */
 
#define PCD_CALC_BLK32(dwReg,wCount,wNBlocks) {\
 
    (wNBlocks) = (wCount) >> 5;\
 
    if(((wCount) & 0x1f) == 0)\
 
      (wNBlocks)--;\
 
    *pdwReg = (uint16_t)(((wNBlocks) << 10) | 0x8000);\
 
  }/* PCD_CALC_BLK32 */
 
 
#define PCD_CALC_BLK2(dwReg,wCount,wNBlocks) {\
 
    (wNBlocks) = (wCount) >> 1;\
 
    if(((wCount) & 0x1) != 0)\
 
      (wNBlocks)++;\
 
    *pdwReg = (uint16_t)((wNBlocks) << 10);\
 
  }/* PCD_CALC_BLK2 */
 
 
#define PCD_SET_EP_CNT_RX_REG(dwReg,wCount)  {\
 
    uint16_t wNBlocks;\
 
    if((wCount) > 62){PCD_CALC_BLK32((dwReg),(wCount),wNBlocks);}\
 
    else {PCD_CALC_BLK2((dwReg),(wCount),wNBlocks);}\
 
  }/* PCD_SET_EP_CNT_RX_REG */
 
 
#define PCD_SET_EP_RX_DBUF0_CNT(USBx, bEpNum,wCount) {\
 
    uint16_t *pdwReg = PCD_EP_TX_CNT((USBx), (bEpNum)); \
 
    PCD_SET_EP_CNT_RX_REG(pdwReg, (wCount));\
 
  }
 
/**
 
  * @brief  sets counter for the tx/rx buffer.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wCount: Counter value.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_TX_CNT(USBx, bEpNum,wCount) (*PCD_EP_TX_CNT((USBx), (bEpNum)) = (wCount))
 
#define PCD_SET_EP_RX_CNT(USBx, bEpNum,wCount) {\
 
    uint16_t *pdwReg = PCD_EP_RX_CNT(USBx, bEpNum); \
 
    PCD_SET_EP_CNT_RX_REG(pdwReg, wCount);\
 
  }
 
 
/**
 
  * @brief  gets counter of the tx buffer.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval Counter value
 
  */
 
#define PCD_GET_EP_TX_CNT(USBx, bEpNum)((uint16_t)(*PCD_EP_TX_CNT((USBx), (bEpNum))) & 0x3ff)
 
#define PCD_GET_EP_RX_CNT(USBx, bEpNum)((uint16_t)(*PCD_EP_RX_CNT((USBx), (bEpNum))) & 0x3ff)
 
 
/**
 
  * @brief  Sets buffer 0/1 address in a double buffer endpoint.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wBuf0Addr: buffer 0 address.
 
  * @retval Counter value
 
  */
 
#define PCD_SET_EP_DBUF0_ADDR(USBx, bEpNum,wBuf0Addr) {PCD_SET_EP_TX_ADDRESS((USBx), (bEpNum), (wBuf0Addr));}
 
#define PCD_SET_EP_DBUF1_ADDR(USBx, bEpNum,wBuf1Addr) {PCD_SET_EP_RX_ADDRESS((USBx), (bEpNum), (wBuf1Addr));}
 
 
/**
 
  * @brief  Sets addresses in a double buffer endpoint.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  wBuf0Addr: buffer 0 address.
 
  * @param  wBuf1Addr = buffer 1 address.
 
  * @retval None
 
  */
 
#define PCD_SET_EP_DBUF_ADDR(USBx, bEpNum,wBuf0Addr,wBuf1Addr) { \
 
    PCD_SET_EP_DBUF0_ADDR((USBx), (bEpNum), (wBuf0Addr));\
 
    PCD_SET_EP_DBUF1_ADDR((USBx), (bEpNum), (wBuf1Addr));\
 
  } /* PCD_SET_EP_DBUF_ADDR */
 
 
/**
 
  * @brief  Gets buffer 0/1 address of a double buffer endpoint.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_GET_EP_DBUF0_ADDR(USBx, bEpNum) (PCD_GET_EP_TX_ADDRESS((USBx), (bEpNum)))
 
#define PCD_GET_EP_DBUF1_ADDR(USBx, bEpNum) (PCD_GET_EP_RX_ADDRESS((USBx), (bEpNum)))
 
 
/**
 
  * @brief  Gets buffer 0/1 address of a double buffer endpoint.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @param  bDir: endpoint dir  EP_DBUF_OUT = OUT 
 
  *         EP_DBUF_IN  = IN 
 
  * @param  wCount: Counter value 
 
  * @retval None
 
  */
 
#define PCD_SET_EP_DBUF0_CNT(USBx, bEpNum, bDir, wCount)  { \
 
    if((bDir) == PCD_EP_DBUF_OUT)\
 
      /* OUT endpoint */ \
 
    {PCD_SET_EP_RX_DBUF0_CNT((USBx), (bEpNum),(wCount));} \
 
    else if((bDir) == PCD_EP_DBUF_IN)\
 
      /* IN endpoint */ \
 
      *PCD_EP_TX_CNT((USBx), (bEpNum)) = (uint32_t)(wCount);  \
 
  } /* SetEPDblBuf0Count*/
 
 
#define PCD_SET_EP_DBUF1_CNT(USBx, bEpNum, bDir, wCount)  { \
 
    if((bDir) == PCD_EP_DBUF_OUT)\
 
      /* OUT endpoint */ \
 
    {PCD_SET_EP_RX_CNT((USBx), (bEpNum),(wCount));}\
 
    else if((bDir) == PCD_EP_DBUF_IN)\
 
      /* IN endpoint */\
 
      *PCD_EP_RX_CNT((USBx), (bEpNum)) = (uint32_t)(wCount); \
 
  } /* SetEPDblBuf1Count */
 
 
#define PCD_SET_EP_DBUF_CNT(USBx, bEpNum, bDir, wCount) {\
 
    PCD_SET_EP_DBUF0_CNT((USBx), (bEpNum), (bDir), (wCount)); \
 
    PCD_SET_EP_DBUF1_CNT((USBx), (bEpNum), (bDir), (wCount)); \
 
  } /* PCD_SET_EP_DBUF_CNT  */
 
 
/**
 
  * @brief  Gets buffer 0/1 rx/tx counter for double buffering.
 
  * @param  USBx: USB peripheral instance register address.
 
  * @param  bEpNum: Endpoint Number.
 
  * @retval None
 
  */
 
#define PCD_GET_EP_DBUF0_CNT(USBx, bEpNum) (PCD_GET_EP_TX_CNT((USBx), (bEpNum)))
 
#define PCD_GET_EP_DBUF1_CNT(USBx, bEpNum) (PCD_GET_EP_RX_CNT((USBx), (bEpNum)))
 
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup PCD_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup PCD_Exported_Functions_Group1
 
  * @{
 
  */
 
/* Initialization and de-initialization functions  **********************************/
 
HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd);
 
HAL_StatusTypeDef HAL_PCD_DeInit (PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PCD_Exported_Functions_Group2
 
  * @{
 
  */
 
/* IO operation functions  *****************************************************/
 
 /* Non Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd);
 
HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd);
 
 
void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
 
void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
 
void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
 
void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
 
void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd);
 
void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PCD_Exported_Functions_Group3
 
  * @{
 
  */
 
/* Peripheral Control functions  ************************************************/
 
HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd);
 
HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd);
 
HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address);
 
HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type);
 
HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
 
HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len);
 
HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len);
 
uint16_t          HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
 
HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
 
HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
 
HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
 
HAL_StatusTypeDef HAL_PCD_ActiveRemoteWakeup(PCD_HandleTypeDef *hpcd);
 
HAL_StatusTypeDef HAL_PCD_DeActiveRemoteWakeup(PCD_HandleTypeDef *hpcd);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PCD_Exported_Functions_Group4
 
  * @{
 
  */
 
/* Peripheral State functions  **************************************************/
 
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
#endif /* STM32F042x6 || STM32F072xB || STM32F078xx */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_PCD_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_pcd_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pcd_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of PCD HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32L0xx_HAL_PCD_EX_H
 
#define __STM32L0xx_HAL_PCD_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"  
 
   
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup PCDEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/* Exported macros -----------------------------------------------------------*/
 
/* Internal macros -----------------------------------------------------------*/
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup PCDEx_Exported_Functions
 
  * @{
 
  */
 
/** @addtogroup PCDEx_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions
 
  * @{
 
  */
 
   
 
HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, 
 
                                     uint16_t ep_addr,
 
                                     uint16_t ep_kind,
 
                                     uint32_t pmaadress);
 
/**
 
  * @}
 
  */ 
 
  
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */   
 
 
#endif /* STM32F042x6 || STM32F072xB || STM32F078xx */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_PCD_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_ppp.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_ppp.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of PPP HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_PPP_H
 
#define __STM32F0xx_HAL_PPP_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup PPP PPP HAL module driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup PPP_Exported_Types PPP Exported Types
 
  * @{
 
  */
 
   
 
/** 
 
  * @brief PPP 
 
  */
 
 
typedef struct
 
{
 
  __IO uint32_t REGx;       /*!< PPP register x             Address offset: 0x00 */
 
} PPP_TypeDef;
 
 
/** 
 
  * @brief  PPP Configuration Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Config1; /*!< Add Config1 description
 
                        This parameter can be any value of @ref PPP_CONFIGx_Define   */           
 
 
  uint32_t Config2;  /*!< Add Config2 description
 
                          This parameter can be any value of @ref PPP_CONFIGx_Define */        
 
                               
 
  uint32_t Config3;  /*!< Add Config3 description
 
                          This parameter can be any value of @ref PPP_CONFIGx_Define */            
 
 
  uint32_t Config4;  /*!< Add Config4 description
 
                          This parameter can be any value of @ref PPP_CONFIGx_Define */              
 
 
  uint32_t Config5;  /*!< Add Config5 description
 
                          This parameter can be any value of @ref PPP_CONFIGx_Define */                
 
                               
 
  uint32_t Config6;  /*!< Add Config6 description
 
                          This parameter can be any value of @ref PPP_CONFIGx_Define */           
 
} PPP_InitTypeDef;
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_PPP_STATE_READY      = 0x01,    /*!< Peripheral Initialized and ready for use           */
 
  HAL_PPP_STATE_BUSY       = 0x02,    /*!< an internal process is ongoing                     */   
 
  HAL_PPP_STATE_BUSY_TX    = 0x03,    /*!< Data Transmission process is ongoing               */ 
 
  HAL_PPP_STATE_BUSY_RX    = 0x04,    /*!< Data Reception process is ongoing                  */
 
  HAL_PPP_STATE_BUSY_TX_RX = 0x05,    /*!< Data Transmission and Reception process is ongoing */    
 
  HAL_PPP_STATE_TIMEOUT    = 0x06,    /*!< Timeout state                                      */  
 
  HAL_PPP_STATE_ERROR      = 0x07,    /*!< Error state                                        */      
 
  HAL_PPP_STATE_DISABLED   = 0x08     /*!< Disabled state                                     */      
 
                                                                        
 
}HAL_PPP_StateTypeDef;
 
 
 
/** 
 
  * @brief  PPP Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  PPP_TypeDef       *Instance;    /*!< Register base address   */ 
 
  PPP_InitTypeDef   Config;       /*!< PPP required parameters */
 
  
 
  /* !!! Add HAL PPP required handler parameters !!! */
 
  
 
  HAL_StatusTypeDef Status;       /*!< PPP peripheral status   */
 
  HAL_LockTypeDef   Lock;         /*!< Locking object          */
 
  __IO HAL_PPP_StateTypeDef  State;  /*!< PPP communication state */
 
  
 
} PPP_HandleTypeDef;
 
 
/** 
 
  * @brief  PPP Configuration enumeration values definition  
 
  */
 
typedef enum 
 
{
 
  Control1     = 0,   /*!< Control related Config1 Paramater in PPP_InitTypeDef  */
 
  Control2     = 1,   /*!< Control related Config2 Paramater in PPP_InitTypeDef  */
 
  Control3     = 2,   /*!< Control related Config3 Paramater in PPP_InitTypeDef  */
 
  Control4     = 3,   /*!< Control related Config4 Paramater in PPP_InitTypeDef  */
 
  Control5     = 4,   /*!< Control related Config5 Paramater in PPP_InitTypeDef  */
 
  Control6     = 5    /*!< Control related Config6 Paramater in PPP_InitTypeDef  */
 
}PPP_ControlTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup PPP_Exported_Constants PPP Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup PPP_CONFIGx_Define PPP CONFIGx Define
 
  * @{
 
  */
 
#define PPP_CONFIGx_VALUE1       ((uint32_t)0x00)  /*!< PPP Config Value description      */
 
#define PPP_CONFIGx_VALUE2       ((uint32_t)0x01)  /*!< PPP Config Value description      */
 
#define PPP_CONFIGx_VALUE3       ((uint32_t)0x02)  /*!< PPP Config Value description      */
 
 
#define IS_PPP_CONFIGx(CONFIG)   (((CONFIG) == PPP_CONFIGx_VALUE1)  || \
 
                                  ((CONFIG) == PPP_CONFIGx_VALUE2)  || \
 
                                  ((CONFIG) == PPP_CONFIGx_VALUE3))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PPP_Flag_definition PPP Flag definition
 
  * @brief Flag definition
 
  *        Elements values convention: 0x00000ZZZZ
 
  *           - ZZZZ: Flag mask
 
  *
 
  * @#define PPP_FLAG_xxxx           ((uint32_t)0x0000ZZZZ)
 
  * @{
 
  */ 
 
#define PPP_FLAG_TC              ((uint32_t)0x00000002)
 
#define PPP_FLAG_RXNE            ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup PPP_Interrupt_definition PPP Interrupt definition
 
  * @brief PPP Interrupt definition
 
  *        Elements values convention: 0xXXYYZZZZ
 
  *           - XX  : Interrupt register Index
 
  *           - YY  : Interrupt Source Position
 
  *           - ZZZZ: Interrupt mask
 
  *
 
  * @#define PPP_IT_xxxx           ((uint32_t)0xXXYYZZZZ)
 
  * @{
 
  */ 
 
#define PPP_IT_TC             ((uint32_t)0x00000002)
 
#define PPP_IT_RXNE           ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PPP_Instance_definition  PPP Instance definition
 
  * @{
 
  */ 
 
#define IS_PPP_ALL_INSTANCE(INSTANCE) (((INSTANCE) == PPP1) || \
 
                                       ((INSTANCE) == PPP2) || \
 
                                       ((INSTANCE) == PPP3) || \
 
                                       ((INSTANCE) == PPP4))
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup PPP_Exported_Macros PPP Exported Macros
 
  * @{
 
  */
 
 
/** @defgroup PPP_Interrupt_Clock PPP Interrupt Clock
 
 *  @brief macros to handle interrupts and specific clock configurations
 
 * @{
 
 */
 
 
#define __HAL_PPP_ENABLE(__HANDLE__)                    ((__HANDLE__)->Instance->REGx |= (ENABLE))
 
#define __HAL_PPP_DISABLE(__HANDLE__)                   ((__HANDLE__)->Instance->REGx &= ~(ENABLE))
 
 
#define __HAL_PPP_ENABLE_I(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->REGx |= (__INTERRUPT__))
 
#define __HAL_PPP_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->REGx &= ~(__INTERRUPT__))
 
#define __HAL_PPP_GET_IT(__HANDLE__, __INTERRUPT__)     ((__HANDLE__)->Instance->REGx & ((uint16_t)1 << ((__INTERRUPT__)>> 0x08))) 
 
#define __HAL_PPP_CLEAR_IT(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->REGx &= ((uint16_t)~((uint16_t)0x01 << (uint16_t)((__INTERRUPT__) >> 0x08)))) 
 
#define __HAL_PPP_GET_FLAG(__HANDLE__, __FLAG__)        (((__HANDLE__)->Instance->REGx & (__FLAG__)) == (__FLAG__))
 
#define __HAL_PPP_CLEAR_FLAG(__HANDLE__, __FLAG__)      ((__HANDLE__)->Instance->REGx &= ~(__FLAG__))
 
 
#define __HAL_PPP_PRESCALER(__HANDLE__, __PRESC__)
 
#define __HAL_PPP_YYYY(__HANDLE__, __PRESC__)
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup PPP_Exported_Functions PPP Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup PPP_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 * @{
 
 */
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_PPP_Init(PPP_HandleTypeDef *hppp);
 
HAL_StatusTypeDef HAL_PPP_DeInit (PPP_HandleTypeDef *hppp);
 
void HAL_PPP_MspInit(PPP_HandleTypeDef *hppp);
 
void HAL_PPP_MspDeInit(PPP_HandleTypeDef *hppp);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PPP_Exported_Functions_Group2 I/O operation functions 
 
  * @{
 
  */
 
/* IO operation functions *****************************************************/
 
 /* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_PPP_Transmit(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_PPP_Receive(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size);
 
 
 /* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_PPP_Transmit_IT(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_PPP_Receive_IT(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size);
 
void HAL_PPP_IRQHandler(PPP_HandleTypeDef *hppp);
 
 
 /* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_PPP_Transmit_DMA(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_PPP_Receive_DMA(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size);
 
 
 /* Callback in non blocking modes (Interrupt and DMA) */
 
void HAL_PPP_TxCpltCallback(PPP_HandleTypeDef *hppp);
 
void HAL_PPP_RxCpltCallback(PPP_HandleTypeDef *hppp);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PPP_Exported_Functions_Group3 Peripheral Control functions 
 
  * @{
 
  */
 
/* Peripheral Control functions ***********************************************/
 
HAL_StatusTypeDef HAL_PPP_Ctl(PPP_HandleTypeDef *hppp, PPP_ControlTypeDef control, uint16_t *args);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PPP_Exported_Functions_Group4 Peripheral State functions 
 
  * @{
 
  */
 
/* Peripheral State and Error functions ***************************************/
 
HAL_PPP_StateTypeDef HAL_PPP_GetState(PPP_HandleTypeDef *hppp);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_PPP_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_pwr.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pwr.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of PWR HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_PWR_H
 
#define __STM32F0xx_HAL_PWR_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup PWR PWR HAL module Driver 
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup PWR_Exported_Constants PWR Exported Constants
 
  * @{
 
  */ 
 
 
/** @defgroup PWR_Regulator_state_in_STOP_mode PWR Regulator state in STOP mode
 
  * @{
 
  */
 
#define PWR_MAINREGULATOR_ON                        ((uint32_t)0x00000000)
 
#define PWR_LOWPOWERREGULATOR_ON                    PWR_CR_LPDS
 
 
#define IS_PWR_REGULATOR(REGULATOR) (((REGULATOR) == PWR_MAINREGULATOR_ON) || \
 
                                     ((REGULATOR) == PWR_LOWPOWERREGULATOR_ON))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PWR_SLEEP_mode_entry PWR SLEEP mode entry
 
  * @{
 
  */
 
#define PWR_SLEEPENTRY_WFI              ((uint8_t)0x01)
 
#define PWR_SLEEPENTRY_WFE              ((uint8_t)0x02)
 
#define IS_PWR_SLEEP_ENTRY(ENTRY) (((ENTRY) == PWR_SLEEPENTRY_WFI) || ((ENTRY) == PWR_SLEEPENTRY_WFE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PWR_STOP_mode_entry PWR STOP mode entry
 
  * @{
 
  */
 
#define PWR_STOPENTRY_WFI               ((uint8_t)0x01)
 
#define PWR_STOPENTRY_WFE               ((uint8_t)0x02)
 
#define IS_PWR_STOP_ENTRY(ENTRY) (((ENTRY) == PWR_STOPENTRY_WFI) || ((ENTRY) == PWR_STOPENTRY_WFE))
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup PWR_Exported_Macro PWR Exported Macro
 
  * @{
 
  */
 
 
/** @brief  Check PWR flag is set or not.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *           This parameter can be one of the following values:
 
  *            @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
 
  *                  was received from the WKUP pin or from the RTC alarm (Alarm A),
 
  *                  RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
 
  *                  An additional wakeup event is detected if the WKUP pin is enabled
 
  *                  (by setting the EWUP bit) when the WKUP pin level is already high.
 
  *            @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
 
  *                  resumed from StandBy mode.
 
  *            @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
 
  *                  by the HAL_PWR_EnablePVD() function. The PVD is stopped by Standby mode
 
  *                  For this reason, this bit is equal to 0 after Standby or reset
 
  *                  until the PVDE bit is set. 
 
  *                  Warning: this Flag is not available on STM32F030x8 products
 
  *            @arg PWR_FLAG_VREFINTRDY: This flag indicates that the internal reference
 
  *                  voltage VREFINT is ready.
 
  *                  Warning: this Flag is not available on STM32F030x8 products
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_PWR_GET_FLAG(__FLAG__) ((PWR->CSR & (__FLAG__)) == (__FLAG__))
 
 
/** @brief  Clear the PWR's pending flags.
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *          This parameter can be one of the following values:
 
  *            @arg PWR_FLAG_WU: Wake Up flag
 
  *            @arg PWR_FLAG_SB: StandBy flag
 
  */
 
#define __HAL_PWR_CLEAR_FLAG(__FLAG__) (PWR->CR |=  (__FLAG__) << 2)
 
 
 
/**
 
  * @}
 
  */
 
 
/* Include PWR HAL Extension module */
 
#include "stm32f0xx_hal_pwr_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup PWR_Exported_Functions PWR Exported Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions *****************************/
 
void HAL_PWR_DeInit(void);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions 
 
  * @{
 
  */
 
 
/* Peripheral Control functions  **********************************************/
 
void HAL_PWR_EnableBkUpAccess(void);
 
void HAL_PWR_DisableBkUpAccess(void);
 
 
/* WakeUp pins configuration functions ****************************************/
 
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx);
 
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx);
 
 
/* Low Power modes configuration functions ************************************/
 
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry);
 
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry);
 
void HAL_PWR_EnterSTANDBYMode(void);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_PWR_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_pwr_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pwr_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of PWR HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_PWR_EX_H
 
#define __STM32F0xx_HAL_PWR_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup PWREx
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup PWREx_Exported_Types PWREx Exported Types
 
 *  @{
 
 */
 
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
 
/**
 
  * @brief  PWR PVD configuration structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t PVDLevel;   /*!< PVDLevel: Specifies the PVD detection level
 
                            This parameter can be a value of @ref PWREx_PVD_detection_level */
 
 
  uint32_t Mode;       /*!< Mode: Specifies the operating mode for the selected pins.
 
                            This parameter can be a value of @ref PWREx_PVD_Mode */
 
}PWR_PVDTypeDef;
 
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
/**
 
  * @}
 
  */
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup PWREx_Exported_Constants PWREx Exported Constants
 
  * @{
 
  */
 
 
 
/** @defgroup PWREx_WakeUp_Pins PWREx Wakeup Pins
 
  * @{
 
  */
 
#if defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define PWR_WAKEUP_PIN1                     ((uint32_t)0x00)
 
#define PWR_WAKEUP_PIN2                     ((uint32_t)0x01)
 
#define PWR_WAKEUP_PIN3                     ((uint32_t)0x02)
 
#define PWR_WAKEUP_PIN4                     ((uint32_t)0x03)
 
#define PWR_WAKEUP_PIN5                     ((uint32_t)0x04)
 
#define PWR_WAKEUP_PIN6                     ((uint32_t)0x05)
 
#define PWR_WAKEUP_PIN7                     ((uint32_t)0x06)
 
#define PWR_WAKEUP_PIN8                     ((uint32_t)0x07)
 
 
#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WAKEUP_PIN1) || \
 
                                ((PIN) == PWR_WAKEUP_PIN2) || \
 
                                ((PIN) == PWR_WAKEUP_PIN3) || \
 
                                ((PIN) == PWR_WAKEUP_PIN4) || \
 
                                ((PIN) == PWR_WAKEUP_PIN5) || \
 
                                ((PIN) == PWR_WAKEUP_PIN6) || \
 
                                ((PIN) == PWR_WAKEUP_PIN7) || \
 
                                ((PIN) == PWR_WAKEUP_PIN8))
 
#else 
 
#define PWR_WAKEUP_PIN1                     ((uint32_t)0x00)
 
#define PWR_WAKEUP_PIN2                     ((uint32_t)0x01)
 
 
#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WAKEUP_PIN1) || \
 
                                ((PIN) == PWR_WAKEUP_PIN2))
 
#endif /* defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || */
 
       /* defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PWREx_EXTI_Line PWREx EXTI Line
 
  * @{
 
  */
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
 
#define PWR_EXTI_LINE_PVD                   ((uint32_t)0x00010000)  /*!< External interrupt line 16 Connected to the PVD EXTI Line */
 
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
      
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
 
#define PWR_EXTI_LINE_VDDIO2                ((uint32_t)0x80000000)  /*!< External interrupt line 31 Connected to the Vddio2 Monitor EXTI Line */
 
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */
 
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
/** @defgroup PWREx_PVD_detection_level PWREx PVD detection level
 
  * @{
 
  */
 
#define PWR_PVDLEVEL_0                      PWR_CR_PLS_LEV0
 
#define PWR_PVDLEVEL_1                      PWR_CR_PLS_LEV1
 
#define PWR_PVDLEVEL_2                      PWR_CR_PLS_LEV2
 
#define PWR_PVDLEVEL_3                      PWR_CR_PLS_LEV3
 
#define PWR_PVDLEVEL_4                      PWR_CR_PLS_LEV4
 
#define PWR_PVDLEVEL_5                      PWR_CR_PLS_LEV5
 
#define PWR_PVDLEVEL_6                      PWR_CR_PLS_LEV6
 
#define PWR_PVDLEVEL_7                      PWR_CR_PLS_LEV7
 
#define IS_PWR_PVD_LEVEL(LEVEL) (((LEVEL) == PWR_PVDLEVEL_0) || ((LEVEL) == PWR_PVDLEVEL_1)|| \
 
                                 ((LEVEL) == PWR_PVDLEVEL_2) || ((LEVEL) == PWR_PVDLEVEL_3)|| \
 
                                 ((LEVEL) == PWR_PVDLEVEL_4) || ((LEVEL) == PWR_PVDLEVEL_5)|| \
 
                                 ((LEVEL) == PWR_PVDLEVEL_6) || ((LEVEL) == PWR_PVDLEVEL_7))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PWREx_PVD_Mode PWREx PVD Mode
 
  * @{
 
  */
 
#define PWR_PVD_MODE_NORMAL                 ((uint32_t)0x00000000)   /*!< basic mode is used */
 
#define PWR_PVD_MODE_IT_RISING              ((uint32_t)0x00010001)   /*!< External Interrupt Mode with Rising edge trigger detection */
 
#define PWR_PVD_MODE_IT_FALLING             ((uint32_t)0x00010002)   /*!< External Interrupt Mode with Falling edge trigger detection */
 
#define PWR_PVD_MODE_IT_RISING_FALLING      ((uint32_t)0x00010003)   /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
 
#define PWR_PVD_MODE_EVENT_RISING           ((uint32_t)0x00020001)   /*!< Event Mode with Rising edge trigger detection */
 
#define PWR_PVD_MODE_EVENT_FALLING          ((uint32_t)0x00020002)   /*!< Event Mode with Falling edge trigger detection */
 
#define PWR_PVD_MODE_EVENT_RISING_FALLING   ((uint32_t)0x00020003)   /*!< Event Mode with Rising/Falling edge trigger detection */
 
 
#define IS_PWR_PVD_MODE(MODE) (((MODE) == PWR_PVD_MODE_IT_RISING)|| ((MODE) == PWR_PVD_MODE_IT_FALLING) || \
 
                              ((MODE) == PWR_PVD_MODE_IT_RISING_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING) || \
 
                              ((MODE) == PWR_PVD_MODE_EVENT_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING_FALLING) || \
 
                              ((MODE) == PWR_PVD_MODE_NORMAL))
 
/**
 
  * @}
 
  */
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
 
/** @defgroup PWREx_Flag PWREx Flag
 
  * @{
 
  */
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
 
#define PWR_FLAG_WU                         PWR_CSR_WUF
 
#define PWR_FLAG_SB                         PWR_CSR_SBF
 
#define PWR_FLAG_PVDO                       PWR_CSR_PVDO
 
#define PWR_FLAG_VREFINTRDY                 PWR_CSR_VREFINTRDYF
 
#else
 
#define PWR_FLAG_WU                         PWR_CSR_WUF
 
#define PWR_FLAG_SB                         PWR_CSR_SBF
 
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup PWREx_Exported_Macros PWREx Exported Macros
 
  * @{
 
  */
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
/**
 
  * @brief Enable interrupt on PVD Exti Line 16.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_ENABLE_IT()      (EXTI->IMR |= (PWR_EXTI_LINE_PVD))
 
 
/**
 
  * @brief Disable interrupt on PVD Exti Line 16.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_DISABLE_IT()     (EXTI->IMR &= ~(PWR_EXTI_LINE_PVD))
 
 
/**
 
  * @brief Enable event on PVD Exti Line 16.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_ENABLE_EVENT()   (EXTI->EMR |= (PWR_EXTI_LINE_PVD))
 
 
/**
 
  * @brief Disable event on PVD Exti Line 16.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_DISABLE_EVENT()  (EXTI->EMR &= ~(PWR_EXTI_LINE_PVD))
 
 
/**
 
  * @brief  PVD EXTI line configuration: clear falling edge and rising edge trigger.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_CLEAR_EGDE_TRIGGER()   EXTI->FTSR &= ~(PWR_EXTI_LINE_PVD); \
 
                                                  EXTI->RTSR &= ~(PWR_EXTI_LINE_PVD)
 
 
/**
 
  * @brief  PVD EXTI line configuration: set falling edge trigger.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_SET_FALLING_EGDE_TRIGGER()  EXTI->FTSR |= (PWR_EXTI_LINE_PVD)
 
 
/**
 
  * @brief  PVD EXTI line configuration: set rising edge trigger.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_SET_RISING_EDGE_TRIGGER()   EXTI->RTSR |= (PWR_EXTI_LINE_PVD)
 
 
/**
 
  * @brief Check whether the specified PVD EXTI interrupt flag is set or not.
 
  * @retval EXTI PVD Line Status.
 
  */
 
#define __HAL_PWR_PVD_EXTI_GET_FLAG()       (EXTI->PR & (PWR_EXTI_LINE_PVD))
 
 
/**
 
  * @brief Clear the PVD EXTI flag.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_CLEAR_FLAG()     (EXTI->PR = (PWR_EXTI_LINE_PVD))
 
 
/**
 
  * @brief Generate a Software interrupt on selected EXTI line.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_PVD_EXTI_GENERATE_SWIT()  (EXTI->SWIER |= (PWR_EXTI_LINE_PVD))
 
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
 
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
/**
 
  * @brief Enable interrupt on Vddio2 Monitor Exti Line 31.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_ENABLE_IT()             (EXTI->IMR |= (PWR_EXTI_LINE_VDDIO2))
 
 
/**
 
  * @brief Disable interrupt on Vddio2 Monitor Exti Line 31.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_DISABLE_IT()            (EXTI->IMR &= ~(PWR_EXTI_LINE_VDDIO2))
 
 
/**
 
  * @brief  Vddio2 Monitor EXTI line configuration: clear falling edge and rising edge trigger.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_CLEAR_EGDE_TRIGGER()    EXTI->FTSR &= ~(PWR_EXTI_LINE_VDDIO2); \
 
                                                      EXTI->RTSR &= ~(PWR_EXTI_LINE_VDDIO2)
 
 
/**
 
  * @brief  Vddio2 Monitor EXTI line configuration: set falling edge trigger.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_SET_FALLING_EGDE_TRIGGER()  EXTI->FTSR |= (PWR_EXTI_LINE_VDDIO2)
 
 
/**
 
  * @brief Check whether the specified VDDIO2 monitor EXTI interrupt flag is set or not.
 
  * @retval EXTI VDDIO2 Monitor Line Status.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_GET_FLAG()              (EXTI->PR & (PWR_EXTI_LINE_VDDIO2))
 
 
/**
 
  * @brief Clear the VDDIO2 Monitor EXTI flag.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_CLEAR_FLAG()            (EXTI->PR = (PWR_EXTI_LINE_VDDIO2))
 
 
/**
 
  * @brief Generate a Software interrupt on selected EXTI line.
 
  * @retval None.
 
  */
 
#define __HAL_PWR_VDDIO2_EXTI_GENERATE_SWIT()         (EXTI->SWIER |= (PWR_EXTI_LINE_VDDIO2))
 
 
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup PWREx_Exported_Functions PWREx Exported Functions
 
 *  @{
 
 */
 
 
/** @addtogroup PWREx_Exported_Functions_Group1
 
  * @{
 
  */
 
/* I/O operation functions  ***************************************************/
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
void HAL_PWR_PVD_IRQHandler(void);
 
void HAL_PWR_PVDCallback(void);
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
void HAL_PWR_Vddio2Monitor_IRQHandler(void);
 
void HAL_PWR_Vddio2MonitorCallback(void);
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
 
/* Peripheral Control functions  **********************************************/
 
#if defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || \
 
    defined (STM32F091xC)
 
void HAL_PWR_PVDConfig(PWR_PVDTypeDef *sConfigPVD);
 
void HAL_PWR_EnablePVD(void);
 
void HAL_PWR_DisablePVD(void);
 
#endif /* defined (STM32F031x6) || defined (STM32F042x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F072xB) || */
 
       /* defined (STM32F091xC) */
 
       
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
void HAL_PWR_EnableVddio2Monitor(void);
 
void HAL_PWR_DisableVddio2Monitor(void);
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_PWR_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_rcc.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rcc.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of RCC HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_RCC_H
 
#define __STM32F0xx_HAL_RCC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup RCC
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/
 
 
/** @defgroup RCC_Exported_Types RCC Exported Types
 
  * @{
 
  */
 
 
/**
 
  * @brief  RCC PLL configuration structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t PLLState;   /*!< PLLState: The new state of the PLL.
 
                            This parameter can be a value of @ref RCC_PLL_Config */
 
 
  uint32_t PLLSource;  /*!< PLLSource: PLL entry clock source.
 
                            This parameter must be a value of @ref RCC_PLL_Clock_Source */
 
 
  uint32_t PREDIV;     /*!< PREDIV: Predivision factor for PLL VCO input clock
 
                            This parameter must be a value of @ref RCC_PLL_Prediv_Factor */
 
 
  uint32_t PLLMUL;     /*!< PLLMUL: Multiplication factor for PLL VCO input clock
 
                            This parameter must be a value of @ref RCC_PLL_Multiplication_Factor */
 
 
}RCC_PLLInitTypeDef;
 
 
/**
 
  * @brief  RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t OscillatorType;         /*!< The Oscillators to be configured.
 
                                        This parameter can be a value of @ref RCC_Oscillator_Type */
 
 
  uint32_t HSEState;               /*!< The new state of the HSE.
 
                                        This parameter can be a value of @ref RCC_HSE_Config */
 
 
  uint32_t LSEState;               /*!< The new state of the LSE.
 
                                        This parameter can be a value of @ref RCC_LSE_Config */
 
 
  uint32_t HSIState;               /*!< The new state of the HSI.
 
                                        This parameter can be a value of @ref RCC_HSI_Config */
 
 
  uint32_t HSICalibrationValue;    /*!< The HSI calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT).
 
                                        This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */
 
 
  uint32_t HSI14State;             /*!< The new state of the HSI14.
 
                                        This parameter can be a value of @ref RCC_HSI14_Config */
 
 
  uint32_t HSI14CalibrationValue;  /*!< The HSI14 calibration trimming value (default is RCC_HSI14CALIBRATION_DEFAULT).
 
                                        This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */
 
 
  uint32_t HSI48State;             /*!< The new state of the HSI48 (only applicable to STM32F07x and STM32F0x2 devices).
 
                                        This parameter can be a value of @ref RCCEx_HSI48_Config */
 
 
  uint32_t LSIState;               /*!< The new state of the LSI.
 
                                        This parameter can be a value of @ref RCC_LSI_Config */
 
 
  RCC_PLLInitTypeDef PLL;        /*!< PLL structure parameters */
 
 
}RCC_OscInitTypeDef;
 
 
/**
 
  * @brief  RCC System, AHB and APB busses clock configuration structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t ClockType;            /*!< The clock to be configured.
 
                                      This parameter can be a value of @ref RCC_System_Clock_Type */
 
 
  uint32_t SYSCLKSource;         /*!< The clock source (SYSCLKS) used as system clock.
 
                                      This parameter can be a value of @ref RCC_System_Clock_Source */
 
 
  uint32_t AHBCLKDivider;        /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
 
                                      This parameter can be a value of @ref RCC_AHB_Clock_Source */
 
 
  uint32_t APB1CLKDivider;       /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
 
                                      This parameter can be a value of @ref RCC_APB1_Clock_Source */
 
 
}RCC_ClkInitTypeDef;
 
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup RCC_Exported_Constants RCC Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup RCC_BitAddress_AliasRegion RCC BitAddress AliasRegion
 
  * @brief RCC registers bit address in the alias region
 
  * @{
 
  */
 
#define RCC_OFFSET                (RCC_BASE - PERIPH_BASE)
 
/* --- CR Register ---*/
 
#define RCC_CR_OFFSET             (RCC_OFFSET + 0x00)
 
/* --- CFGR Register ---*/
 
#define RCC_CFGR_OFFSET           (RCC_OFFSET + 0x04)
 
/* --- CIR Register ---*/
 
#define RCC_CIR_OFFSET            (RCC_OFFSET + 0x08)
 
/* --- BDCR Register ---*/
 
#define RCC_BDCR_OFFSET           (RCC_OFFSET + 0x20)
 
/* --- CSR Register ---*/
 
#define RCC_CSR_OFFSET            (RCC_OFFSET + 0x24)
 
/* --- CR2 Register ---*/
 
#define RCC_CR2_OFFSET            (RCC_OFFSET + 0x34)
 
 
/* CR register byte 2 (Bits[23:16]) base address */
 
#define RCC_CR_BYTE2_ADDRESS      (PERIPH_BASE + RCC_CR_OFFSET + 0x02)
 
 
/* CIR register byte 1 (Bits[15:8]) base address */
 
#define RCC_CIR_BYTE1_ADDRESS     (PERIPH_BASE + RCC_CIR_OFFSET + 0x01)
 
 
/* CIR register byte 2 (Bits[23:16]) base address */
 
#define RCC_CIR_BYTE2_ADDRESS     (PERIPH_BASE + RCC_CIR_OFFSET + 0x02)
 
 
/* CSR register byte 1 (Bits[15:8]) base address */
 
#define RCC_CSR_BYTE1_ADDRESS     (PERIPH_BASE + RCC_CSR_OFFSET + 0x01)
 
 
/* BDCR register byte 0 (Bits[7:0] base address */
 
#define RCC_BDCR_BYTE0_ADDRESS    (PERIPH_BASE + RCC_BDCR_OFFSET)
 
 
#define RCC_CFGR_PLLMUL_BITNUMBER  18
 
#define RCC_CFGR2_PREDIV_BITNUMBER 0
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_Timeout RCC Timeout
 
  * @{
 
  */  
 
/* LSE state change timeout */
 
#define LSE_TIMEOUT_VALUE          ((uint32_t)5000) /* 5 s    */
 
 
/* Disable Backup domain write protection state change timeout */
 
#define DBP_TIMEOUT_VALUE          ((uint32_t)100)  /* 100 ms */
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup RCC_Oscillator_Type RCC Oscillator Type
 
  * @{
 
  */
 
#define RCC_OSCILLATORTYPE_NONE            ((uint32_t)0x00000000)
 
#define RCC_OSCILLATORTYPE_HSE             ((uint32_t)0x00000001)
 
#define RCC_OSCILLATORTYPE_HSI             ((uint32_t)0x00000002)
 
#define RCC_OSCILLATORTYPE_LSE             ((uint32_t)0x00000004)
 
#define RCC_OSCILLATORTYPE_LSI             ((uint32_t)0x00000008)
 
#define RCC_OSCILLATORTYPE_HSI14           ((uint32_t)0x00000010)
 
#define RCC_OSCILLATORTYPE_HSI48           ((uint32_t)0x00000020)
 
 
#define IS_RCC_OSCILLATORTYPE(OSCILLATOR) (((OSCILLATOR) == RCC_OSCILLATORTYPE_NONE)                               || \
 
                                           (((OSCILLATOR) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)     || \
 
                                           (((OSCILLATOR) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)     || \
 
                                           (((OSCILLATOR) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)     || \
 
                                           (((OSCILLATOR) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)     || \
 
                                           (((OSCILLATOR) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14) || \
 
                                           (((OSCILLATOR) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_HSE_Config RCC HSE Config
 
  * @{
 
  */
 
#define RCC_HSE_OFF                      ((uint8_t)0x00)
 
#define RCC_HSE_ON                       ((uint8_t)0x01)
 
#define RCC_HSE_BYPASS                   ((uint8_t)0x05)
 
 
#define IS_RCC_HSE(HSE) (((HSE) == RCC_HSE_OFF) || ((HSE) == RCC_HSE_ON) || \
 
                         ((HSE) == RCC_HSE_BYPASS))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_LSE_Config RCC_LSE_Config
 
  * @{
 
  */
 
#define RCC_LSE_OFF                      ((uint8_t)0x00)
 
#define RCC_LSE_ON                       ((uint8_t)0x01)
 
#define RCC_LSE_BYPASS                   ((uint8_t)0x05)
 
 
#define IS_RCC_LSE(LSE) (((LSE) == RCC_LSE_OFF) || ((LSE) == RCC_LSE_ON) || \
 
                         ((LSE) == RCC_LSE_BYPASS))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_HSI_Config RCC HSI Config
 
  * @{
 
  */
 
#define RCC_HSI_OFF                      ((uint8_t)0x00)
 
#define RCC_HSI_ON                       ((uint8_t)0x01)
 
 
#define IS_RCC_HSI(HSI) (((HSI) == RCC_HSI_OFF) || ((HSI) == RCC_HSI_ON))
 
 
#define RCC_HSICALIBRATION_DEFAULT       ((uint32_t)0x10)   /* Default HSI calibration trimming value */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_HSI14_Config RCC HSI14 Config
 
  * @{
 
  */
 
#define RCC_HSI14_OFF                    ((uint32_t)0x00)
 
#define RCC_HSI14_ON                     RCC_CR2_HSI14ON
 
#define RCC_HSI14_ADC_CONTROL            (~RCC_CR2_HSI14DIS)
 
 
#define IS_RCC_HSI14(HSI14) (((HSI14) == RCC_HSI14_OFF) || ((HSI14) == RCC_HSI14_ON) || ((HSI14) == RCC_HSI14_ADC_CONTROL))
 
 
#define RCC_HSI14CALIBRATION_DEFAULT     ((uint32_t)0x10)   /* Default HSI14 calibration trimming value */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_LSI_Config RCC LSI Config
 
  * @{
 
  */
 
#define RCC_LSI_OFF                      ((uint8_t)0x00)
 
#define RCC_LSI_ON                       ((uint8_t)0x01)
 
 
#define IS_RCC_LSI(LSI) (((LSI) == RCC_LSI_OFF) || ((LSI) == RCC_LSI_ON))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_PLL_Config RCC PLL Config
 
  * @{
 
  */
 
#define RCC_PLL_NONE                     ((uint8_t)0x00)
 
#define RCC_PLL_OFF                      ((uint8_t)0x01)
 
#define RCC_PLL_ON                       ((uint8_t)0x02)
 
 
#define IS_RCC_PLL(PLL) (((PLL) == RCC_PLL_NONE) ||((PLL) == RCC_PLL_OFF) || ((PLL) == RCC_PLL_ON))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_PLL_Prediv_Factor RCC PLL Prediv Factor
 
  * @{
 
  */
 
#define RCC_PREDIV_DIV1                  RCC_CFGR2_PREDIV_DIV1
 
#define RCC_PREDIV_DIV2                  RCC_CFGR2_PREDIV_DIV2
 
#define RCC_PREDIV_DIV3                  RCC_CFGR2_PREDIV_DIV3
 
#define RCC_PREDIV_DIV4                  RCC_CFGR2_PREDIV_DIV4
 
#define RCC_PREDIV_DIV5                  RCC_CFGR2_PREDIV_DIV5
 
#define RCC_PREDIV_DIV6                  RCC_CFGR2_PREDIV_DIV6
 
#define RCC_PREDIV_DIV7                  RCC_CFGR2_PREDIV_DIV7
 
#define RCC_PREDIV_DIV8                  RCC_CFGR2_PREDIV_DIV8
 
#define RCC_PREDIV_DIV9                  RCC_CFGR2_PREDIV_DIV9
 
#define RCC_PREDIV_DIV10                 RCC_CFGR2_PREDIV_DIV10
 
#define RCC_PREDIV_DIV11                 RCC_CFGR2_PREDIV_DIV11
 
#define RCC_PREDIV_DIV12                 RCC_CFGR2_PREDIV_DIV12
 
#define RCC_PREDIV_DIV13                 RCC_CFGR2_PREDIV_DIV13
 
#define RCC_PREDIV_DIV14                 RCC_CFGR2_PREDIV_DIV14
 
#define RCC_PREDIV_DIV15                 RCC_CFGR2_PREDIV_DIV15
 
#define RCC_PREDIV_DIV16                 RCC_CFGR2_PREDIV_DIV16
 
 
#define IS_RCC_PREDIV(PREDIV) (((PREDIV) == RCC_PREDIV_DIV1)  || ((PREDIV) == RCC_PREDIV_DIV2)   || \
 
                               ((PREDIV) == RCC_PREDIV_DIV3)  || ((PREDIV) == RCC_PREDIV_DIV4)   || \
 
                               ((PREDIV) == RCC_PREDIV_DIV5)  || ((PREDIV) == RCC_PREDIV_DIV6)   || \
 
                               ((PREDIV) == RCC_PREDIV_DIV7)  || ((PREDIV) == RCC_PREDIV_DIV8)   || \
 
                               ((PREDIV) == RCC_PREDIV_DIV9)  || ((PREDIV) == RCC_PREDIV_DIV10)  || \
 
                               ((PREDIV) == RCC_PREDIV_DIV11) || ((PREDIV) == RCC_PREDIV_DIV12)  || \
 
                               ((PREDIV) == RCC_PREDIV_DIV13) || ((PREDIV) == RCC_PREDIV_DIV14)  || \
 
                               ((PREDIV) == RCC_PREDIV_DIV15) || ((PREDIV) == RCC_PREDIV_DIV16))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_PLL_Multiplication_Factor RCC PLL Multiplication Factor
 
  * @{
 
  */
 
#define RCC_PLL_MUL2                     RCC_CFGR_PLLMUL2
 
#define RCC_PLL_MUL3                     RCC_CFGR_PLLMUL3
 
#define RCC_PLL_MUL4                     RCC_CFGR_PLLMUL4
 
#define RCC_PLL_MUL5                     RCC_CFGR_PLLMUL5
 
#define RCC_PLL_MUL6                     RCC_CFGR_PLLMUL6
 
#define RCC_PLL_MUL7                     RCC_CFGR_PLLMUL7
 
#define RCC_PLL_MUL8                     RCC_CFGR_PLLMUL8
 
#define RCC_PLL_MUL9                     RCC_CFGR_PLLMUL9
 
#define RCC_PLL_MUL10                    RCC_CFGR_PLLMUL10
 
#define RCC_PLL_MUL11                    RCC_CFGR_PLLMUL11
 
#define RCC_PLL_MUL12                    RCC_CFGR_PLLMUL12
 
#define RCC_PLL_MUL13                    RCC_CFGR_PLLMUL13
 
#define RCC_PLL_MUL14                    RCC_CFGR_PLLMUL14
 
#define RCC_PLL_MUL15                    RCC_CFGR_PLLMUL15
 
#define RCC_PLL_MUL16                    RCC_CFGR_PLLMUL16
 
 
#define IS_RCC_PLL_MUL(MUL) (((MUL) == RCC_PLL_MUL2)  || ((MUL) == RCC_PLL_MUL3)   || \
 
                             ((MUL) == RCC_PLL_MUL4)  || ((MUL) == RCC_PLL_MUL5)   || \
 
                             ((MUL) == RCC_PLL_MUL6)  || ((MUL) == RCC_PLL_MUL7)   || \
 
                             ((MUL) == RCC_PLL_MUL8)  || ((MUL) == RCC_PLL_MUL9)   || \
 
                             ((MUL) == RCC_PLL_MUL10) || ((MUL) == RCC_PLL_MUL11)  || \
 
                             ((MUL) == RCC_PLL_MUL12) || ((MUL) == RCC_PLL_MUL13)  || \
 
                             ((MUL) == RCC_PLL_MUL14) || ((MUL) == RCC_PLL_MUL15)  || \
 
                             ((MUL) == RCC_PLL_MUL16))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_PLL_Clock_Source RCC PLL Clock Source
 
  * @{
 
  */
 
#define RCC_PLLSOURCE_HSE                RCC_CFGR_PLLSRC_HSE_PREDIV
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_System_Clock_Type RCC System Clock Type
 
  * @{
 
  */
 
#define RCC_CLOCKTYPE_SYSCLK             ((uint32_t)0x00000001)
 
#define RCC_CLOCKTYPE_HCLK               ((uint32_t)0x00000002)
 
#define RCC_CLOCKTYPE_PCLK1              ((uint32_t)0x00000004)
 
 
#define IS_RCC_CLOCKTYPE(CLK) ((((CLK) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) || \
 
                               (((CLK) & RCC_CLOCKTYPE_HCLK)   == RCC_CLOCKTYPE_HCLK)   || \
 
                               (((CLK) & RCC_CLOCKTYPE_PCLK1)  == RCC_CLOCKTYPE_PCLK1))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_System_Clock_Source RCC System Clock Source
 
  * @{
 
  */
 
#define RCC_SYSCLKSOURCE_HSI             RCC_CFGR_SW_HSI
 
#define RCC_SYSCLKSOURCE_HSE             RCC_CFGR_SW_HSE
 
#define RCC_SYSCLKSOURCE_PLLCLK          RCC_CFGR_SW_PLL
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_System_Clock_Source_Status RCC System Clock Source Status
 
  * @{
 
  */
 
#define RCC_SYSCLKSOURCE_STATUS_HSI      RCC_CFGR_SWS_HSI
 
#define RCC_SYSCLKSOURCE_STATUS_HSE      RCC_CFGR_SWS_HSE
 
#define RCC_SYSCLKSOURCE_STATUS_PLLCLK   RCC_CFGR_SWS_PLL
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_AHB_Clock_Source RCC AHB Clock Source
 
  * @{
 
  */
 
#define RCC_SYSCLK_DIV1                  RCC_CFGR_HPRE_DIV1
 
#define RCC_SYSCLK_DIV2                  RCC_CFGR_HPRE_DIV2
 
#define RCC_SYSCLK_DIV4                  RCC_CFGR_HPRE_DIV4
 
#define RCC_SYSCLK_DIV8                  RCC_CFGR_HPRE_DIV8
 
#define RCC_SYSCLK_DIV16                 RCC_CFGR_HPRE_DIV16
 
#define RCC_SYSCLK_DIV64                 RCC_CFGR_HPRE_DIV64
 
#define RCC_SYSCLK_DIV128                RCC_CFGR_HPRE_DIV128
 
#define RCC_SYSCLK_DIV256                RCC_CFGR_HPRE_DIV256
 
#define RCC_SYSCLK_DIV512                RCC_CFGR_HPRE_DIV512
 
 
#define IS_RCC_SYSCLK_DIV(DIV) (((DIV) == RCC_SYSCLK_DIV1)   || ((DIV) == RCC_SYSCLK_DIV2) || \
 
                                ((DIV) == RCC_SYSCLK_DIV4)   || ((DIV) == RCC_SYSCLK_DIV8) || \
 
                                ((DIV) == RCC_SYSCLK_DIV16)  || ((DIV) == RCC_SYSCLK_DIV64) || \
 
                                ((DIV) == RCC_SYSCLK_DIV128) || ((DIV) == RCC_SYSCLK_DIV256) || \
 
                                ((DIV) == RCC_SYSCLK_DIV512))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_APB1_Clock_Source RCC APB1 Clock Source
 
  * @{
 
  */
 
#define RCC_HCLK_DIV1                    RCC_CFGR_PPRE_DIV1
 
#define RCC_HCLK_DIV2                    RCC_CFGR_PPRE_DIV2
 
#define RCC_HCLK_DIV4                    RCC_CFGR_PPRE_DIV4
 
#define RCC_HCLK_DIV8                    RCC_CFGR_PPRE_DIV8
 
#define RCC_HCLK_DIV16                   RCC_CFGR_PPRE_DIV16
 
 
#define IS_RCC_HCLK_DIV(DIV) (((DIV) == RCC_HCLK_DIV1) || ((DIV) == RCC_HCLK_DIV2) || \
 
                              ((DIV) == RCC_HCLK_DIV4) || ((DIV) == RCC_HCLK_DIV8) || \
 
                              ((DIV) == RCC_HCLK_DIV16))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_RTC_Clock_Source RCC RTC Clock Source
 
  * @{
 
  */
 
#define RCC_RTCCLKSOURCE_NONE            RCC_BDCR_RTCSEL_NOCLOCK
 
#define RCC_RTCCLKSOURCE_LSE             RCC_BDCR_RTCSEL_LSE
 
#define RCC_RTCCLKSOURCE_LSI             RCC_BDCR_RTCSEL_LSI
 
#define RCC_RTCCLKSOURCE_HSE_DIV32       RCC_BDCR_RTCSEL_HSE
 
 
#define IS_RCC_RTCCLKSOURCE(SOURCE)  (((SOURCE) == RCC_RTCCLKSOURCE_NONE) || \
 
                                      ((SOURCE) == RCC_RTCCLKSOURCE_LSE)  || \
 
                                      ((SOURCE) == RCC_RTCCLKSOURCE_LSI)  || \
 
                                      ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV32))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_USART1_Clock_Source RCC USART1 Clock Source
 
  * @{
 
  */
 
#define RCC_USART1CLKSOURCE_PCLK1        RCC_CFGR3_USART1SW_PCLK
 
#define RCC_USART1CLKSOURCE_SYSCLK       RCC_CFGR3_USART1SW_SYSCLK
 
#define RCC_USART1CLKSOURCE_LSE          RCC_CFGR3_USART1SW_LSE
 
#define RCC_USART1CLKSOURCE_HSI          RCC_CFGR3_USART1SW_HSI
 
 
#define IS_RCC_USART1CLKSOURCE(SOURCE)  (((SOURCE) == RCC_USART1CLKSOURCE_PCLK1)  || \
 
                                         ((SOURCE) == RCC_USART1CLKSOURCE_SYSCLK) || \
 
                                         ((SOURCE) == RCC_USART1CLKSOURCE_LSE)    || \
 
                                         ((SOURCE) == RCC_USART1CLKSOURCE_HSI))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_I2C1_Clock_Source RCC I2C1 Clock Source
 
  * @{
 
  */
 
#define RCC_I2C1CLKSOURCE_HSI            RCC_CFGR3_I2C1SW_HSI
 
#define RCC_I2C1CLKSOURCE_SYSCLK         RCC_CFGR3_I2C1SW_SYSCLK
 
 
#define IS_RCC_I2C1CLKSOURCE(SOURCE)  (((SOURCE) == RCC_I2C1CLKSOURCE_HSI) || \
 
                                       ((SOURCE) == RCC_I2C1CLKSOURCE_SYSCLK))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_MCOx_Index RCC MCOx Index
 
  * @{
 
  */
 
#define RCC_MCO                          ((uint32_t)0x00000000)
 
 
#define IS_RCC_MCO(MCOx) ((MCOx) == RCC_MCO)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_MCO_Clock_Source RCC MCO Clock Source
 
  * @{
 
  */
 
#define RCC_MCOSOURCE_NONE               RCC_CFGR_MCO_NOCLOCK
 
#define RCC_MCOSOURCE_LSI                RCC_CFGR_MCO_LSI
 
#define RCC_MCOSOURCE_LSE                RCC_CFGR_MCO_LSE
 
#define RCC_MCOSOURCE_SYSCLK             RCC_CFGR_MCO_SYSCLK
 
#define RCC_MCOSOURCE_HSI                RCC_CFGR_MCO_HSI
 
#define RCC_MCOSOURCE_HSE                RCC_CFGR_MCO_HSE
 
#define RCC_MCOSOURCE_PLLCLK_DIV2        RCC_CFGR_MCO_PLL
 
#define RCC_MCOSOURCE_HSI14              RCC_CFGR_MCO_HSI14
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_Interrupt RCC Interrupt
 
  * @{
 
  */
 
#define RCC_IT_LSIRDY                    ((uint8_t)0x01)
 
#define RCC_IT_LSERDY                    ((uint8_t)0x02)
 
#define RCC_IT_HSIRDY                    ((uint8_t)0x04)
 
#define RCC_IT_HSERDY                    ((uint8_t)0x08)
 
#define RCC_IT_PLLRDY                    ((uint8_t)0x10)
 
#define RCC_IT_HSI14                     ((uint8_t)0x20)
 
#define RCC_IT_CSS                       ((uint8_t)0x80)
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup RCC_Flag RCC Flag
 
  *        Elements values convention: 0XXYYYYYb
 
  *           - YYYYY  : Flag position in the register
 
  *           - XX  : Register index
 
  *                 - 00: CR register
 
  *                 - 01: CR2 register
 
  *                 - 10: BDCR register
 
  *                 - 11: CSR register
 
  * @{
 
  */
 
#define CR_REG_INDEX                     0
 
#define CR2_REG_INDEX                    1
 
#define BDCR_REG_INDEX                   2
 
#define CSR_REG_INDEX                    3
 
 
/* Flags in the CR register */
 
#define RCC_CR_HSIRDY_BitNumber          1
 
#define RCC_CR_HSERDY_BitNumber          17
 
#define RCC_CR_PLLRDY_BitNumber          25
 
 
#define RCC_FLAG_HSIRDY                  ((uint8_t)((CR_REG_INDEX << 5) | RCC_CR_HSIRDY_BitNumber))
 
#define RCC_FLAG_HSERDY                  ((uint8_t)((CR_REG_INDEX << 5) | RCC_CR_HSERDY_BitNumber))
 
#define RCC_FLAG_PLLRDY                  ((uint8_t)((CR_REG_INDEX << 5) | RCC_CR_PLLRDY_BitNumber))
 
 
/* Flags in the CR2 register */
 
#define RCC_CR2_HSI14RDY_BitNumber       1
 
 
#define RCC_FLAG_HSI14RDY                ((uint8_t)((CR2_REG_INDEX << 5) | RCC_CR2_HSI14RDY_BitNumber))
 
 
/* Flags in the BDCR register */
 
#define RCC_BDCR_LSERDY_BitNumber        1
 
 
#define RCC_FLAG_LSERDY                  ((uint8_t)((BDCR_REG_INDEX << 5) | RCC_BDCR_LSERDY_BitNumber))
 
 
/* Flags in the CSR register */
 
#define RCC_CSR_LSIRDY_BitNumber         1
 
#define RCC_CSR_V18PWRRSTF_BitNumber     23
 
#define RCC_CSR_RMVF_BitNumber           24
 
#define RCC_CSR_OBLRSTF_BitNumber        25
 
#define RCC_CSR_PINRSTF_BitNumber        26
 
#define RCC_CSR_PORRSTF_BitNumber        27
 
#define RCC_CSR_SFTRSTF_BitNumber        28
 
#define RCC_CSR_IWDGRSTF_BitNumber       29
 
#define RCC_CSR_WWDGRSTF_BitNumber       30
 
#define RCC_CSR_LPWRRSTF_BitNumber       31
 
 
#define RCC_FLAG_LSIRDY                  ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_LSIRDY_BitNumber))
 
#define RCC_FLAG_V18PWRRST               ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_LSIRDY_BitNumber))
 
#define RCC_FLAG_RMV                     ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_RMVF_BitNumber))
 
#define RCC_FLAG_OBLRST                  ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_OBLRSTF_BitNumber))
 
#define RCC_FLAG_PINRST                  ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_PINRSTF_BitNumber))
 
#define RCC_FLAG_PORRST                  ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_PORRSTF_BitNumber))
 
#define RCC_FLAG_SFTRST                  ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_SFTRSTF_BitNumber))
 
#define RCC_FLAG_IWDGRST                 ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_IWDGRSTF_BitNumber))
 
#define RCC_FLAG_WWDGRST                 ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_WWDGRSTF_BitNumber))
 
#define RCC_FLAG_LPWRRST                 ((uint8_t)((CSR_REG_INDEX << 5) | RCC_CSR_LPWRRSTF_BitNumber))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_Calibration_values RCC Calibration values
 
  * @{
 
  */
 
#define IS_RCC_CALIBRATION_VALUE(VALUE) ((VALUE) <= 0x1F)
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RCC_Timeout
 
  * @{
 
  */
 
 
#define HSE_TIMEOUT_VALUE          HSE_STARTUP_TIMEOUT
 
#define HSI_TIMEOUT_VALUE          ((uint32_t)100)  /* 100 ms */
 
#define LSI_TIMEOUT_VALUE          ((uint32_t)100)  /* 100 ms */
 
#define LSE_TIMEOUT_VALUE          ((uint32_t)5000) /* 5 s    */
 
#define HSI14_TIMEOUT_VALUE        ((uint32_t)100)  /* 100 ms */
 
#define HSI48_TIMEOUT_VALUE        ((uint32_t)100)  /* 100 ms */
 
#define PLL_TIMEOUT_VALUE          ((uint32_t)100)  /* 100 ms */
 
#define CLOCKSWITCH_TIMEOUT_VALUE  ((uint32_t)5000) /* 5 s    */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup RCC_Exported_Macros RCC Exported Macros
 
 * @{
 
 */
 
 
/** @defgroup RCC_AHB_Clock_Enable_Disable RCC AHB Clock Enable Disable
 
  * @brief  Enable or disable the AHB peripheral clock.
 
  * @note   After reset, the peripheral clock (used for registers read/write access)
 
  *         is disabled and the application software has to enable this clock before
 
  *         using it.
 
  * @{  
 
  */
 
#define __GPIOA_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_GPIOAEN))
 
#define __GPIOB_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_GPIOBEN))
 
#define __GPIOC_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_GPIOCEN))
 
#define __GPIOF_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_GPIOFEN))
 
#define __CRC_CLK_ENABLE()           (RCC->AHBENR |= (RCC_AHBENR_CRCEN))
 
#define __DMA1_CLK_ENABLE()          (RCC->AHBENR |= (RCC_AHBENR_DMA1EN))
 
#define __SRAM_CLK_ENABLE()          (RCC->AHBENR |= (RCC_AHBENR_SRAMEN))
 
#define __FLITF_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_FLITFEN))
 
 
#define __GPIOA_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_GPIOAEN))
 
#define __GPIOB_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_GPIOBEN))
 
#define __GPIOC_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_GPIOCEN))
 
#define __GPIOF_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_GPIOFEN))
 
#define __CRC_CLK_DISABLE()          (RCC->AHBENR &= ~(RCC_AHBENR_CRCEN))
 
#define __DMA1_CLK_DISABLE()         (RCC->AHBENR &= ~(RCC_AHBENR_DMA1EN))
 
#define __SRAM_CLK_DISABLE()         (RCC->AHBENR &= ~(RCC_AHBENR_SRAMEN))
 
#define __FLITF_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_FLITFEN))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_APB1_Clock_Enable_Disable RCC APB1 Clock Enable Disable
 
  * @brief  Enable or disable the Low Speed APB (APB1) peripheral clock.
 
  * @note   After reset, the peripheral clock (used for registers read/write access)
 
  *         is disabled and the application software has to enable this clock before
 
  *         using it.
 
  * @{   
 
  */
 
#define __TIM3_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_TIM3EN))
 
#define __TIM14_CLK_ENABLE()   (RCC->APB1ENR |= (RCC_APB1ENR_TIM14EN))
 
#define __WWDG_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_WWDGEN))
 
#define __I2C1_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_I2C1EN))
 
#define __PWR_CLK_ENABLE()     (RCC->APB1ENR |= (RCC_APB1ENR_PWREN))
 
 
#define __TIM3_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM3EN))
 
#define __TIM14_CLK_DISABLE()  (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM14EN))
 
#define __WWDG_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_WWDGEN))
 
#define __I2C1_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C1EN))
 
#define __PWR_CLK_DISABLE()    (RCC->APB1ENR &= ~(RCC_APB1ENR_PWREN))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup RCC_APB2_Clock_Enable_Disable RCC APB2 Clock Enable Disable
 
  * @brief  Enable or disable the High Speed APB (APB2) peripheral clock.
 
  * @note   After reset, the peripheral clock (used for registers read/write access)
 
  *         is disabled and the application software has to enable this clock before
 
  *         using it.
 
  * @{   
 
  */
 
#define __SYSCFG_CLK_ENABLE()  (RCC->APB2ENR |= (RCC_APB2ENR_SYSCFGEN))
 
#define __ADC1_CLK_ENABLE()    (RCC->APB2ENR |= (RCC_APB2ENR_ADC1EN))
 
#define __TIM1_CLK_ENABLE()    (RCC->APB2ENR |= (RCC_APB2ENR_TIM1EN))
 
#define __SPI1_CLK_ENABLE()    (RCC->APB2ENR |= (RCC_APB2ENR_SPI1EN))
 
#define __TIM16_CLK_ENABLE()   (RCC->APB2ENR |= (RCC_APB2ENR_TIM16EN))
 
#define __TIM17_CLK_ENABLE()   (RCC->APB2ENR |= (RCC_APB2ENR_TIM17EN))
 
#define __USART1_CLK_ENABLE()  (RCC->APB2ENR |= (RCC_APB2ENR_USART1EN))
 
#define __DBGMCU_CLK_ENABLE()  (RCC->APB2ENR |= (RCC_APB2ENR_DBGMCUEN))
 
 
#define __SYSCFG_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SYSCFGEN))
 
#define __ADC1_CLK_DISABLE()   (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN))
 
#define __TIM1_CLK_DISABLE()   (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM1EN))
 
#define __SPI1_CLK_DISABLE()   (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI1EN))
 
#define __TIM16_CLK_DISABLE()  (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM16EN))
 
#define __TIM17_CLK_DISABLE()  (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM17EN))
 
#define __USART1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_USART1EN))
 
#define __DBGMCU_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_DBGMCUEN))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_AHB_Force_Release_Reset RCC AHB Force Release Reset
 
  * @brief  Force or release AHB peripheral reset.
 
  * @{   
 
  */  
 
#define __AHB_FORCE_RESET()     (RCC->AHBRSTR = 0xFFFFFFFF)
 
#define __GPIOA_FORCE_RESET()   (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOARST))
 
#define __GPIOB_FORCE_RESET()   (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOBRST))
 
#define __GPIOC_FORCE_RESET()   (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOCRST))
 
#define __GPIOF_FORCE_RESET()   (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOFRST))
 
 
#define __AHB_RELEASE_RESET()   (RCC->AHBRSTR = 0x00)
 
#define __GPIOA_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOARST))
 
#define __GPIOB_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOBRST))
 
#define __GPIOC_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOCRST))
 
#define __GPIOF_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOFRST))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_APB1_Force_Release_Reset RCC APB1 Force Release Reset
 
  * @brief  Force or release APB1 peripheral reset.
 
  * @{   
 
  */   
 
#define __APB1_FORCE_RESET()     (RCC->APB1RSTR = 0xFFFFFFFF)
 
#define __TIM3_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM3RST))
 
#define __TIM14_FORCE_RESET()    (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM14RST))
 
#define __WWDG_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_WWDGRST))
 
#define __I2C1_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C1RST))
 
#define __PWR_FORCE_RESET()      (RCC->APB1RSTR |= (RCC_APB1RSTR_PWRRST))
 
 
#define __APB1_RELEASE_RESET()   (RCC->APB1RSTR = 0x00)
 
#define __TIM3_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM3RST))
 
#define __TIM14_RELEASE_RESET()  (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM14RST))
 
#define __WWDG_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_WWDGRST))
 
#define __I2C1_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST))
 
#define __PWR_RELEASE_RESET()    (RCC->APB1RSTR &= ~(RCC_APB1RSTR_PWRRST))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_APB2_Force_Release_Reset RCC APB2 Force Release Reset
 
  * @brief  Force or release APB2 peripheral reset.
 
  * @{   
 
  */     
 
#define __APB2_FORCE_RESET()     (RCC->APB2RSTR = 0xFFFFFFFF)
 
#define __SYSCFG_FORCE_RESET()   (RCC->APB2RSTR |= (RCC_APB2RSTR_SYSCFGRST))
 
#define __ADC1_FORCE_RESET()     (RCC->APB2RSTR |= (RCC_APB2RSTR_ADC1RST))
 
#define __TIM1_FORCE_RESET()     (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM1RST))
 
#define __SPI1_FORCE_RESET()     (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI1RST))
 
#define __USART1_FORCE_RESET()   (RCC->APB2RSTR |= (RCC_APB2RSTR_USART1RST))
 
#define __TIM16_FORCE_RESET()    (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM16RST))
 
#define __TIM17_FORCE_RESET()    (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM17RST))
 
#define __DBGMCU_FORCE_RESET()   (RCC->APB2RSTR |= (RCC_APB2RSTR_DBGMCURST))
 
 
#define __APB2_RELEASE_RESET()   (RCC->APB2RSTR = 0x00)
 
#define __SYSCFG_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SYSCFGRST))
 
#define __ADC1_RELEASE_RESET()   (RCC->APB2RSTR &= ~(RCC_APB2RSTR_ADC1RST))
 
#define __TIM1_RELEASE_RESET()   (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM1RST))
 
#define __SPI1_RELEASE_RESET()   (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI1RST))
 
#define __USART1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART1RST))
 
#define __TIM16_RELEASE_RESET()  (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM16RST))
 
#define __TIM17_RELEASE_RESET()  (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM17RST))
 
#define __DBGMCU_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_DBGMCURST))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_HSI_Configuration RCC HSI Configuration
 
  * @{   
 
  */ 
 
  
 
/** @brief  Macros to enable or disable the Internal High Speed oscillator (HSI).
 
  * @note   The HSI is stopped by hardware when entering STOP and STANDBY modes.
 
  *         It is used (enabled by hardware) as system clock source after startup
 
  *         from Reset, wakeup from STOP and STANDBY mode, or in case of failure
 
  *         of the HSE used directly or indirectly as system clock (if the Clock
 
  *         Security System CSS is enabled).
 
  * @note   HSI can not be stopped if it is used as system clock source. In this case,
 
  *         you have to select another source of the system clock then stop the HSI.
 
  * @note   After enabling the HSI, the application software should wait on HSIRDY
 
  *         flag to be set indicating that HSI clock is stable and can be used as
 
  *         system clock source.
 
  * @note   When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
 
  *         clock cycles.
 
  */ 
 
#define __HAL_RCC_HSI_ENABLE()  SET_BIT(RCC->CR, RCC_CR_HSION)
 
#define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION)
 
 
/** @brief  Macro to adjust the Internal High Speed oscillator (HSI) calibration value.
 
  * @note   The calibration is used to compensate for the variations in voltage
 
  *         and temperature that influence the frequency of the internal HSI RC.
 
  * @param  __HSICalibrationValue__: specifies the calibration trimming value 
 
  *         (default is RCC_HSICALIBRATION_DEFAULT).
 
  *         This parameter must be a number between 0 and 0x1F.
 
  */ 
 
#define RCC_CR_HSITRIM_BitNumber         3
 
#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICalibrationValue__) \
 
                  MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (uint32_t)(__HSICalibrationValue__) << RCC_CR_HSITRIM_BitNumber)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_LSI_Configuration  RCC LSI Configuration
 
  * @{   
 
  */ 
 
  
 
/** @brief  Macro to enable or disable the Internal Low Speed oscillator (LSI).
 
  * @note   After enabling the LSI, the application software should wait on
 
  *         LSIRDY flag to be set indicating that LSI clock is stable and can
 
  *         be used to clock the IWDG and/or the RTC.
 
  * @note   LSI can not be disabled if the IWDG is running.
 
  * @note   When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
 
  *         clock cycles.
 
  */ 
 
#define __HAL_RCC_LSI_ENABLE()  SET_BIT(RCC->CSR, RCC_CSR_LSION)
 
#define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_HSE_Configuration RCC HSE Configuration
 
  * @{   
 
  */ 
 
  
 
/**
 
  * @brief  Macro to configure the External High Speed oscillator (HSE).
 
  * @note   After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
 
  *         software should wait on HSERDY flag to be set indicating that HSE clock
 
  *         is stable and can be used to clock the PLL and/or system clock.
 
  * @note   HSE state can not be changed if it is used directly or through the
 
  *         PLL as system clock. In this case, you have to select another source
 
  *         of the system clock then change the HSE state (ex. disable it).
 
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.
 
  * @note   This function reset the CSSON bit, so if the Clock security system(CSS)
 
  *         was previously enabled you have to enable it again after calling this
 
  *         function.
 
  * @param  __STATE__: specifies the new state of the HSE.
 
  *          This parameter can be one of the following values:
 
  *            @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
 
  *                              6 HSE oscillator clock cycles.
 
  *            @arg RCC_HSE_ON: turn ON the HSE oscillator
 
  *            @arg RCC_HSE_BYPASS: HSE oscillator bypassed with external clock
 
  */
 
#define __HAL_RCC_HSE_CONFIG(__STATE__) (*(__IO uint8_t *)RCC_CR_BYTE2_ADDRESS = (__STATE__))
 
 
/**
 
  * @brief  Macro to configure the External High Speed oscillator (HSE) Predivision factor for PLL.
 
  * @note   Predivision factor can not be changed if PLL is used as system clock
 
  *         In this case, you have to select another source of the system clock, disable the PLL and
 
  *         then change the HSE predivision factor.
 
  * @param  __HSEPredivValue__: specifies the division value applied to HSE.
 
  *         This parameter must be a number between RCC_HSE_PREDIV_DIV1 and RCC_HSE_PREDIV_DIV16.
 
  */
 
#define __HAL_RCC_HSE_PREDIV_CONFIG(__HSEPredivValue__) \
 
                  MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV, (uint32_t)(__HSEPredivValue__))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_LSE_Configuration RCC LSE Configuration
 
  * @{   
 
  */   
 
/**
 
  * @brief  Macro to configure the External Low Speed oscillator (LSE).
 
  * @note   As the LSE is in the Backup domain and write access is denied to
 
  *         this domain after reset, you have to enable write access using
 
  *         HAL_PWR_EnableBkUpAccess() function before to configure the LSE
 
  *         (to be done once after reset).
 
  * @note   After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
 
  *         software should wait on LSERDY flag to be set indicating that LSE clock
 
  *         is stable and can be used to clock the RTC.
 
  * @param  __STATE__: specifies the new state of the LSE.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
 
  *                              6 LSE oscillator clock cycles.
 
  *            @arg RCC_LSE_ON: turn ON the LSE oscillator
 
  *            @arg RCC_LSE_BYPASS: LSE oscillator bypassed with external clock
 
  */
 
#define __HAL_RCC_LSE_CONFIG(__STATE__) \
 
                  MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEON|RCC_BDCR_LSEBYP, (uint32_t)(__STATE__))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_HSI14_Configuration RCC_HSI14_Configuration
 
  * @{   
 
  */ 
 
    
 
/** @brief  Macros to enable or disable the Internal 14Mhz High Speed oscillator (HSI14).
 
  * @note   The HSI14 is stopped by hardware when entering STOP and STANDBY modes.
 
  * @note   HSI14 can not be stopped if it is used as system clock source. In this case,
 
  *         you have to select another source of the system clock then stop the HSI14.
 
  * @note   After enabling the HSI14 with __HAL_RCC_HSI14_ENABLE(), the application software 
 
  *         should wait on HSI14RDY flag to be set indicating that HSI clock is stable and can be 
 
  *         used as system clock source. This is not necessary if HAL_RCC_OscConfig() is used.
 
  * @note   When the HSI14 is stopped, HSI14RDY flag goes low after 6 HSI14 oscillator
 
  *         clock cycles.
 
  */
 
#define __HAL_RCC_HSI14_ENABLE()  SET_BIT(RCC->CR2, RCC_CR2_HSI14ON)
 
#define __HAL_RCC_HSI14_DISABLE() CLEAR_BIT(RCC->CR2, RCC_CR2_HSI14ON)
 
 
/** @brief macros to Enable or Disable the Internal 14Mhz High Speed oscillator (HSI14) usage by ADC.
 
  */
 
#define __HAL_RCC_HSI14ADC_ENABLE()  CLEAR_BIT(RCC->CR2, RCC_CR2_HSI14DIS)
 
#define __HAL_RCC_HSI14ADC_DISABLE() SET_BIT(RCC->CR2, RCC_CR2_HSI14DIS)
 
  
 
/** @brief  Macro to adjust the Internal 14Mhz High Speed oscillator (HSI) calibration value.
 
  * @note   The calibration is used to compensate for the variations in voltage
 
  *         and temperature that influence the frequency of the internal HSI14 RC.
 
  * @param  __HSI14CalibrationValue__: specifies the calibration trimming value 
 
  *         (default is RCC_HSI14CALIBRATION_DEFAULT).
 
  *         This parameter must be a number between 0 and 0x1F.
 
  */
 
#define RCC_CR2_HSI14TRIM_BitNumber         3
 
#define __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(__HSI14CalibrationValue__) \
 
                  MODIFY_REG(RCC->CR2, RCC_CR2_HSI14TRIM, (uint32_t)(__HSI14CalibrationValue__) << RCC_CR2_HSI14TRIM_BitNumber)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_USARTx_Clock_Config RCC USARTx Clock Config
 
  * @{   
 
  */ 
 
    
 
/** @brief  Macro to configure the USART1 clock (USART1CLK).
 
  * @param  __USART1CLKSource__: specifies the USART1 clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_USART1CLKSOURCE_PCLK1: PCLK1 selected as USART1 clock
 
  *            @arg RCC_USART1CLKSOURCE_HSI: HSI selected as USART1 clock
 
  *            @arg RCC_USART1CLKSOURCE_SYSCLK: System Clock selected as USART1 clock
 
  *            @arg RCC_USART1CLKSOURCE_LSE: LSE selected as USART1 clock
 
  */
 
#define __HAL_RCC_USART1_CONFIG(__USART1CLKSource__) \
 
                  MODIFY_REG(RCC->CFGR3, RCC_CFGR3_USART1SW, (uint32_t)(__USART1CLKSource__))
 
 
/** @brief  Macro to get the USART1 clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_USART1CLKSOURCE_PCLK1: PCLK1 selected as USART1 clock
 
  *            @arg RCC_USART1CLKSOURCE_HSI: HSI selected as USART1 clock
 
  *            @arg RCC_USART1CLKSOURCE_SYSCLK: System Clock selected as USART1 clock
 
  *            @arg RCC_USART1CLKSOURCE_LSE: LSE selected as USART1 clock
 
  */
 
#define __HAL_RCC_GET_USART1_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_USART1SW)))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_I2Cx_Clock_Config RCC I2Cx Clock Config
 
  * @{   
 
  */ 
 
  
 
/** @brief  Macro to configure the I2C1 clock (I2C1CLK).
 
  * @param  __I2C1CLKSource__: specifies the I2C1 clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_I2C1CLKSOURCE_HSI: HSI selected as I2C1 clock
 
  *            @arg RCC_I2C1CLKSOURCE_SYSCLK: System Clock selected as I2C1 clock
 
  */
 
#define __HAL_RCC_I2C1_CONFIG(__I2C1CLKSource__) \
 
                  MODIFY_REG(RCC->CFGR3, RCC_CFGR3_I2C1SW, (uint32_t)(__I2C1CLKSource__))
 
 
/** @brief  Macro to get the I2C1 clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_I2C1CLKSOURCE_HSI: HSI selected as I2C1 clock
 
  *            @arg RCC_I2C1CLKSOURCE_SYSCLK: System Clock selected as I2C1 clock
 
  */
 
#define __HAL_RCC_GET_I2C1_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_I2C1SW)))
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RCC_USARTx_Clock_Config RCC USARTx Clock Config
 
  * @{   
 
  */   
 
/** @brief  Macro to configure the USART2 clock (USART2CLK).
 
  * @param  __USART2CLKSource__: specifies the USART2 clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_USART2CLKSOURCE_PCLK1: PCLK1 selected as USART2 clock
 
  *            @arg RCC_USART2CLKSOURCE_HSI: HSI selected as USART2 clock
 
  *            @arg RCC_USART2CLKSOURCE_SYSCLK: System Clock selected as USART2 clock
 
  *            @arg RCC_USART2CLKSOURCE_LSE: LSE selected as USART2 clock
 
  */
 
#define __HAL_RCC_USART2_CONFIG(__USART2CLKSource__) \
 
                  MODIFY_REG(RCC->CFGR3, RCC_CFGR3_USART2SW, (uint32_t)(__USART2CLKSource__))
 
 
/** @brief  Macro to get the USART2 clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_USART2CLKSOURCE_PCLK1: PCLK1 selected as USART2 clock
 
  *            @arg RCC_USART2CLKSOURCE_HSI: HSI selected as USART2 clock
 
  *            @arg RCC_USART2CLKSOURCE_SYSCLK: System Clock selected as USART2 clock
 
  *            @arg RCC_USART2CLKSOURCE_LSE: LSE selected as USART2 clock
 
  */
 
#define __HAL_RCC_GET_USART2_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_USART2SW)))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
 
  * @{   
 
  */ 
 
/** @brief  Macros to enable or disable the the RTC clock.
 
  * @note   These macros must be used only after the RTC clock source was selected.
 
  */
 
#define __HAL_RCC_RTC_ENABLE()  SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
 
#define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
 
 
/** @brief  Macro to configure the RTC clock (RTCCLK).
 
  * @note   As the RTC clock configuration bits are in the Backup domain and write
 
  *         access is denied to this domain after reset, you have to enable write
 
  *         access using the Power Backup Access macro before to configure
 
  *         the RTC clock source (to be done once after reset).
 
  * @note   Once the RTC clock is configured it can't be changed unless the
 
  *         Backup domain is reset using __HAL_RCC_BackupReset_RELEASE() macro, or by
 
  *         a Power On Reset (POR).
 
  * @param  __RTCCLKSource__: specifies the RTC clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_RTCCLKSOURCE_NONE: No clock selected as RTC clock
 
  *            @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock
 
  *            @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock
 
  *            @arg RCC_RTCCLKSOURCE_HSE_DIV32: HSE clock divided by 32
 
  *
 
  * @note   If the LSE is used as RTC clock source, the RTC continues to
 
  *         work in STOP and STANDBY modes, and can be used as wakeup source.
 
  *         However, when the LSI clock and HSE clock divided by 32 is used as RTC clock source,
 
  *         the RTC cannot be used in STOP and STANDBY modes.
 
  * @note   The system must always be configured so as to get a PCLK frequency greater than or
 
  *             equal to the RTCCLK frequency for a proper operation of the RTC.
 
  */
 
#define __HAL_RCC_RTC_CONFIG(__RTCCLKSource__) \
 
                  MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, (uint32_t)(__RTCCLKSource__))
 
 
/** @brief  Macro to get the RTC clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_RTCCLKSOURCE_NONE: No clock selected as RTC clock
 
  *            @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock
 
  *            @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock
 
  *            @arg RCC_RTCCLKSOURCE_HSE_DIV32: HSE clock divided by 32 selected as RTC clock
 
  */
 
#define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL)))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_Force_Release_Backup RCC Force Release Backup
 
  * @{   
 
  */ 
 
    
 
/** @brief  Macro to force or release the Backup domain reset.
 
  * @note   These macros reset the RTC peripheral (including the backup registers)
 
  *         and the RTC clock source selection in RCC_CSR register.
 
  * @note   The BKPSRAM is not affected by this reset.
 
  */
 
#define __HAL_RCC_BACKUPRESET_FORCE()   SET_BIT(RCC->BDCR, RCC_BDCR_BDRST)
 
#define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_PLL_Configuration RCC PLL Configuration
 
  * @{   
 
  */ 
 
    
 
/** @brief  Macro to enable or disable the PLL.
 
  * @note   After enabling the PLL, the application software should wait on
 
  *         PLLRDY flag to be set indicating that PLL clock is stable and can
 
  *         be used as system clock source.
 
  * @note   The PLL can not be disabled if it is used as system clock source
 
  * @note   The PLL is disabled by hardware when entering STOP and STANDBY modes.
 
  */
 
#define __HAL_RCC_PLL_ENABLE()  SET_BIT(RCC->CR, RCC_CR_PLLON)
 
#define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON)
 
 
/** @brief  Macro to configure the PLL clock source, multiplication and division factors.
 
  * @note   This macro must be used only when the PLL is disabled.
 
  *
 
  * @param  __RCC_PLLSource__: specifies the PLL entry clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry
 
  *            @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry
 
  * @param  __PREDIV__: specifies the predivider factor for PLL VCO input clock
 
  *         This parameter must be a number between RCC_PREDIV_DIV1 and RCC_PREDIV_DIV16.
 
  * @param  __PLLMUL__: specifies the multiplication factor for PLL VCO input clock
 
  *         This parameter must be a number between RCC_PLL_MUL2 and RCC_PLL_MUL16.
 
  *
 
  */
 
#define __HAL_RCC_PLL_CONFIG(__RCC_PLLSource__ , __PREDIV__, __PLLMUL__) \
 
                  do { \
 
                    MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV, (__PREDIV__)); \
 
                    MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLMUL | RCC_CFGR_PLLSRC, (uint32_t)((__PLLMUL__)|(__RCC_PLLSource__))); \
 
                  } while(0)
 
/**
 
  * @}
 
  */                      
 
 
/** @defgroup RCC_Get_Clock_source RCC Get Clock source
 
  * @{   
 
  */ 
 
  
 
/** @brief  Macro to get the clock source used as system clock.
 
  * @retval The clock source used as system clock.
 
  *         The returned value can be one of the following value:
 
  *             @arg RCC_SYSCLKSOURCE_STATUS_HSI: HSI used as system clock
 
  *             @arg RCC_SYSCLKSOURCE_STATUS_HSE: HSE used as system clock
 
  *             @arg RCC_SYSCLKSOURCE_STATUS_PLLCLK: PLL used as system clock
 
  */
 
#define __HAL_RCC_GET_SYSCLK_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS)))
 
 
/** @brief  Macro to get the oscillator used as PLL clock source.
 
  * @retval The oscillator used as PLL clock source. The returned value can be one
 
  *         of the following:
 
  *              - RCC_PLLSOURCE_HSI: HSI oscillator is used as PLL clock source.
 
  *              - RCC_PLLSOURCE_HSE: HSE oscillator is used as PLL clock source.
 
  */
 
#define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC)))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup RCC_Flags_Interrupts_Management RCC Flags Interrupts Management
 
  * @brief macros to manage the specified RCC Flags and interrupts.
 
  * @{
 
  */
 
 
/** @brief  Enable RCC interrupt (Perform Byte access to RCC_CIR[12:8] bits to enable
 
  *         the selected interrupts.).
 
  * @param  __INTERRUPT__: specifies the RCC interrupt sources to be enabled.
 
  *         This parameter can be any combination of the following values:
 
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt enable
 
  *            @arg RCC_IT_LSERDY: LSE ready interrupt enable
 
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt enable
 
  *            @arg RCC_IT_HSERDY: HSE ready interrupt enable
 
  *            @arg RCC_IT_PLLRDY: PLL ready interrupt enable
 
  *            @arg RCC_IT_HSI14RDY: HSI14 ready interrupt enable
 
  *            @arg RCC_IT_HSI48RDY: HSI48 ready interrupt enable (only applicable to STM32F0X2 USB devices)
 
  */
 
#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) (*(__IO uint8_t *)RCC_CIR_BYTE1_ADDRESS |= (__INTERRUPT__))
 
 
/** @brief  Disable RCC interrupt (Perform Byte access to RCC_CIR[12:8] bits to disable
 
  *         the selected interrupts.).
 
  * @param  __INTERRUPT__: specifies the RCC interrupt sources to be disabled.
 
  *         This parameter can be any combination of the following values:
 
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt enable
 
  *            @arg RCC_IT_LSERDY: LSE ready interrupt enable
 
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt enable
 
  *            @arg RCC_IT_HSERDY: HSE ready interrupt enable
 
  *            @arg RCC_IT_PLLRDY: PLL ready interrupt enable
 
  *            @arg RCC_IT_HSI14RDY: HSI14 ready interrupt enable
 
  *            @arg RCC_IT_HSI48RDY: HSI48 ready interrupt enable (only applicable to STM32F0X2 USB devices)
 
  */
 
#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) (*(__IO uint8_t *)RCC_CIR_BYTE1_ADDRESS &= ~(__INTERRUPT__))
 
 
/** @brief  Clear the RCC's interrupt pending bits ( Perform Byte access to RCC_CIR[23:16]
 
  *         bits to clear the selected interrupt pending bits.
 
  * @param  __IT__: specifies the interrupt pending bit to clear.
 
  *         This parameter can be any combination of the following values:
 
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt clear
 
  *            @arg RCC_IT_LSERDY: LSE ready interrupt clear
 
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt clear
 
  *            @arg RCC_IT_HSERDY: HSE ready interrupt clear
 
  *            @arg RCC_IT_PLLRDY: PLL ready interrupt clear
 
  *            @arg RCC_IT_HSI14RDY: HSI14 ready interrupt clear
 
  *            @arg RCC_IT_HSI48RDY: HSI48 ready interrupt clear (only applicable to STM32F0X2 USB devices)
 
  *            @arg RCC_IT_CSS: Clock Security System interrupt clear
 
  */
 
#define __HAL_RCC_CLEAR_IT(__IT__) (*(__IO uint8_t *)RCC_CIR_BYTE2_ADDRESS = (__IT__))
 
 
/** @brief  Check the RCC's interrupt has occurred or not.
 
  * @param  __IT__: specifies the RCC interrupt source to check.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt flag
 
  *            @arg RCC_IT_LSERDY: LSE ready interrupt flag
 
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt flag
 
  *            @arg RCC_IT_HSERDY: HSE ready interrupt flag
 
  *            @arg RCC_IT_PLLRDY: PLL ready interrupt flag
 
  *            @arg RCC_IT_HSI14RDY: HSI14 ready interrupt flag
 
  *            @arg RCC_IT_HSI48RDY: HSI48 ready interrupt flag (only applicable to STM32F0X2 USB devices)
 
  *            @arg RCC_IT_CSS: Clock Security System interrupt flag
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_RCC_GET_IT(__IT__) ((RCC->CIR & (__IT__)) == (__IT__))
 
 
/** @brief  Set RMVF bit to clear the reset flags: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST,
 
  * RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
 
  */
 
#define __HAL_RCC_CLEAR_RESET_FLAGS() SET_BIT(RCC->CSR, RCC_CSR_RMVF)
 
 
/** @brief  Check RCC flag is set or not.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
 
  *            @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
 
  *            @arg RCC_FLAG_PLLRDY: PLL clock ready
 
  *            @arg RCC_FLAG_HSI14RDY: HSI14 oscillator clock ready
 
  *            @arg RCC_FLAG_HSI48RDY: HSI48 oscillator clock ready (only applicable to STM32F0X2 USB devices)
 
  *            @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
 
  *            @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
 
  *            @arg RCC_FLAG_OBLRST: Option Byte Load reset
 
  *            @arg RCC_FLAG_PINRST: Pin reset
 
  *            @arg RCC_FLAG_PORRST: POR/PDR reset
 
  *            @arg RCC_FLAG_SFTRST: Software reset
 
  *            @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
 
  *            @arg RCC_FLAG_WWDGRST: Window Watchdog reset
 
  *            @arg RCC_FLAG_LPWRRST: Low Power reset
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define RCC_FLAG_MASK  ((uint8_t)0x1F)
 
#define __HAL_RCC_GET_FLAG(__FLAG__) (((((__FLAG__) >> 5) == CR_REG_INDEX)? RCC->CR :      \
 
                                       (((__FLAG__) >> 5) == CR2_REG_INDEX)? RCC->CR2 :    \
 
                                       (((__FLAG__) >> 5) == BDCR_REG_INDEX) ? RCC->BDCR : \
 
                                       RCC->CSR) & ((uint32_t)1 << ((__FLAG__) & RCC_FLAG_MASK)))
 
 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Include RCC HAL Extension module */
 
#include "stm32f0xx_hal_rcc_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup RCC_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup RCC_Exported_Functions_Group1
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions  ***************************/
 
void HAL_RCC_DeInit(void);
 
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
 
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RCC_Exported_Functions_Group2
 
  * @{
 
  */
 
  
 
/* Peripheral Control functions  *********************************************/
 
void     HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
 
void     HAL_RCC_EnableCSS(void);
 
void     HAL_RCC_DisableCSS(void);
 
uint32_t HAL_RCC_GetSysClockFreq(void);
 
uint32_t HAL_RCC_GetHCLKFreq(void);
 
uint32_t HAL_RCC_GetPCLK1Freq(void);
 
void     HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
 
void     HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency);
 
 
/* CSS NMI IRQ handler */
 
void HAL_RCC_NMI_IRQHandler(void);
 
 
/* User Callbacks in non blocking mode (IT mode) */ 
 
void HAL_RCC_CCSCallback(void);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_RCC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_rcc_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rcc_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of RCC HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_RCC_EX_H
 
#define __STM32F0xx_HAL_RCC_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup RCCEx
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/
 
 
/** @defgroup RCCEx_Exported_Types RCCEx Exported Types
 
  * @{
 
  */
 
 
/**
 
  * @brief  RCC extended clocks structure definition  
 
  */
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx)
 
typedef struct
 
{
 
  uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
 
                                      This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
 
 
  uint32_t RTCClockSelection;    /*!< Specifies RTC Clock Prescalers Selection 
 
                                      This parameter can be a value of @ref RCC_RTC_Clock_Source */
 
 
  uint32_t Usart1ClockSelection; /*!< USART1 clock source
 
                                      This parameter can be a value of @ref RCC_USART1_Clock_Source */
 
 
  uint32_t I2c1ClockSelection;   /*!< I2C1 clock source
 
                                      This parameter can be a value of @ref RCC_I2C1_Clock_Source */
 
 
}RCC_PeriphCLKInitTypeDef;
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F038xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx)
 
typedef struct
 
{
 
  uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
 
                                      This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
 
 
  uint32_t RTCClockSelection;    /*!< Specifies RTC Clock Prescalers Selection 
 
                                      This parameter can be a value of @ref RCC_RTC_Clock_Source */
 
 
  uint32_t Usart1ClockSelection; /*!< USART1 clock source
 
                                      This parameter can be a value of @ref RCC_USART1_Clock_Source */
 
 
  uint32_t I2c1ClockSelection;   /*!< I2C1 clock source
 
                                      This parameter can be a value of @ref RCC_I2C1_Clock_Source */
 
 
  uint32_t CecClockSelection;    /*!< HDMI CEC clock source
 
                                      This parameter can be a value of @ref RCCEx_CEC_Clock_Source */
 
 
  uint32_t UsbClockSelection;    /*!< USB clock source
 
                                      This parameter can be a value of @ref RCCEx_USB_Clock_Source */
 
 
}RCC_PeriphCLKInitTypeDef;
 
#endif /* STM32F042x6 || STM32F048xx */
 
 
#if defined(STM32F051x8) || defined(STM32F058xx)
 
typedef struct
 
{
 
  uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
 
                                      This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
 
 
  uint32_t RTCClockSelection;    /*!< Specifies RTC Clock Prescalers Selection 
 
                                      This parameter can be a value of @ref RCC_RTC_Clock_Source */
 
 
  uint32_t Usart1ClockSelection; /*!< USART1 clock source
 
                                      This parameter can be a value of @ref RCC_USART1_Clock_Source */
 
 
  uint32_t I2c1ClockSelection;   /*!< I2C1 clock source
 
                                      This parameter can be a value of @ref RCC_I2C1_Clock_Source */
 
 
  uint32_t CecClockSelection;    /*!< HDMI CEC clock source
 
                                      This parameter can be a value of @ref RCCEx_CEC_Clock_Source */
 
 
}RCC_PeriphCLKInitTypeDef;
 
#endif /* STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F071xB)
 
typedef struct
 
{
 
  uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
 
                                      This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
 
 
  uint32_t RTCClockSelection;    /*!< Specifies RTC Clock Prescalers Selection 
 
                                      This parameter can be a value of @ref RCC_RTC_Clock_Source */
 
 
  uint32_t Usart1ClockSelection; /*!< USART1 clock source
 
                                      This parameter can be a value of @ref RCC_USART1_Clock_Source */
 
 
  uint32_t Usart2ClockSelection; /*!< USART2 clock source
 
                                      This parameter can be a value of @ref RCCEx_USART2_Clock_Source */
 
 
  uint32_t I2c1ClockSelection;   /*!< I2C1 clock source
 
                                      This parameter can be a value of @ref RCC_I2C1_Clock_Source */
 
 
  uint32_t CecClockSelection;    /*!< HDMI CEC clock source
 
                                      This parameter can be a value of @ref RCCEx_CEC_Clock_Source */
 
 
}RCC_PeriphCLKInitTypeDef;
 
#endif /* STM32F071xB */
 
 
#if defined(STM32F072xB) || defined(STM32F078xx)
 
typedef struct
 
{
 
  uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
 
                                      This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
 
 
  uint32_t RTCClockSelection;    /*!< Specifies RTC Clock Prescalers Selection 
 
                                      This parameter can be a value of @ref RCC_RTC_Clock_Source */
 
 
  uint32_t Usart1ClockSelection; /*!< USART1 clock source
 
                                      This parameter can be a value of @ref RCC_USART1_Clock_Source */
 
 
  uint32_t Usart2ClockSelection; /*!< USART2 clock source
 
                                      This parameter can be a value of @ref RCCEx_USART2_Clock_Source */
 
 
  uint32_t I2c1ClockSelection;   /*!< I2C1 clock source
 
                                      This parameter can be a value of @ref RCC_I2C1_Clock_Source */
 
 
  uint32_t CecClockSelection;    /*!< HDMI CEC clock source
 
                                      This parameter can be a value of @ref RCCEx_CEC_Clock_Source */
 
 
  uint32_t UsbClockSelection;    /*!< USB clock source
 
                                      This parameter can be a value of @ref RCCEx_USB_Clock_Source */
 
 
}RCC_PeriphCLKInitTypeDef;
 
#endif /* STM32F072xB || STM32F078xx */
 
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
typedef struct
 
{
 
  uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured.
 
                                      This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */
 
 
  uint32_t RTCClockSelection;    /*!< Specifies RTC Clock Prescalers Selection 
 
                                      This parameter can be a value of @ref RCC_RTC_Clock_Source */
 
 
  uint32_t Usart1ClockSelection; /*!< USART1 clock source
 
                                      This parameter can be a value of @ref RCC_USART1_Clock_Source */
 
 
  uint32_t Usart2ClockSelection; /*!< USART2 clock source
 
                                      This parameter can be a value of @ref RCCEx_USART2_Clock_Source */
 
 
  uint32_t Usart3ClockSelection; /*!< USART3 clock source
 
                                      This parameter can be a value of @ref RCCEx_USART3_Clock_Source */
 
 
  uint32_t I2c1ClockSelection;   /*!< I2C1 clock source
 
                                      This parameter can be a value of @ref RCC_I2C1_Clock_Source */
 
 
  uint32_t CecClockSelection;    /*!< HDMI CEC clock source
 
                                      This parameter can be a value of @ref RCCEx_CEC_Clock_Source */
 
 
}RCC_PeriphCLKInitTypeDef;
 
#endif /* STM32F091xC || STM32F098xx */
 
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
/** 
 
  * @brief  RCC CRS Status structures definition  
 
  */  
 
typedef enum 
 
{
 
  RCC_CRS_NONE      = 0x00,
 
  RCC_CRS_TIMEOUT   = 0x01,
 
  RCC_CRS_SYNCOK    = 0x02,
 
  RCC_CRS_SYNCWARM  = 0x04,
 
  RCC_CRS_SYNCERR   = 0x08,
 
  RCC_CRS_SYNCMISS  = 0x10,
 
  RCC_CRS_TRIMOV    = 0x20
 
} RCC_CRSStatusTypeDef;
 
 
/** 
 
  * @brief RCC_CRS Init structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Prescaler;             /*!< Specifies the division factor of the SYNC signal.
 
                                     This parameter can be a value of @ref RCCEx_CRS_SynchroDivider */
 
 
  uint32_t Source;                /*!< Specifies the SYNC signal source.
 
                                     This parameter can be a value of @ref RCCEx_CRS_SynchroSource */
 
 
  uint32_t Polarity;              /*!< Specifies the input polarity for the SYNC signal source.
 
                                     This parameter can be a value of @ref RCCEx_CRS_SynchroPolarity */
 
 
  uint32_t ReloadValue;           /*!< Specifies the value to be loaded in the frequency error counter with each SYNC event.
 
                                      It can be calculated in using macro __HAL_RCC_CRS_CALCULATE_RELOADVALUE(_FTARGET_, _FSYNC_)
 
                                     This parameter must be a number between 0 and 0xFFFF or a value of @ref RCCEx_CRS_ReloadValueDefault .*/
 
 
  uint32_t ErrorLimitValue;       /*!< Specifies the value to be used to evaluate the captured frequency error value.
 
                                     This parameter must be a number between 0 and 0xFF or a value of @ref RCCEx_CRS_ErrorLimitDefault */
 
 
  uint32_t HSI48CalibrationValue; /*!< Specifies a user-programmable trimming value to the HSI48 oscillator.
 
                                     This parameter must be a number between 0 and 0x3F or a value of @ref RCCEx_CRS_HSI48CalibrationDefault */
 
   
 
}RCC_CRSInitTypeDef;
 
 
/** 
 
  * @brief RCC_CRS Synchronization structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t ReloadValue;           /*!< Specifies the value loaded in the Counter reload value.
 
                                     This parameter must be a number between 0 and 0xFFFF*/
 
 
  uint32_t HSI48CalibrationValue; /*!< Specifies value loaded in HSI48 oscillator smooth trimming.
 
                                     This parameter must be a number between 0 and 0x3F */
 
   
 
  uint32_t FreqErrorCapture;      /*!< Specifies the value loaded in the .FECAP, the frequency error counter 
 
                                                                    value latched in the time of the last SYNC event.
 
                                    This parameter must be a number between 0 and 0xFFFF */
 
                                    
 
  uint32_t FreqErrorDirection;    /*!< Specifies the value loaded in the .FEDIR, the counting direction of the 
 
                                                                    frequency error counter latched in the time of the last SYNC event. 
 
                                                                    It shows whether the actual frequency is below or above the target.
 
                                    This parameter must be a value of @ref RCCEx_CRS_FreqErrorDirection*/
 
 
}RCC_CRSSynchroInfoTypeDef;
 
 
#endif /* STM32F042x6 || */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup RCCEx_Exported_Constants RCCEx Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup RCCEx_Periph_Clock_Selection RCCEx Periph Clock Selection
 
  * @{
 
  */
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx)
 
#define RCC_PERIPHCLK_USART1           ((uint32_t)0x00000001)
 
#define RCC_PERIPHCLK_I2C1             ((uint32_t)0x00000020)
 
#define RCC_PERIPHCLK_RTC              ((uint32_t)0x00010000)
 
 
#define IS_RCC_PERIPHCLK(SELECTION) ((SELECTION) <= (RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | \
 
                                                     RCC_PERIPHCLK_RTC))
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F038xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx)
 
#define RCC_PERIPHCLK_USART1           ((uint32_t)0x00000001)
 
#define RCC_PERIPHCLK_I2C1             ((uint32_t)0x00000020)
 
#define RCC_PERIPHCLK_CEC              ((uint32_t)0x00000400)
 
#define RCC_PERIPHCLK_RTC              ((uint32_t)0x00010000)
 
#define RCC_PERIPHCLK_USB              ((uint32_t)0x00020000)
 
 
#define IS_RCC_PERIPHCLK(SELECTION) ((SELECTION) <= (RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1   | \
 
                                                     RCC_PERIPHCLK_CEC    | RCC_PERIPHCLK_RTC    | \
 
                                                     RCC_PERIPHCLK_USB))
 
#endif /* STM32F042x6 || STM32F048xx */
 
 
#if defined(STM32F051x8) || defined(STM32F058xx)
 
#define RCC_PERIPHCLK_USART1           ((uint32_t)0x00000001)
 
#define RCC_PERIPHCLK_I2C1             ((uint32_t)0x00000020)
 
#define RCC_PERIPHCLK_CEC              ((uint32_t)0x00000400)
 
#define RCC_PERIPHCLK_RTC              ((uint32_t)0x00010000)
 
 
#define IS_RCC_PERIPHCLK(SELECTION) ((SELECTION) <= (RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | \
 
                                                     RCC_PERIPHCLK_CEC    | RCC_PERIPHCLK_RTC))
 
#endif /* STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F071xB)
 
#define RCC_PERIPHCLK_USART1           ((uint32_t)0x00000001)
 
#define RCC_PERIPHCLK_USART2           ((uint32_t)0x00000002)
 
#define RCC_PERIPHCLK_I2C1             ((uint32_t)0x00000020)
 
#define RCC_PERIPHCLK_CEC              ((uint32_t)0x00000400)
 
#define RCC_PERIPHCLK_RTC              ((uint32_t)0x00010000)
 
 
#define IS_RCC_PERIPHCLK(SELECTION) ((SELECTION) <= (RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | \
 
                                                     RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_CEC    | \
 
                                                     RCC_PERIPHCLK_RTC))
 
#endif /* STM32F071xB */
 
 
#if defined(STM32F072xB) || defined(STM32F078xx)
 
#define RCC_PERIPHCLK_USART1           ((uint32_t)0x00000001)
 
#define RCC_PERIPHCLK_USART2           ((uint32_t)0x00000002)
 
#define RCC_PERIPHCLK_I2C1             ((uint32_t)0x00000020)
 
#define RCC_PERIPHCLK_CEC              ((uint32_t)0x00000400)
 
#define RCC_PERIPHCLK_RTC              ((uint32_t)0x00010000)
 
#define RCC_PERIPHCLK_USB              ((uint32_t)0x00020000)
 
 
#define IS_RCC_PERIPHCLK(SELECTION) ((SELECTION) <= (RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | \
 
                                                     RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_CEC    | \
 
                                                     RCC_PERIPHCLK_RTC    | RCC_PERIPHCLK_USB))
 
#endif /* STM32F072xB || STM32F078xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
#define RCC_PERIPHCLK_USART1           ((uint32_t)0x00000001)
 
#define RCC_PERIPHCLK_USART2           ((uint32_t)0x00000002)
 
#define RCC_PERIPHCLK_I2C1             ((uint32_t)0x00000020)
 
#define RCC_PERIPHCLK_CEC              ((uint32_t)0x00000400)
 
#define RCC_PERIPHCLK_RTC              ((uint32_t)0x00010000)
 
#define RCC_PERIPHCLK_USART3           ((uint32_t)0x00040000)
 
 
#define IS_RCC_PERIPHCLK(SELECTION) ((SELECTION) <= (RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | \
 
                                                     RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_CEC    | \
 
                                                     RCC_PERIPHCLK_RTC    | RCC_PERIPHCLK_USART3 ))
 
#endif /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_MCO_Clock_Source RCCEx MCO Clock Source
 
  * @{
 
  */
 
  
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx)
 
 
#define RCC_MCOSOURCE_PLLCLK_NODIV       (RCC_CFGR_MCO_PLL | RCC_CFGR_PLLNODIV)
 
 
#define IS_RCC_MCOSOURCE(SOURCE)  (((SOURCE) == RCC_MCOSOURCE_NONE)         || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_LSI)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_LSE)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_SYSCLK)       || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSE)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_PLLCLK_NODIV) || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_PLLCLK_DIV2)  || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI14))
 
 
#endif /* STM32F030x6 || STM32F031x6 || STM32F038xx */
 
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
 
#define IS_RCC_MCOSOURCE(SOURCE)  (((SOURCE) == RCC_MCOSOURCE_NONE)         || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_LSI)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_LSE)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_SYSCLK)       || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSE)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_PLLCLK_DIV2)  || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI14))
 
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define RCC_MCOSOURCE_HSI48              RCC_CFGR_MCO_HSI48
 
#define RCC_MCOSOURCE_PLLCLK_NODIV       (RCC_CFGR_MCO_PLL | RCC_CFGR_PLLNODIV)
 
 
#define IS_RCC_MCOSOURCE(SOURCE)  (((SOURCE) == RCC_MCOSOURCE_NONE)         || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_LSI)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_LSE)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_SYSCLK)       || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSE)          || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_PLLCLK_NODIV) || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_PLLCLK_DIV2)  || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI14)        || \
 
                                   ((SOURCE) == RCC_MCOSOURCE_HSI48))
 
 
#define RCC_IT_HSI48                     ((uint8_t)0x40)
 
 
/* Flags in the CR2 register */
 
#define RCC_CR2_HSI48RDY_BitNumber       16
 
 
#define RCC_FLAG_HSI48RDY                ((uint8_t)((CR2_REG_INDEX << 5) | RCC_CR2_HSI48RDY_BitNumber))
 
 
#endif /* STM32F042x6 || STM32F048xx ||             */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
/**
 
  * @}
 
  */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
 
/** @defgroup RCCEx_USB_Clock_Source RCCEx USB Clock Source
 
  * @{
 
  */
 
#define RCC_USBCLKSOURCE_HSI48           RCC_CFGR3_USBSW_HSI48
 
#define RCC_USBCLKSOURCE_PLLCLK          RCC_CFGR3_USBSW_PLLCLK
 
 
#define IS_RCC_USBCLKSOURCE(SOURCE)  (((SOURCE) == RCC_USBCLKSOURCE_HSI48) || \
 
                                      ((SOURCE) == RCC_USBCLKSOURCE_PLLCLK))
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @defgroup RCCEx_USART2_Clock_Source RCCEx USART2 Clock Source
 
  * @{
 
  */
 
#define RCC_USART2CLKSOURCE_PCLK1        RCC_CFGR3_USART2SW_PCLK
 
#define RCC_USART2CLKSOURCE_SYSCLK       RCC_CFGR3_USART2SW_SYSCLK
 
#define RCC_USART2CLKSOURCE_LSE          RCC_CFGR3_USART2SW_LSE
 
#define RCC_USART2CLKSOURCE_HSI          RCC_CFGR3_USART2SW_HSI
 
 
#define IS_RCC_USART2CLKSOURCE(SOURCE)  (((SOURCE) == RCC_USART2CLKSOURCE_PCLK1)  || \
 
                                         ((SOURCE) == RCC_USART2CLKSOURCE_SYSCLK) || \
 
                                         ((SOURCE) == RCC_USART2CLKSOURCE_LSE)    || \
 
                                         ((SOURCE) == RCC_USART2CLKSOURCE_HSI))
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @defgroup RCCEx_USART3_Clock_Source RCCEx USART3 Clock Source
 
  * @{
 
  */
 
#define RCC_USART3CLKSOURCE_PCLK1        RCC_CFGR3_USART3SW_PCLK
 
#define RCC_USART3CLKSOURCE_SYSCLK       RCC_CFGR3_USART3SW_SYSCLK
 
#define RCC_USART3CLKSOURCE_LSE          RCC_CFGR3_USART3SW_LSE
 
#define RCC_USART3CLKSOURCE_HSI          RCC_CFGR3_USART3SW_HSI
 
 
#define IS_RCC_USART3CLKSOURCE(SOURCE)  (((SOURCE) == RCC_USART3CLKSOURCE_PCLK1)  || \
 
                                         ((SOURCE) == RCC_USART3CLKSOURCE_SYSCLK) || \
 
                                         ((SOURCE) == RCC_USART3CLKSOURCE_LSE)    || \
 
                                         ((SOURCE) == RCC_USART3CLKSOURCE_HSI))
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F091xC || STM32F098xx */
 
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @defgroup RCCEx_CEC_Clock_Source RCCEx CEC Clock Source
 
  * @{
 
  */
 
#define RCC_CECCLKSOURCE_HSI             RCC_CFGR3_CECSW_HSI_DIV244
 
#define RCC_CECCLKSOURCE_LSE             RCC_CFGR3_CECSW_LSE
 
 
#define IS_RCC_CECCLKSOURCE(SOURCE)  (((SOURCE) == RCC_CECCLKSOURCE_HSI) || \
 
                                      ((SOURCE) == RCC_CECCLKSOURCE_LSE))
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @defgroup RCCEx_PLL_Clock_Source RCCEx PLL Clock Source
 
  * @{
 
  */
 
#define RCC_PLLSOURCE_HSI                RCC_CFGR_PLLSRC_HSI_PREDIV
 
#define RCC_PLLSOURCE_HSI48              RCC_CFGR_PLLSRC_HSI48_PREDIV
 
 
#define IS_RCC_PLLSOURCE(SOURCE) (((SOURCE) == RCC_PLLSOURCE_HSI)   || \
 
                                  ((SOURCE) == RCC_PLLSOURCE_HSI48) || \
 
                                  ((SOURCE) == RCC_PLLSOURCE_HSE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_System_Clock_Source RCCEx System Clock Source
 
  * @{
 
  */
 
#define RCC_SYSCLKSOURCE_HSI48           RCC_CFGR_SW_HSI48
 
 
#define IS_RCC_SYSCLKSOURCE(SOURCE)  (((SOURCE) == RCC_SYSCLKSOURCE_HSI)    || \
 
                                      ((SOURCE) == RCC_SYSCLKSOURCE_HSE)    || \
 
                                      ((SOURCE) == RCC_SYSCLKSOURCE_PLLCLK) || \
 
                                      ((SOURCE) == RCC_SYSCLKSOURCE_HSI48))
 
 
#define RCC_SYSCLKSOURCE_STATUS_HSI48    RCC_CFGR_SWS_HSI48
 
 
#define IS_RCC_SYSCLKSOURCE_STATUS(SOURCE) (((SOURCE) == RCC_SYSCLKSOURCE_STATUS_HSI)    || \
 
                                            ((SOURCE) == RCC_SYSCLKSOURCE_STATUS_HSE)    || \
 
                                            ((SOURCE) == RCC_SYSCLKSOURCE_STATUS_PLLCLK) || \
 
                                            ((SOURCE) == RCC_SYSCLKSOURCE_STATUS_HSI48))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_HSI48_Config RCCEx HSI48 Config
 
  * @{
 
  */
 
#define RCC_HSI48_OFF                    ((uint8_t)0x00)
 
#define RCC_HSI48_ON                     ((uint8_t)0x01)
 
 
#define IS_RCC_HSI48(HSI48) (((HSI48) == RCC_HSI48_OFF) || ((HSI48) == RCC_HSI48_ON))
 
/**
 
  * @}
 
  */
 
 
#else
 
/** @defgroup RCCEx_PLL_Clock_Source RCCEx PLL Clock Source
 
  * @{
 
  */
 
#define RCC_PLLSOURCE_HSI                RCC_CFGR_PLLSRC_HSI_DIV2
 
 
#define IS_RCC_PLLSOURCE(SOURCE) (((SOURCE) == RCC_PLLSOURCE_HSI)   || \
 
                                  ((SOURCE) == RCC_PLLSOURCE_HSE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_System_Clock_Source RCCEx System Clock Source
 
  * @{
 
  */
 
#define IS_RCC_SYSCLKSOURCE(SOURCE)  (((SOURCE) == RCC_SYSCLKSOURCE_HSI)    || \
 
                                      ((SOURCE) == RCC_SYSCLKSOURCE_HSE)    || \
 
                                      ((SOURCE) == RCC_SYSCLKSOURCE_PLLCLK))
 
 
#define IS_RCC_SYSCLKSOURCE_STATUS(SOURCE) (((SOURCE) == RCC_SYSCLKSOURCE_STATUS_HSI)    || \
 
                                            ((SOURCE) == RCC_SYSCLKSOURCE_STATUS_HSE)    || \
 
                                            ((SOURCE) == RCC_SYSCLKSOURCE_STATUS_PLLCLK))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_HSI48_Config RCCEx HSI48 Config
 
  * @{
 
  */
 
#define RCC_HSI48_OFF                    ((uint8_t)0x00)
 
 
#define IS_RCC_HSI48(HSI48) (((HSI48) == RCC_HSI48_OFF))
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F042x6 || STM32F048xx ||             */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
 
/** @defgroup RCCEx_MCOx_Clock_Prescaler RCCEx MCOx Clock Prescaler
 
  * @{
 
  */
 
  
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
 
#define RCC_MCO_NODIV                    ((uint32_t)0x00000000)
 
 
#define IS_RCC_MCODIV(DIV) (((DIV) == RCC_MCO_NODIV))
 
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F071xB) || \
 
    defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define RCC_MCO_DIV1                     ((uint32_t)0x00000000)
 
#define RCC_MCO_DIV2                     ((uint32_t)0x10000000)
 
#define RCC_MCO_DIV4                     ((uint32_t)0x20000000)
 
#define RCC_MCO_DIV8                     ((uint32_t)0x30000000)
 
#define RCC_MCO_DIV16                    ((uint32_t)0x40000000)
 
#define RCC_MCO_DIV32                    ((uint32_t)0x50000000)
 
#define RCC_MCO_DIV64                    ((uint32_t)0x60000000)
 
#define RCC_MCO_DIV128                   ((uint32_t)0x70000000)
 
 
#define IS_RCC_MCODIV(DIV) (((DIV) == RCC_MCO_DIV1)  || ((DIV) == RCC_MCO_DIV2)   || \
 
                            ((DIV) == RCC_MCO_DIV4)  || ((DIV) == RCC_MCO_DIV8)   || \
 
                            ((DIV) == RCC_MCO_DIV16) || ((DIV) == RCC_MCO_DIV32)  || \
 
                            ((DIV) == RCC_MCO_DIV64) || ((DIV) == RCC_MCO_DIV128))
 
 
#endif /* STM32F030x6 || STM32F031x6 || STM32F038xx || STM32F042x6 || STM32F048xx || */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @defgroup RCCEx_CRS_SynchroSource RCCEx CRS SynchroSource
 
  * @{
 
  */
 
#define RCC_CRS_SYNC_SOURCE_GPIO       ((uint32_t)0x00)        /*!< Synchro Signal soucre GPIO */
 
#define RCC_CRS_SYNC_SOURCE_LSE        CRS_CFGR_SYNCSRC_0      /*!< Synchro Signal source LSE */
 
#define RCC_CRS_SYNC_SOURCE_USB        CRS_CFGR_SYNCSRC_1      /*!< Synchro Signal source USB SOF (default)*/
 
  
 
#define IS_RCC_CRS_SYNC_SOURCE(_SOURCE_) (((_SOURCE_) == RCC_CRS_SYNC_SOURCE_GPIO) || \
 
                                          ((_SOURCE_) == RCC_CRS_SYNC_SOURCE_LSE)  || \
 
                                          ((_SOURCE_) == RCC_CRS_SYNC_SOURCE_USB))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_CRS_SynchroDivider RCCEx CRS SynchroDivider
 
  * @{
 
  */
 
#define RCC_CRS_SYNC_DIV1        ((uint32_t)0x00)                          /*!< Synchro Signal not divided (default) */
 
#define RCC_CRS_SYNC_DIV2        CRS_CFGR_SYNCDIV_0                        /*!< Synchro Signal divided by 2 */
 
#define RCC_CRS_SYNC_DIV4        CRS_CFGR_SYNCDIV_1                        /*!< Synchro Signal divided by 4 */
 
#define RCC_CRS_SYNC_DIV8        (CRS_CFGR_SYNCDIV_1 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 8 */
 
#define RCC_CRS_SYNC_DIV16       CRS_CFGR_SYNCDIV_2                        /*!< Synchro Signal divided by 16 */
 
#define RCC_CRS_SYNC_DIV32       (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 32 */
 
#define RCC_CRS_SYNC_DIV64       (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_1) /*!< Synchro Signal divided by 64 */
 
#define RCC_CRS_SYNC_DIV128      CRS_CFGR_SYNCDIV                          /*!< Synchro Signal divided by 128 */
 
  
 
#define IS_RCC_CRS_SYNC_DIV(_DIV_) (((_DIV_) == RCC_CRS_SYNC_DIV1)  || ((_DIV_) == RCC_CRS_SYNC_DIV2)  || \
 
                                    ((_DIV_) == RCC_CRS_SYNC_DIV4)  || ((_DIV_) == RCC_CRS_SYNC_DIV8)  || \
 
                                    ((_DIV_) == RCC_CRS_SYNC_DIV16) || ((_DIV_) == RCC_CRS_SYNC_DIV32) || \
 
                                    ((_DIV_) == RCC_CRS_SYNC_DIV64) || ((_DIV_) == RCC_CRS_SYNC_DIV128))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_CRS_SynchroPolarity RCCEx CRS SynchroPolarity
 
  * @{
 
  */
 
#define RCC_CRS_SYNC_POLARITY_RISING        ((uint32_t)0x00)      /*!< Synchro Active on rising edge (default) */
 
#define RCC_CRS_SYNC_POLARITY_FALLING       CRS_CFGR_SYNCPOL      /*!< Synchro Active on falling edge */
 
  
 
#define IS_RCC_CRS_SYNC_POLARITY(_POLARITY_) (((_POLARITY_) == RCC_CRS_SYNC_POLARITY_RISING) || \
 
                                              ((_POLARITY_) == RCC_CRS_SYNC_POLARITY_FALLING))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup RCCEx_CRS_ReloadValueDefault RCCEx CRS ReloadValueDefault
 
  * @{
 
  */
 
#define RCC_CRS_RELOADVALUE_DEFAULT         ((uint32_t)0xBB7F)      /*!< The reset value of the RELOAD field corresponds 
 
                                                                         to a target frequency of 48 MHz and a synchronization signal frequency of 1 kHz (SOF signal from USB). */
 
 
#define IS_RCC_CRS_RELOADVALUE(_VALUE_) (((_VALUE_) <= 0xFFFF))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup RCCEx_CRS_ErrorLimitDefault RCCEx CRS ErrorLimitDefault
 
  * @{
 
  */
 
#define RCC_CRS_ERRORLIMIT_DEFAULT          ((uint32_t)0x22)      /*!< Default Frequency error limit */
 
    
 
#define IS_RCC_CRS_ERRORLIMIT(_VALUE_) (((_VALUE_) <= 0xFF))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_CRS_HSI48CalibrationDefault RCCEx CRS HSI48CalibrationDefault
 
  * @{
 
  */
 
#define RCC_CRS_HSI48CALIBRATION_DEFAULT    ((uint32_t)0x20)   /*!< The default value is 32, which corresponds to the middle of the trimming interval. 
 
                                                                    The trimming step is around 67 kHz between two consecutive TRIM steps. A higher TRIM value
 
                                                                    corresponds to a higher output frequency */
 
    
 
#define IS_RCC_CRS_HSI48CALIBRATION(_VALUE_) (((_VALUE_) <= 0x3F))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_CRS_FreqErrorDirection RCCEx CRS FreqErrorDirection
 
  * @{
 
  */
 
#define RCC_CRS_FREQERRORDIR_UP             ((uint32_t)0x00)          /*!< Upcounting direction, the actual frequency is above the target */
 
#define RCC_CRS_FREQERRORDIR_DOWN           ((uint32_t)CRS_ISR_FEDIR) /*!< Downcounting direction, the actual frequency is below the target */
 
    
 
#define IS_RCC_CRS_FREQERRORDIR(_DIR_) (((_DIR_) == RCC_CRS_FREQERRORDIR_UP) || \
 
                                        ((_DIR_) == RCC_CRS_FREQERRORDIR_DOWN))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_CRS_Interrupt_Sources RCCEx CRS Interrupt Sources
 
  * @{
 
  */
 
#define RCC_CRS_IT_SYNCOK             CRS_ISR_SYNCOKF    /*!< SYNC event OK */
 
#define RCC_CRS_IT_SYNCWARN           CRS_ISR_SYNCWARNF  /*!< SYNC warning */
 
#define RCC_CRS_IT_ERR                CRS_ISR_ERRF       /*!< error */
 
#define RCC_CRS_IT_ESYNC              CRS_ISR_ESYNCF     /*!< Expected SYNC */
 
#define RCC_CRS_IT_TRIMOVF            CRS_ISR_TRIMOVF    /*!< Trimming overflow or underflow */
 
#define RCC_CRS_IT_SYNCERR            CRS_ISR_SYNCERR    /*!< SYNC error */
 
#define RCC_CRS_IT_SYNCMISS           CRS_ISR_SYNCMISS    /*!< SYNC missed*/
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup RCCEx_CRS_Flags RCCEx CRS Flags
 
  * @{
 
  */
 
#define RCC_CRS_FLAG_SYNCOK             CRS_ISR_SYNCOKF     /* SYNC event OK flag     */
 
#define RCC_CRS_FLAG_SYNCWARN           CRS_ISR_SYNCWARNF   /* SYNC warning flag      */
 
#define RCC_CRS_FLAG_ERR                CRS_ISR_ERRF        /* Error flag        */
 
#define RCC_CRS_FLAG_ESYNC              CRS_ISR_ESYNCF      /* Expected SYNC flag     */
 
#define RCC_CRS_FLAG_TRIMOVF            CRS_ISR_TRIMOVF     /*!< Trimming overflow or underflow */
 
#define RCC_CRS_FLAG_SYNCERR            CRS_ISR_SYNCERR     /*!< SYNC error */
 
#define RCC_CRS_FLAG_SYNCMISS           CRS_ISR_SYNCMISS    /*!< SYNC missed*/
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
#endif /* STM32F042x6 || STM32F048xx || */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
/* Exported macros ------------------------------------------------------------*/
 
/** @defgroup RCCEx_Exported_Macros RCCEx Exported Macros
 
  * @{
 
  */
 
 
/** @defgroup RCCEx_Peripheral_Clock_Enable_Disable RCCEx_Peripheral_Clock_Enable_Disable
 
  * @brief  Enables or disables the AHB1 peripheral clock.
 
  * @note   After reset, the peripheral clock (used for registers read/write access)
 
  *         is disabled and the application software has to enable this clock before
 
  *         using it.
 
  * @{
 
  */
 
#if defined(STM32F030x6) || defined(STM32F030x8) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __GPIOD_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_GPIODEN))
 
 
#define __GPIOD_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_GPIODEN))
 
 
#endif /* STM32F030x6 || STM32F030x8 ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx |[ */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __GPIOE_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_GPIOEEN))
 
 
#define __GPIOE_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_GPIOEEN))
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      
 
#define __TSC_CLK_ENABLE()           (RCC->AHBENR |= (RCC_AHBENR_TSCEN))
 
 
#define __TSC_CLK_DISABLE()          (RCC->AHBENR &= ~(RCC_AHBENR_TSCEN))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __DMA2_CLK_ENABLE()         (RCC->AHBENR |= (RCC_AHBENR_DMA2EN))
 
 
#define __DMA2_CLK_DISABLE()        (RCC->AHBENR &= ~(RCC_AHBENR_DMA2EN))
 
 
#endif /* STM32F091xC || STM32F098xx */
 
      
 
/** @brief  Enable or disable the Low Speed APB (APB1) peripheral clock.
 
  * @note   After reset, the peripheral clock (used for registers read/write access)
 
  *         is disabled and the application software has to enable this clock before
 
  *         using it.
 
  */
 
#if defined(STM32F030x8) ||                                                 \
 
    defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __USART2_CLK_ENABLE()  (RCC->APB1ENR |= (RCC_APB1ENR_USART2EN))
 
#define __SPI2_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_SPI2EN))
 
 
#define __USART2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART2EN))
 
#define __SPI2_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_SPI2EN))
 
 
#endif /* STM32F030x8 || STM32F042x6 || STM32F048xx || */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F031x6) || defined(STM32F038xx) ||                         \
 
    defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM2_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_TIM2EN))
 
 
#define __TIM2_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM2EN))
 
 
#endif /* STM32F031x6 || STM32F038xx ||             */
 
       /* STM32F042x6 || STM32F048xx ||             */
 
       /* STM32F051x8 || STM32F058xx ||             */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F030x8) ||                                                 \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM6_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_TIM6EN))
 
#define __I2C2_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_I2C2EN))
 
 
#define __TIM6_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM6EN))
 
#define __I2C2_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C2EN))
 
 
#endif /* STM32F030x8 ||                               */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __DAC1_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_DACEN))
 
 
#define __DAC1_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_DACEN))
 
 
#endif /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __CEC_CLK_ENABLE()     (RCC->APB1ENR |= (RCC_APB1ENR_CECEN))
 
 
#define __CEC_CLK_DISABLE()    (RCC->APB1ENR &= ~(RCC_APB1ENR_CECEN))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM7_CLK_ENABLE()    (RCC->APB1ENR |= (RCC_APB1ENR_TIM7EN))
 
#define __USART3_CLK_ENABLE()  (RCC->APB1ENR |= (RCC_APB1ENR_USART3EN))
 
#define __USART4_CLK_ENABLE()  (RCC->APB1ENR |= (RCC_APB1ENR_USART4EN))
 
 
#define __TIM7_CLK_DISABLE()   (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM7EN))
 
#define __USART3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART3EN))
 
#define __USART4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART4EN))
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F072xB) || defined(STM32F078xx)
 
 
#define __USB_CLK_ENABLE()     (RCC->APB1ENR |= (RCC_APB1ENR_USBEN))
 
 
#define __USB_CLK_DISABLE()    (RCC->APB1ENR &= ~(RCC_APB1ENR_USBEN))
 
 
#endif /* STM32F042x6 || STM32F048xx || */
 
       /* STM32F072xB || STM32F078xx    */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __CAN_CLK_ENABLE()     (RCC->APB1ENR |= (RCC_APB1ENR_CANEN))
 
#define __CAN_CLK_DISABLE()    (RCC->APB1ENR &= ~(RCC_APB1ENR_CANEN))
 
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB  || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __CRS_CLK_ENABLE()     (RCC->APB1ENR |= (RCC_APB1ENR_CRSEN))
 
 
#define __CRS_CLK_DISABLE()    (RCC->APB1ENR &= ~(RCC_APB1ENR_CRSEN))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __USART5_CLK_ENABLE()       (RCC->APB1ENR |= (RCC_APB1ENR_USART5EN))
 
 
#define __USART5_CLK_DISABLE()      (RCC->APB1ENR &= ~(RCC_APB1ENR_USART5EN))
 
 
#endif /* STM32F091xC || STM32F098xx */
 
 
/** @brief  Enable or disable the High Speed APB (APB2) peripheral clock.
 
  * @note   After reset, the peripheral clock (used for registers read/write access)
 
  *         is disabled and the application software has to enable this clock before
 
  *         using it.
 
  */
 
#if defined(STM32F030x8) || defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM15_CLK_ENABLE()    (RCC->APB2ENR |= (RCC_APB2ENR_TIM15EN))
 
 
#define __TIM15_CLK_DISABLE()   (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM15EN))
 
 
#endif /* STM32F030x8 || STM32F042x6 || STM32F048xx || */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __USART6_CLK_ENABLE()       (RCC->APB2ENR |= (RCC_APB2ENR_USART6EN))
 
#define __USART7_CLK_ENABLE()       (RCC->APB2ENR |= (RCC_APB2ENR_USART7EN))
 
#define __USART8_CLK_ENABLE()       (RCC->APB2ENR |= (RCC_APB2ENR_USART8EN))
 
 
#define __USART6_CLK_DISABLE()      (RCC->APB2ENR &= ~(RCC_APB2ENR_USART6EN))
 
#define __USART7_CLK_DISABLE()      (RCC->APB2ENR &= ~(RCC_APB2ENR_USART7EN))
 
#define __USART8_CLK_DISABLE()      (RCC->APB2ENR &= ~(RCC_APB2ENR_USART8EN))
 
 
#endif /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup RCCEx_Force_Release_Peripheral_Reset RCCEx Force Release Peripheral Reset
 
  * @brief  Forces or releases peripheral reset.
 
  * @{
 
  */
 
 
/** @brief  Force or release AHB peripheral reset.
 
  */
 
#if defined(STM32F030x6) || defined(STM32F030x8) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __GPIOD_FORCE_RESET()   (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIODRST))
 
 
#define __GPIOD_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIODRST))
 
 
#endif /* STM32F030x6 || STM32F030x8 ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __GPIOE_FORCE_RESET()   (RCC->AHBRSTR |= (RCC_AHBRSTR_GPIOERST))
 
 
#define __GPIOE_RELEASE_RESET() (RCC->AHBRSTR &= ~(RCC_AHBRSTR_GPIOERST))
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      
 
#define __TSC_FORCE_RESET()     (RCC->AHBRSTR |= (RCC_AHBRSTR_TSCRST))
 
 
#define __TSC_RELEASE_RESET()   (RCC->AHBRSTR &= ~(RCC_AHBRSTR_TSCRST))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
/** @brief  Force or release APB1 peripheral reset.
 
  */
 
#if defined(STM32F030x8) ||                                                 \
 
    defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __USART2_FORCE_RESET()   (RCC->APB1RSTR |= (RCC_APB1RSTR_USART2RST))
 
#define __SPI2_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_SPI2RST))
 
 
#define __USART2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART2RST))
 
#define __SPI2_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPI2RST))
 
 
#endif /* STM32F030x8 || STM32F042x6 || STM32F048xx || */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F031x6) || defined(STM32F038xx) ||                         \
 
    defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM2_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM2RST))
 
 
#define __TIM2_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM2RST))
 
 
#endif /* STM32F031x6 || STM32F038xx ||             */
 
       /* STM32F042x6 || STM32F048xx ||             */
 
       /* STM32F051x8 || STM32F058xx ||             */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F030x8) ||                                                 \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM6_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM6RST))
 
#define __I2C2_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C2RST))
 
 
#define __TIM6_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM6RST))
 
#define __I2C2_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C2RST))
 
 
#endif /* STM32F030x8 ||                               */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __DAC1_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_DACRST))
 
 
#define __DAC1_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_DACRST))
 
 
#endif /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __CEC_FORCE_RESET()      (RCC->APB1RSTR |= (RCC_APB1RSTR_CECRST))
 
 
#define __CEC_RELEASE_RESET()    (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CECRST))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM7_FORCE_RESET()     (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM7RST))
 
#define __USART3_FORCE_RESET()   (RCC->APB1RSTR |= (RCC_APB1RSTR_USART3RST))
 
#define __USART4_FORCE_RESET()   (RCC->APB1RSTR |= (RCC_APB1RSTR_USART4RST))
 
 
#define __TIM7_RELEASE_RESET()   (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM7RST))
 
#define __USART3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART3RST))
 
#define __USART4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART4RST))
 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F072xB) || defined(STM32F078xx)
 
 
#define __USB_FORCE_RESET()      (RCC->APB1RSTR |= (RCC_APB1RSTR_USBRST))
 
 
#define __USB_RELEASE_RESET()    (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USBRST))
 
 
#endif /* STM32F042x6 || STM32F048xx || */
 
       /* STM32F072xB || STM32F078xx    */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __CAN_FORCE_RESET()      (RCC->APB1RSTR |= (RCC_APB1RSTR_CANRST))
 
 
#define __CAN_RELEASE_RESET()    (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CANRST))
 
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __CRS_FORCE_RESET()      (RCC->APB1RSTR |= (RCC_APB1RSTR_CRSRST))
 
 
#define __CRS_RELEASE_RESET()    (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CRSRST))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __USART5_FORCE_RESET()    (RCC->APB1RSTR |= (RCC_APB1RSTR_USART5RST))
 
 
#define __USART5_RELEASE_RESET()  (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART5RST))
 
 
#endif /* STM32F091xC || STM32F098xx */
 
 
 
/** @brief  Force or release APB2 peripheral reset.
 
  */
 
#if defined(STM32F030x8) || defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __TIM15_FORCE_RESET()    (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM15RST))
 
 
#define __TIM15_RELEASE_RESET()  (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM15RST))
 
 
#endif /* STM32F030x8 || STM32F042x6 || STM32F048xx || */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __USART6_FORCE_RESET()    (RCC->APB2RSTR |= (RCC_APB2RSTR_USART6RST))
 
#define __USART7_FORCE_RESET()    (RCC->APB2RSTR |= (RCC_APB2RSTR_USART7RST))
 
#define __USART8_FORCE_RESET()    (RCC->APB2RSTR |= (RCC_APB2RSTR_USART8RST))
 
 
#define __USART6_RELEASE_RESET()  (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART6RST))
 
#define __USART7_RELEASE_RESET()  (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART7RST))
 
#define __USART8_RELEASE_RESET()  (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART8RST))
 
 
#endif /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup RCCEx_HSI48_Enable_Disable RCCEx HSI48 Enable Disable    
 
  * @brief  Macros to enable or disable the Internal 48Mhz High Speed oscillator (HSI48).
 
  * @note   The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
 
  * @note   HSI48 can not be stopped if it is used as system clock source. In this case,
 
  *         you have to select another source of the system clock then stop the HSI14.
 
  * @note   After enabling the HSI48 with __HAL_RCC_HSI48_ENABLE(), the application software
 
  *         should wait on HSI48RDY flag to be set indicating that HSI48 clock is stable and can be
 
  *         used as system clock source. This is not necessary if HAL_RCC_OscConfig() is used.
 
  * @note   When the HSI48 is stopped, HSI48RDY flag goes low after 6 HSI48 oscillator
 
  *         clock cycles.
 
  * @{
 
  */
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
#define __HAL_RCC_HSI48_ENABLE()  SET_BIT(RCC->CR2, RCC_CR2_HSI48ON)
 
#define __HAL_RCC_HSI48_DISABLE() CLEAR_BIT(RCC->CR2, RCC_CR2_HSI48ON)
 
 
/** @brief  Macro to get the Internal 48Mhz High Speed oscillator (HSI48) state.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_HSI48_ON:  HSI48 enabled
 
  *            @arg RCC_HSI48_OFF: HSI48 disabled
 
  */
 
#define __HAL_RCC_GET_HSI48_STATE() \
 
                  (((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CR2_HSI48ON)) != RESET) ? RCC_HSI48_ON : RCC_HSI48_OFF)  
 
 
#else
 
 
/** @brief  Macro to get the Internal 48Mhz High Speed oscillator (HSI48) state.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_HSI_OFF: HSI48 disabled
 
  */
 
#define __HAL_RCC_GET_HSI48_STATE()   RCC_HSI_OFF 
 
 
#endif /* STM32F042x6 || STM32F048xx ||             */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_Peripheral_Clock_Source_Config RCCEx Peripheral Clock Source Config
 
  * @{
 
  */
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F072xB) || defined(STM32F078xx)
 
 
/** @brief  Macro to configure the USB clock (USBCLK).
 
  * @param  __USBCLKSource__: specifies the USB clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_USBCLKSOURCE_HSI48:  HSI48 selected as USB clock
 
  *            @arg RCC_USBCLKSOURCE_PLLCLK: PLL Clock selected as USB clock
 
  */
 
#define __HAL_RCC_USB_CONFIG(__USBCLKSource__) \
 
                  MODIFY_REG(RCC->CFGR3, RCC_CFGR3_USBSW, (uint32_t)(__USBCLKSource__))
 
 
/** @brief  Macro to get the USB clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_USBCLKSOURCE_HSI48:  HSI48 selected as USB clock
 
  *            @arg RCC_USBCLKSOURCE_PLLCLK: PLL Clock selected as USB clock
 
  */
 
#define __HAL_RCC_GET_USB_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_USBSW)))
 
 
#endif /* STM32F042x6 || STM32F048xx || */
 
       /* STM32F072xB || STM32F078xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @brief  Macro to configure the CEC clock.
 
  * @param  __CECCLKSource__: specifies the CEC clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_CECCLKSOURCE_HSI: HSI selected as CEC clock
 
  *            @arg RCC_CECCLKSOURCE_LSE: LSE selected as CEC clock
 
  */
 
#define __HAL_RCC_CEC_CONFIG(__CECCLKSource__) \
 
                  MODIFY_REG(RCC->CFGR3, RCC_CFGR3_CECSW, (uint32_t)(__CECCLKSource__))
 
 
/** @brief  Macro to get the HDMI CEC clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_CECCLKSOURCE_HSI: HSI selected as CEC clock
 
  *            @arg RCC_CECCLKSOURCE_LSE: LSE selected as CEC clock
 
  */
 
#define __HAL_RCC_GET_CEC_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_CECSW)))
 
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || defined(STM32F098xx) */
 
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @brief  Macro to configure the MCO clock.
 
  * @param  __MCOCLKSource__: specifies the MCO clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_MCOSOURCE_HSI: HSI selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_HSE: HSE selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_LSI: LSI selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_LSE: LSE selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_PLLCLK_NODIV: PLLCLK selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_PLLCLK_DIV2: PLLCLK Divided by 2 selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_SYSCLK: System Clock selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_HSI14: HSI14 selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_HSI48: HSI48 selected as MCO clock
 
  * @param  __MCODiv__: specifies the MCO clock prescaler.
 
  *          This parameter can be one of the following values:
 
  *            @arg RCC_MCO_DIV1: MCO clock source is divided by 1
 
  *            @arg RCC_MCO_DIV2: MCO clock source is divided by 2
 
  *            @arg RCC_MCO_DIV4: MCO clock source is divided by 4
 
  *            @arg RCC_MCO_DIV8: MCO clock source is divided by 8
 
  *            @arg RCC_MCO_DIV16: MCO clock source is divided by 16
 
  *            @arg RCC_MCO_DIV32: MCO clock source is divided by 32
 
  *            @arg RCC_MCO_DIV64: MCO clock source is divided by 64
 
  *            @arg RCC_MCO_DIV128: MCO clock source is divided by 128
 
  */
 
#define __HAL_RCC_MCO_CONFIG(__MCOCLKSource__, __MCODiv__) \
 
                 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO | RCC_CFGR_MCOPRE), ((__MCOCLKSource__) | (__MCODiv__)))
 
#else
 
 
/** @brief  Macro to configure the MCO clock.
 
  * @param  __MCOCLKSource__: specifies the MCO clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_MCOSOURCE_HSI: HSI selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_HSE: HSE selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_LSI: LSI selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_LSE: LSE selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_PLLCLK_DIV2: PLLCLK Divided by 2 selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_SYSCLK: System Clock selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_HSI14: HSI14 selected as MCO clock
 
  *            @arg RCC_MCOSOURCE_HSI48: HSI48 selected as MCO clock
 
  * @param  __MCODiv__: specifies the MCO clock prescaler.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_MCO_NODIV: No division applied on MCO clock source
 
  */
 
#define __HAL_RCC_MCO_CONFIG(__MCOCLKSource__, __MCODiv__) \
 
                 MODIFY_REG(RCC->CFGR, RCC_CFGR_MCO, __MCOCLKSource__)
 
 
#endif /* STM32F030x6 || STM32F031x6 || STM32F038xx || */
 
       /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
/** @brief  Macro to configure the USART3 clock (USART3CLK).
 
  * @param  __USART3CLKSource__: specifies the USART3 clock source.
 
  *         This parameter can be one of the following values:
 
  *            @arg RCC_USART3CLKSOURCE_PCLK1: PCLK1 selected as USART3 clock
 
  *            @arg RCC_USART3CLKSOURCE_HSI: HSI selected as USART3 clock
 
  *            @arg RCC_USART3CLKSOURCE_SYSCLK: System Clock selected as USART3 clock
 
  *            @arg RCC_USART3CLKSOURCE_LSE: LSE selected as USART3 clock
 
  */
 
#define __HAL_RCC_USART3_CONFIG(__USART3CLKSource__) \
 
                  MODIFY_REG(RCC->CFGR3, RCC_CFGR3_USART3SW, (uint32_t)(__USART3CLKSource__))
 
 
/** @brief  Macro to get the USART3 clock source.
 
  * @retval The clock source can be one of the following values:
 
  *            @arg RCC_USART3CLKSOURCE_PCLK1: PCLK1 selected as USART3 clock
 
  *            @arg RCC_USART3CLKSOURCE_HSI: HSI selected as USART3 clock
 
  *            @arg RCC_USART3CLKSOURCE_SYSCLK: System Clock selected as USART3 clock
 
  *            @arg RCC_USART3CLKSOURCE_LSE: LSE selected as USART3 clock
 
  */
 
#define __HAL_RCC_GET_USART3_SOURCE() ((uint32_t)(READ_BIT(RCC->CFGR3, RCC_CFGR3_USART3SW)))
 
 
#endif /*STM32F091xC || STM32F098xx*/
 
/**
 
  * @}
 
  */
 
  
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @defgroup RCCEx_IT_And_Flag RCCEx IT and Flag
 
  * @{
 
  */
 
/* Interrupt & Flag management */
 
 
/**
 
  * @brief  Enables the specified CRS interrupts.
 
  * @param  __INTERRUPT__: specifies the CRS interrupt sources to be enabled.
 
  *          This parameter can be any combination of the following values:
 
  *              @arg RCC_CRS_IT_SYNCOK
 
  *              @arg RCC_CRS_IT_SYNCWARN
 
  *              @arg RCC_CRS_IT_ERR
 
  *              @arg RCC_CRS_IT_ESYNC
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_ENABLE_IT(__INTERRUPT__)   (CRS->CR |= (__INTERRUPT__))
 
 
/**
 
  * @brief  Disables the specified CRS interrupts.
 
  * @param  __INTERRUPT__: specifies the CRS interrupt sources to be disabled.
 
  *          This parameter can be any combination of the following values:
 
  *              @arg RCC_CRS_IT_SYNCOK
 
  *              @arg RCC_CRS_IT_SYNCWARN
 
  *              @arg RCC_CRS_IT_ERR
 
  *              @arg RCC_CRS_IT_ESYNC
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_DISABLE_IT(__INTERRUPT__)  (CRS->CR &= ~(__INTERRUPT__))
 
 
/** @brief  Check the CRS's interrupt has occurred or not.
 
  * @param  __INTERRUPT__: specifies the CRS interrupt source to check.
 
  *         This parameter can be one of the following values:
 
  *              @arg RCC_CRS_IT_SYNCOK
 
  *              @arg RCC_CRS_IT_SYNCWARN
 
  *              @arg RCC_CRS_IT_ERR
 
  *              @arg RCC_CRS_IT_ESYNC
 
  * @retval The new state of __INTERRUPT__ (SET or RESET).
 
  */
 
#define __HAL_RCC_CRS_GET_IT_SOURCE(__INTERRUPT__)     ((CRS->CR & (__INTERRUPT__))? SET : RESET)
 
 
/** @brief  Clear the CRS's interrupt pending bits
 
  *         bits to clear the selected interrupt pending bits.
 
  * @param  __INTERRUPT__: specifies the interrupt pending bit to clear.
 
  *         This parameter can be any combination of the following values:
 
  *              @arg RCC_CRS_IT_SYNCOK
 
  *              @arg RCC_CRS_IT_SYNCWARN
 
  *              @arg RCC_CRS_IT_ERR
 
  *              @arg RCC_CRS_IT_ESYNC
 
  *              @arg RCC_CRS_IT_TRIMOVF
 
  *              @arg RCC_CRS_IT_SYNCERR
 
  *              @arg RCC_CRS_IT_SYNCMISS
 
  */
 
/* CRS IT Error Mask */
 
#define  RCC_CRS_IT_ERROR_MASK                 ((uint32_t)(RCC_CRS_IT_TRIMOVF | RCC_CRS_IT_SYNCERR | RCC_CRS_IT_SYNCMISS))
 
 
#define __HAL_RCC_CRS_CLEAR_IT(__INTERRUPT__)  ((((__INTERRUPT__) &  RCC_CRS_IT_ERROR_MASK)!= 0) ? (CRS->ICR |= CRS_ICR_ERRC) : \
 
                                                (CRS->ICR |= (__INTERRUPT__)))
 
 
/**
 
  * @brief  Checks whether the specified CRS flag is set or not.
 
  * @param  _FLAG_: specifies the flag to check.
 
  *          This parameter can be one of the following values:
 
  *              @arg RCC_CRS_FLAG_SYNCOK
 
  *              @arg RCC_CRS_FLAG_SYNCWARN
 
  *              @arg RCC_CRS_FLAG_ERR
 
  *              @arg RCC_CRS_FLAG_ESYNC
 
  *              @arg RCC_CRS_FLAG_TRIMOVF
 
  *              @arg RCC_CRS_FLAG_SYNCERR
 
  *              @arg RCC_CRS_FLAG_SYNCMISS
 
  * @retval The new state of _FLAG_ (TRUE or FALSE).
 
  */
 
#define __HAL_RCC_CRS_GET_FLAG(_FLAG_)  ((CRS->ISR & (_FLAG_)) == (_FLAG_))
 
 
/**
 
  * @brief  Clears the CRS specified FLAG.
 
  * @param _FLAG_: specifies the flag to clear.
 
  *          This parameter can be one of the following values:
 
  *              @arg RCC_CRS_FLAG_SYNCOK
 
  *              @arg RCC_CRS_FLAG_SYNCWARN
 
  *              @arg RCC_CRS_FLAG_ERR
 
  *              @arg RCC_CRS_FLAG_ESYNC
 
  *              @arg RCC_CRS_FLAG_TRIMOVF
 
  *              @arg RCC_CRS_FLAG_SYNCERR
 
  *              @arg RCC_CRS_FLAG_SYNCMISS
 
  * @retval None
 
  */
 
 
/* CRS Flag Error Mask */
 
#define RCC_CRS_FLAG_ERROR_MASK                 ((uint32_t)(RCC_CRS_FLAG_TRIMOVF | RCC_CRS_FLAG_SYNCERR | RCC_CRS_FLAG_SYNCMISS))
 
 
#define __HAL_RCC_CRS_CLEAR_FLAG(__FLAG__)   ((((__FLAG__) & RCC_CRS_FLAG_ERROR_MASK)!= 0) ? (CRS->ICR |= CRS_ICR_ERRC) : \
 
                                              (CRS->ICR |= (__FLAG__)))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCCEx_CRS_Extended_Features RCCEx CRS Extended Features
 
  * @{
 
  */  
 
/**
 
  * @brief  Enables the oscillator clock for frequency error counter.
 
  * @note   when the CEN bit is set the CRS_CFGR register becomes write-protected.
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_ENABLE_FREQ_ERROR_COUNTER() (CRS->CR |= CRS_CR_CEN)
 
 
/**
 
  * @brief  Disables the oscillator clock for frequency error counter.
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_DISABLE_FREQ_ERROR_COUNTER()  (CRS->CR &= ~CRS_CR_CEN)
 
 
/**
 
  * @brief  Enables the automatic hardware adjustement of TRIM bits.
 
  * @note   When the AUTOTRIMEN bit is set the CRS_CFGR register becomes write-protected.
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_ENABLE_AUTOMATIC_CALIB()  (CRS->CR |= CRS_CR_AUTOTRIMEN)
 
 
/**
 
  * @brief  Enables or disables the automatic hardware adjustement of TRIM bits.
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_DISABLE_AUTOMATIC_CALIB()  (CRS->CR &= ~CRS_CR_AUTOTRIMEN)
 
 
/**
 
  * @brief  Macro to calculate reload value to be set in CRS register according to target and sync frequencies
 
  * @note   The RELOAD value should be selected according to the ratio between the target frequency and the frequency 
 
  *             of the synchronization source after prescaling. It is then decreased by one in order to 
 
  *             reach the expected synchronization on the zero value. The formula is the following:
 
  *             RELOAD = (fTARGET / fSYNC) -1
 
  * @param  _FTARGET_ Target frequency (value in Hz)
 
  * @param  _FSYNC_ Synchronization signal frequency (value in Hz)
 
  * @retval None
 
  */
 
#define __HAL_RCC_CRS_CALCULATE_RELOADVALUE(_FTARGET_, _FSYNC_)  (((_FTARGET_) / (_FSYNC_)) - 1)
 
 
/**
 
  * @}
 
  */
 
  
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
  
 
/**
 
  * @}
 
  */   
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup RCCEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup RCCEx_Exported_Functions_Group1 
 
  * @{
 
  */
 
  
 
HAL_StatusTypeDef     HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit);
 
void                  HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit);
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
void                  HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit);
 
void                  HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void);
 
void                  HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo);
 
RCC_CRSStatusTypeDef  HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout);
 
#endif /* STM32F042x6 || STM32F048xx || */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_RCC_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_rtc.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rtc.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of RTC HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_RTC_H
 
#define __STM32F0xx_HAL_RTC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup RTC RTC HAL module driver
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup RTC_Exported_Types RTC Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */
 
typedef enum
 
{
 
  HAL_RTC_STATE_RESET             = 0x00,  /*!< RTC not yet initialized or disabled */
 
  HAL_RTC_STATE_READY             = 0x01,  /*!< RTC initialized and ready for use   */
 
  HAL_RTC_STATE_BUSY              = 0x02,  /*!< RTC process is ongoing              */
 
  HAL_RTC_STATE_TIMEOUT           = 0x03,  /*!< RTC timeout state                   */
 
  HAL_RTC_STATE_ERROR             = 0x04   /*!< RTC error state                     */
 
 
}HAL_RTCStateTypeDef;
 
 
/** 
 
  * @brief  RTC Configuration Structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t HourFormat;      /*!< Specifies the RTC Hour Format.
 
                                 This parameter can be a value of @ref RTC_Hour_Formats */
 
 
  uint32_t AsynchPrediv;    /*!< Specifies the RTC Asynchronous Predivider value.
 
                                 This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x7F */
 
                               
 
  uint32_t SynchPrediv;     /*!< Specifies the RTC Synchronous Predivider value.
 
                                 This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x7FFF */
 
 
  uint32_t OutPut;          /*!< Specifies which signal will be routed to the RTC output.
 
                                 This parameter can be a value of @ref RTCEx_Output_selection_Definitions */
 
 
  uint32_t OutPutPolarity;  /*!< Specifies the polarity of the output signal.  
 
                                 This parameter can be a value of @ref RTC_Output_Polarity_Definitions */
 
 
  uint32_t OutPutType;      /*!< Specifies the RTC Output Pin mode.
 
                                 This parameter can be a value of @ref RTC_Output_Type_ALARM_OUT */
 
}RTC_InitTypeDef;
 
 
/** 
 
  * @brief  RTC Time structure definition  
 
  */
 
typedef struct
 
{
 
  uint8_t Hours;            /*!< Specifies the RTC Time Hour.
 
                                 This parameter must be a number between Min_Data = 0 and Max_Data = 12 if the RTC_HourFormat_12 is selected.
 
                                 This parameter must be a number between Min_Data = 0 and Max_Data = 23 if the RTC_HourFormat_24 is selected */
 
 
  uint8_t Minutes;          /*!< Specifies the RTC Time Minutes.
 
                                 This parameter must be a number between Min_Data = 0 and Max_Data = 59 */
 
 
  uint8_t Seconds;          /*!< Specifies the RTC Time Seconds.
 
                                 This parameter must be a number between Min_Data = 0 and Max_Data = 59 */
 
 
  uint32_t SubSeconds;      /*!< Specifies the RTC Time SubSeconds.
 
                                 This parameter must be a number between Min_Data = 0 and Max_Data = 59 */
 
 
  uint8_t TimeFormat;       /*!< Specifies the RTC AM/PM Time.
 
                                 This parameter can be a value of @ref RTC_AM_PM_Definitions */
 
 
  uint32_t DayLightSaving;  /*!< Specifies RTC_DayLightSaveOperation: the value of hour adjustment.
 
                                 This parameter can be a value of @ref RTC_DayLightSaving_Definitions */
 
 
  uint32_t StoreOperation;  /*!< Specifies RTC_StoreOperation value to be written in the BCK bit 
 
                                 in CR register to store the operation.
 
                                 This parameter can be a value of @ref RTC_StoreOperation_Definitions */
 
}RTC_TimeTypeDef;
 
 
/** 
 
  * @brief  RTC Date structure definition
 
  */
 
typedef struct
 
{
 
  uint8_t WeekDay;  /*!< Specifies the RTC Date WeekDay.
 
                         This parameter can be a value of @ref RTC_WeekDay_Definitions */
 
 
  uint8_t Month;    /*!< Specifies the RTC Date Month (in BCD format).
 
                         This parameter can be a value of @ref RTC_Month_Date_Definitions */
 
 
  uint8_t Date;     /*!< Specifies the RTC Date.
 
                         This parameter must be a number between Min_Data = 1 and Max_Data = 31 */
 
 
  uint8_t Year;     /*!< Specifies the RTC Date Year.
 
                         This parameter must be a number between Min_Data = 0 and Max_Data = 99 */
 
 
}RTC_DateTypeDef;
 
 
/** 
 
  * @brief  RTC Alarm structure definition
 
  */
 
typedef struct
 
{
 
  RTC_TimeTypeDef AlarmTime;     /*!< Specifies the RTC Alarm Time members */
 
 
  uint32_t AlarmMask;            /*!< Specifies the RTC Alarm Masks.
 
                                      This parameter can be a value of @ref RTC_AlarmMask_Definitions */
 
  
 
  uint32_t AlarmSubSecondMask;   /*!< Specifies the RTC Alarm SubSeconds Masks.
 
                                      This parameter can be a value of @ref RTC_Alarm_Sub_Seconds_Masks_Definitions */
 
 
  uint32_t AlarmDateWeekDaySel;  /*!< Specifies the RTC Alarm is on Date or WeekDay.
 
                                      This parameter can be a value of @ref RTC_AlarmDateWeekDay_Definitions */
 
 
  uint8_t AlarmDateWeekDay;      /*!< Specifies the RTC Alarm Date/WeekDay.
 
                                      If the Alarm Date is selected, this parameter must be set to a value in the 1-31 range.
 
                                      If the Alarm WeekDay is selected, this parameter can be a value of @ref RTC_WeekDay_Definitions */
 
 
  uint32_t Alarm;                /*!< Specifies the alarm .
 
                                      This parameter can be a value of @ref RTC_Alarms_Definitions */
 
}RTC_AlarmTypeDef;
 
 
/** 
 
  * @brief  Time Handle Structure definition
 
  */
 
typedef struct
 
{
 
  RTC_TypeDef               *Instance;  /*!< Register base address    */
 
 
  RTC_InitTypeDef           Init;       /*!< RTC required parameters  */
 
 
  HAL_LockTypeDef           Lock;       /*!< RTC locking object       */
 
 
  __IO HAL_RTCStateTypeDef  State;      /*!< Time communication state */
 
 
}RTC_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup RTC_Exported_Constants RTC Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup RTC_Mask_Definition RTC Mask Definition
 
  * @{
 
  */
 
/* Masks Definition */
 
#define RTC_TR_RESERVED_MASK    ((uint32_t)0x007F7F7F)
 
#define RTC_DR_RESERVED_MASK    ((uint32_t)0x00FFFF3F) 
 
#define RTC_INIT_MASK           ((uint32_t)0xFFFFFFFF)  
 
#define RTC_RSF_MASK            ((uint32_t)0xFFFFFF5F)
 
 
#define RTC_TIMEOUT_VALUE  1000
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup RTC_Hour_Formats RTC Hour Formats
 
  * @{
 
  */
 
#define RTC_HOURFORMAT_24              ((uint32_t)0x00000000)
 
#define RTC_HOURFORMAT_12              ((uint32_t)0x00000040)
 
 
#define IS_RTC_HOUR_FORMAT(FORMAT)     (((FORMAT) == RTC_HOURFORMAT_12) || \
 
                                        ((FORMAT) == RTC_HOURFORMAT_24))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Output_Polarity_Definitions RTC Output Polarity Definitions
 
  * @{
 
  */
 
#define RTC_OUTPUT_POLARITY_HIGH       ((uint32_t)0x00000000)
 
#define RTC_OUTPUT_POLARITY_LOW        ((uint32_t)0x00100000)
 
 
#define IS_RTC_OUTPUT_POL(POL) (((POL) == RTC_OUTPUT_POLARITY_HIGH) || \
 
                                ((POL) == RTC_OUTPUT_POLARITY_LOW))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Output_Type_ALARM_OUT RTC Output Type ALARM OUT
 
  * @{
 
  */
 
#define RTC_OUTPUT_TYPE_OPENDRAIN      ((uint32_t)0x00000000)
 
#define RTC_OUTPUT_TYPE_PUSHPULL       ((uint32_t)0x00040000)
 
 
#define IS_RTC_OUTPUT_TYPE(TYPE) (((TYPE) == RTC_OUTPUT_TYPE_OPENDRAIN) || \
 
                                  ((TYPE) == RTC_OUTPUT_TYPE_PUSHPULL))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Asynchronous_Predivider RTC Asynchronous Predivider
 
  * @{
 
  */
 
#define IS_RTC_ASYNCH_PREDIV(PREDIV)   ((PREDIV) <= (uint32_t)0x7F)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Synchronous_Predivider RTC Synchronous Predivider
 
  * @{
 
  */
 
#define IS_RTC_SYNCH_PREDIV(PREDIV)    ((PREDIV) <= (uint32_t)0x7FFF)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Time_Definitions RTC Time Definitions
 
  * @{
 
  */
 
#define IS_RTC_HOUR12(HOUR)            (((HOUR) > (uint32_t)0) && ((HOUR) <= (uint32_t)12))
 
#define IS_RTC_HOUR24(HOUR)            ((HOUR) <= (uint32_t)23)
 
#define IS_RTC_MINUTES(MINUTES)        ((MINUTES) <= (uint32_t)59)
 
#define IS_RTC_SECONDS(SECONDS)        ((SECONDS) <= (uint32_t)59)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_AM_PM_Definitions RTC AM PM Definitions
 
  * @{
 
  */
 
#define RTC_HOURFORMAT12_AM            ((uint8_t)0x00)
 
#define RTC_HOURFORMAT12_PM            ((uint8_t)0x40)
 
 
#define IS_RTC_HOURFORMAT12(PM)  (((PM) == RTC_HOURFORMAT12_AM) || ((PM) == RTC_HOURFORMAT12_PM))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_DayLightSaving_Definitions RTC DayLightSaving Definitions
 
  * @{
 
  */
 
#define RTC_DAYLIGHTSAVING_SUB1H       ((uint32_t)0x00020000)
 
#define RTC_DAYLIGHTSAVING_ADD1H       ((uint32_t)0x00010000)
 
#define RTC_DAYLIGHTSAVING_NONE        ((uint32_t)0x00000000)
 
 
#define IS_RTC_DAYLIGHT_SAVING(SAVE) (((SAVE) == RTC_DAYLIGHTSAVING_SUB1H) || \
 
                                      ((SAVE) == RTC_DAYLIGHTSAVING_ADD1H) || \
 
                                      ((SAVE) == RTC_DAYLIGHTSAVING_NONE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_StoreOperation_Definitions RTC StoreOperation Definitions
 
  * @{
 
  */
 
#define RTC_STOREOPERATION_RESET        ((uint32_t)0x00000000)
 
#define RTC_STOREOPERATION_SET          ((uint32_t)0x00040000)
 
 
#define IS_RTC_STORE_OPERATION(OPERATION) (((OPERATION) == RTC_STOREOPERATION_RESET) || \
 
                                           ((OPERATION) == RTC_STOREOPERATION_SET))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Input_parameter_format_definitions RTC Input parameter format definitions
 
  * @{
 
  */
 
#define FORMAT_BIN                      ((uint32_t)0x000000000)
 
#define FORMAT_BCD                      ((uint32_t)0x000000001)
 
 
#define IS_RTC_FORMAT(FORMAT) (((FORMAT) == FORMAT_BIN) || ((FORMAT) == FORMAT_BCD))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Year_Date_Definitions RTC Year Date Definitions
 
  * @{
 
  */
 
#define IS_RTC_YEAR(YEAR)              ((YEAR) <= (uint32_t)99)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Month_Date_Definitions RTC Month Date Definitions
 
  * @{
 
  */
 
 
/* Coded in BCD format */
 
#define RTC_MONTH_JANUARY              ((uint8_t)0x01)
 
#define RTC_MONTH_FEBRUARY             ((uint8_t)0x02)
 
#define RTC_MONTH_MARCH                ((uint8_t)0x03)
 
#define RTC_MONTH_APRIL                ((uint8_t)0x04)
 
#define RTC_MONTH_MAY                  ((uint8_t)0x05)
 
#define RTC_MONTH_JUNE                 ((uint8_t)0x06)
 
#define RTC_MONTH_JULY                 ((uint8_t)0x07)
 
#define RTC_MONTH_AUGUST               ((uint8_t)0x08)
 
#define RTC_MONTH_SEPTEMBER            ((uint8_t)0x09)
 
#define RTC_MONTH_OCTOBER              ((uint8_t)0x10)
 
#define RTC_MONTH_NOVEMBER             ((uint8_t)0x11)
 
#define RTC_MONTH_DECEMBER             ((uint8_t)0x12)
 
 
#define IS_RTC_MONTH(MONTH)            (((MONTH) >= (uint32_t)1) && ((MONTH) <= (uint32_t)12))
 
#define IS_RTC_DATE(DATE)              (((DATE) >= (uint32_t)1) && ((DATE) <= (uint32_t)31))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_WeekDay_Definitions RTC WeekDay Definitions
 
  * @{
 
  */
 
#define RTC_WEEKDAY_MONDAY             ((uint8_t)0x01)
 
#define RTC_WEEKDAY_TUESDAY            ((uint8_t)0x02)
 
#define RTC_WEEKDAY_WEDNESDAY          ((uint8_t)0x03)
 
#define RTC_WEEKDAY_THURSDAY           ((uint8_t)0x04)
 
#define RTC_WEEKDAY_FRIDAY             ((uint8_t)0x05)
 
#define RTC_WEEKDAY_SATURDAY           ((uint8_t)0x06)
 
#define RTC_WEEKDAY_SUNDAY             ((uint8_t)0x07)
 
 
#define IS_RTC_WEEKDAY(WEEKDAY) (((WEEKDAY) == RTC_WEEKDAY_MONDAY)    || \
 
                                 ((WEEKDAY) == RTC_WEEKDAY_TUESDAY)   || \
 
                                 ((WEEKDAY) == RTC_WEEKDAY_WEDNESDAY) || \
 
                                 ((WEEKDAY) == RTC_WEEKDAY_THURSDAY)  || \
 
                                 ((WEEKDAY) == RTC_WEEKDAY_FRIDAY)    || \
 
                                 ((WEEKDAY) == RTC_WEEKDAY_SATURDAY)  || \
 
                                 ((WEEKDAY) == RTC_WEEKDAY_SUNDAY))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Alarm_Definitions RTC Alarm Definitions
 
  * @{
 
  */
 
#define IS_RTC_ALARM_DATE_WEEKDAY_DATE(DATE) (((DATE) >(uint32_t) 0) && ((DATE) <= (uint32_t)31))
 
#define IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(WEEKDAY) (((WEEKDAY) == RTC_WEEKDAY_MONDAY)    || \
 
                                                    ((WEEKDAY) == RTC_WEEKDAY_TUESDAY)   || \
 
                                                    ((WEEKDAY) == RTC_WEEKDAY_WEDNESDAY) || \
 
                                                    ((WEEKDAY) == RTC_WEEKDAY_THURSDAY)  || \
 
                                                    ((WEEKDAY) == RTC_WEEKDAY_FRIDAY)    || \
 
                                                    ((WEEKDAY) == RTC_WEEKDAY_SATURDAY)  || \
 
                                                    ((WEEKDAY) == RTC_WEEKDAY_SUNDAY))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_AlarmDateWeekDay_Definitions RTC AlarmDateWeekDay Definitions
 
  * @{
 
  */
 
#define RTC_ALARMDATEWEEKDAYSEL_DATE      ((uint32_t)0x00000000)
 
#define RTC_ALARMDATEWEEKDAYSEL_WEEKDAY   ((uint32_t)0x40000000)
 
 
#define IS_RTC_ALARM_DATE_WEEKDAY_SEL(SEL) (((SEL) == RTC_ALARMDATEWEEKDAYSEL_DATE) || \
 
                                            ((SEL) == RTC_ALARMDATEWEEKDAYSEL_WEEKDAY))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_AlarmMask_Definitions RTC AlarmMask Definitions
 
  * @{
 
  */
 
#define RTC_ALARMMASK_NONE                ((uint32_t)0x00000000)
 
#define RTC_ALARMMASK_DATEWEEKDAY         RTC_ALRMAR_MSK4
 
#define RTC_ALARMMASK_HOURS               RTC_ALRMAR_MSK3
 
#define RTC_ALARMMASK_MINUTES             RTC_ALRMAR_MSK2
 
#define RTC_ALARMMASK_SECONDS             RTC_ALRMAR_MSK1
 
#define RTC_ALARMMASK_ALL                 ((uint32_t)0x80808080)
 
 
#define IS_ALARM_MASK(MASK)  (((MASK) & 0x7F7F7F7F) == (uint32_t)RESET)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Alarms_Definitions RTC Alarms Definitions
 
  * @{
 
  */
 
#define RTC_ALARM_A                       RTC_CR_ALRAE
 
 
#define IS_ALARM(ALARM)      ((ALARM) == RTC_ALARM_A)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Alarm_Sub_Seconds_Value RTC Alarm Sub Seconds Value
 
  * @{
 
  */
 
#define IS_RTC_ALARM_SUB_SECOND_VALUE(VALUE) ((VALUE) <= (uint32_t)0x00007FFF)
 
/**
 
  * @}
 
  */
 
 
  /** @defgroup RTC_Alarm_Sub_Seconds_Masks_Definitions RTC Alarm Sub Seconds Masks Definitions
 
  * @{
 
  */
 
#define RTC_ALARMSUBSECONDMASK_ALL         ((uint32_t)0x00000000)  /*!< All Alarm SS fields are masked.
 
                                                                        There is no comparison on sub seconds
 
                                                                        for Alarm */
 
#define RTC_ALARMSUBSECONDMASK_SS14_1      ((uint32_t)0x01000000)  /*!< SS[14:1] are don't care in Alarm
 
                                                                        comparison. Only SS[0] is compared.    */
 
#define RTC_ALARMSUBSECONDMASK_SS14_2      ((uint32_t)0x02000000)  /*!< SS[14:2] are don't care in Alarm
 
                                                                        comparison. Only SS[1:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_3      ((uint32_t)0x03000000)  /*!< SS[14:3] are don't care in Alarm
 
                                                                        comparison. Only SS[2:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_4      ((uint32_t)0x04000000)  /*!< SS[14:4] are don't care in Alarm
 
                                                                        comparison. Only SS[3:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_5      ((uint32_t)0x05000000)  /*!< SS[14:5] are don't care in Alarm
 
                                                                        comparison. Only SS[4:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_6      ((uint32_t)0x06000000)  /*!< SS[14:6] are don't care in Alarm
 
                                                                        comparison. Only SS[5:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_7      ((uint32_t)0x07000000)  /*!< SS[14:7] are don't care in Alarm
 
                                                                        comparison. Only SS[6:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_8      ((uint32_t)0x08000000)  /*!< SS[14:8] are don't care in Alarm
 
                                                                        comparison. Only SS[7:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_9      ((uint32_t)0x09000000)  /*!< SS[14:9] are don't care in Alarm
 
                                                                        comparison. Only SS[8:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_10     ((uint32_t)0x0A000000)  /*!< SS[14:10] are don't care in Alarm
 
                                                                        comparison. Only SS[9:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_11     ((uint32_t)0x0B000000)  /*!< SS[14:11] are don't care in Alarm
 
                                                                        comparison. Only SS[10:0] are compared */
 
#define RTC_ALARMSUBSECONDMASK_SS14_12     ((uint32_t)0x0C000000)  /*!< SS[14:12] are don't care in Alarm
 
                                                                        comparison.Only SS[11:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_SS14_13     ((uint32_t)0x0D000000)  /*!< SS[14:13] are don't care in Alarm
 
                                                                        comparison. Only SS[12:0] are compared */
 
#define RTC_ALARMSUBSECONDMASK_SS14        ((uint32_t)0x0E000000)  /*!< SS[14] is don't care in Alarm
 
                                                                        comparison.Only SS[13:0] are compared  */
 
#define RTC_ALARMSUBSECONDMASK_None        ((uint32_t)0x0F000000)  /*!< SS[14:0] are compared and must match
 
                                                                        to activate alarm. */
 
 
#define IS_RTC_ALARM_SUB_SECOND_MASK(MASK)   (((MASK) == RTC_ALARMSUBSECONDMASK_ALL) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_1) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_2) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_3) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_4) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_5) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_6) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_7) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_8) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_9) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_10) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_11) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_12) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14_13) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_SS14) || \
 
                                              ((MASK) == RTC_ALARMSUBSECONDMASK_None))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Interrupts_Definitions RTC Interrupts Definitions
 
  * @{
 
  */
 
#define RTC_IT_TS                         ((uint32_t)0x00008000)
 
#define RTC_IT_WUT                        ((uint32_t)0x00004000)
 
#define RTC_IT_ALRA                       ((uint32_t)0x00001000)
 
#define RTC_IT_TAMP                       ((uint32_t)0x00000004) /* Used only to Enable the Tamper Interrupt */
 
#define RTC_IT_TAMP1                      ((uint32_t)0x00020000)
 
#define RTC_IT_TAMP2                      ((uint32_t)0x00040000)
 
#define RTC_IT_TAMP3                      ((uint32_t)0x00080000)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Flags_Definitions RTC Flags Definitions
 
  * @{
 
  */
 
#define RTC_FLAG_RECALPF                  ((uint32_t)0x00010000)
 
#define RTC_FLAG_TAMP3F                   ((uint32_t)0x00008000)
 
#define RTC_FLAG_TAMP2F                   ((uint32_t)0x00004000)
 
#define RTC_FLAG_TAMP1F                   ((uint32_t)0x00002000)
 
#define RTC_FLAG_TSOVF                    ((uint32_t)0x00001000)
 
#define RTC_FLAG_TSF                      ((uint32_t)0x00000800)
 
#define RTC_FLAG_WUTF                     ((uint32_t)0x00000400)
 
#define RTC_FLAG_ALRAF                    ((uint32_t)0x00000100)
 
#define RTC_FLAG_INITF                    ((uint32_t)0x00000040)
 
#define RTC_FLAG_RSF                      ((uint32_t)0x00000020)
 
#define RTC_FLAG_INITS                    ((uint32_t)0x00000010)
 
#define RTC_FLAG_SHPF                     ((uint32_t)0x00000008)
 
#define RTC_FLAG_WUTWF                    ((uint32_t)0x00000004)
 
#define RTC_FLAG_ALRAWF                   ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup RTC_Exported_Macros RTC Exported Macros
 
  * @{
 
  */
 
  
 
/** @brief  Reset RTC handle state
 
  * @param  __HANDLE__: RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_RTC_STATE_RESET)
 
 
/**
 
  * @brief  Disable the write protection for RTC registers.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_WRITEPROTECTION_DISABLE(__HANDLE__)             \
 
                        do{                                       \
 
                            (__HANDLE__)->Instance->WPR = 0xCA;   \
 
                            (__HANDLE__)->Instance->WPR = 0x53;   \
 
                          } while(0)
 
 
/**
 
  * @brief  Enable the write protection for RTC registers.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_WRITEPROTECTION_ENABLE(__HANDLE__)              \
 
                        do{                                       \
 
                            (__HANDLE__)->Instance->WPR = 0xFF;   \
 
                          } while(0)
 
 
/**
 
  * @brief  Enable the RTC ALARMA peripheral.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARMA_ENABLE(__HANDLE__)                           ((__HANDLE__)->Instance->CR |= (RTC_CR_ALRAE))
 
 
/**
 
  * @brief  Disable the RTC ALARMA peripheral.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARMA_DISABLE(__HANDLE__)                          ((__HANDLE__)->Instance->CR &= ~(RTC_CR_ALRAE))
 
 
/**
 
  * @brief  Enable the RTC Alarm interrupt.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __INTERRUPT__: specifies the RTC Alarm interrupt sources to be enabled or disabled.
 
  *          This parameter can be any combination of the following values:
 
  *             @arg RTC_IT_ALRA: Alarm A interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARM_ENABLE_IT(__HANDLE__, __INTERRUPT__)          ((__HANDLE__)->Instance->CR |= (__INTERRUPT__))
 
 
/**
 
  * @brief  Disable the RTC Alarm interrupt.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __INTERRUPT__: specifies the RTC Alarm interrupt sources to be enabled or disabled.
 
  *         This parameter can be any combination of the following values:
 
  *            @arg RTC_IT_ALRA: Alarm A interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARM_DISABLE_IT(__HANDLE__, __INTERRUPT__)         ((__HANDLE__)->Instance->CR &= ~(__INTERRUPT__))
 
 
/**
 
  * @brief  Check whether the specified RTC Alarm interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Alarm interrupt sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_IT_ALRA: Alarm A interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARM_GET_IT(__HANDLE__, __FLAG__)                  ((((((__HANDLE__)->Instance->ISR)& ((__FLAG__)>> 4)) & 0x0000FFFF) != RESET)? SET : RESET)
 
 
/**
 
  * @brief  Get the selected RTC Alarm's flag status.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Alarm Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_ALRAF
 
  *            @arg RTC_FLAG_ALRAWF
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARM_GET_FLAG(__HANDLE__, __FLAG__)                (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) != RESET)? SET : RESET)
 
 
/**
 
  * @brief  Clear the RTC Alarm's pending flags.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Alarm Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_ALRAF
 
  * @retval None
 
  */
 
#define __HAL_RTC_ALARM_CLEAR_FLAG(__HANDLE__, __FLAG__)                  ((__HANDLE__)->Instance->ISR) = (~(((__FLAG__) | RTC_ISR_INIT)& 0x0000FFFF)|((__HANDLE__)->Instance->ISR & RTC_ISR_INIT))
 
 
 
#define RTC_EXTI_LINE_ALARM_EVENT             ((uint32_t)0x00020000)  /*!< External interrupt line 17 Connected to the RTC Alarm event */
 
#define RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT  ((uint32_t)0x00080000)  /*!< External interrupt line 19 Connected to the RTC Tamper and Time Stamp events */                                               
 
#define RTC_EXTI_LINE_WAKEUPTIMER_EVENT       ((uint32_t)0x00100000)  /*!< External interrupt line 20 Connected to the RTC Wakeup event */                                               
 
 
/**
 
  * @brief  Enable the RTC Exti line.
 
  * @param  __EXTILINE__: specifies the RTC Exti sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_EXTI_LINE_ALARM_EVENT
 
  *            @arg RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT
 
  *            @arg RTC_EXTI_LINE_WAKEUPTIMER_EVENT
 
  * @retval None
 
  */
 
#define __HAL_RTC_EXTI_ENABLE_IT(__EXTILINE__)   (EXTI->IMR |= (__EXTILINE__))
 
 
/* alias define maintained for legacy */
 
#define __HAL_RTC_ENABLE_IT   __HAL_RTC_EXTI_ENABLE_IT
 
 
/**
 
  * @brief  Disable the RTC Exti line.
 
  * @param  __EXTILINE__: specifies the RTC Exti sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_EXTI_LINE_ALARM_EVENT
 
  *            @arg RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT
 
  *            @arg RTC_EXTI_LINE_WAKEUPTIMER_EVENT
 
  * @retval None
 
  */
 
#define __HAL_RTC_EXTI_DISABLE_IT(__EXTILINE__)  (EXTI->IMR &= ~(__EXTILINE__))
 
 
/* alias define maintained for legacy */
 
#define __HAL_RTC_DISABLE_IT   __HAL_RTC_EXTI_DISABLE_IT
 
 
/**
 
  * @brief  Generates a Software interrupt on selected EXTI line.
 
  * @param  __EXTILINE__: specifies the RTC Exti sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_EXTI_LINE_ALARM_EVENT
 
  *            @arg RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT
 
  *            @arg RTC_EXTI_LINE_WAKEUPTIMER_EVENT
 
  * @retval None
 
  */
 
#define __HAL_RTC_EXTI_GENERATE_SWIT(__EXTILINE__) (EXTI->SWIER |= (__EXTILINE__))
 
 
/**
 
  * @brief  Clear the RTC Exti flags.
 
  * @param  __FLAG__: specifies the RTC Exti sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_EXTI_LINE_ALARM_EVENT
 
  *            @arg RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT
 
  *            @arg RTC_EXTI_LINE_WAKEUPTIMER_EVENT
 
  * @retval None
 
  */
 
#define __HAL_RTC_EXTI_CLEAR_FLAG(__FLAG__)  (EXTI->PR = (__FLAG__))
 
 
/* alias define maintained for legacy */
 
#define __HAL_RTC_CLEAR_FLAG   __HAL_RTC_EXTI_CLEAR_FLAG
 
 
/**
 
  * @}
 
  */
 
 
/* Include RTC HAL Extension module */
 
#include "stm32f0xx_hal_rtc_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup RTC_Exported_Functions RTC Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup RTC_Exported_Functions_Group1
 
  * @{
 
  */
 
  
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc);
 
void              HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc);
 
void              HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RTC_Exported_Functions_Group2
 
  * @{
 
  */
 
  
 
/* RTC Time and Date functions ************************************************/
 
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format);
 
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format);
 
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format);
 
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format);
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup RTC_Exported_Functions_Group3
 
  * @{
 
  */
 
/* RTC Alarm functions ********************************************************/
 
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format);
 
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format);
 
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm);
 
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format);
 
void              HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
 
void              HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RTC_Exported_Functions_Group4
 
  * @{
 
  */  
 
/* Peripheral Control functions ***********************************************/
 
HAL_StatusTypeDef   HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RTC_Exported_Functions_Group5
 
  * @{
 
  */  
 
/* Peripheral State functions *************************************************/
 
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup RTC_Private_Functions
 
  * @{
 
  */    
 
HAL_StatusTypeDef  RTC_EnterInitMode(RTC_HandleTypeDef* hrtc);
 
uint8_t            RTC_ByteToBcd2(uint8_t Value);
 
uint8_t            RTC_Bcd2ToByte(uint8_t Value);
 
/**
 
  * @}
 
  */  
 
 
/**
 
  * @}
 
  */
 
  
 
  /**
 
  * @}
 
  */
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_RTC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_rtc_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rtc_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of RTC HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_RTC_EX_H
 
#define __STM32F0xx_HAL_RTC_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup RTCEx
 
  * @{
 
  */
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup RTCEx_Exported_Types RTCEx Exported Types
 
  * @{
 
  */
 
 
/**
 
  * @brief  RTC Tamper structure definition
 
  */
 
typedef struct
 
{
 
  uint32_t Tamper;                      /*!< Specifies the Tamper Pin.
 
                                             This parameter can be a value of @ref  RTCEx_Tamper_Pins_Definitions */
 
 
  uint32_t Trigger;                     /*!< Specifies the Tamper Trigger.
 
                                             This parameter can be a value of @ref  RTCEx_Tamper_Trigger_Definitions */
 
 
  uint32_t Filter;                      /*!< Specifies the RTC Filter Tamper.
 
                                             This parameter can be a value of @ref RTCEx_Tamper_Filter_Definitions */
 
 
  uint32_t SamplingFrequency;           /*!< Specifies the sampling frequency.
 
                                             This parameter can be a value of @ref RTCEx_Tamper_Sampling_Frequencies_Definitions */
 
 
  uint32_t PrechargeDuration;           /*!< Specifies the Precharge Duration .
 
                                             This parameter can be a value of @ref RTCEx_Tamper_Pin_Precharge_Duration_Definitions */
 
 
  uint32_t TamperPullUp;                /*!< Specifies the Tamper PullUp .
 
                                             This parameter can be a value of @ref RTCEx_Tamper_Pull_UP_Definitions */
 
 
  uint32_t TimeStampOnTamperDetection;  /*!< Specifies the TimeStampOnTamperDetection.
 
                                             This parameter can be a value of @ref RTCEx_Tamper_TimeStampOnTamperDetection_Definitions */
 
}RTC_TamperTypeDef;
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup RTCEx_Exported_Constants RTCEx Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup RTCEx_Output_selection_Definitions RTCEx Output Selection Definition
 
  * @{
 
  */
 
#define RTC_OUTPUT_DISABLE             ((uint32_t)0x00000000)
 
#define RTC_OUTPUT_ALARMA              ((uint32_t)0x00200000)
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
#define RTC_OUTPUT_WAKEUP              ((uint32_t)0x00600000)
 
#endif
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
#define IS_RTC_OUTPUT(OUTPUT) (((OUTPUT) == RTC_OUTPUT_DISABLE) || \
 
                               ((OUTPUT) == RTC_OUTPUT_ALARMA)  || \
 
                               ((OUTPUT) == RTC_OUTPUT_WAKEUP))
 
#else
 
#define IS_RTC_OUTPUT(OUTPUT) (((OUTPUT) == RTC_OUTPUT_DISABLE) || \
 
                               ((OUTPUT) == RTC_OUTPUT_ALARMA))
 
#endif
 
/**
 
  * @}
 
  */
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)
 
/** @defgroup RTCEx_Backup_Registers_Definitions RTCEx Backup Registers Definition
 
  * @{
 
  */
 
#define RTC_BKP_DR0                       ((uint32_t)0x00000000)
 
#define RTC_BKP_DR1                       ((uint32_t)0x00000001)
 
#define RTC_BKP_DR2                       ((uint32_t)0x00000002)
 
#define RTC_BKP_DR3                       ((uint32_t)0x00000003)
 
#define RTC_BKP_DR4                       ((uint32_t)0x00000004)
 
 
#define IS_RTC_BKP(BKP)                   ((BKP) < (uint32_t) RTC_BKP_NUMBER)
 
/**
 
  * @}
 
  */
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
 
/** @defgroup RTCEx_Time_Stamp_Edges_definitions RTCEx Time Stamp Edges definition
 
  * @{
 
  */
 
#define RTC_TIMESTAMPEDGE_RISING          ((uint32_t)0x00000000)
 
#define RTC_TIMESTAMPEDGE_FALLING         ((uint32_t)0x00000008)
 
 
#define IS_TIMESTAMP_EDGE(EDGE) (((EDGE) == RTC_TIMESTAMPEDGE_RISING) || \
 
                                 ((EDGE) == RTC_TIMESTAMPEDGE_FALLING))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_Pins_Definitions RTCEx Tamper Pins Definition
 
  * @{
 
  */
 
#define RTC_TAMPER_1                    RTC_TAFCR_TAMP1E
 
#define RTC_TAMPER_2                    RTC_TAFCR_TAMP2E
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
#define RTC_TAMPER_3                    RTC_TAFCR_TAMP3E
 
#endif
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
#define IS_TAMPER(TAMPER)       (((TAMPER) == RTC_TAMPER_1) || \
 
                                 ((TAMPER) == RTC_TAMPER_2) || \
 
                                 ((TAMPER) == RTC_TAMPER_3))
 
#else
 
#define IS_TAMPER(TAMPER)       (((TAMPER) == RTC_TAMPER_1) || \
 
                                 ((TAMPER) == RTC_TAMPER_2))
 
#endif
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_TimeStamp_Pin_Selections RTCEx TimeStamp Pin Selection
 
  * @{
 
  */
 
#define RTC_TIMESTAMPPIN_PC13              ((uint32_t)0x00000000)
 
 
#define IS_RTC_TIMESTAMP_PIN(PIN) (((PIN) == RTC_TIMESTAMPPIN_PC13))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_Trigger_Definitions RTCEx Tamper Trigger Definition
 
  * @{
 
  */
 
#define RTC_TAMPERTRIGGER_RISINGEDGE       ((uint32_t)0x00000000)
 
#define RTC_TAMPERTRIGGER_FALLINGEDGE      ((uint32_t)0x00000002)
 
#define RTC_TAMPERTRIGGER_LOWLEVEL         RTC_TAMPERTRIGGER_RISINGEDGE
 
#define RTC_TAMPERTRIGGER_HIGHLEVEL        RTC_TAMPERTRIGGER_FALLINGEDGE
 
 
#define IS_TAMPER_TRIGGER(TRIGGER) (((TRIGGER) == RTC_TAMPERTRIGGER_RISINGEDGE) || \
 
                                        ((TRIGGER) == RTC_TAMPERTRIGGER_FALLINGEDGE) || \
 
                                        ((TRIGGER) == RTC_TAMPERTRIGGER_LOWLEVEL) || \
 
                                        ((TRIGGER) == RTC_TAMPERTRIGGER_HIGHLEVEL)) 
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_Filter_Definitions RTCEx Tamper Filter Definition
 
  * @{
 
  */
 
#define RTC_TAMPERFILTER_DISABLE   ((uint32_t)0x00000000)  /*!< Tamper filter is disabled */
 
 
#define RTC_TAMPERFILTER_2SAMPLE   ((uint32_t)0x00000800)  /*!< Tamper is activated after 2
 
                                                                consecutive samples at the active level */
 
#define RTC_TAMPERFILTER_4SAMPLE   ((uint32_t)0x00001000)  /*!< Tamper is activated after 4
 
                                                                consecutive samples at the active level */
 
#define RTC_TAMPERFILTER_8SAMPLE   ((uint32_t)0x00001800)  /*!< Tamper is activated after 8
 
                                                                consecutive samples at the active level. */
 
 
#define IS_TAMPER_FILTER(FILTER)  (((FILTER) == RTC_TAMPERFILTER_DISABLE) || \
 
                                   ((FILTER) == RTC_TAMPERFILTER_2SAMPLE) || \
 
                                   ((FILTER) == RTC_TAMPERFILTER_4SAMPLE) || \
 
                                   ((FILTER) == RTC_TAMPERFILTER_8SAMPLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_Sampling_Frequencies_Definitions RTCEx Tamper Sampling Frequencies Definition  
 
  * @{
 
  */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV32768  ((uint32_t)0x00000000)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 32768 */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV16384  ((uint32_t)0x00000100)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 16384 */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV8192   ((uint32_t)0x00000200)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 8192  */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV4096   ((uint32_t)0x00000300)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 4096  */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV2048   ((uint32_t)0x00000400)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 2048  */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV1024   ((uint32_t)0x00000500)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 1024  */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV512    ((uint32_t)0x00000600)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 512   */
 
#define RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV256    ((uint32_t)0x00000700)  /*!< Each of the tamper inputs are sampled
 
                                                                             with a frequency =  RTCCLK / 256   */
 
 
#define IS_TAMPER_SAMPLING_FREQ(FREQ) (((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV32768)|| \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV16384)|| \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV8192) || \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV4096) || \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV2048) || \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV1024) || \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV512)  || \
 
                                       ((FREQ) == RTC_TAMPERSAMPLINGFREQ_RTCCLK_DIV256))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_Pin_Precharge_Duration_Definitions RTCEx Tamper Pin Precharge Duration Definition
 
  * @{
 
  */
 
#define RTC_TAMPERPRECHARGEDURATION_1RTCCLK ((uint32_t)0x00000000)  /*!< Tamper pins are pre-charged before
 
                                                                         sampling during 1 RTCCLK cycle */
 
#define RTC_TAMPERPRECHARGEDURATION_2RTCCLK ((uint32_t)0x00002000)  /*!< Tamper pins are pre-charged before
 
                                                                         sampling during 2 RTCCLK cycles */
 
#define RTC_TAMPERPRECHARGEDURATION_4RTCCLK ((uint32_t)0x00004000)  /*!< Tamper pins are pre-charged before
 
                                                                         sampling during 4 RTCCLK cycles */
 
#define RTC_TAMPERPRECHARGEDURATION_8RTCCLK ((uint32_t)0x00006000)  /*!< Tamper pins are pre-charged before
 
                                                                         sampling during 8 RTCCLK cycles */
 
 
#define IS_TAMPER_PRECHARGE_DURATION(DURATION) (((DURATION) == RTC_TAMPERPRECHARGEDURATION_1RTCCLK) || \
 
                                                ((DURATION) == RTC_TAMPERPRECHARGEDURATION_2RTCCLK) || \
 
                                                ((DURATION) == RTC_TAMPERPRECHARGEDURATION_4RTCCLK) || \
 
                                                ((DURATION) == RTC_TAMPERPRECHARGEDURATION_8RTCCLK))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_TimeStampOnTamperDetection_Definitions RTCEx Tamper TimeStampOnTamperDetection Definition
 
  * @{
 
  */
 
#define RTC_TIMESTAMPONTAMPERDETECTION_ENABLE  ((uint32_t)RTC_TAFCR_TAMPTS)  /*!< TimeStamp on Tamper Detection event saved */
 
#define RTC_TIMESTAMPONTAMPERDETECTION_DISABLE ((uint32_t)0x00000000)        /*!< TimeStamp on Tamper Detection event is not saved */
 
 
#define IS_TAMPER_TIMESTAMPONTAMPER_DETECTION(DETECTION) (((DETECTION) == RTC_TIMESTAMPONTAMPERDETECTION_ENABLE) || \
 
                                                          ((DETECTION) == RTC_TIMESTAMPONTAMPERDETECTION_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Tamper_Pull_UP_Definitions RTCEx Tamper Pull UP Definition
 
  * @{
 
  */
 
#define RTC_TAMPER_PULLUP_ENABLE  ((uint32_t)0x00000000)            /*!< TimeStamp on Tamper Detection event saved */
 
#define RTC_TAMPER_PULLUP_DISABLE ((uint32_t)RTC_TAFCR_TAMPPUDIS)   /*!< TimeStamp on Tamper Detection event is not saved */
 
 
#define IS_TAMPER_PULLUP_STATE(STATE) (((STATE) == RTC_TAMPER_PULLUP_ENABLE) || \
 
                                       ((STATE) == RTC_TAMPER_PULLUP_DISABLE))
 
/**
 
  * @}
 
  */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/** @defgroup RTCEx_Wakeup_Timer_Definitions RTCEx Wakeup Timer Definition
 
  * @{
 
  */
 
#define RTC_WAKEUPCLOCK_RTCCLK_DIV16        ((uint32_t)0x00000000)
 
#define RTC_WAKEUPCLOCK_RTCCLK_DIV8         ((uint32_t)0x00000001)
 
#define RTC_WAKEUPCLOCK_RTCCLK_DIV4         ((uint32_t)0x00000002)
 
#define RTC_WAKEUPCLOCK_RTCCLK_DIV2         ((uint32_t)0x00000003)
 
#define RTC_WAKEUPCLOCK_CK_SPRE_16BITS      ((uint32_t)0x00000004)
 
#define RTC_WAKEUPCLOCK_CK_SPRE_17BITS      ((uint32_t)0x00000006)
 
 
#define IS_WAKEUP_CLOCK(CLOCK) (((CLOCK) == RTC_WAKEUPCLOCK_RTCCLK_DIV16)   || \
 
                                ((CLOCK) == RTC_WAKEUPCLOCK_RTCCLK_DIV8)    || \
 
                                ((CLOCK) == RTC_WAKEUPCLOCK_RTCCLK_DIV4)    || \
 
                                ((CLOCK) == RTC_WAKEUPCLOCK_RTCCLK_DIV2)    || \
 
                                ((CLOCK) == RTC_WAKEUPCLOCK_CK_SPRE_16BITS) || \
 
                                ((CLOCK) == RTC_WAKEUPCLOCK_CK_SPRE_17BITS))
 
 
#define IS_WAKEUP_COUNTER(COUNTER)  ((COUNTER) <= 0xFFFF)
 
/**
 
  * @}
 
  */
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/** @defgroup RTCEx_Smooth_calib_period_Definitions RTCEx Smooth calib period Definition
 
  * @{
 
  */
 
#define RTC_SMOOTHCALIB_PERIOD_32SEC   ((uint32_t)0x00000000) /*!<  If RTCCLK = 32768 Hz, Smooth calibation
 
                                                                    period is 32s,  else 2exp20 RTCCLK seconds */
 
#define RTC_SMOOTHCALIB_PERIOD_16SEC   ((uint32_t)0x00002000) /*!<  If RTCCLK = 32768 Hz, Smooth calibation
 
                                                                    period is 16s, else 2exp19 RTCCLK seconds */
 
#define RTC_SMOOTHCALIB_PERIOD_8SEC    ((uint32_t)0x00004000) /*!<  If RTCCLK = 32768 Hz, Smooth calibation
 
                                                                    period is 8s, else 2exp18 RTCCLK seconds */
 
 
#define IS_RTC_SMOOTH_CALIB_PERIOD(PERIOD) (((PERIOD) == RTC_SMOOTHCALIB_PERIOD_32SEC) || \
 
                                            ((PERIOD) == RTC_SMOOTHCALIB_PERIOD_16SEC) || \
 
                                            ((PERIOD) == RTC_SMOOTHCALIB_PERIOD_8SEC))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Smooth_calib_Plus_pulses_Definitions RTCEx Smooth calib Plus pulses Definition
 
  * @{
 
  */
 
#define RTC_SMOOTHCALIB_PLUSPULSES_SET    ((uint32_t)0x00008000) /*!<  The number of RTCCLK pulses added
 
                                                                       during a X -second window = Y - CALM[8:0]
 
                                                                       with Y = 512, 256, 128 when X = 32, 16, 8 */
 
#define RTC_SMOOTHCALIB_PLUSPULSES_RESET  ((uint32_t)0x00000000) /*!<  The number of RTCCLK pulses subbstited
 
                                                                       during a 32-second window =   CALM[8:0] */
 
 
#define IS_RTC_SMOOTH_CALIB_PLUS(PLUS) (((PLUS) == RTC_SMOOTHCALIB_PLUSPULSES_SET) || \
 
                                        ((PLUS) == RTC_SMOOTHCALIB_PLUSPULSES_RESET))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Smooth_calib_Minus_pulses_Definitions RTCEx Smooth calib Minus pulses Definition
 
  * @{
 
  */
 
#define  IS_RTC_SMOOTH_CALIB_MINUS(VALUE) ((VALUE) <= 0x000001FF)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Add_1_Second_Parameter_Definition RTCEx Add 1 Second Parameter Definition
 
  * @{
 
  */
 
#define RTC_SHIFTADD1S_RESET      ((uint32_t)0x00000000)
 
#define RTC_SHIFTADD1S_SET        ((uint32_t)0x80000000)
 
 
#define IS_RTC_SHIFT_ADD1S(SEL) (((SEL) == RTC_SHIFTADD1S_RESET) || \
 
                                 ((SEL) == RTC_SHIFTADD1S_SET))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTCEx_Substract_Fraction_Of_Second_Value RTCEx Substract Fraction Of Second Value
 
  * @{
 
  */
 
#define IS_RTC_SHIFT_SUBFS(FS) ((FS) <= 0x00007FFF)
 
/**
 
  * @}
 
  */
 
 
 /** @defgroup RTCEx_Calib_Output_selection_Definitions RTCEx Calib Output selection Definition
 
  * @{
 
  */
 
#define RTC_CALIBOUTPUT_512HZ            ((uint32_t)0x00000000)
 
#define RTC_CALIBOUTPUT_1HZ              ((uint32_t)0x00080000)
 
 
#define IS_RTC_CALIB_OUTPUT(OUTPUT)  (((OUTPUT) == RTC_CALIBOUTPUT_512HZ) || \
 
                                      ((OUTPUT) == RTC_CALIBOUTPUT_1HZ))
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup RTCEx_Exported_Macros RTCEx Exported Macros
 
  * @{
 
  */
 
  
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Enable the RTC WakeUp Timer peripheral.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_ENABLE(__HANDLE__)                      ((__HANDLE__)->Instance->CR |= (RTC_CR_WUTE))
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/**
 
  * @brief Enable the RTC TimeStamp peripheral.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_ENABLE(__HANDLE__)                        ((__HANDLE__)->Instance->CR |= (RTC_CR_TSE))
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief Disable the RTC WakeUp Timer peripheral.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_DISABLE(__HANDLE__)                     ((__HANDLE__)->Instance->CR &= ~(RTC_CR_WUTE))
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/**
 
  * @brief Disable the RTC TimeStamp peripheral.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_DISABLE(__HANDLE__)                       ((__HANDLE__)->Instance->CR &= ~(RTC_CR_TSE))
 
 
/**
 
  * @brief  Enable the RTC calibration output.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_CALIBRATION_OUTPUT_ENABLE(__HANDLE__)                 ((__HANDLE__)->Instance->CR |= (RTC_CR_COE))
 
 
/**
 
  * @brief  Disable the calibration output.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_CALIBRATION_OUTPUT_DISABLE(__HANDLE__)                ((__HANDLE__)->Instance->CR &= ~(RTC_CR_COE))
 
 
/**
 
  * @brief  Enable the clock reference detection.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_CLOCKREF_DETECTION_ENABLE(__HANDLE__)                 ((__HANDLE__)->Instance->CR |= (RTC_CR_REFCKON))
 
 
/**
 
  * @brief  Disable the clock reference detection.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @retval None
 
  */
 
#define __HAL_RTC_CLOCKREF_DETECTION_DISABLE(__HANDLE__)                ((__HANDLE__)->Instance->CR &= ~(RTC_CR_REFCKON))
 
 
/**
 
  * @brief  Enable the RTC TimeStamp interrupt.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __INTERRUPT__: specifies the RTC TimeStamp interrupt sources to be enabled or disabled. 
 
  *         This parameter can be:
 
  *            @arg RTC_IT_TS: TimeStamp interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_ENABLE_IT(__HANDLE__, __INTERRUPT__)      ((__HANDLE__)->Instance->CR |= (__INTERRUPT__))
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Enable the RTC WakeUpTimer interrupt.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __INTERRUPT__: specifies the RTC WakeUpTimer interrupt sources to be enabled or disabled. 
 
  *         This parameter can be:
 
  *            @arg RTC_IT_WUT:  WakeUpTimer A interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_ENABLE_IT(__HANDLE__, __INTERRUPT__)    ((__HANDLE__)->Instance->CR |= (__INTERRUPT__))
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/**
 
  * @brief  Disable the RTC TimeStamp interrupt.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __INTERRUPT__: specifies the RTC TimeStamp interrupt sources to be enabled or disabled. 
 
  *         This parameter can be:
 
  *            @arg RTC_IT_TS: TimeStamp interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_DISABLE_IT(__HANDLE__, __INTERRUPT__)     ((__HANDLE__)->Instance->CR &= ~(__INTERRUPT__))
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Disable the RTC WakeUpTimer interrupt.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __INTERRUPT__: specifies the RTC WakeUpTimer interrupt sources to be enabled or disabled. 
 
  *         This parameter can be:
 
  *            @arg RTC_IT_WUT: WakeUpTimer A interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_DISABLE_IT(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->CR &= ~(__INTERRUPT__))
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/**
 
  * @brief  Check whether the specified RTC Tamper interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Tamper interrupt sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg  RTC_IT_TAMP1
 
  * @retval None
 
  */
 
#define __HAL_RTC_TAMPER_GET_IT(__HANDLE__, __FLAG__)                 (((((__HANDLE__)->Instance->ISR) & ((__FLAG__)>> 4)) != RESET)? SET : RESET)
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Check whether the specified RTC WakeUpTimer interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC WakeUpTimer interrupt sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_IT_WUT:  WakeUpTimer A interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_GET_IT(__HANDLE__, __FLAG__)            (((((__HANDLE__)->Instance->ISR) & ((__FLAG__)>> 4)) != RESET)? SET : RESET)
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/**
 
  * @brief  Check whether the specified RTC TimeStamp interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC TimeStamp interrupt sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_IT_TS: TimeStamp interrupt
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_GET_IT(__HANDLE__, __FLAG__)              (((((__HANDLE__)->Instance->ISR) & ((__FLAG__)>> 4)) != RESET)? SET : RESET)
 
 
/**
 
  * @brief  Get the selected RTC TimeStamp's flag status.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC TimeStamp Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_TSF
 
  *            @arg RTC_FLAG_TSOVF
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_GET_FLAG(__HANDLE__, __FLAG__)            (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) != RESET)? SET : RESET)
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Get the selected RTC WakeUpTimer's flag status.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC WakeUpTimer Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_WUTF
 
  *            @arg RTC_FLAG_WUTWF
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_GET_FLAG(__HANDLE__, __FLAG__)          (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) != RESET)? SET : RESET)
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/**
 
  * @brief  Get the selected RTC Tamper's flag status.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Tamper Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_TAMP1F
 
  * @retval None
 
  */
 
#define __HAL_RTC_TAMPER_GET_FLAG(__HANDLE__, __FLAG__)               (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) != RESET)? SET : RESET)
 
 
/**
 
  * @brief  Get the selected RTC shift operation's flag status.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC shift operation Flag is pending or not.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_SHPF
 
  * @retval None
 
  */
 
#define __HAL_RTC_SHIFT_GET_FLAG(__HANDLE__, __FLAG__)                (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) != RESET)? SET : RESET)
 
 
/**
 
  * @brief  Clear the RTC Time Stamp's pending flags.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Alarm Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_TSF
 
  * @retval None
 
  */
 
#define __HAL_RTC_TIMESTAMP_CLEAR_FLAG(__HANDLE__, __FLAG__)              ((__HANDLE__)->Instance->ISR) = (~(((__FLAG__) | RTC_ISR_INIT)& 0x0000FFFF)|((__HANDLE__)->Instance->ISR & RTC_ISR_INIT))
 
 
/**
 
  * @brief  Clear the RTC Tamper's pending flags.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Tamper Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_TAMP1F
 
  * @retval None
 
  */
 
#define __HAL_RTC_TAMPER_CLEAR_FLAG(__HANDLE__, __FLAG__)                 ((__HANDLE__)->Instance->ISR) = (~(((__FLAG__) | RTC_ISR_INIT)& 0x0000FFFF)|((__HANDLE__)->Instance->ISR & RTC_ISR_INIT))
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Clear the RTC Wake Up timer's pending flags.
 
  * @param  __HANDLE__: specifies the RTC handle.
 
  * @param  __FLAG__: specifies the RTC Tamper Flag sources to be enabled or disabled.
 
  *         This parameter can be:
 
  *            @arg RTC_FLAG_WUTF
 
  * @retval None
 
  */
 
#define __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(__HANDLE__, __FLAG__)            ((__HANDLE__)->Instance->ISR) = (~(((__FLAG__) | RTC_ISR_INIT)& 0x0000FFFF)|((__HANDLE__)->Instance->ISR & RTC_ISR_INIT)) 
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
/**
 
  * @}
 
  */
 
  
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup RTCEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup RTCEx_Exported_Functions_Group1
 
 * @{
 
 */ 
 
 
/* RTC TimeStamp and Tamper functions *****************************************/
 
HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin);
 
HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin);
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTimeStamp, RTC_DateTypeDef *sTimeStampDate, uint32_t Format);
 
 
HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper);
 
HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper);
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper);
 
void              HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc);
 
 
void              HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc);
 
void              HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc);
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
void              HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc);
 
#endif
 
void              HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
HAL_StatusTypeDef HAL_RTCEx_PollForTamper3Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
 
#endif
 
/**
 
  * @}
 
  */
 
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/** @addtogroup RTCEx_Exported_Functions_Group2
 
 * @{
 
 */ 
 
 
 
/* RTC Wake-up functions ******************************************************/
 
HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock);
 
HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock);
 
uint32_t          HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc);
 
uint32_t          HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc);
 
void              HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc);
 
void              HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout);
 
#endif
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup RTCEx_Exported_Functions_Group3
 
 * @{
 
 */ 
 
    
 
/* Extension Control functions ************************************************/
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)
 
void              HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data);
 
uint32_t          HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister);
 
#endif
 
 
HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef *hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue);
 
HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef *hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS);
 
HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef *hrtc, uint32_t CalibOutput);
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef *hrtc);
 
HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef *hrtc);
 
/**
 
  * @}
 
  */
 
  
 
/* Extension RTC features functions *******************************************/
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_RTC_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_smartcard.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_smartcard.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of SMARTCARD HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_SMARTCARD_H
 
#define __STM32F0xx_HAL_SMARTCARD_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if !defined(STM32F030x4) && !defined(STM32F030x6) && !defined(STM32F030x8) 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup SMARTCARD
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup SMARTCARD_Exported_Types SMARTCARD Exported Types
 
  * @{
 
  */ 
 
 
 
/** 
 
  * @brief SMARTCARD Init Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t BaudRate;                  /*!< Configures the SmartCard communication baud rate.
 
                                           The baud rate register is computed using the following formula:
 
                                              Baud Rate Register = ((PCLKx) / ((hsmartcard->Init.BaudRate))) */
 
                                              
 
  uint32_t WordLength;                /*!< Specifies the number of data bits transmitted or received in a frame.
 
                                           This parameter @ref SMARTCARD_Word_Length can only be set to 9 (8 data + 1 parity bits). */
 
 
  uint32_t StopBits;                  /*!< Specifies the number of stop bits @ref SMARTCARD_Stop_Bits. 
 
                                           Only 1.5 stop bits are authorized in SmartCard mode. */
 
 
  uint16_t Parity;                    /*!< Specifies the parity mode.
 
                                           This parameter can be a value of @ref SMARTCARD_Parity
 
                                           @note The parity is enabled by default (PCE is forced to 1).
 
                                                 Since the WordLength is forced to 8 bits + parity, M is
 
                                                 forced to 1 and the parity bit is the 9th bit. */
 
 
 
  uint16_t Mode;                      /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
 
                                           This parameter can be a value of @ref SMARTCARD_Mode */
 
 
  uint16_t CLKPolarity;               /*!< Specifies the steady state of the serial clock.
 
                                           This parameter can be a value of @ref SMARTCARD_Clock_Polarity */
 
 
  uint16_t CLKPhase;                  /*!< Specifies the clock transition on which the bit capture is made.
 
                                           This parameter can be a value of @ref SMARTCARD_Clock_Phase */
 
 
  uint16_t CLKLastBit;                /*!< Specifies whether the clock pulse corresponding to the last transmitted
 
                                           data bit (MSB) has to be output on the SCLK pin in synchronous mode.
 
                                           This parameter can be a value of @ref SMARTCARD_Last_Bit */
 
                                             
 
  uint16_t OneBitSampling;            /*!< Specifies whether a single sample or three samples' majority vote is selected.
 
                                           Selecting the single sample method increases the receiver tolerance to clock
 
                                           deviations. This parameter can be a value of @ref SMARTCARD_OneBit_Sampling. */
 
 
  uint8_t  Prescaler;                 /*!< Specifies the SmartCard Prescaler */
 
  
 
  uint8_t  GuardTime;                 /*!< Specifies the SmartCard Guard Time */
 
  
 
  uint16_t NACKEnable;                /*!< Specifies whether the SmartCard NACK transmission is enabled
 
                                           in case of parity error.
 
                                           This parameter can be a value of @ref SMARTCARD_NACK_State */ 
 
                                           
 
  uint32_t TimeOutEnable;             /*!< Specifies whether the receiver timeout is enabled. 
 
                                            This parameter can be a value of @ref SMARTCARD_Timeout_Enable*/
 
  
 
  uint32_t TimeOutValue;              /*!< Specifies the receiver time out value in number of baud blocks: 
 
                                           it is used to implement the Character Wait Time (CWT) and 
 
                                           Block Wait Time (BWT). It is coded over 24 bits. */ 
 
                                           
 
  uint8_t BlockLength;                /*!< Specifies the SmartCard Block Length in T=1 Reception mode.
 
                                           This parameter can be any value from 0x0 to 0xFF */ 
 
                                           
 
  uint8_t AutoRetryCount;             /*!< Specifies the SmartCard auto-retry count (number of retries in
 
                                            receive and transmit mode). When set to 0, retransmission is 
 
                                            disabled. Otherwise, its maximum value is 7 (before signalling
 
                                            an error) */  
 
                                                                                       
 
}SMARTCARD_InitTypeDef;
 
 
/** 
 
  * @brief  SMARTCARD advanced features initalization structure definition  
 
  */
 
typedef struct                                      
 
{
 
  uint32_t AdvFeatureInit;            /*!< Specifies which advanced SMARTCARD features is initialized. Several
 
                                           advanced features may be initialized at the same time. This parameter 
 
                                           can be a value of @ref SMARTCARD_Advanced_Features_Initialization_Type */                                         
 
 
  uint32_t TxPinLevelInvert;          /*!< Specifies whether the TX pin active level is inverted.
 
                                           This parameter can be a value of @ref SMARTCARD_Tx_Inv  */
 
                                           
 
  uint32_t RxPinLevelInvert;          /*!< Specifies whether the RX pin active level is inverted.
 
                                           This parameter can be a value of @ref SMARTCARD_Rx_Inv  */
 
 
  uint32_t DataInvert;                /*!< Specifies whether data are inverted (positive/direct logic
 
                                           vs negative/inverted logic).
 
                                           This parameter can be a value of @ref SMARTCARD_Data_Inv */
 
                                       
 
  uint32_t Swap;                      /*!< Specifies whether TX and RX pins are swapped.   
 
                                           This parameter can be a value of @ref SMARTCARD_Rx_Tx_Swap */
 
                                       
 
  uint32_t OverrunDisable;            /*!< Specifies whether the reception overrun detection is disabled.   
 
                                           This parameter can be a value of @ref SMARTCARD_Overrun_Disable */
 
                                       
 
  uint32_t DMADisableonRxError;       /*!< Specifies whether the DMA is disabled in case of reception error.     
 
                                           This parameter can be a value of @ref SMARTCARD_DMA_Disable_on_Rx_Error */
 
                                    
 
  uint32_t MSBFirst;                  /*!< Specifies whether MSB is sent first on UART line.      
 
                                           This parameter can be a value of @ref SMARTCARD_MSB_First */
 
}SMARTCARD_AdvFeatureInitTypeDef;
 
 
/** 
 
  * @brief HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_SMARTCARD_STATE_RESET             = 0x00,    /*!< Peripheral is not initialized                      */
 
  HAL_SMARTCARD_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use           */
 
  HAL_SMARTCARD_STATE_BUSY              = 0x02,    /*!< an internal process is ongoing                     */   
 
  HAL_SMARTCARD_STATE_BUSY_TX           = 0x12,    /*!< Data Transmission process is ongoing               */
 
  HAL_SMARTCARD_STATE_BUSY_RX           = 0x22,    /*!< Data Reception process is ongoing                  */
 
  HAL_SMARTCARD_STATE_BUSY_TX_RX        = 0x32,    /*!< Data Transmission and Reception process is ongoing */  
 
  HAL_SMARTCARD_STATE_TIMEOUT           = 0x03,    /*!< Timeout state                                      */
 
  HAL_SMARTCARD_STATE_ERROR             = 0x04     /*!< Error                                              */
 
}HAL_SMARTCARD_StateTypeDef;
 
 
/** 
 
  * @brief  HAL SMARTCARD Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_SMARTCARD_ERROR_NONE      = 0x00,    /*!< No error                */
 
  HAL_SMARTCARD_ERROR_PE        = 0x01,    /*!< Parity error            */
 
  HAL_SMARTCARD_ERROR_NE        = 0x02,    /*!< Noise error             */
 
  HAL_SMARTCARD_ERROR_FE        = 0x04,    /*!< frame error             */
 
  HAL_SMARTCARD_ERROR_ORE       = 0x08,    /*!< Overrun error           */
 
  HAL_SMARTCARD_ERROR_DMA       = 0x10,    /*!< DMA transfer error      */
 
  HAL_SMARTCARD_ERROR_RTO       = 0x20     /*!< Receiver TimeOut error  */  
 
}HAL_SMARTCARD_ErrorTypeDef;
 
 
/** 
 
  * @brief  SMARTCARD clock sources  
 
  */
 
typedef enum
 
{
 
  SMARTCARD_CLOCKSOURCE_PCLK1     = 0x00, /*!< PCLK1 clock source     */
 
  SMARTCARD_CLOCKSOURCE_HSI       = 0x02, /*!< HSI clock source       */
 
  SMARTCARD_CLOCKSOURCE_SYSCLK    = 0x04, /*!< SYSCLK clock source    */
 
  SMARTCARD_CLOCKSOURCE_LSE       = 0x08, /*!< LSE clock source       */
 
  SMARTCARD_CLOCKSOURCE_UNDEFINED = 0x10  /*!< undefined clock source */  
 
}SMARTCARD_ClockSourceTypeDef;
 
 
/** 
 
  * @brief  SMARTCARD handle Structure definition  
 
  */  
 
typedef struct
 
{
 
  USART_TypeDef                   *Instance;        /* USART registers base address                          */
 
  
 
  SMARTCARD_InitTypeDef           Init;             /* SmartCard communication parameters                    */
 
  
 
  SMARTCARD_AdvFeatureInitTypeDef AdvancedInit;     /* SmartCard advanced features initialization parameters */
 
  
 
  uint8_t                         *pTxBuffPtr;      /* Pointer to SmartCard Tx transfer Buffer               */
 
  
 
  uint16_t                        TxXferSize;       /* SmartCard Tx Transfer size                            */
 
  
 
  uint16_t                        TxXferCount;      /* SmartCard Tx Transfer Counter                         */
 
  
 
  uint8_t                         *pRxBuffPtr;      /* Pointer to SmartCard Rx transfer Buffer               */
 
  
 
  uint16_t                        RxXferSize;       /* SmartCard Rx Transfer size                            */
 
  
 
  uint16_t                        RxXferCount;      /* SmartCard Rx Transfer Counter                         */
 
  
 
  DMA_HandleTypeDef               *hdmatx;          /* SmartCard Tx DMA Handle parameters                    */
 
    
 
  DMA_HandleTypeDef               *hdmarx;          /* SmartCard Rx DMA Handle parameters                    */
 
  
 
  HAL_LockTypeDef                 Lock;             /* Locking object                                        */
 
  
 
  HAL_SMARTCARD_StateTypeDef      State;            /* SmartCard communication state                         */
 
  
 
  HAL_SMARTCARD_ErrorTypeDef      ErrorCode;        /* SmartCard Error code                                  */
 
  
 
}SMARTCARD_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup SMARTCARD_Exported_Constants  SMARTCARD Exported constants
 
  * @{
 
  */
 
 
/** @defgroup SMARTCARD_Word_Length   SMARTCARD Word Length 
 
  * @{
 
  */
 
#define SMARTCARD_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M0)
 
#define IS_SMARTCARD_WORD_LENGTH(LENGTH) ((LENGTH) == SMARTCARD_WORDLENGTH_9B) 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup SMARTCARD_Stop_Bits    SMARTCARD Stop Bits 
 
  * @{
 
  */
 
#define SMARTCARD_STOPBITS_1_5                   ((uint32_t)(USART_CR2_STOP))
 
#define IS_SMARTCARD_STOPBITS(STOPBITS) ((STOPBITS) == SMARTCARD_STOPBITS_1_5)
 
/**
 
  * @}
 
  */   
 
 
/** @defgroup SMARTCARD_Parity SMARTCARD Parity 
 
  * @{
 
  */ 
 
#define SMARTCARD_PARITY_EVEN                    ((uint16_t)USART_CR1_PCE)
 
#define SMARTCARD_PARITY_ODD                     ((uint16_t)(USART_CR1_PCE | USART_CR1_PS)) 
 
#define IS_SMARTCARD_PARITY(PARITY) (((PARITY) == SMARTCARD_PARITY_EVEN) || \
 
                                     ((PARITY) == SMARTCARD_PARITY_ODD))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SMARTCARD_Mode SMARTCARD Transfer Mode
 
  * @{
 
  */ 
 
#define SMARTCARD_MODE_RX                        ((uint16_t)USART_CR1_RE)
 
#define SMARTCARD_MODE_TX                        ((uint16_t)USART_CR1_TE)
 
#define SMARTCARD_MODE_TX_RX                     ((uint16_t)(USART_CR1_TE |USART_CR1_RE))
 
#define IS_SMARTCARD_MODE(MODE) ((((MODE) & (uint16_t)0xFFF3) == 0x00) && ((MODE) != (uint16_t)0x00))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Clock_Polarity  SMARTCARD Clock Polarity
 
  * @{
 
  */
 
#define SMARTCARD_POLARITY_LOW                   ((uint16_t)0x0000)
 
#define SMARTCARD_POLARITY_HIGH                  ((uint16_t)USART_CR2_CPOL)
 
#define IS_SMARTCARD_POLARITY(CPOL) (((CPOL) == SMARTCARD_POLARITY_LOW) || ((CPOL) == SMARTCARD_POLARITY_HIGH))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SMARTCARD_Clock_Phase SMARTCARD Clock Phase
 
  * @{
 
  */
 
#define SMARTCARD_PHASE_1EDGE                    ((uint16_t)0x0000)
 
#define SMARTCARD_PHASE_2EDGE                    ((uint16_t)USART_CR2_CPHA)
 
#define IS_SMARTCARD_PHASE(CPHA) (((CPHA) == SMARTCARD_PHASE_1EDGE) || ((CPHA) == SMARTCARD_PHASE_2EDGE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Last_Bit  SMARTCARD Last Bit
 
  * @{
 
  */
 
#define SMARTCARD_LASTBIT_DISABLED                ((uint16_t)0x0000)
 
#define SMARTCARD_LASTBIT_ENABLED                 ((uint16_t)USART_CR2_LBCL)
 
#define IS_SMARTCARD_LASTBIT(LASTBIT) (((LASTBIT) == SMARTCARD_LASTBIT_DISABLED) || \
 
                                       ((LASTBIT) == SMARTCARD_LASTBIT_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_OneBit_Sampling SMARTCARD One Bit Sampling Method
 
  * @{
 
  */
 
#define SMARTCARD_ONEBIT_SAMPLING_DISABLED   ((uint16_t)0x0000)
 
#define SMARTCARD_ONEBIT_SAMPLING_ENABLED    ((uint16_t)USART_CR3_ONEBIT)
 
#define IS_SMARTCARD_ONEBIT_SAMPLING(ONEBIT) (((ONEBIT) == SMARTCARD_ONEBIT_SAMPLING_DISABLED) || \
 
                                              ((ONEBIT) == SMARTCARD_ONEBIT_SAMPLING_ENABLED))
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup SMARTCARD_NACK_State   SMARTCARD NACK State
 
  * @{
 
  */
 
#define SMARTCARD_NACK_ENABLED          ((uint16_t)USART_CR3_NACK)
 
#define SMARTCARD_NACK_DISABLED         ((uint16_t)0x0000)
 
#define IS_SMARTCARD_NACK(NACK) (((NACK) == SMARTCARD_NACK_ENABLED) || \
 
                                 ((NACK) == SMARTCARD_NACK_DISABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Timeout_Enable  SMARTCARD Timeout Enable
 
  * @{
 
  */
 
#define SMARTCARD_TIMEOUT_DISABLED      ((uint32_t)0x00000000)
 
#define SMARTCARD_TIMEOUT_ENABLED       ((uint32_t)USART_CR2_RTOEN)
 
#define IS_SMARTCARD_TIMEOUT(TIMEOUT) (((TIMEOUT) == SMARTCARD_TIMEOUT_DISABLED) || \
 
                                       ((TIMEOUT) == SMARTCARD_TIMEOUT_ENABLED))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup SMARTCARD_Advanced_Features_Initialization_Type  SMARTCARD advanced feature initialization type
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_NO_INIT                 ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_TXINVERT_INIT           ((uint32_t)0x00000001)
 
#define SMARTCARD_ADVFEATURE_RXINVERT_INIT           ((uint32_t)0x00000002)
 
#define SMARTCARD_ADVFEATURE_DATAINVERT_INIT         ((uint32_t)0x00000004)
 
#define SMARTCARD_ADVFEATURE_SWAP_INIT               ((uint32_t)0x00000008)
 
#define SMARTCARD_ADVFEATURE_RXOVERRUNDISABLE_INIT   ((uint32_t)0x00000010)
 
#define SMARTCARD_ADVFEATURE_DMADISABLEONERROR_INIT  ((uint32_t)0x00000020)
 
#define SMARTCARD_ADVFEATURE_MSBFIRST_INIT           ((uint32_t)0x00000080)
 
#define IS_SMARTCARD_ADVFEATURE_INIT(INIT)           ((INIT) <= (SMARTCARD_ADVFEATURE_NO_INIT | \
 
                                                            SMARTCARD_ADVFEATURE_TXINVERT_INIT | \
 
                                                            SMARTCARD_ADVFEATURE_RXINVERT_INIT | \
 
                                                            SMARTCARD_ADVFEATURE_DATAINVERT_INIT | \
 
                                                            SMARTCARD_ADVFEATURE_SWAP_INIT | \
 
                                                            SMARTCARD_ADVFEATURE_RXOVERRUNDISABLE_INIT | \
 
                                                            SMARTCARD_ADVFEATURE_DMADISABLEONERROR_INIT   | \
 
                                                            SMARTCARD_ADVFEATURE_MSBFIRST_INIT))  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Tx_Inv SMARTCARD advanced feature TX pin active level inversion
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_TXINV_DISABLE   ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_TXINV_ENABLE    ((uint32_t)USART_CR2_TXINV)
 
#define IS_SMARTCARD_ADVFEATURE_TXINV(TXINV) (((TXINV) == SMARTCARD_ADVFEATURE_TXINV_DISABLE) || \
 
                                         ((TXINV) == SMARTCARD_ADVFEATURE_TXINV_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Rx_Inv SMARTCARD advanced feature RX pin active level inversion
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_RXINV_DISABLE   ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_RXINV_ENABLE    ((uint32_t)USART_CR2_RXINV)
 
#define IS_SMARTCARD_ADVFEATURE_RXINV(RXINV) (((RXINV) == SMARTCARD_ADVFEATURE_RXINV_DISABLE) || \
 
                                         ((RXINV) == SMARTCARD_ADVFEATURE_RXINV_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Data_Inv  SMARTCARD advanced feature Binary Data inversion
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_DATAINV_DISABLE     ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_DATAINV_ENABLE      ((uint32_t)USART_CR2_DATAINV)
 
#define IS_SMARTCARD_ADVFEATURE_DATAINV(DATAINV) (((DATAINV) == SMARTCARD_ADVFEATURE_DATAINV_DISABLE) || \
 
                                             ((DATAINV) == SMARTCARD_ADVFEATURE_DATAINV_ENABLE))
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup SMARTCARD_Rx_Tx_Swap SMARTCARD advanced feature RX TX pins swap
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_SWAP_DISABLE   ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_SWAP_ENABLE    ((uint32_t)USART_CR2_SWAP)
 
#define IS_SMARTCARD_ADVFEATURE_SWAP(SWAP) (((SWAP) == SMARTCARD_ADVFEATURE_SWAP_DISABLE) || \
 
                                       ((SWAP) == SMARTCARD_ADVFEATURE_SWAP_ENABLE))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SMARTCARD_Overrun_Disable  SMARTCARD advanced feature Overrun Disable
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_OVERRUN_ENABLE   ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_OVERRUN_DISABLE  ((uint32_t)USART_CR3_OVRDIS)
 
#define IS_SMARTCARD_OVERRUN(OVERRUN)         (((OVERRUN) == SMARTCARD_ADVFEATURE_OVERRUN_ENABLE) || \
 
                                          ((OVERRUN) == SMARTCARD_ADVFEATURE_OVERRUN_DISABLE))
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup SMARTCARD_DMA_Disable_on_Rx_Error   SMARTCARD advanced feature DMA Disable on Rx Error
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_DMA_ENABLEONRXERROR       ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_DMA_DISABLEONRXERROR      ((uint32_t)USART_CR3_DDRE)
 
#define IS_SMARTCARD_ADVFEATURE_DMAONRXERROR(DMA)      (((DMA) == SMARTCARD_ADVFEATURE_DMA_ENABLEONRXERROR) || \
 
                                                   ((DMA) == SMARTCARD_ADVFEATURE_DMA_DISABLEONRXERROR))
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup SMARTCARD_MSB_First   SMARTCARD advanced feature MSB first
 
  * @{
 
  */
 
#define SMARTCARD_ADVFEATURE_MSBFIRST_DISABLE      ((uint32_t)0x00000000)
 
#define SMARTCARD_ADVFEATURE_MSBFIRST_ENABLE       ((uint32_t)USART_CR2_MSBFIRST)
 
#define IS_SMARTCARD_ADVFEATURE_MSBFIRST(MSBFIRST) (((MSBFIRST) == SMARTCARD_ADVFEATURE_MSBFIRST_DISABLE) || \
 
                                               ((MSBFIRST) == SMARTCARD_ADVFEATURE_MSBFIRST_ENABLE))
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup SMARTCARD_Flags    SMARTCARD Flags
 
  *        Elements values convention: 0xXXXX
 
  *           - 0xXXXX  : Flag mask in the ISR register
 
  * @{
 
  */
 
#define SMARTCARD_FLAG_REACK                     ((uint32_t)0x00400000)
 
#define SMARTCARD_FLAG_TEACK                     ((uint32_t)0x00200000)  
 
#define SMARTCARD_FLAG_BUSY                      ((uint32_t)0x00010000)
 
#define SMARTCARD_FLAG_EOBF                      ((uint32_t)0x00001000)
 
#define SMARTCARD_FLAG_RTOF                      ((uint32_t)0x00000800)
 
#define SMARTCARD_FLAG_TXE                       ((uint32_t)0x00000080)
 
#define SMARTCARD_FLAG_TC                        ((uint32_t)0x00000040)
 
#define SMARTCARD_FLAG_RXNE                      ((uint32_t)0x00000020)
 
#define SMARTCARD_FLAG_ORE                       ((uint32_t)0x00000008)
 
#define SMARTCARD_FLAG_NE                        ((uint32_t)0x00000004)
 
#define SMARTCARD_FLAG_FE                        ((uint32_t)0x00000002)
 
#define SMARTCARD_FLAG_PE                        ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Interrupt_definition     SMARTCARD Interrupts Definition
 
  *        Elements values convention: 0000ZZZZ0XXYYYYYb
 
  *           - YYYYY  : Interrupt source position in the XX register (5bits)
 
  *           - XX  : Interrupt source register (2bits)
 
  *                 - 01: CR1 register
 
  *                 - 10: CR2 register
 
  *                 - 11: CR3 register
 
  *           - ZZZZ  : Flag position in the ISR register(4bits)
 
  * @{
 
  */
 
  
 
#define SMARTCARD_IT_PE                          ((uint16_t)0x0028)
 
#define SMARTCARD_IT_TXE                         ((uint16_t)0x0727)
 
#define SMARTCARD_IT_TC                          ((uint16_t)0x0626)
 
#define SMARTCARD_IT_RXNE                        ((uint16_t)0x0525)
 
                                
 
#define SMARTCARD_IT_ERR                         ((uint16_t)0x0060)
 
#define SMARTCARD_IT_ORE                         ((uint16_t)0x0300)
 
#define SMARTCARD_IT_NE                          ((uint16_t)0x0200)
 
#define SMARTCARD_IT_FE                          ((uint16_t)0x0100)
 
 
#define SMARTCARD_IT_EOB                         ((uint16_t)0x0C3B)
 
#define SMARTCARD_IT_RTO                         ((uint16_t)0x0B3A)
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup SMARTCARD_IT_CLEAR_Flags   SMARTCARD Interruption Clear Flags
 
  * @{
 
  */
 
#define SMARTCARD_CLEAR_PEF                       USART_ICR_PECF            /*!< Parity Error Clear Flag */          
 
#define SMARTCARD_CLEAR_FEF                       USART_ICR_FECF            /*!< Framing Error Clear Flag */         
 
#define SMARTCARD_CLEAR_NEF                       USART_ICR_NCF             /*!< Noise detected Clear Flag */        
 
#define SMARTCARD_CLEAR_OREF                      USART_ICR_ORECF           /*!< OverRun Error Clear Flag */         
 
#define SMARTCARD_CLEAR_TCF                       USART_ICR_TCCF            /*!< Transmission Complete Clear Flag */ 
 
#define SMARTCARD_CLEAR_RTOF                      USART_ICR_RTOCF           /*!< Receiver Time Out Clear Flag */     
 
#define SMARTCARD_CLEAR_EOBF                      USART_ICR_EOBCF           /*!< End Of Block Clear Flag */          
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Request_Parameters  SMARTCARD Request Parameters
 
  * @{
 
  */        
 
#define SMARTCARD_RXDATA_FLUSH_REQUEST        ((uint16_t)USART_RQR_RXFRQ)        /*!< Receive Data flush Request */ 
 
#define SMARTCARD_TXDATA_FLUSH_REQUEST        ((uint16_t)USART_RQR_TXFRQ)        /*!< Transmit data flush Request */
 
#define IS_SMARTCARD_REQUEST_PARAMETER(PARAM) (((PARAM) == SMARTCARD_RXDATA_FLUSH_REQUEST) || \
 
                                               ((PARAM) == SMARTCARD_TXDATA_FLUSH_REQUEST))   
 
/**
 
  * @}
 
  */
 
  
 
  
 
/** @defgroup SMARTCARD_CR3_SCARCNT_LSB_POS    SMARTCARD auto retry counter LSB position in CR3 register
 
  * @{
 
  */
 
#define SMARTCARD_CR3_SCARCNT_LSB_POS            ((uint32_t) 17)
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup SMARTCARD_GTPR_GT_LSB_POS    SMARTCARD guard time value LSB position in GTPR register
 
  * @{
 
  */
 
#define SMARTCARD_GTPR_GT_LSB_POS            ((uint32_t) 8)
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup SMARTCARD_RTOR_BLEN_LSB_POS    SMARTCARD block length LSB position in RTOR register
 
  * @{
 
  */
 
#define SMARTCARD_RTOR_BLEN_LSB_POS          ((uint32_t) 24)
 
/**
 
  * @}
 
  */    
 
 
 
/** @defgroup SMARTCARD_Interruption_Mask    SMARTCARD interruptions flag mask
 
  * @{
 
  */ 
 
#define SMARTCARD_IT_MASK  ((uint16_t)0x001F)  
 
/**
 
  * @}
 
  */
 
    
 
/**
 
  * @}
 
  */    
 
    
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup SMARTCARD_Exported_Macros SMARTCARD Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset SMARTCARD handle state
 
  * @param  __HANDLE__: SMARTCARD handle.
 
  * @retval None
 
  */
 
#define __HAL_SMARTCARD_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SMARTCARD_STATE_RESET)
 
 
/** @brief  Checks whether the specified Smartcard flag is set or not.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg SMARTCARD_FLAG_REACK: Receive enable ackowledge flag
 
  *            @arg SMARTCARD_FLAG_TEACK: Transmit enable ackowledge flag
 
  *            @arg SMARTCARD_FLAG_BUSY:  Busy flag
 
  *            @arg SMARTCARD_FLAG_EOBF:  End of block flag   
 
  *            @arg SMARTCARD_FLAG_RTOF:  Receiver timeout flag                           
 
  *            @arg SMARTCARD_FLAG_TXE:   Transmit data register empty flag
 
  *            @arg SMARTCARD_FLAG_TC:    Transmission Complete flag
 
  *            @arg SMARTCARD_FLAG_RXNE:  Receive data register not empty flag
 
  *            @arg SMARTCARD_FLAG_ORE:   OverRun Error flag
 
  *            @arg SMARTCARD_FLAG_NE:    Noise Error flag
 
  *            @arg SMARTCARD_FLAG_FE:    Framing Error flag
 
  *            @arg SMARTCARD_FLAG_PE:    Parity Error flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_SMARTCARD_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->ISR & (__FLAG__)) == (__FLAG__))
 
 
 
/** @brief  Enables the specified SmartCard interrupt.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __INTERRUPT__: specifies the SMARTCARD interrupt to enable.
 
  *          This parameter can be one of the following values:
 
  *            @arg SMARTCARD_IT_EOBF: End Of Block interrupt
 
  *            @arg SMARTCARD_IT_RTOF: Receive TimeOut interrupt             
 
  *            @arg SMARTCARD_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg SMARTCARD_IT_TC:   Transmission complete interrupt
 
  *            @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg SMARTCARD_IT_PE:   Parity Error interrupt
 
  *            @arg SMARTCARD_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_SMARTCARD_ENABLE_IT(__HANDLE__, __INTERRUPT__)   (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 |= (1U << ((__INTERRUPT__) & SMARTCARD_IT_MASK))): \
 
                                                                ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 |= (1U << ((__INTERRUPT__) & SMARTCARD_IT_MASK))): \
 
                                                                ((__HANDLE__)->Instance->CR3 |= (1U << ((__INTERRUPT__) & SMARTCARD_IT_MASK))))
 
 
/** @brief  Disables the specified SmartCard interrupt.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __INTERRUPT__: specifies the SMARTCARD interrupt to disable.
 
  *          This parameter can be one of the following values:
 
  *            @arg SMARTCARD_IT_EOBF: End Of Block interrupt
 
  *            @arg SMARTCARD_IT_RTOF: Receive TimeOut interrupt             
 
  *            @arg SMARTCARD_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg SMARTCARD_IT_TC:   Transmission complete interrupt
 
  *            @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg SMARTCARD_IT_PE:   Parity Error interrupt
 
  *            @arg SMARTCARD_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_SMARTCARD_DISABLE_IT(__HANDLE__, __INTERRUPT__)  (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 &= ~ (1U << ((__INTERRUPT__) & SMARTCARD_IT_MASK))): \
 
                                                                ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 &= ~ (1U << ((__INTERRUPT__) & SMARTCARD_IT_MASK))): \
 
                                                                ((__HANDLE__)->Instance->CR3 &= ~ (1U << ((__INTERRUPT__) & SMARTCARD_IT_MASK))))
 
 
    
 
/** @brief  Checks whether the specified SmartCard interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __IT__: specifies the SMARTCARD interrupt to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg SMARTCARD_IT_EOBF: End Of Block interrupt
 
  *            @arg SMARTCARD_IT_RTOF: Receive TimeOut interrupt  
 
  *            @arg SMARTCARD_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg SMARTCARD_IT_TC:   Transmission complete interrupt
 
  *            @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg SMARTCARD_IT_ORE:  OverRun Error interrupt
 
  *            @arg SMARTCARD_IT_NE:   Noise Error interrupt
 
  *            @arg SMARTCARD_IT_FE:   Framing Error interrupt
 
  *            @arg SMARTCARD_IT_PE:   Parity Error interrupt
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_SMARTCARD_GET_IT(__HANDLE__, __IT__) ((__HANDLE__)->Instance->ISR & ((uint32_t)1 << ((__IT__)>> 0x08))) 
 
 
/** @brief  Checks whether the specified SmartCard interrupt interrupt source is enabled.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __IT__: specifies the SMARTCARD interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg SMARTCARD_IT_EOBF: End Of Block interrupt
 
  *            @arg SMARTCARD_IT_RTOF: Receive TimeOut interrupt  
 
  *            @arg SMARTCARD_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg SMARTCARD_IT_TC:   Transmission complete interrupt
 
  *            @arg SMARTCARD_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg SMARTCARD_IT_ORE:  OverRun Error interrupt
 
  *            @arg SMARTCARD_IT_NE:   Noise Error interrupt
 
  *            @arg SMARTCARD_IT_FE:   Framing Error interrupt
 
  *            @arg SMARTCARD_IT_PE:   Parity Error interrupt
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_SMARTCARD_GET_IT_SOURCE(__HANDLE__, __IT__) ((((((uint8_t)(__IT__)) >> 5U) == 1)? (__HANDLE__)->Instance->CR1 : \
 
                                                           (((((uint8_t)(__IT__)) >> 5U) == 2)? (__HANDLE__)->Instance->CR2 : \
 
                                                           (__HANDLE__)->Instance->CR3)) & ((uint32_t)1 << (((uint16_t)(__IT__)) & SMARTCARD_IT_MASK)))
 
 
 
/** @brief  Clears the specified SMARTCARD ISR flag, in setting the proper ICR register flag.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __IT_CLEAR__: specifies the interrupt clear register flag that needs to be set
 
  *                       to clear the corresponding interrupt
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_CLEAR_PEF: Parity Error Clear Flag          
 
  *            @arg USART_CLEAR_FEF: Framing Error Clear Flag         
 
  *            @arg USART_CLEAR_NEF: Noise detected Clear Flag        
 
  *            @arg USART_CLEAR_OREF: OverRun Error Clear Flag         
 
  *            @arg USART_CLEAR_TCF: Transmission Complete Clear Flag    
 
  *            @arg USART_CLEAR_RTOF: Receiver Time Out Clear Flag     
 
  *            @arg USART_CLEAR_EOBF: End Of Block Clear Flag 
 
  * @retval None
 
  */
 
#define __HAL_SMARTCARD_CLEAR_IT(__HANDLE__, __IT_CLEAR__) ((__HANDLE__)->Instance->ICR = (uint32_t)(__IT_CLEAR__)) 
 
 
/** @brief  Set a specific SMARTCARD request flag.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be USARTx where x: 1, 2 or 3 to select the USART peripheral.
 
  * @param  __REQ__: specifies the request flag to set
 
  *          This parameter can be one of the following values:  
 
  *            @arg SMARTCARD_RXDATA_FLUSH_REQUEST: Receive Data flush Request 
 
  *            @arg SMARTCARD_TXDATA_FLUSH_REQUEST: Transmit data flush Request 
 
  *
 
  * @retval None
 
  */ 
 
#define __HAL_SMARTCARD_SEND_REQ(__HANDLE__, __REQ__) ((__HANDLE__)->Instance->RQR |= (uint16_t)(__REQ__)) 
 
 
/** @brief  Enable the USART associated to the SMARTCARD Handle
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3 to select the USART peripheral
 
  * @retval None
 
  */ 
 
#define __HAL_SMARTCARD_ENABLE(__HANDLE__)               ((__HANDLE__)->Instance->CR1 |=  USART_CR1_UE)
 
 
/** @brief  Disable the USART associated to the SMARTCARD Handle
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3 to select the USART peripheral
 
  * @retval None
 
  */ 
 
#define __HAL_SMARTCARD_DISABLE(__HANDLE__)              ((__HANDLE__)->Instance->CR1 &=  ~USART_CR1_UE)
 
 
/** @brief  Check the Baud rate range. The maximum Baud Rate is derived from the 
 
  *         maximum clock on F0 (i.e. 48 MHz) divided by the oversampling used 
 
  *         on the SMARTCARD (i.e. 16) 
 
  * @param  __BAUDRATE__: Baud rate set by the configuration function.
 
  * @retval Test result (TRUE or FALSE) 
 
  */ 
 
#define IS_SMARTCARD_BAUDRATE(__BAUDRATE__) ((__BAUDRATE__) < 4500001)
 
 
/** @brief  Check the block length range. The maximum SMARTCARD block length is 0xFF.
 
  * @param  __LENGTH__: block length.
 
  * @retval Test result (TRUE or FALSE) 
 
  */
 
#define IS_SMARTCARD_BLOCKLENGTH(__LENGTH__) ((__LENGTH__) <= 0xFF)
 
 
/** @brief  Check the receiver timeout value. The maximum SMARTCARD receiver timeout 
 
  *         value is 0xFFFFFF.
 
  * @param  __TIMEOUTVALUE__: receiver timeout value.
 
  * @retval Test result (TRUE or FALSE) 
 
  */
 
#define IS_SMARTCARD_TIMEOUT_VALUE(__TIMEOUTVALUE__)    ((__TIMEOUTVALUE__) <= 0xFFFFFF)
 
 
/** @brief  Check the SMARTCARD autoretry counter value. The maximum number of 
 
  *         retransmissions is 0x7.
 
  * @param  __COUNT__: number of retransmissions
 
  * @retval Test result (TRUE or FALSE) 
 
  */
 
#define IS_SMARTCARD_AUTORETRY_COUNT(__COUNT__)         ((__COUNT__) <= 0x7)
 
 
/**
 
  * @}
 
  */ 
 
 
/* Include SMARTCARD HAL Extension module */
 
#include "stm32f0xx_hal_smartcard_ex.h"  
 
 
                                 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup SMARTCARD_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsmartcard);
 
HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsmartcard);
 
void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsmartcard);
 
void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsmartcard);
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup SMARTCARD_Exported_Functions_Group2 IO operation functions 
 
  * @{
 
  */
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size);
 
void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsmartcard);
 
void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard);
 
void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard);
 
void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsmartcard);
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup SMARTCARD_Exported_Functions_Group3 Peripheral State and Errors functions 
 
  * @{
 
  */   
 
/* Peripheral State and Error functions ***************************************/
 
HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(SMARTCARD_HandleTypeDef *hsmartcard);
 
uint32_t HAL_SMARTCARD_GetError(SMARTCARD_HandleTypeDef *hsmartcard);
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* !defined(STM32F030x4) && !defined(STM32F030x6) && !defined(STM32F030x8) */  
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_SMARTCARD_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_smartcard_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_smartcard_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of SMARTCARD HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_SMARTCARD_EX_H
 
#define __STM32F0xx_HAL_SMARTCARD_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup SMARTCARDEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/* Exported constants --------------------------------------------------------*/
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup SMARTCARD_Extended_Exported_Macros SMARTCARDEx Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reports the SMARTCARD clock source.
 
  * @param  __HANDLE__: specifies the SMARTCARD Handle
 
  * @param  __CLOCKSOURCE__ : output variable   
 
  * @retval the SMARTCARD clocking source, written in __CLOCKSOURCE__.
 
  */
 
#if defined(STM32F031x6) || defined(STM32F038xx)
 
#define __HAL_SMARTCARD_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                             \
 
     switch(__HAL_RCC_GET_USART1_SOURCE())                         \
 
     {                                                             \
 
      case RCC_USART1CLKSOURCE_PCLK1:                              \
 
        (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;           \
 
        break;                                                     \
 
      case RCC_USART1CLKSOURCE_HSI:                                \
 
        (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;             \
 
        break;                                                     \
 
      case RCC_USART1CLKSOURCE_SYSCLK:                             \
 
        (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;          \
 
        break;                                                     \
 
      case RCC_USART1CLKSOURCE_LSE:                                \
 
        (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;             \
 
        break;                                                     \
 
      default:                                                     \
 
        (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;       \
 
        break;                                                     \
 
     }                                                             \
 
  } while(0)
 
#elif defined (STM32F030x8) ||                                     \
 
      defined (STM32F042x6) || defined (STM32F048xx) ||            \
 
      defined (STM32F051x8) || defined (STM32F058xx)
 
#define __HAL_SMARTCARD_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                             \
 
    if((__HANDLE__)->Instance == USART1)                           \
 
    {                                                              \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                       \
 
       {                                                           \
 
        case RCC_USART1CLKSOURCE_PCLK1:                            \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;         \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_HSI:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;           \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                           \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;        \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_LSE:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;           \
 
          break;                                                   \
 
        default:                                                   \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                                   \
 
       }                                                           \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART2)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else                                                           \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                              \
 
  } while(0) 
 
#elif defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)   
 
#define __HAL_SMARTCARD_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                             \
 
    if((__HANDLE__)->Instance == USART1)                           \
 
    {                                                              \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                       \
 
       {                                                           \
 
        case RCC_USART1CLKSOURCE_PCLK1:                            \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;         \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_HSI:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;           \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                           \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;        \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_LSE:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;           \
 
          break;                                                   \
 
        default:                                                   \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                                   \
 
       }                                                           \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART2)                      \
 
    {                                                              \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                       \
 
       {                                                           \
 
        case RCC_USART2CLKSOURCE_PCLK1:                            \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;         \
 
          break;                                                   \
 
        case RCC_USART2CLKSOURCE_HSI:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;           \
 
          break;                                                   \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                           \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;        \
 
          break;                                                   \
 
        case RCC_USART2CLKSOURCE_LSE:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;           \
 
          break;                                                   \
 
        default:                                                   \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                                   \
 
       }                                                           \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART3)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART4)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else                                                           \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                              \
 
  } while(0) 
 
#elif defined(STM32F091xC) || defined(STM32F098xx) 
 
#define __HAL_SMARTCARD_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                             \
 
    if((__HANDLE__)->Instance == USART1)                           \
 
    {                                                              \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                       \
 
       {                                                           \
 
        case RCC_USART1CLKSOURCE_PCLK1:                            \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;         \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_HSI:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;           \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                           \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;        \
 
          break;                                                   \
 
        case RCC_USART1CLKSOURCE_LSE:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;           \
 
          break;                                                   \
 
        default:                                                   \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                                   \
 
       }                                                           \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART2)                      \
 
    {                                                              \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                       \
 
       {                                                           \
 
        case RCC_USART2CLKSOURCE_PCLK1:                            \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;         \
 
          break;                                                   \
 
        case RCC_USART2CLKSOURCE_HSI:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;           \
 
          break;                                                   \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                           \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;        \
 
          break;                                                   \
 
        case RCC_USART2CLKSOURCE_LSE:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;           \
 
          break;                                                   \
 
        default:                                                   \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                                   \
 
       }                                                           \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART3)                      \
 
    {                                                              \
 
       switch(__HAL_RCC_GET_USART3_SOURCE())                       \
 
       {                                                           \
 
        case RCC_USART3CLKSOURCE_PCLK1:                            \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;         \
 
          break;                                                   \
 
        case RCC_USART3CLKSOURCE_HSI:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_HSI;           \
 
          break;                                                   \
 
        case RCC_USART3CLKSOURCE_SYSCLK:                           \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_SYSCLK;        \
 
          break;                                                   \
 
        case RCC_USART3CLKSOURCE_LSE:                              \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_LSE;           \
 
          break;                                                   \
 
        default:                                                   \
 
          (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                                   \
 
       }                                                           \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART4)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART5)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART6)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART7)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else if((__HANDLE__)->Instance == USART8)                      \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_PCLK1;             \
 
    }                                                              \
 
    else                                                           \
 
    {                                                              \
 
      (__CLOCKSOURCE__) = SMARTCARD_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                              \
 
  } while(0)      
 
#endif /* defined(STM32F031x6) || defined(STM32F038xx) */
 
 
/**
 
  * @}
 
  */                                
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/* Initialization and de-initialization functions  ****************************/
 
/* IO operation functions *****************************************************/
 
 
/** @addtogroup SMARTCARDEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup SMARTCARDEx_Exported_Functions_Group1
 
  * @{
 
  */
 
  
 
/* Peripheral Control functions ***********************************************/
 
void HAL_SMARTCARDEx_BlockLength_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t BlockLength);
 
void HAL_SMARTCARDEx_TimeOut_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t TimeOutValue);
 
HAL_StatusTypeDef HAL_SMARTCARDEx_EnableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard);
 
HAL_StatusTypeDef HAL_SMARTCARDEx_DisableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard);
 
 
/* Peripheral State and Error functions ***************************************/
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */  
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_SMARTCARD_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_smbus.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_smbus.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of SMBUS HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_SMBUS_H
 
#define __STM32F0xx_HAL_SMBUS_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"  
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup SMBUS
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup SMBUS_Exported_Types SMBUS Exported Types
 
  * @{
 
  */ 
 
  
 
/** 
 
  * @brief  SMBUS Configuration Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Timing;                 /*!< Specifies the SMBUS_TIMINGR_register value.
 
                                     This parameter calculated by referring to SMBUS initialization 
 
                                            section in Reference manual */
 
  uint32_t AnalogFilter;           /*!< Specifies if Analog Filter is enable or not.
 
                                     This parameter can be a a value of @ref SMBUS_Analog_Filter */
 
    
 
  uint32_t OwnAddress1;            /*!< Specifies the first device own address.
 
                                     This parameter can be a 7-bit or 10-bit address. */
 
 
  uint32_t AddressingMode;         /*!< Specifies if 7-bit or 10-bit addressing mode for master is selected.
 
                                     This parameter can be a value of @ref SMBUS_addressing_mode */
 
 
  uint32_t DualAddressMode;        /*!< Specifies if dual addressing mode is selected.
 
                                     This parameter can be a value of @ref SMBUS_dual_addressing_mode */
 
 
  uint32_t OwnAddress2;            /*!< Specifies the second device own address if dual addressing mode is selected
 
                                     This parameter can be a 7-bit address. */
 
 
  uint32_t OwnAddress2Masks;       /*!< Specifies the acknoledge mask address second device own address if dual addressing mode is selected
 
                                     This parameter can be a value of @ref SMBUS_own_address2_masks. */
 
 
  uint32_t GeneralCallMode;        /*!< Specifies if general call mode is selected.
 
                                     This parameter can be a value of @ref SMBUS_general_call_addressing_mode. */
 
 
  uint32_t NoStretchMode;          /*!< Specifies if nostretch mode is selected.
 
                                     This parameter can be a value of @ref SMBUS_nostretch_mode */
 
 
  uint32_t PacketErrorCheckMode;   /*!< Specifies if Packet Error Check mode is selected.
 
                                     This parameter can be a value of @ref SMBUS_packet_error_check_mode */
 
 
  uint32_t PeripheralMode;         /*!< Specifies which mode of Periphal is selected.
 
                                     This parameter can be a value of @ref SMBUS_peripheral_mode */
 
 
  uint32_t SMBusTimeout;           /*!< Specifies the content of the 32 Bits SMBUS_TIMEOUT_register value.
 
  																		(Enable bits and different timeout values)
 
                                     This parameter calculated by referring to SMBUS initialization 
 
                                         section in Reference manual */
 
} SMBUS_InitTypeDef;
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_SMBUS_STATE_RESET           = 0x00,  /*!< SMBUS not yet initialized or disabled         */
 
  HAL_SMBUS_STATE_READY           = 0x01,  /*!< SMBUS initialized and ready for use           */
 
  HAL_SMBUS_STATE_BUSY            = 0x02,  /*!< SMBUS internal process is ongoing             */
 
  HAL_SMBUS_STATE_MASTER_BUSY_TX  = 0x12,  /*!< Master Data Transmission process is ongoing   */ 
 
  HAL_SMBUS_STATE_MASTER_BUSY_RX  = 0x22,  /*!< Master Data Reception process is ongoing      */
 
  HAL_SMBUS_STATE_SLAVE_BUSY_TX   = 0x32,  /*!< Slave Data Transmission process is ongoing    */ 
 
  HAL_SMBUS_STATE_SLAVE_BUSY_RX   = 0x42,  /*!< Slave Data Reception process is ongoing       */
 
  HAL_SMBUS_STATE_TIMEOUT         = 0x03,  /*!< Timeout state                                 */  
 
  HAL_SMBUS_STATE_ERROR           = 0x04,  /*!< Reception process is ongoing                  */      
 
  HAL_SMBUS_STATE_SLAVE_LISTEN    = 0x08,   /*!< Address Listen Mode is ongoing                */
 
  /* Aliases for inter STM32 series compatibility */
 
  HAL_SMBUS_STATE_LISTEN          = HAL_SMBUS_STATE_SLAVE_LISTEN 
 
}HAL_SMBUS_StateTypeDef;
 
 
/** 
 
  * @brief  HAL SMBUS Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_SMBUS_ERROR_NONE        = 0x00,    /*!< No error             */
 
  HAL_SMBUS_ERROR_BERR        = 0x01,    /*!< BERR error           */
 
  HAL_SMBUS_ERROR_ARLO        = 0x02,    /*!< ARLO error           */   
 
  HAL_SMBUS_ERROR_ACKF        = 0x04,    /*!< ACKF error           */
 
  HAL_SMBUS_ERROR_OVR         = 0x08,    /*!< OVR error            */
 
  HAL_SMBUS_ERROR_HALTIMEOUT  = 0x10,    /*!< Timeout error        */
 
  HAL_SMBUS_ERROR_BUSTIMEOUT  = 0x20,    /*!< Bus Timeout error    */
 
  HAL_SMBUS_ERROR_ALERT       = 0x40,    /*!< Alert error          */
 
  HAL_SMBUS_ERROR_PECERR      = 0x80     /*!< PEC error            */
 
 
}HAL_SMBUS_ErrorTypeDef;
 
 
/** 
 
  * @brief  SMBUS handle Structure definition  
 
  */
 
typedef struct
 
{
 
  I2C_TypeDef                  *Instance;       /*!< SMBUS registers base address       */
 
 
  SMBUS_InitTypeDef            Init;            /*!< SMBUS communication parameters     */
 
 
  uint8_t                      *pBuffPtr;       /*!< Pointer to SMBUS transfer buffer   */
 
 
  uint16_t                     XferSize;        /*!< SMBUS transfer size                */
 
 
  __IO uint16_t                XferCount;       /*!< SMBUS transfer counter             */
 
 
  __IO uint32_t                XferOptions;     /*!< SMBUS transfer options             */
 
 
  __IO HAL_SMBUS_StateTypeDef  PreviousState;   /*!< SMBUS communication Previous tate  */
 
 
  HAL_LockTypeDef              Lock;            /*!< SMBUS locking object               */
 
 
  __IO HAL_SMBUS_StateTypeDef  State;           /*!< SMBUS communication state          */
 
 
  __IO HAL_SMBUS_ErrorTypeDef  ErrorCode;       /*!< SMBUS Error code                   */
 
 
}SMBUS_HandleTypeDef;
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup SMBUS_Exported_Constants SMBUS Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup SMBUS_Analog_Filter SMBUS Analog Filter
 
  * @{
 
  */
 
#define SMBUS_ANALOGFILTER_ENABLED              ((uint32_t)0x00000000)
 
#define SMBUS_ANALOGFILTER_DISABLED             I2C_CR1_ANFOFF
 
 
#define IS_SMBUS_ANALOG_FILTER(FILTER)          (((FILTER) == SMBUS_ANALOGFILTER_ENABLED) || \
 
                                                 ((FILTER) == SMBUS_ANALOGFILTER_DISABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_addressing_mode SMBUS addressing mode
 
  * @{
 
  */
 
#define SMBUS_ADDRESSINGMODE_7BIT               ((uint32_t)0x00000001)
 
#define SMBUS_ADDRESSINGMODE_10BIT              ((uint32_t)0x00000002)
 
 
#define IS_SMBUS_ADDRESSING_MODE(MODE)          (((MODE) == SMBUS_ADDRESSINGMODE_7BIT)  || \
 
                                                 ((MODE) == SMBUS_ADDRESSINGMODE_10BIT))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_dual_addressing_mode SMBUS dual addressing mode
 
  * @{
 
  */
 
 
#define SMBUS_DUALADDRESS_DISABLED              ((uint32_t)0x00000000)
 
#define SMBUS_DUALADDRESS_ENABLED               I2C_OAR2_OA2EN
 
 
#define IS_SMBUS_DUAL_ADDRESS(ADDRESS)          (((ADDRESS) == SMBUS_DUALADDRESS_DISABLED) || \
 
                                                 ((ADDRESS) == SMBUS_DUALADDRESS_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_own_address2_masks SMBUS ownaddress2 masks
 
  * @{
 
  */
 
 
#define SMBUS_OA2_NOMASK                        ((uint8_t)0x00)
 
#define SMBUS_OA2_MASK01                        ((uint8_t)0x01)
 
#define SMBUS_OA2_MASK02                        ((uint8_t)0x02)
 
#define SMBUS_OA2_MASK03                        ((uint8_t)0x03)
 
#define SMBUS_OA2_MASK04                        ((uint8_t)0x04)
 
#define SMBUS_OA2_MASK05                        ((uint8_t)0x05)
 
#define SMBUS_OA2_MASK06                        ((uint8_t)0x06)
 
#define SMBUS_OA2_MASK07                        ((uint8_t)0x07)
 
 
#define IS_SMBUS_OWN_ADDRESS2_MASK(MASK)        (((MASK) == SMBUS_OA2_NOMASK)   || \
 
                                                 ((MASK) == SMBUS_OA2_MASK01)    || \
 
                                                 ((MASK) == SMBUS_OA2_MASK02)    || \
 
                                                 ((MASK) == SMBUS_OA2_MASK03)    || \
 
                                                 ((MASK) == SMBUS_OA2_MASK04)    || \
 
                                                 ((MASK) == SMBUS_OA2_MASK05)    || \
 
                                                 ((MASK) == SMBUS_OA2_MASK06)    || \
 
                                                 ((MASK) == SMBUS_OA2_MASK07))  
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup SMBUS_general_call_addressing_mode SMBUS general call addressing mode
 
  * @{
 
  */
 
#define SMBUS_GENERALCALL_DISABLED              ((uint32_t)0x00000000)
 
#define SMBUS_GENERALCALL_ENABLED               I2C_CR1_GCEN
 
 
#define IS_SMBUS_GENERAL_CALL(CALL)             (((CALL) == SMBUS_GENERALCALL_DISABLED) || \
 
                                                 ((CALL) == SMBUS_GENERALCALL_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_nostretch_mode  SMBUS nostretch mode
 
  * @{
 
  */
 
#define SMBUS_NOSTRETCH_DISABLED                ((uint32_t)0x00000000)
 
#define SMBUS_NOSTRETCH_ENABLED                 I2C_CR1_NOSTRETCH
 
 
#define IS_SMBUS_NO_STRETCH(STRETCH)            (((STRETCH) == SMBUS_NOSTRETCH_DISABLED) || \
 
                                                 ((STRETCH) == SMBUS_NOSTRETCH_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_packet_error_check_mode SMBUS packet error check mode
 
  * @{
 
  */
 
#define SMBUS_PEC_DISABLED                      ((uint32_t)0x00000000)
 
#define SMBUS_PEC_ENABLED                       I2C_CR1_PECEN
 
 
#define IS_SMBUS_PEC(PEC)                       (((PEC) == SMBUS_PEC_DISABLED) || \
 
                                                 ((PEC) == SMBUS_PEC_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_peripheral_mode SMBUS peripheral mode
 
  * @{
 
  */
 
#define SMBUS_PERIPHERAL_MODE_SMBUS_HOST        (uint32_t)(I2C_CR1_SMBHEN)
 
#define SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE       (uint32_t)(0x00000000)
 
#define SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE_ARP   (uint32_t)(I2C_CR1_SMBDEN)
 
 
#define IS_SMBUS_PERIPHERAL_MODE(MODE)          (((MODE) == SMBUS_PERIPHERAL_MODE_SMBUS_HOST)   || \
 
                                                 ((MODE) == SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE)  || \
 
                                                 ((MODE) == SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE_ARP))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_ReloadEndMode_definition SMBUS ReloadEndMode definition
 
  * @{
 
  */
 
 
#define  SMBUS_SOFTEND_MODE                     ((uint32_t)0x00000000)
 
#define  SMBUS_RELOAD_MODE                      I2C_CR2_RELOAD
 
#define  SMBUS_AUTOEND_MODE                     I2C_CR2_AUTOEND
 
#define  SMBUS_SENDPEC_MODE                     I2C_CR2_PECBYTE
 
 
#define IS_SMBUS_TRANSFER_MODE(MODE)            (((MODE) == SMBUS_RELOAD_MODE)                          || \
 
                                                 ((MODE) == SMBUS_AUTOEND_MODE)                         || \
 
                                                 ((MODE) == SMBUS_SOFTEND_MODE)                         || \
 
                                                 ((MODE) == (SMBUS_RELOAD_MODE | SMBUS_SENDPEC_MODE))   || \
 
                                                 ((MODE) == (SMBUS_AUTOEND_MODE | SMBUS_SENDPEC_MODE))  || \
 
                                                 ((MODE) == (SMBUS_AUTOEND_MODE | SMBUS_RELOAD_MODE))   || \
 
                                                 ((MODE) == (SMBUS_AUTOEND_MODE | SMBUS_SENDPEC_MODE | SMBUS_RELOAD_MODE )))
 
                               
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_StartStopMode_definition SMBUS StartStopMode definition
 
  * @{
 
  */
 
 
#define  SMBUS_NO_STARTSTOP                     ((uint32_t)0x00000000)
 
#define  SMBUS_GENERATE_STOP                    I2C_CR2_STOP
 
#define  SMBUS_GENERATE_START_READ              (uint32_t)(I2C_CR2_START | I2C_CR2_RD_WRN)
 
#define  SMBUS_GENERATE_START_WRITE             I2C_CR2_START
 
                              
 
#define IS_SMBUS_TRANSFER_REQUEST(REQUEST)      (((REQUEST) == SMBUS_GENERATE_STOP)             || \
 
                                                 ((REQUEST) == SMBUS_GENERATE_START_READ)       || \
 
                                                 ((REQUEST) == SMBUS_GENERATE_START_WRITE)      || \
 
                                                 ((REQUEST) == SMBUS_NO_STARTSTOP))
 
                               
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_XferOptions_definition SMBUS XferOptions definition
 
  * @{
 
  */
 
 
#define  SMBUS_FIRST_FRAME                      ((uint32_t)(SMBUS_SOFTEND_MODE))
 
#define  SMBUS_NEXT_FRAME                       ((uint32_t)(SMBUS_RELOAD_MODE | SMBUS_SOFTEND_MODE))
 
#define  SMBUS_FIRST_AND_LAST_FRAME_NO_PEC      SMBUS_AUTOEND_MODE 
 
#define  SMBUS_LAST_FRAME_NO_PEC                SMBUS_AUTOEND_MODE
 
#define  SMBUS_FIRST_AND_LAST_FRAME_WITH_PEC    ((uint32_t)(SMBUS_AUTOEND_MODE | SMBUS_SENDPEC_MODE))
 
#define  SMBUS_LAST_FRAME_WITH_PEC              ((uint32_t)(SMBUS_AUTOEND_MODE | SMBUS_SENDPEC_MODE))
 
 
#define IS_SMBUS_TRANSFER_OPTIONS_REQUEST(REQUEST)    (((REQUEST) == SMBUS_FIRST_FRAME)                       || \
 
                                                       ((REQUEST) == SMBUS_NEXT_FRAME)                        || \
 
                                                       ((REQUEST) == SMBUS_FIRST_AND_LAST_FRAME_NO_PEC)       || \
 
                                                       ((REQUEST) == SMBUS_LAST_FRAME_NO_PEC)                 || \
 
                                                       ((REQUEST) == SMBUS_FIRST_AND_LAST_FRAME_WITH_PEC)     || \
 
                                                       ((REQUEST) == SMBUS_LAST_FRAME_WITH_PEC))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_Interrupt_configuration_definition SMBUS Interrupt configuration definition
 
  * @brief SMBUS Interrupt definition
 
  *        Elements values convention: 0xXXXXXXXX
 
  *           - XXXXXXXX  : Interrupt control mask
 
  * @{
 
  */
 
#define SMBUS_IT_ERRI                     I2C_CR1_ERRIE
 
#define SMBUS_IT_TCI                      I2C_CR1_TCIE
 
#define SMBUS_IT_STOPI                    I2C_CR1_STOPIE
 
#define SMBUS_IT_NACKI                    I2C_CR1_NACKIE
 
#define SMBUS_IT_ADDRI                    I2C_CR1_ADDRIE
 
#define SMBUS_IT_RXI                      I2C_CR1_RXIE
 
#define SMBUS_IT_TXI                      I2C_CR1_TXIE
 
#define SMBUS_IT_TX                       (SMBUS_IT_ERRI | SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_TXI)
 
#define SMBUS_IT_RX                       (SMBUS_IT_ERRI | SMBUS_IT_TCI | SMBUS_IT_NACKI | SMBUS_IT_RXI)
 
#define SMBUS_IT_ALERT                    (SMBUS_IT_ERRI)
 
#define SMBUS_IT_ADDR                     (SMBUS_IT_ADDRI | SMBUS_IT_STOPI | SMBUS_IT_NACKI)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_Flag_definition SMBUS Flag definition
 
  * @brief Flag definition
 
  *        Elements values convention: 0xXXXXYYYY
 
  *           - XXXXXXXX  : Flag mask
 
  * @{
 
  */ 
 
 
#define  SMBUS_FLAG_TXE                   I2C_ISR_TXE
 
#define  SMBUS_FLAG_TXIS                  I2C_ISR_TXIS
 
#define  SMBUS_FLAG_RXNE                  I2C_ISR_RXNE
 
#define  SMBUS_FLAG_ADDR                  I2C_ISR_ADDR
 
#define  SMBUS_FLAG_AF                    I2C_ISR_NACKF
 
#define  SMBUS_FLAG_STOPF                 I2C_ISR_STOPF
 
#define  SMBUS_FLAG_TC                    I2C_ISR_TC
 
#define  SMBUS_FLAG_TCR                   I2C_ISR_TCR
 
#define  SMBUS_FLAG_BERR                  I2C_ISR_BERR
 
#define  SMBUS_FLAG_ARLO                  I2C_ISR_ARLO
 
#define  SMBUS_FLAG_OVR                   I2C_ISR_OVR
 
#define  SMBUS_FLAG_PECERR                I2C_ISR_PECERR
 
#define  SMBUS_FLAG_TIMEOUT               I2C_ISR_TIMEOUT
 
#define  SMBUS_FLAG_ALERT                 I2C_ISR_ALERT
 
#define  SMBUS_FLAG_BUSY                  I2C_ISR_BUSY
 
#define  SMBUS_FLAG_DIR                   I2C_ISR_DIR
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macros ------------------------------------------------------------*/
 
/** @defgroup SMBUS_Exported_Macros SMBUS Exported Macros
 
  * @{
 
  */  
 
  
 
/** @brief  Reset SMBUS handle state
 
  * @param  __HANDLE__: SMBUS handle.
 
  * @retval None
 
  */
 
#define __HAL_SMBUS_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SMBUS_STATE_RESET)
 
 
/** @brief  Enable or disable the specified SMBUS interrupts.
 
  * @param  __HANDLE__: specifies the SMBUS Handle.
 
  *         This parameter can be SMBUS where x: 1 or 2 to select the SMBUS peripheral.
 
  * @param  __INTERRUPT__: specifies the interrupt source to enable or disable.
 
  *        This parameter can be one of the following values:
 
  *            @arg SMBUS_IT_ERRI: Errors interrupt enable
 
  *            @arg SMBUS_IT_TCI: Transfer complete interrupt enable
 
  *            @arg SMBUS_IT_STOPI: STOP detection interrupt enable
 
  *            @arg SMBUS_IT_NACKI: NACK received interrupt enable
 
  *            @arg SMBUS_IT_ADDRI: Address match interrupt enable
 
  *            @arg SMBUS_IT_RXI: RX interrupt enable
 
  *            @arg SMBUS_IT_TXI: TX interrupt enable
 
  *   
 
  * @retval None
 
  */
 
  
 
#define __HAL_SMBUS_ENABLE_IT(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->CR1 |= (__INTERRUPT__))
 
#define __HAL_SMBUS_DISABLE_IT(__HANDLE__, __INTERRUPT__)  ((__HANDLE__)->Instance->CR1 &= (~(__INTERRUPT__)))
 
 
 
/** @brief  Checks if the specified SMBUS interrupt source is enabled or disabled.
 
  * @param  __HANDLE__: specifies the SMBUS Handle.
 
  *         This parameter can be SMBUS where x: 1 or 2 to select the SMBUS peripheral.
 
  * @param  __INTERRUPT__: specifies the SMBUS interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg SMBUS_IT_ERRI: Errors interrupt enable
 
  *            @arg SMBUS_IT_TCI: Transfer complete interrupt enable
 
  *            @arg SMBUS_IT_STOPI: STOP detection interrupt enable
 
  *            @arg SMBUS_IT_NACKI: NACK received interrupt enable
 
  *            @arg SMBUS_IT_ADDRI: Address match interrupt enable
 
  *            @arg SMBUS_IT_RXI: RX interrupt enable
 
  *            @arg SMBUS_IT_TXI: TX interrupt enable
 
  *   
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_SMBUS_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR1 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/** @brief  Checks whether the specified SMBUS flag is set or not.
 
  * @param  __HANDLE__: specifies the SMBUS Handle.
 
  *         This parameter can be SMBUS where x: 1 or 2 to select the SMBUS peripheral.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg SMBUS_FLAG_TXE:		Transmit data register empty
 
  *            @arg SMBUS_FLAG_TXIS:		Transmit interrupt status
 
  *            @arg SMBUS_FLAG_RXNE:		Receive data register not empty
 
  *            @arg SMBUS_FLAG_ADDR:		Address matched (slave mode)
 
  *            @arg SMBUS_FLAG_AF: 	        NACK received flag
 
  *            @arg SMBUS_FLAG_STOPF: 	        STOP detection flag
 
  *            @arg SMBUS_FLAG_TC:		Transfer complete (master mode)
 
  *            @arg SMBUS_FLAG_TCR:		Transfer complete reload
 
  *            @arg SMBUS_FLAG_BERR:		Bus error
 
  *            @arg SMBUS_FLAG_ARLO:		Arbitration lost
 
  *            @arg SMBUS_FLAG_OVR:		Overrun/Underrun            
 
  *            @arg SMBUS_FLAG_PECERR: 	        PEC error in reception
 
  *            @arg SMBUS_FLAG_TIMEOUT:         Timeout or Tlow detection flag 
 
  *            @arg SMBUS_FLAG_ALERT:		SMBus alert
 
  *            @arg SMBUS_FLAG_BUSY: 		Bus busy
 
  *            @arg SMBUS_FLAG_DIR: 		Transfer direction (slave mode)
 
  *   
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define SMBUS_FLAG_MASK  ((uint32_t)0x0001FFFF)
 
#define __HAL_SMBUS_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->ISR) & ((__FLAG__) & SMBUS_FLAG_MASK)) == ((__FLAG__) & SMBUS_FLAG_MASK)))
 
    
 
/** @brief  Clears the SMBUS pending flags which are cleared by writing 1 in a specific bit.
 
  * @param  __HANDLE__: specifies the SMBUS Handle.
 
  *         This parameter can be SMBUS where x: 1 or 2 to select the SMBUS peripheral.
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *          This parameter can be any combination of the following values:
 
  *            @arg SMBUS_FLAG_ADDR:		Address matched (slave mode)
 
  *            @arg SMBUS_FLAG_AF: 	        NACK received flag
 
  *            @arg SMBUS_FLAG_STOPF: 	        STOP detection flag
 
  *            @arg SMBUS_FLAG_BERR:		Bus error
 
  *            @arg SMBUS_FLAG_ARLO:		Arbitration lost
 
  *            @arg SMBUS_FLAG_OVR:		Overrun/Underrun            
 
  *            @arg SMBUS_FLAG_PECERR: 	        PEC error in reception
 
  *            @arg SMBUS_FLAG_TIMEOUT:         Timeout or Tlow detection flag 
 
  *            @arg SMBUS_FLAG_ALERT:		SMBus alert
 
  *   
 
  * @retval None
 
  */
 
#define __HAL_SMBUS_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->ICR = (__FLAG__))
 
 
 
 
#define __HAL_SMBUS_ENABLE(__HANDLE__)                          ((__HANDLE__)->Instance->CR1 |=  I2C_CR1_PE)
 
#define __HAL_SMBUS_DISABLE(__HANDLE__)                         ((__HANDLE__)->Instance->CR1 &=  ~I2C_CR1_PE)
 
 
#define __HAL_SMBUS_RESET_CR1(__HANDLE__)                       ((__HANDLE__)->Instance->CR1 &= (uint32_t)~((uint32_t)(I2C_CR1_SMBHEN | I2C_CR1_SMBDEN | I2C_CR1_PECEN)))
 
#define __HAL_SMBUS_RESET_CR2(__HANDLE__)                       ((__HANDLE__)->Instance->CR2 &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_HEAD10R | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_RD_WRN)))
 
 
#define __HAL_SMBUS_GENERATE_START(__ADDMODE__,__ADDRESS__)     (((__ADDMODE__) == SMBUS_ADDRESSINGMODE_7BIT) ? (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_START) | (I2C_CR2_AUTOEND)) & (~I2C_CR2_RD_WRN)) : \
 
                                                                  (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_ADD10) | (I2C_CR2_START)) & (~I2C_CR2_RD_WRN)))
 
 
#define __HAL_SMBUS_GET_ADDR_MATCH(__HANDLE__)                  (((__HANDLE__)->Instance->ISR & I2C_ISR_ADDCODE) >> 17)
 
#define __HAL_SMBUS_GET_DIR(__HANDLE__)                         (((__HANDLE__)->Instance->ISR & I2C_ISR_DIR) >> 16)
 
#define __HAL_SMBUS_GET_STOP_MODE(__HANDLE__)                   ((__HANDLE__)->Instance->CR2 & I2C_CR2_AUTOEND)
 
#define __HAL_SMBUS_GET_PEC_MODE(__HANDLE__)                    ((__HANDLE__)->Instance->CR2 & I2C_CR2_PECBYTE)
 
#define __HAL_SMBUS_GET_ALERT_ENABLED(__HANDLE__)                ((__HANDLE__)->Instance->CR1 & I2C_CR1_ALERTEN)
 
#define __HAL_SMBUS_GENERATE_NACK(__HANDLE__)                   ((__HANDLE__)->Instance->CR2 |= I2C_CR2_NACK)
 
 
#define IS_SMBUS_OWN_ADDRESS1(ADDRESS1)                         ((ADDRESS1) <= (uint32_t)0x000003FF)
 
#define IS_SMBUS_OWN_ADDRESS2(ADDRESS2)                         ((ADDRESS2) <= (uint16_t)0x00FF)
 
/**
 
  * @}
 
  */ 
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup SMBUS_Exported_Functions SMBUS Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup SMBUS_Exported_Functions_Group1 Initialization and de-initialization functions
 
 * @{
 
 */
 
  
 
/* Initialization and de-initialization functions  **********************************/
 
HAL_StatusTypeDef HAL_SMBUS_Init(SMBUS_HandleTypeDef *hsmbus);
 
HAL_StatusTypeDef HAL_SMBUS_DeInit (SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_MspInit(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_MspDeInit(SMBUS_HandleTypeDef *hsmbus);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup SMBUS_Exported_Functions_Group2 Input and Output operation functions
 
 * @{
 
 */
 
    
 
/* IO operation functions  *****************************************************/
 
/******* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_SMBUS_IsDeviceReady(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);
 
 
/******* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
 
HAL_StatusTypeDef HAL_SMBUS_Master_Receive_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
 
HAL_StatusTypeDef HAL_SMBUS_Master_Abort_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress);
 
HAL_StatusTypeDef HAL_SMBUS_Slave_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
 
HAL_StatusTypeDef HAL_SMBUS_Slave_Receive_IT(SMBUS_HandleTypeDef *hsmbus, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
 
 
HAL_StatusTypeDef HAL_SMBUS_EnableAlert_IT(SMBUS_HandleTypeDef *hsmbus);
 
HAL_StatusTypeDef HAL_SMBUS_DisableAlert_IT(SMBUS_HandleTypeDef *hsmbus);
 
HAL_StatusTypeDef HAL_SMBUS_Slave_Listen_IT(SMBUS_HandleTypeDef *hsmbus);
 
HAL_StatusTypeDef HAL_SMBUS_DisableListen_IT(SMBUS_HandleTypeDef *hsmbus);
 
 
/* Aliases for new API and to insure inter STM32 series compatibility */
 
#define HAL_SMBUS_EnableListen_IT   HAL_SMBUS_Slave_Listen_IT
 
 
/******* SMBUS IRQHandler and Callbacks used in non blocking modes (Interrupt) */
 
void HAL_SMBUS_EV_IRQHandler(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_ER_IRQHandler(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_MasterTxCpltCallback(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_MasterRxCpltCallback(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_SlaveTxCpltCallback(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_SlaveRxCpltCallback(SMBUS_HandleTypeDef *hsmbus);
 
void HAL_SMBUS_SlaveAddrCallback(SMBUS_HandleTypeDef *hsmbus, uint8_t TransferDirection, uint16_t AddrMatchCode);
 
void HAL_SMBUS_SlaveListenCpltCallback(SMBUS_HandleTypeDef *hsmbus);
 
 
/* Aliases for new API and to insure inter STM32 series compatibility */
 
#define HAL_SMBUS_AddrCallback         HAL_SMBUS_SlaveAddrCallback
 
#define HAL_SMBUS_ListenCpltCallback   HAL_SMBUS_SlaveListenCpltCallback
 
 
void HAL_SMBUS_ErrorCallback(SMBUS_HandleTypeDef *hsmbus);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup SMBUS_Exported_Functions_Group3 Peripheral State and Errors functions 
 
 *  @{
 
 */
 
 
/* Peripheral State and Errors functions  **************************************************/
 
HAL_SMBUS_StateTypeDef HAL_SMBUS_GetState(SMBUS_HandleTypeDef *hsmbus);
 
uint32_t               HAL_SMBUS_GetError(SMBUS_HandleTypeDef *hsmbus);
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_SMBUS_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_spi.h
Show inline comments
 
new file 100644
 
 /**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_spi.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of SPI HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_SPI_H
 
#define __STM32F0xx_HAL_SPI_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup SPI
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup SPI_Exported_Types SPI Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  SPI Configuration Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Mode;                /*!< Specifies the SPI operating mode.
 
                                     This parameter can be a value of @ref SPI_mode */
 
 
  uint32_t Direction;           /*!< Specifies the SPI bidirectional mode state.
 
                                     This parameter can be a value of @ref SPI_Direction */
 
 
  uint32_t DataSize;            /*!< Specifies the SPI data size.
 
                                     This parameter can be a value of @ref SPI_data_size */
 
 
  uint32_t CLKPolarity;         /*!< Specifies the serial clock steady state.
 
                                     This parameter can be a value of @ref SPI_Clock_Polarity */
 
 
  uint32_t CLKPhase;            /*!< Specifies the clock active edge for the bit capture.
 
                                     This parameter can be a value of @ref SPI_Clock_Phase */
 
 
  uint32_t NSS;                 /*!< Specifies whether the NSS signal is managed by
 
                                     hardware (NSS pin) or by software using the SSI bit.
 
                                     This parameter can be a value of @ref SPI_Slave_Select_management */
 
 
  uint32_t BaudRatePrescaler;   /*!< Specifies the Baud Rate prescaler value which will be
 
                                     used to configure the transmit and receive SCK clock.
 
                                     This parameter can be a value of @ref SPI_BaudRate_Prescaler
 
                                     @note The communication clock is derived from the master
 
                                     clock. The slave clock does not need to be set. */
 
 
  uint32_t FirstBit;            /*!< Specifies whether data transfers start from MSB or LSB bit.
 
                                     This parameter can be a value of @ref SPI_MSB_LSB_transmission */
 
                               
 
  uint32_t TIMode;              /*!< Specifies if the TI mode is enabled or not .
 
                                     This parameter can be a value of @ref SPI_TI_mode */
 
 
  uint32_t CRCCalculation;      /*!< Specifies if the CRC calculation is enabled or not.
 
                                     This parameter can be a value of @ref SPI_CRC_Calculation */
 
 
  uint32_t CRCPolynomial;       /*!< Specifies the polynomial used for the CRC calculation.
 
                                     This parameter must be a number between Min_Data = 0 and Max_Data = 65535 */
 
 
  uint32_t CRCLength;    	/*!< Specifies the CRC Length used for the CRC calculation.
 
			             CRC Length is only used with Data8 and Data16, not other data size 
 
                                     This parameter must 0 or 1 or 2*/
 
 
  uint32_t NSSPMode;            /*!< Specifies whether the NSSP signal is enabled or not .
 
                                     This mode is activated by the NSSP bit in the SPIx_CR2 register and 
 
                                     it takes effect only if the SPI interface is configured as Motorola SPI 
 
                                     master (FRF=0) with capture on the first edge (SPIx_CR1 CPHA = 0, 
 
                                     CPOL setting is ignored).. */
 
} SPI_InitTypeDef;
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_SPI_STATE_RESET      = 0x00,    /*!< Peripheral not Initialized                         */ 
 
  HAL_SPI_STATE_READY      = 0x01,    /*!< Peripheral Initialized and ready for use           */
 
  HAL_SPI_STATE_BUSY       = 0x02,    /*!< an internal process is ongoing                     */   
 
  HAL_SPI_STATE_BUSY_TX    = 0x03,    /*!< Data Transmission process is ongoing               */ 
 
  HAL_SPI_STATE_BUSY_RX    = 0x04,    /*!< Data Reception process is ongoing                  */
 
  HAL_SPI_STATE_BUSY_TX_RX = 0x05,    /*!< Data Transmission and Reception process is ongoing */    
 
  HAL_SPI_STATE_TIMEOUT    = 0x06,    /*!< Timeout state                                      */  
 
  HAL_SPI_STATE_ERROR      = 0x07     /*!< Data Transmission and Reception process is ongoing */      
 
 
}HAL_SPI_StateTypeDef;
 
 
/** 
 
  * @brief  HAL SPI Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_SPI_ERROR_NONE      = 0x00,  /*!< No error                          */
 
  HAL_SPI_ERROR_MODF      = 0x01,  /*!< MODF error                        */
 
  HAL_SPI_ERROR_CRC       = 0x02,  /*!< CRC error                         */
 
  HAL_SPI_ERROR_OVR       = 0x04,  /*!< OVR error                         */
 
  HAL_SPI_ERROR_FRE       = 0x08,  /*!< FRE error                         */
 
  HAL_SPI_ERROR_DMA       = 0x10,  /*!< DMA transfer error                */
 
  HAL_SPI_ERROR_FLAG      = 0x20,  /*!< Error on BSY/TXE/FTLVL/FRLVL Flag */  
 
  HAL_SPI_ERROR_UNKNOW    = 0x40,  /*!< Unknow Error error                */   
 
}HAL_SPI_ErrorTypeDef;
 
 
/** 
 
  * @brief  SPI handle Structure definition  
 
  */ 
 
typedef struct __SPI_HandleTypeDef
 
{
 
  SPI_TypeDef             *Instance;           /* SPI registers base address     */
 
  
 
  SPI_InitTypeDef              Init;           /* SPI communication parameters   */
 
  
 
  uint8_t               *pTxBuffPtr;           /* Pointer to SPI Tx transfer Buffer */
 
  
 
  uint16_t               TxXferSize;           /* SPI Tx Transfer size */
 
  
 
  uint16_t               TxXferCount;          /* SPI Tx Transfer Counter */
 
 
  uint8_t               *pRxBuffPtr;           /* Pointer to SPI Rx transfer Buffer */
 
  
 
  uint16_t                RxXferSize;          /* SPI Rx Transfer size */
 
  
 
  uint16_t               RxXferCount;          /* SPI Rx Transfer Counter */
 
  
 
  uint32_t                   CRCSize;          /* SPI CRC size used for the transfer */
 
 
  void (*RxISR)(struct __SPI_HandleTypeDef *hspi); /* function pointer on Rx IRQ handler   */
 
  
 
  void (*TxISR)(struct __SPI_HandleTypeDef *hspi); /* function pointer on Tx IRQ handler   */
 
 
  DMA_HandleTypeDef          *hdmatx;          /* SPI Tx DMA Handle parameters   */
 
 
  DMA_HandleTypeDef          *hdmarx;          /* SPI Rx DMA Handle parameters   */
 
  
 
  HAL_LockTypeDef               Lock;          /* Locking object                 */
 
 
  HAL_SPI_StateTypeDef         State;          /* SPI communication state        */
 
  
 
  HAL_SPI_ErrorTypeDef     ErrorCode;         /* SPI Error code                 */
 
 
}SPI_HandleTypeDef;
 
 
/**
 
  * @}
 
  */ 
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup SPI_Exported_Constants SPI Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup SPI_mode SPI mode
 
  * @{
 
  */  
 
 
#define SPI_MODE_SLAVE                  ((uint32_t)0x00000000)
 
#define SPI_MODE_MASTER                 (SPI_CR1_MSTR | SPI_CR1_SSI)
 
#define IS_SPI_MODE(MODE) (((MODE) == SPI_MODE_SLAVE) || \
 
                           ((MODE) == SPI_MODE_MASTER))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_Direction SPI Direction
 
  * @{
 
  */
 
#define SPI_DIRECTION_2LINES             ((uint32_t)0x00000000)
 
#define SPI_DIRECTION_2LINES_RXONLY      SPI_CR1_RXONLY
 
#define SPI_DIRECTION_1LINE              SPI_CR1_BIDIMODE
 
   
 
#define IS_SPI_DIRECTION(MODE)   (((MODE) == SPI_DIRECTION_2LINES) || \
 
                                  ((MODE) == SPI_DIRECTION_2LINES_RXONLY) ||\
 
                                  ((MODE) == SPI_DIRECTION_1LINE))
 
 
#define IS_SPI_DIRECTION_2LINES(MODE) ((MODE) == SPI_DIRECTION_2LINES)    
 
 
#define IS_SPI_DIRECTION_2LINES_OR_1LINE(MODE) (((MODE) == SPI_DIRECTION_2LINES)|| \
 
                                                 ((MODE) == SPI_DIRECTION_1LINE))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup SPI_data_size SPI data size
 
  * @{
 
  */
 
 
#define SPI_DATASIZE_4BIT                 ((uint16_t)0x0300)
 
#define SPI_DATASIZE_5BIT                 ((uint16_t)0x0400)
 
#define SPI_DATASIZE_6BIT                 ((uint16_t)0x0500)
 
#define SPI_DATASIZE_7BIT                 ((uint16_t)0x0600)
 
#define SPI_DATASIZE_8BIT                 ((uint16_t)0x0700)
 
#define SPI_DATASIZE_9BIT                 ((uint16_t)0x0800)
 
#define SPI_DATASIZE_10BIT                ((uint16_t)0x0900)
 
#define SPI_DATASIZE_11BIT                ((uint16_t)0x0A00)
 
#define SPI_DATASIZE_12BIT                ((uint16_t)0x0B00)
 
#define SPI_DATASIZE_13BIT                ((uint16_t)0x0C00)
 
#define SPI_DATASIZE_14BIT                ((uint16_t)0x0D00)
 
#define SPI_DATASIZE_15BIT                ((uint16_t)0x0E00)
 
#define SPI_DATASIZE_16BIT                ((uint16_t)0x0F00)
 
#define IS_SPI_DATASIZE(DATASIZE) (((DATASIZE) == SPI_DATASIZE_16BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_15BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_14BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_13BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_12BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_11BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_10BIT) || \
 
                                   ((DATASIZE) == SPI_DATASIZE_9BIT)  || \
 
                                   ((DATASIZE) == SPI_DATASIZE_8BIT)  || \
 
                                   ((DATASIZE) == SPI_DATASIZE_7BIT)  || \
 
                                   ((DATASIZE) == SPI_DATASIZE_6BIT)  || \
 
                                   ((DATASIZE) == SPI_DATASIZE_5BIT)  || \
 
                                   ((DATASIZE) == SPI_DATASIZE_4BIT))
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SPI_Clock_Polarity SPI Clock Polarity
 
  * @{
 
  */ 
 
 
#define SPI_POLARITY_LOW                ((uint32_t)0x00000000)
 
#define SPI_POLARITY_HIGH               SPI_CR1_CPOL
 
#define IS_SPI_CPOL(CPOL) (((CPOL) == SPI_POLARITY_LOW) || \
 
                           ((CPOL) == SPI_POLARITY_HIGH))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_Clock_Phase SPI Clock Phase
 
  * @{
 
  */
 
 
#define SPI_PHASE_1EDGE                 ((uint32_t)0x00000000)
 
#define SPI_PHASE_2EDGE                 SPI_CR1_CPHA
 
#define IS_SPI_CPHA(CPHA) (((CPHA) == SPI_PHASE_1EDGE) || \
 
                           ((CPHA) == SPI_PHASE_2EDGE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_Slave_Select_management SPI Slave Select management
 
  * @{
 
  */ 
 
 
#define SPI_NSS_SOFT                    SPI_CR1_SSM
 
#define SPI_NSS_HARD_INPUT              ((uint32_t)0x00000000)
 
#define SPI_NSS_HARD_OUTPUT             ((uint32_t)0x00040000)
 
#define IS_SPI_NSS(NSS) (((NSS) == SPI_NSS_SOFT) || \
 
                         ((NSS) == SPI_NSS_HARD_INPUT) || \
 
                         ((NSS) == SPI_NSS_HARD_OUTPUT))
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup SPI_NSS_pulse_management SPI NSS pulse management
 
  * @{
 
  */ 
 
#define SPI_NSS_PULSE_ENABLED           SPI_CR2_NSSP
 
#define SPI_NSS_PULSE_DISABLED          ((uint32_t)0x00000000)
 
   
 
#define IS_SPI_NSSP(NSSP) (((NSSP) == SPI_NSS_PULSE_ENABLED) || \
 
                           ((NSSP) == SPI_NSS_PULSE_DISABLED))                  
 
 
/**
 
  * @}
 
  */
 
 
   
 
/** @defgroup SPI_BaudRate_Prescaler SPI BaudRate Prescaler
 
  * @{
 
  */
 
 
#define SPI_BAUDRATEPRESCALER_2         ((uint32_t)0x00000000)
 
#define SPI_BAUDRATEPRESCALER_4         ((uint32_t)0x00000008)
 
#define SPI_BAUDRATEPRESCALER_8         ((uint32_t)0x00000010)
 
#define SPI_BAUDRATEPRESCALER_16        ((uint32_t)0x00000018)
 
#define SPI_BAUDRATEPRESCALER_32        ((uint32_t)0x00000020)
 
#define SPI_BAUDRATEPRESCALER_64        ((uint32_t)0x00000028)
 
#define SPI_BAUDRATEPRESCALER_128       ((uint32_t)0x00000030)
 
#define SPI_BAUDRATEPRESCALER_256       ((uint32_t)0x00000038)
 
#define IS_SPI_BAUDRATE_PRESCALER(PRESCALER) (((PRESCALER) == SPI_BAUDRATEPRESCALER_2) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_4) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_8) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_16) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_32) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_64) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_128) || \
 
                                              ((PRESCALER) == SPI_BAUDRATEPRESCALER_256))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SPI_MSB_LSB_transmission SPI MSB LSB transmission
 
  * @{
 
  */ 
 
 
#define SPI_FIRSTBIT_MSB                ((uint32_t)0x00000000)
 
#define SPI_FIRSTBIT_LSB                SPI_CR1_LSBFIRST
 
#define IS_SPI_FIRST_BIT(BIT) (((BIT) == SPI_FIRSTBIT_MSB) || \
 
                               ((BIT) == SPI_FIRSTBIT_LSB))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_TI_mode SPI TI mode
 
  * @{
 
  */
 
 
#define SPI_TIMODE_DISABLED             ((uint32_t)0x00000000)
 
#define SPI_TIMODE_ENABLED              SPI_CR2_FRF
 
#define IS_SPI_TIMODE(MODE) (((MODE) == SPI_TIMODE_DISABLED) || \
 
                             ((MODE) == SPI_TIMODE_ENABLED))
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup SPI_CRC_Calculation SPI CRC Calculation
 
  * @{
 
  */
 
 
#define SPI_CRCCALCULATION_DISABLED     ((uint32_t)0x00000000)
 
#define SPI_CRCCALCULATION_ENABLED      SPI_CR1_CRCEN
 
#define IS_SPI_CRC_CALCULATION(CALCULATION) (((CALCULATION) == SPI_CRCCALCULATION_DISABLED) || \
 
                                             ((CALCULATION) == SPI_CRCCALCULATION_ENABLED))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_CRC_length SPI CRC length
 
  * @{
 
  * This parameter can be one of the following values:
 
  *     SPI_CRC_LENGTH_DATASIZE: aligned with the data size 
 
  *     SPI_CRC_LENGTH_8BIT    : CRC 8bit
 
  *     SPI_CRC_LENGTH_16BIT   : CRC 16bit  
 
  */
 
#define SPI_CRC_LENGTH_DATASIZE 0
 
#define SPI_CRC_LENGTH_8BIT     1
 
#define SPI_CRC_LENGTH_16BIT    2   
 
#define IS_SPI_CRC_LENGTH(LENGTH) (((LENGTH) == SPI_CRC_LENGTH_DATASIZE) ||\
 
                                   ((LENGTH) == SPI_CRC_LENGTH_8BIT)  ||   \
 
                                   ((LENGTH) == SPI_CRC_LENGTH_16BIT))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup SPI_FIFO_reception_threshold SPI FIFO reception threshold
 
  * @{
 
  * This parameter can be one of the following values:
 
  *     SPI_RxFIFOThreshold_HF: RXNE event is generated if the FIFO 
 
  *          level is greater or equal to 1/2(16-bits). 
 
  *     SPI_RxFIFOThreshold_QF: RXNE event is generated if the FIFO 
 
  *          level is greater or equal to 1/4(8 bits). 
 
  */
 
#define SPI_RXFIFO_THRESHOLD      SPI_CR2_FRXTH
 
#define SPI_RXFIFO_THRESHOLD_QF   SPI_CR2_FRXTH
 
#define SPI_RXFIFO_THRESHOLD_HF   ((uint32_t)0x0)
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_Interrupt_configuration_definition SPI Interrupt configuration definition
 
  * @brief SPI Interrupt definition
 
  *        Elements values convention: 0xXXXXXXXX
 
  *           - XXXXXXXX  : Interrupt control mask
 
 * @{
 
 */
 
#define SPI_IT_TXE                      SPI_CR2_TXEIE
 
#define SPI_IT_RXNE                     SPI_CR2_RXNEIE
 
#define SPI_IT_ERR                      SPI_CR2_ERRIE
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup SPI_Flag_definition SPI Flag definition
 
  * @brief Flag definition
 
  *        Elements values convention: 0xXXXXYYYY
 
  *           - XXXX  : Flag register Index
 
  *           - YYYY  : Flag mask
 
  * @{  
 
  */ 
 
#define SPI_FLAG_RXNE                   SPI_SR_RXNE   /* SPI status flag: Rx buffer not empty flag */
 
#define SPI_FLAG_TXE                    SPI_SR_TXE    /* SPI status flag: Tx buffer empty flag */
 
#define SPI_FLAG_BSY                    SPI_SR_BSY    /* SPI status flag: Busy flag */
 
#define SPI_FLAG_CRCERR                 SPI_SR_CRCERR /* SPI Error flag: CRC error flag */
 
#define SPI_FLAG_MODF                   SPI_SR_MODF   /* SPI Error flag: Mode fault flag */
 
#define SPI_FLAG_OVR                    SPI_SR_OVR    /* SPI Error flag: Overrun flag */
 
#define SPI_FLAG_FRE                    SPI_SR_FRE    /* SPI Error flag: TI mode frame format error flag */
 
#define SPI_FLAG_FTLVL                  SPI_SR_FTLVL  /* SPI fifo transmission level */
 
#define SPI_FLAG_FRLVL                  SPI_SR_FRLVL  /* SPI fifo reception level */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_transmission_fifo_status_level SPI transmission fifo status level
 
  * @{
 
  */ 
 
 
#define SPI_FTLVL_EMPTY           ((uint16_t)0x0000)
 
#define SPI_FTLVL_QUARTER_FULL    ((uint16_t)0x0800) 
 
#define SPI_FTLVL_HALF_FULL       ((uint16_t)0x1000) 
 
#define SPI_FTLVL_FULL            ((uint16_t)0x1800)
 
  
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SPI_reception_fifo_status_level SPI reception fifo status level
 
  * @{
 
  */ 
 
#define SPI_FRLVL_EMPTY           ((uint16_t)0x0000)
 
#define SPI_FRLVL_QUARTER_FULL    ((uint16_t)0x0200) 
 
#define SPI_FRLVL_HALF_FULL       ((uint16_t)0x0400) 
 
#define SPI_FRLVL_FULL            ((uint16_t)0x0600)   
 
   
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
 
/* Exported macros ------------------------------------------------------------*/
 
/** @defgroup SPI_Exported_Macros SPI Exported Macros
 
  * @{
 
  */
 
  
 
/** @brief  Reset SPI handle state
 
  * @param  __HANDLE__: SPI handle.
 
  * @retval None
 
  */
 
#define __HAL_SPI_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SPI_STATE_RESET)
 
 
/** @brief  Enables or disables the specified SPI interrupts.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @param  __INTERRUPT__: specifies the interrupt source to enable or disable.
 
  *        This parameter can be one of the following values:
 
  *            @arg SPI_IT_TXE: Tx buffer empty interrupt enable
 
  *            @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
 
  *            @arg SPI_IT_ERR: Error interrupt enable
 
  * @retval None
 
  */
 
  
 
#define __HAL_SPI_ENABLE_IT(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->CR2 |= (__INTERRUPT__))
 
#define __HAL_SPI_DISABLE_IT(__HANDLE__, __INTERRUPT__)  ((__HANDLE__)->Instance->CR2 &= (uint16_t)(~(__INTERRUPT__)))
 
 
 
/** @brief  Checks if the specified SPI interrupt source is enabled or disabled.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @param  __INTERRUPT__: specifies the SPI interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg SPI_IT_TXE: Tx buffer empty interrupt enable
 
  *            @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
 
  *            @arg SPI_IT_ERR: Error interrupt enable
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_SPI_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/** @brief  Checks whether the specified SPI flag is set or not.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg SPI_FLAG_RXNE: Receive buffer not empty flag
 
  *            @arg SPI_FLAG_TXE: Transmit buffer empty flag
 
  *            @arg SPI_FLAG_CRCERR: CRC error flag
 
  *            @arg SPI_FLAG_MODF: Mode fault flag
 
  *            @arg SPI_FLAG_OVR: Overrun flag
 
  *            @arg SPI_FLAG_BSY: Busy flag
 
  *            @arg SPI_FLAG_FRE: Frame format error flag  
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_SPI_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
 
 
/** @brief  Clears the SPI CRCERR pending flag.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @retval None
 
  */
 
#define __HAL_SPI_CLEAR_CRCERRFLAG(__HANDLE__) ((__HANDLE__)->Instance->SR = (uint16_t)(~SPI_FLAG_CRCERR))
 
                                                  
 
/** @brief  Clears the SPI MODF pending flag.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  *   
 
  * @retval None
 
  */                                                                                                   
 
#define __HAL_SPI_CLEAR_MODFFLAG(__HANDLE__) do{(__HANDLE__)->Instance->SR;\
 
                                                (__HANDLE__)->Instance->CR1 &= (uint16_t)(~SPI_CR1_SPE);}while(0) 
 
 
/** @brief  Clears the SPI OVR pending flag.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  *   
 
  * @retval None
 
  */                                                                                                   
 
#define __HAL_SPI_CLEAR_OVRFLAG(__HANDLE__) do{(__HANDLE__)->Instance->DR;\
 
                                               (__HANDLE__)->Instance->SR;}while(0) 
 
                                                  
 
/** @brief  Clears the SPI FRE pending flag.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  *   
 
  * @retval None
 
  */                                                                                                   
 
#define __HAL_SPI_CLEAR_FREFLAG(__HANDLE__) ((__HANDLE__)->Instance->SR)                                           
 
 
/** @brief  Enables the SPI.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @retval None
 
  */
 
#define __HAL_SPI_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |=  SPI_CR1_SPE)
 
 
/** @brief  Disables the SPI.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @retval None
 
  */
 
#define __HAL_SPI_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= (uint16_t)(~SPI_CR1_SPE))
 
 
/** @brief  Sets the SPI transmit-only mode.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @retval None
 
  */
 
#define __HAL_SPI_1LINE_TX(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= SPI_CR1_BIDIOE)
 
                                                 
 
/** @brief  Sets the SPI receive-only mode.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @retval None
 
  */
 
#define __HAL_SPI_1LINE_RX(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= (uint16_t)(~SPI_CR1_BIDIOE))                                                 
 
                                                 
 
/** @brief  Resets the CRC calculation of the SPI.
 
  * @param  __HANDLE__: specifies the SPI Handle.
 
  *         This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
 
  * @retval None
 
  */
 
#define __HAL_SPI_RESET_CRC(__HANDLE__) do{(__HANDLE__)->Instance->CR1 &= (uint16_t)(~SPI_CR1_CRCEN);\
 
                                           (__HANDLE__)->Instance->CR1 |= SPI_CR1_CRCEN;}while(0)       
 
 
 
#define IS_SPI_CRC_POLYNOMIAL(POLYNOMIAL) (((POLYNOMIAL) >= 0x1) && ((POLYNOMIAL) <= 0xFFFF))
 
/**
 
  * @}
 
  */
 
  
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup SPI_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup SPI_Exported_Functions_Group1 
 
  * @{
 
  */
 
  
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi);
 
HAL_StatusTypeDef HAL_SPI_InitExtended(SPI_HandleTypeDef *hspi);
 
HAL_StatusTypeDef HAL_SPI_DeInit (SPI_HandleTypeDef *hspi);
 
void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi);
 
void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup SPI_Exported_Functions_Group2
 
  * @{
 
  */
 
     
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size);
 
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi);
 
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi);
 
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi);
 
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi);
 
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup SPI_Exported_Functions_Group3
 
  * @{
 
  */
 
    
 
/* Peripheral State and Error functions ***************************************/
 
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
    
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_SPI_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_tim.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_tim.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of TIM HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_TIM_H
 
#define __STM32F0xx_HAL_TIM_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup TIM
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup TIM_Exported_Types TIM Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  TIM Time base Configuration Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
 
                                   This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
 
 
  uint32_t CounterMode;       /*!< Specifies the counter mode.
 
                                   This parameter can be a value of @ref TIM_Counter_Mode */
 
 
  uint32_t Period;            /*!< Specifies the period value to be loaded into the active
 
                                   Auto-Reload Register at the next update event.
 
                                   This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.  */ 
 
 
  uint32_t ClockDivision;     /*!< Specifies the clock division.
 
                                   This parameter can be a value of @ref TIM_ClockDivision */
 
 
  uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
 
                                    reaches zero, an update event is generated and counting restarts
 
                                    from the RCR value (N).
 
                                    This means in PWM mode that (N+1) corresponds to:
 
                                        - the number of PWM periods in edge-aligned mode
 
                                        - the number of half PWM period in center-aligned mode
 
                                     This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF. 
 
                                     @note This parameter is valid only for TIM1 and TIM8. */
 
} TIM_Base_InitTypeDef;
 
 
/** 
 
  * @brief  TIM Output Compare Configuration Structure definition  
 
  */
 
typedef struct
 
{                                 
 
  uint32_t OCMode;        /*!< Specifies the TIM mode.
 
                               This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
 
 
  uint32_t Pulse;         /*!< Specifies the pulse value to be loaded into the Capture Compare Register. 
 
                               This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */                          
 
 
  uint32_t OCPolarity;    /*!< Specifies the output polarity.
 
                               This parameter can be a value of @ref TIM_Output_Compare_Polarity */
 
 
  uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
 
                               This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
 
                               @note This parameter is valid only for TIM1 and TIM8. */
 
  
 
  uint32_t OCFastMode;   /*!< Specifies the Fast mode state.
 
                               This parameter can be a value of @ref TIM_Output_Fast_State
 
                               @note This parameter is valid only in PWM1 and PWM2 mode. */
 
 
 
  uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
 
                               This parameter can be a value of @ref TIM_Output_Compare_Idle_State
 
                               @note This parameter is valid only for TIM1 and TIM8. */
 
 
  uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
 
                               This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
 
                               @note This parameter is valid only for TIM1 and TIM8. */
 
} TIM_OC_InitTypeDef;  
 
 
/** 
 
  * @brief  TIM One Pulse Mode Configuration Structure definition  
 
  */
 
typedef struct
 
{                               
 
  uint32_t OCMode;        /*!< Specifies the TIM mode.
 
                               This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
 
 
  uint32_t Pulse;         /*!< Specifies the pulse value to be loaded into the Capture Compare Register. 
 
                               This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */                          
 
 
  uint32_t OCPolarity;    /*!< Specifies the output polarity.
 
                               This parameter can be a value of @ref TIM_Output_Compare_Polarity */
 
 
  uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
 
                               This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
 
                               @note This parameter is valid only for TIM1 and TIM8. */
 
 
  uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
 
                               This parameter can be a value of @ref TIM_Output_Compare_Idle_State
 
                               @note This parameter is valid only for TIM1 and TIM8. */
 
 
  uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
 
                               This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
 
                               @note This parameter is valid only for TIM1 and TIM8. */
 
 
  uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Polarity */
 
 
  uint32_t ICSelection;   /*!< Specifies the input.
 
                              This parameter can be a value of @ref TIM_Input_Capture_Selection */
 
 
  uint32_t ICFilter;      /*!< Specifies the input capture filter.
 
                              This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */  
 
} TIM_OnePulse_InitTypeDef;  
 
 
 
/** 
 
  * @brief  TIM Input Capture Configuration Structure definition  
 
  */
 
typedef struct
 
{                                  
 
  uint32_t  ICPolarity;   /*!< Specifies the active edge of the input signal.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Polarity */
 
 
  uint32_t ICSelection;  /*!< Specifies the input.
 
                              This parameter can be a value of @ref TIM_Input_Capture_Selection */
 
 
  uint32_t ICPrescaler;  /*!< Specifies the Input Capture Prescaler.
 
                              This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
 
 
  uint32_t ICFilter;     /*!< Specifies the input capture filter.
 
                              This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
 
} TIM_IC_InitTypeDef;
 
 
/** 
 
  * @brief  TIM Encoder Configuration Structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t EncoderMode;   /*!< Specifies the active edge of the input signal.
 
                               This parameter can be a value of @ref TIM_Encoder_Mode */
 
                                  
 
  uint32_t IC1Polarity;   /*!< Specifies the active edge of the input signal.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Polarity */
 
 
  uint32_t IC1Selection;  /*!< Specifies the input.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Selection */
 
 
  uint32_t IC1Prescaler;  /*!< Specifies the Input Capture Prescaler.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
 
 
  uint32_t IC1Filter;     /*!< Specifies the input capture filter.
 
                               This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
 
                                  
 
  uint32_t IC2Polarity;   /*!< Specifies the active edge of the input signal.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Polarity */
 
 
  uint32_t IC2Selection;  /*!< Specifies the input.
 
                              This parameter can be a value of @ref TIM_Input_Capture_Selection */
 
 
  uint32_t IC2Prescaler;  /*!< Specifies the Input Capture Prescaler.
 
                               This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
 
 
  uint32_t IC2Filter;     /*!< Specifies the input capture filter.
 
                               This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */                                 
 
} TIM_Encoder_InitTypeDef;
 
 
 
/** 
 
  * @brief  Clock Configuration Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t ClockSource;     /*!< TIM clock sources 
 
                                 This parameter can be a value of @ref TIM_Clock_Source */ 
 
  uint32_t ClockPolarity;   /*!< TIM clock polarity 
 
                                 This parameter can be a value of @ref TIM_Clock_Polarity */
 
  uint32_t ClockPrescaler;  /*!< TIM clock prescaler 
 
                                 This parameter can be a value of @ref TIM_Clock_Prescaler */
 
  uint32_t ClockFilter;    /*!< TIM clock filter 
 
                                This parameter can be a value of @ref TIM_Clock_Filter */                                   
 
}TIM_ClockConfigTypeDef;
 
 
/** 
 
  * @brief  Clear Input Configuration Handle Structure definition  
 
  */ 
 
typedef struct
 
{  
 
  uint32_t ClearInputState;      /*!< TIM clear Input state 
 
                                      This parameter can be ENABLE or DISABLE */  
 
  uint32_t ClearInputSource;     /*!< TIM clear Input sources 
 
                                      This parameter can be a value of @ref TIM_ClearInput_Source */ 
 
  uint32_t ClearInputPolarity;   /*!< TIM Clear Input polarity 
 
                                      This parameter can be a value of @ref TIM_ClearInput_Polarity */
 
  uint32_t ClearInputPrescaler;  /*!< TIM Clear Input prescaler 
 
                                      This parameter can be a value of @ref TIM_ClearInput_Prescaler */
 
  uint32_t ClearInputFilter;    /*!< TIM Clear Input filter 
 
                                     This parameter can be a value of @ref TIM_ClearInput_Filter */ 
 
}TIM_ClearInputConfigTypeDef;
 
 
/** 
 
  * @brief  TIM Slave configuration Structure definition  
 
  */ 
 
typedef struct {
 
  uint32_t  SlaveMode;      /*!< Slave mode selection 
 
                               This parameter can be a value of @ref TIM_Slave_Mode */ 
 
  uint32_t  InputTrigger;      /*!< Input Trigger source 
 
                                  This parameter can be a value of @ref TIM_Trigger_Selection */
 
  uint32_t  TriggerPolarity;   /*!< Input Trigger polarity 
 
                                  This parameter can be a value of @ref TIM_Trigger_Polarity */
 
  uint32_t  TriggerPrescaler;  /*!< Input trigger prescaler 
 
                                  This parameter can be a value of @ref TIM_Trigger_Prescaler */
 
  uint32_t  TriggerFilter;     /*!< Input trigger filter 
 
                                  This parameter can be a value of @ref TIM_Trigger_Filter */  
 
 
}TIM_SlaveConfigTypeDef;
 
 
/** 
 
  * @brief  HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_TIM_STATE_RESET             = 0x00,    /*!< Peripheral not yet initialized or disabled  */
 
  HAL_TIM_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use    */
 
  HAL_TIM_STATE_BUSY              = 0x02,    /*!< An internal process is ongoing              */    
 
  HAL_TIM_STATE_TIMEOUT           = 0x03,    /*!< Timeout state                               */  
 
  HAL_TIM_STATE_ERROR             = 0x04     /*!< Reception process is ongoing                */                                                                             
 
}HAL_TIM_StateTypeDef;
 
 
/** 
 
  * @brief  HAL Active channel structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_TIM_ACTIVE_CHANNEL_1        = 0x01,    /*!< The active channel is 1     */
 
  HAL_TIM_ACTIVE_CHANNEL_2        = 0x02,    /*!< The active channel is 2     */
 
  HAL_TIM_ACTIVE_CHANNEL_3        = 0x04,    /*!< The active channel is 3     */   
 
  HAL_TIM_ACTIVE_CHANNEL_4        = 0x08,    /*!< The active channel is 4     */
 
  HAL_TIM_ACTIVE_CHANNEL_CLEARED  = 0x00    /*!< All active channels cleared */    
 
}HAL_TIM_ActiveChannel;
 
 
/** 
 
  * @brief  TIM Time Base Handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  TIM_TypeDef              *Instance;     /*!< Register base address             */ 
 
  TIM_Base_InitTypeDef     Init;          /*!< TIM Time Base required parameters */
 
  HAL_TIM_ActiveChannel    Channel;       /*!< Active channel                    */ 
 
  DMA_HandleTypeDef        *hdma[7];      /*!< DMA Handlers array
 
                                             This array is accessed by a @ref DMA_Handle_index */
 
  HAL_LockTypeDef          Lock;          /*!< Locking object                    */
 
  __IO HAL_TIM_StateTypeDef   State;         /*!< TIM operation state               */  
 
}TIM_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup TIM_Exported_Constants TIM Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel polarity
 
  * @{
 
  */
 
#define  TIM_INPUTCHANNELPOLARITY_RISING      ((uint32_t)0x00000000)            /*!< Polarity for TIx source */
 
#define  TIM_INPUTCHANNELPOLARITY_FALLING     (TIM_CCER_CC1P)                   /*!< Polarity for TIx source */
 
#define  TIM_INPUTCHANNELPOLARITY_BOTHEDGE    (TIM_CCER_CC1P | TIM_CCER_CC1NP)  /*!< Polarity for TIx source */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_ETR_Polarity TIM ETR Polarity
 
  * @{
 
  */
 
#define TIM_ETRPOLARITY_INVERTED              (TIM_SMCR_ETP)                    /*!< Polarity for ETR source */ 
 
#define TIM_ETRPOLARITY_NONINVERTED           ((uint32_t)0x0000)                /*!< Polarity for ETR source */ 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler
 
  * @{
 
  */
 
#define TIM_ETRPRESCALER_DIV1                 ((uint32_t)0x0000)                /*!< No prescaler is used */
 
#define TIM_ETRPRESCALER_DIV2                 (TIM_SMCR_ETPS_0)                 /*!< ETR input source is divided by 2 */
 
#define TIM_ETRPRESCALER_DIV4                 (TIM_SMCR_ETPS_1)                 /*!< ETR input source is divided by 4 */
 
#define TIM_ETRPRESCALER_DIV8                 (TIM_SMCR_ETPS)                   /*!< ETR input source is divided by 8 */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Counter_Mode TIM Counter Mode
 
  * @{
 
  */
 
 
#define TIM_COUNTERMODE_UP                 ((uint32_t)0x0000)
 
#define TIM_COUNTERMODE_DOWN               TIM_CR1_DIR
 
#define TIM_COUNTERMODE_CENTERALIGNED1     TIM_CR1_CMS_0
 
#define TIM_COUNTERMODE_CENTERALIGNED2     TIM_CR1_CMS_1
 
#define TIM_COUNTERMODE_CENTERALIGNED3     TIM_CR1_CMS
 
 
#define IS_TIM_COUNTER_MODE(MODE) (((MODE) == TIM_COUNTERMODE_UP)              || \
 
                                   ((MODE) == TIM_COUNTERMODE_DOWN)            || \
 
                                   ((MODE) == TIM_COUNTERMODE_CENTERALIGNED1)  || \
 
                                   ((MODE) == TIM_COUNTERMODE_CENTERALIGNED2)  || \
 
                                   ((MODE) == TIM_COUNTERMODE_CENTERALIGNED3))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TIM_ClockDivision TIM Clock Division
 
  * @{
 
  */
 
 
#define TIM_CLOCKDIVISION_DIV1                       ((uint32_t)0x0000)
 
#define TIM_CLOCKDIVISION_DIV2                       (TIM_CR1_CKD_0)
 
#define TIM_CLOCKDIVISION_DIV4                       (TIM_CR1_CKD_1)
 
 
#define IS_TIM_CLOCKDIVISION_DIV(DIV) (((DIV) == TIM_CLOCKDIVISION_DIV1) || \
 
                                       ((DIV) == TIM_CLOCKDIVISION_DIV2) || \
 
                                       ((DIV) == TIM_CLOCKDIVISION_DIV4))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare & PWM modes
 
  * @{
 
  */
 
 
#define TIM_OCMODE_TIMING                   ((uint32_t)0x0000)
 
#define TIM_OCMODE_ACTIVE                   (TIM_CCMR1_OC1M_0)
 
#define TIM_OCMODE_INACTIVE                 (TIM_CCMR1_OC1M_1)
 
#define TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1)
 
#define TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2)
 
#define TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M)
 
#define TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2)
 
#define TIM_OCMODE_FORCED_INACTIVE          (TIM_CCMR1_OC1M_2)
 
 
#define IS_TIM_PWM_MODE(MODE) (((MODE) == TIM_OCMODE_PWM1) || \
 
                               ((MODE) == TIM_OCMODE_PWM2))
 
                              
 
#define IS_TIM_OC_MODE(MODE) (((MODE) == TIM_OCMODE_TIMING)       || \
 
                          ((MODE) == TIM_OCMODE_ACTIVE)           || \
 
                          ((MODE) == TIM_OCMODE_INACTIVE)         || \
 
                          ((MODE) == TIM_OCMODE_TOGGLE)           || \
 
                          ((MODE) == TIM_OCMODE_FORCED_ACTIVE)    || \
 
                          ((MODE) == TIM_OCMODE_FORCED_INACTIVE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Output_Compare_State TIM Output Compare State
 
  * @{
 
  */
 
 
#define TIM_OUTPUTSTATE_DISABLE            ((uint32_t)0x0000)
 
#define TIM_OUTPUTSTATE_ENABLE             (TIM_CCER_CC1E)
 
 
#define IS_TIM_OUTPUT_STATE(STATE) (((STATE) == TIM_OUTPUTSTATE_DISABLE) || \
 
                                    ((STATE) == TIM_OUTPUTSTATE_ENABLE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Output_Fast_State TIM Output Fast State
 
  * @{
 
  */
 
#define TIM_OCFAST_DISABLE                ((uint32_t)0x0000)
 
#define TIM_OCFAST_ENABLE                 (TIM_CCMR1_OC1FE)
 
 
#define IS_TIM_FAST_STATE(STATE) (((STATE) == TIM_OCFAST_DISABLE) || \
 
                                  ((STATE) == TIM_OCFAST_ENABLE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State
 
  * @{
 
  */
 
 
#define TIM_OUTPUTNSTATE_DISABLE            ((uint32_t)0x0000)
 
#define TIM_OUTPUTNSTATE_ENABLE             (TIM_CCER_CC1NE)
 
 
#define IS_TIM_OUTPUTN_STATE(STATE) (((STATE) == TIM_OUTPUTNSTATE_DISABLE) || \
 
                                     ((STATE) == TIM_OUTPUTNSTATE_ENABLE))
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity
 
  * @{
 
  */
 
 
#define TIM_OCPOLARITY_HIGH                ((uint32_t)0x0000)
 
#define TIM_OCPOLARITY_LOW                 (TIM_CCER_CC1P)
 
 
#define IS_TIM_OC_POLARITY(POLARITY) (((POLARITY) == TIM_OCPOLARITY_HIGH) || \
 
                                      ((POLARITY) == TIM_OCPOLARITY_LOW))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity
 
  * @{
 
  */  
 
  
 
#define TIM_OCNPOLARITY_HIGH               ((uint32_t)0x0000)
 
#define TIM_OCNPOLARITY_LOW                (TIM_CCER_CC1NP)
 
 
#define IS_TIM_OCN_POLARITY(POLARITY) (((POLARITY) == TIM_OCNPOLARITY_HIGH) || \
 
                                       ((POLARITY) == TIM_OCNPOLARITY_LOW))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State
 
  * @{
 
  */
 
 
#define TIM_OCIDLESTATE_SET                (TIM_CR2_OIS1)
 
#define TIM_OCIDLESTATE_RESET              ((uint32_t)0x0000)
 
#define IS_TIM_OCIDLE_STATE(STATE) (((STATE) == TIM_OCIDLESTATE_SET) || \
 
                                    ((STATE) == TIM_OCIDLESTATE_RESET))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State
 
  * @{
 
  */
 
 
#define TIM_OCNIDLESTATE_SET               (TIM_CR2_OIS1N)
 
#define TIM_OCNIDLESTATE_RESET             ((uint32_t)0x0000)
 
#define IS_TIM_OCNIDLE_STATE(STATE) (((STATE) == TIM_OCNIDLESTATE_SET) || \
 
                                     ((STATE) == TIM_OCNIDLESTATE_RESET))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Channel TIM Channel
 
  * @{
 
  */
 
#define TIM_CHANNEL_1                      ((uint32_t)0x0000)
 
#define TIM_CHANNEL_2                      ((uint32_t)0x0004)
 
#define TIM_CHANNEL_3                      ((uint32_t)0x0008)
 
#define TIM_CHANNEL_4                      ((uint32_t)0x000C)
 
#define TIM_CHANNEL_ALL                    ((uint32_t)0x0018)
 
                                 
 
#define IS_TIM_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || \
 
                                  ((CHANNEL) == TIM_CHANNEL_2) || \
 
                                  ((CHANNEL) == TIM_CHANNEL_3) || \
 
                                  ((CHANNEL) == TIM_CHANNEL_4) || \
 
                                  ((CHANNEL) == TIM_CHANNEL_ALL))
 
                                 
 
#define IS_TIM_PWMI_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || \
 
                                       ((CHANNEL) == TIM_CHANNEL_2))
 
 
#define IS_TIM_OPM_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || \
 
                                      ((CHANNEL) == TIM_CHANNEL_2))                                       
 
                                      
 
#define IS_TIM_COMPLEMENTARY_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || \
 
                                                ((CHANNEL) == TIM_CHANNEL_2) || \
 
                                                ((CHANNEL) == TIM_CHANNEL_3))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity
 
  * @{
 
  */
 
 
#define  TIM_ICPOLARITY_RISING             TIM_INPUTCHANNELPOLARITY_RISING
 
#define  TIM_ICPOLARITY_FALLING            TIM_INPUTCHANNELPOLARITY_FALLING
 
#define  TIM_ICPOLARITY_BOTHEDGE           TIM_INPUTCHANNELPOLARITY_BOTHEDGE
 
    
 
#define IS_TIM_IC_POLARITY(POLARITY) (((POLARITY) == TIM_ICPOLARITY_RISING)   || \
 
                                      ((POLARITY) == TIM_ICPOLARITY_FALLING)  || \
 
                                      ((POLARITY) == TIM_ICPOLARITY_BOTHEDGE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection
 
  * @{
 
  */
 
 
#define TIM_ICSELECTION_DIRECTTI           (TIM_CCMR1_CC1S_0)   /*!< TIM Input 1, 2, 3 or 4 is selected to be 
 
                                                                               connected to IC1, IC2, IC3 or IC4, respectively */
 
#define TIM_ICSELECTION_INDIRECTTI         (TIM_CCMR1_CC1S_1)   /*!< TIM Input 1, 2, 3 or 4 is selected to be
 
                                                                               connected to IC2, IC1, IC4 or IC3, respectively */
 
#define TIM_ICSELECTION_TRC                (TIM_CCMR1_CC1S)     /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */
 
 
#define IS_TIM_IC_SELECTION(SELECTION) (((SELECTION) == TIM_ICSELECTION_DIRECTTI) || \
 
                                        ((SELECTION) == TIM_ICSELECTION_INDIRECTTI) || \
 
                                        ((SELECTION) == TIM_ICSELECTION_TRC))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler
 
  * @{
 
  */
 
 
#define TIM_ICPSC_DIV1                     ((uint32_t)0x0000)                 /*!< Capture performed each time an edge is detected on the capture input */
 
#define TIM_ICPSC_DIV2                     (TIM_CCMR1_IC1PSC_0)     /*!< Capture performed once every 2 events */
 
#define TIM_ICPSC_DIV4                     (TIM_CCMR1_IC1PSC_1)     /*!< Capture performed once every 4 events */
 
#define TIM_ICPSC_DIV8                     (TIM_CCMR1_IC1PSC)       /*!< Capture performed once every 8 events */
 
 
#define IS_TIM_IC_PRESCALER(PRESCALER) (((PRESCALER) == TIM_ICPSC_DIV1) || \
 
                                        ((PRESCALER) == TIM_ICPSC_DIV2) || \
 
                                        ((PRESCALER) == TIM_ICPSC_DIV4) || \
 
                                        ((PRESCALER) == TIM_ICPSC_DIV8))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode
 
  * @{
 
  */
 
 
#define TIM_OPMODE_SINGLE                  (TIM_CR1_OPM)
 
#define TIM_OPMODE_REPETITIVE              ((uint32_t)0x0000)
 
 
#define IS_TIM_OPM_MODE(MODE) (((MODE) == TIM_OPMODE_SINGLE) || \
 
                               ((MODE) == TIM_OPMODE_REPETITIVE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Encoder_Mode TIM Encoder Mode
 
  * @{
 
  */ 
 
#define TIM_ENCODERMODE_TI1                (TIM_SMCR_SMS_0)
 
#define TIM_ENCODERMODE_TI2                (TIM_SMCR_SMS_1)
 
#define TIM_ENCODERMODE_TI12               (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)
 
 
#define IS_TIM_ENCODER_MODE(MODE) (((MODE) == TIM_ENCODERMODE_TI1) || \
 
                                   ((MODE) == TIM_ENCODERMODE_TI2) || \
 
                                   ((MODE) == TIM_ENCODERMODE_TI12))   
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Interrupt_definition TIM interrupt Definition
 
  * @{
 
  */ 
 
#define TIM_IT_UPDATE           (TIM_DIER_UIE)
 
#define TIM_IT_CC1              (TIM_DIER_CC1IE)
 
#define TIM_IT_CC2              (TIM_DIER_CC2IE)
 
#define TIM_IT_CC3              (TIM_DIER_CC3IE)
 
#define TIM_IT_CC4              (TIM_DIER_CC4IE)
 
#define TIM_IT_COM              (TIM_DIER_COMIE)
 
#define TIM_IT_TRIGGER          (TIM_DIER_TIE)
 
#define TIM_IT_BREAK            (TIM_DIER_BIE)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_COMMUTATION TIM Commutation
 
  * @{
 
  */
 
#define TIM_COMMUTATION_TRGI              (TIM_CR2_CCUS)
 
#define TIM_COMMUTATION_SOFTWARE          ((uint32_t)0x0000)
 
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_DMA_sources TIM DMA Sources
 
  * @{
 
  */
 
 
#define TIM_DMA_UPDATE                     (TIM_DIER_UDE)
 
#define TIM_DMA_CC1                        (TIM_DIER_CC1DE)
 
#define TIM_DMA_CC2                        (TIM_DIER_CC2DE)
 
#define TIM_DMA_CC3                        (TIM_DIER_CC3DE)
 
#define TIM_DMA_CC4                        (TIM_DIER_CC4DE)
 
#define TIM_DMA_COM                        (TIM_DIER_COMDE)
 
#define TIM_DMA_TRIGGER                    (TIM_DIER_TDE)
 
 
#define IS_TIM_DMA_SOURCE(SOURCE) ((((SOURCE) & 0xFFFF80FF) == 0x00000000) && ((SOURCE) != 0x00000000))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Event_Source TIM Event Source
 
  * @{
 
  */
 
#define TIM_EventSource_Update              TIM_EGR_UG  
 
#define TIM_EventSource_CC1                 TIM_EGR_CC1G
 
#define TIM_EventSource_CC2                 TIM_EGR_CC2G
 
#define TIM_EventSource_CC3                 TIM_EGR_CC3G
 
#define TIM_EventSource_CC4                 TIM_EGR_CC4G
 
#define TIM_EventSource_COM                 TIM_EGR_COMG
 
#define TIM_EventSource_Trigger             TIM_EGR_TG  
 
#define TIM_EventSource_Break               TIM_EGR_BG  
 
 
#define IS_TIM_EVENT_SOURCE(SOURCE) ((((SOURCE) & 0xFFFFFF00) == 0x00000000) && ((SOURCE) != 0x00000000))                                          
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Flag_definition TIM Flag Definition
 
  * @{
 
  */
 
 
#define TIM_FLAG_UPDATE                    (TIM_SR_UIF)
 
#define TIM_FLAG_CC1                       (TIM_SR_CC1IF)
 
#define TIM_FLAG_CC2                       (TIM_SR_CC2IF)
 
#define TIM_FLAG_CC3                       (TIM_SR_CC3IF)
 
#define TIM_FLAG_CC4                       (TIM_SR_CC4IF)
 
#define TIM_FLAG_COM                       (TIM_SR_COMIF)
 
#define TIM_FLAG_TRIGGER                   (TIM_SR_TIF)
 
#define TIM_FLAG_BREAK                     (TIM_SR_BIF)
 
#define TIM_FLAG_CC1OF                     (TIM_SR_CC1OF)
 
#define TIM_FLAG_CC2OF                     (TIM_SR_CC2OF)
 
#define TIM_FLAG_CC3OF                     (TIM_SR_CC3OF)
 
#define TIM_FLAG_CC4OF                     (TIM_SR_CC4OF)
 
 
#define IS_TIM_FLAG(FLAG) (((FLAG) == TIM_FLAG_UPDATE) || \
 
                           ((FLAG) == TIM_FLAG_CC1)     || \
 
                           ((FLAG) == TIM_FLAG_CC2)     || \
 
                           ((FLAG) == TIM_FLAG_CC3)     || \
 
                           ((FLAG) == TIM_FLAG_CC4)     || \
 
                           ((FLAG) == TIM_FLAG_COM)     || \
 
                           ((FLAG) == TIM_FLAG_TRIGGER) || \
 
                           ((FLAG) == TIM_FLAG_BREAK)   || \
 
                           ((FLAG) == TIM_FLAG_CC1OF)   || \
 
                           ((FLAG) == TIM_FLAG_CC2OF)   || \
 
                           ((FLAG) == TIM_FLAG_CC3OF)   || \
 
                           ((FLAG) == TIM_FLAG_CC4OF))                                  
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Clock_Source TIM Clock Source
 
  * @{
 
  */
 
#define	TIM_CLOCKSOURCE_ETRMODE2    (TIM_SMCR_ETPS_1) 
 
#define	TIM_CLOCKSOURCE_INTERNAL    (TIM_SMCR_ETPS_0) 
 
#define	TIM_CLOCKSOURCE_ITR0        ((uint32_t)0x0000)
 
#define	TIM_CLOCKSOURCE_ITR1        (TIM_SMCR_TS_0)
 
#define	TIM_CLOCKSOURCE_ITR2        (TIM_SMCR_TS_1)
 
#define	TIM_CLOCKSOURCE_ITR3        (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)
 
#define	TIM_CLOCKSOURCE_TI1ED       (TIM_SMCR_TS_2)
 
#define	TIM_CLOCKSOURCE_TI1         (TIM_SMCR_TS_0 | TIM_SMCR_TS_2)
 
#define	TIM_CLOCKSOURCE_TI2         (TIM_SMCR_TS_1 | TIM_SMCR_TS_2)
 
#define	TIM_CLOCKSOURCE_ETRMODE1    (TIM_SMCR_TS)
 
 
#define IS_TIM_CLOCKSOURCE(CLOCK) (((CLOCK) == TIM_CLOCKSOURCE_INTERNAL) || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_ETRMODE2) || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_ITR0)     || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_ITR1)     || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_ITR2)     || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_ITR3)     || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_TI1ED)    || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_TI1)      || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_TI2)      || \
 
                                   ((CLOCK) == TIM_CLOCKSOURCE_ETRMODE1))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Clock_Polarity TIM Clock Polarity
 
  * @{
 
  */
 
#define TIM_CLOCKPOLARITY_INVERTED           TIM_ETRPOLARITY_INVERTED          /*!< Polarity for ETRx clock sources */ 
 
#define TIM_CLOCKPOLARITY_NONINVERTED        TIM_ETRPOLARITY_NONINVERTED       /*!< Polarity for ETRx clock sources */ 
 
#define TIM_CLOCKPOLARITY_RISING             TIM_INPUTCHANNELPOLARITY_RISING   /*!< Polarity for TIx clock sources */ 
 
#define TIM_CLOCKPOLARITY_FALLING            TIM_INPUTCHANNELPOLARITY_FALLING   /*!< Polarity for TIx clock sources */ 
 
#define TIM_CLOCKPOLARITY_BOTHEDGE           TIM_INPUTCHANNELPOLARITY_BOTHEDGE  /*!< Polarity for TIx clock sources */ 
 
 
#define IS_TIM_CLOCKPOLARITY(POLARITY) (((POLARITY) == TIM_CLOCKPOLARITY_INVERTED)    || \
 
                                        ((POLARITY) == TIM_CLOCKPOLARITY_NONINVERTED) || \
 
                                        ((POLARITY) == TIM_CLOCKPOLARITY_RISING)      || \
 
                                        ((POLARITY) == TIM_CLOCKPOLARITY_FALLING)     || \
 
                                        ((POLARITY) == TIM_CLOCKPOLARITY_BOTHEDGE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler
 
  * @{
 
  */                
 
#define TIM_CLOCKPRESCALER_DIV1                 TIM_ETRPRESCALER_DIV1     /*!< No prescaler is used */
 
#define TIM_CLOCKPRESCALER_DIV2                 TIM_ETRPRESCALER_DIV2     /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */
 
#define TIM_CLOCKPRESCALER_DIV4                 TIM_ETRPRESCALER_DIV4     /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */
 
#define TIM_CLOCKPRESCALER_DIV8                 TIM_ETRPRESCALER_DIV8     /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */
 
 
#define IS_TIM_CLOCKPRESCALER(PRESCALER) (((PRESCALER) == TIM_CLOCKPRESCALER_DIV1) || \
 
                                          ((PRESCALER) == TIM_CLOCKPRESCALER_DIV2) || \
 
                                          ((PRESCALER) == TIM_CLOCKPRESCALER_DIV4) || \
 
                                          ((PRESCALER) == TIM_CLOCKPRESCALER_DIV8)) 
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Clock_Filter TIM Clock Filter
 
  * @{
 
  */
 
 
#define IS_TIM_CLOCKFILTER(ICFILTER)      ((ICFILTER) <= 0xF) 
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup TIM_ClearInput_Source TIM ClearInput Source
 
  * @{
 
  */
 
#define TIM_CLEARINPUTSOURCE_ETR           ((uint32_t)0x0001) 
 
#define TIM_CLEARINPUTSOURCE_NONE          ((uint32_t)0x0000)
 
 
#define IS_TIM_CLEARINPUT_SOURCE(SOURCE)  (((SOURCE) == TIM_CLEARINPUTSOURCE_NONE) || \
 
                                          ((SOURCE) == TIM_CLEARINPUTSOURCE_ETR)) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity
 
  * @{
 
  */
 
#define TIM_CLEARINPUTPOLARITY_INVERTED           TIM_ETRPOLARITY_INVERTED                    /*!< Polarity for ETRx pin */ 
 
#define TIM_CLEARINPUTPOLARITY_NONINVERTED        TIM_ETRPOLARITY_NONINVERTED                          /*!< Polarity for ETRx pin */ 
 
 
 
#define IS_TIM_CLEARINPUT_POLARITY(POLARITY) (((POLARITY) == TIM_CLEARINPUTPOLARITY_INVERTED) || \
 
                                              ((POLARITY) == TIM_CLEARINPUTPOLARITY_NONINVERTED)) 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler
 
  * @{
 
  */
 
#define TIM_CLEARINPUTPRESCALER_DIV1                    TIM_ETRPRESCALER_DIV1      /*!< No prescaler is used */
 
#define TIM_CLEARINPUTPRESCALER_DIV2                    TIM_ETRPRESCALER_DIV2      /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */
 
#define TIM_CLEARINPUTPRESCALER_DIV4                    TIM_ETRPRESCALER_DIV4      /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */
 
#define TIM_CLEARINPUTPRESCALER_DIV8                    TIM_ETRPRESCALER_DIV8        /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */
 
 
#define IS_TIM_CLEARINPUT_PRESCALER(PRESCALER)   (((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV1) || \
 
                                                  ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV2) || \
 
                                                  ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV4) || \
 
                                                  ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV8)) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_ClearInput_Filter TIM Clear Input Filter
 
  * @{
 
  */
 
 
#define IS_TIM_CLEARINPUT_FILTER(ICFILTER) ((ICFILTER) <= 0xF) 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM Off-state Selection for Run Mode
 
  * @{
 
  */  
 
#define TIM_OSSR_ENABLE 	      (TIM_BDTR_OSSR)
 
#define TIM_OSSR_DISABLE              ((uint32_t)0x0000)
 
 
#define IS_TIM_OSSR_STATE(STATE) (((STATE) == TIM_OSSR_ENABLE) || \
 
                                  ((STATE) == TIM_OSSR_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM Off-state Selection for Idle Mode
 
  * @{
 
  */
 
#define TIM_OSSI_ENABLE	 	    (TIM_BDTR_OSSI)
 
#define TIM_OSSI_DISABLE            ((uint32_t)0x0000)
 
 
#define IS_TIM_OSSI_STATE(STATE) (((STATE) == TIM_OSSI_ENABLE) || \
 
                                  ((STATE) == TIM_OSSI_DISABLE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Lock_level TIM Lock Configuration
 
  * @{
 
  */
 
#define TIM_LOCKLEVEL_OFF	   ((uint32_t)0x0000)
 
#define TIM_LOCKLEVEL_1            (TIM_BDTR_LOCK_0)
 
#define TIM_LOCKLEVEL_2            (TIM_BDTR_LOCK_1)
 
#define TIM_LOCKLEVEL_3            (TIM_BDTR_LOCK)
 
 
#define IS_TIM_LOCK_LEVEL(LEVEL) (((LEVEL) == TIM_LOCKLEVEL_OFF) || \
 
                                  ((LEVEL) == TIM_LOCKLEVEL_1) || \
 
                                  ((LEVEL) == TIM_LOCKLEVEL_2) || \
 
                                  ((LEVEL) == TIM_LOCKLEVEL_3)) 
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable
 
  * @{
 
  */
 
#define TIM_BREAK_ENABLE          (TIM_BDTR_BKE)
 
#define TIM_BREAK_DISABLE         ((uint32_t)0x0000)
 
 
#define IS_TIM_BREAK_STATE(STATE) (((STATE) == TIM_BREAK_ENABLE) || \
 
                                   ((STATE) == TIM_BREAK_DISABLE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Break_Polarity TIM Break Input Polarity
 
  * @{
 
  */
 
#define TIM_BREAKPOLARITY_LOW        ((uint32_t)0x0000)
 
#define TIM_BREAKPOLARITY_HIGH       (TIM_BDTR_BKP)
 
 
#define IS_TIM_BREAK_POLARITY(POLARITY) (((POLARITY) == TIM_BREAKPOLARITY_LOW) || \
 
                                         ((POLARITY) == TIM_BREAKPOLARITY_HIGH))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable
 
  * @{
 
  */
 
#define TIM_AUTOMATICOUTPUT_ENABLE           (TIM_BDTR_AOE)
 
#define	TIM_AUTOMATICOUTPUT_DISABLE          ((uint32_t)0x0000)
 
 
#define IS_TIM_AUTOMATIC_OUTPUT_STATE(STATE) (((STATE) == TIM_AUTOMATICOUTPUT_ENABLE) || \
 
                                              ((STATE) == TIM_AUTOMATICOUTPUT_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection
 
  * @{
 
  */
 
#define	TIM_TRGO_RESET            ((uint32_t)0x0000)             
 
#define	TIM_TRGO_ENABLE           (TIM_CR2_MMS_0)           
 
#define	TIM_TRGO_UPDATE           (TIM_CR2_MMS_1)             
 
#define	TIM_TRGO_OC1              ((TIM_CR2_MMS_1 | TIM_CR2_MMS_0))    
 
#define	TIM_TRGO_OC1REF           (TIM_CR2_MMS_2)           
 
#define	TIM_TRGO_OC2REF           ((TIM_CR2_MMS_2 | TIM_CR2_MMS_0))          
 
#define	TIM_TRGO_OC3REF           ((TIM_CR2_MMS_2 | TIM_CR2_MMS_1))           
 
#define	TIM_TRGO_OC4REF           ((TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0))   
 
 
#define IS_TIM_TRGO_SOURCE(SOURCE) (((SOURCE) == TIM_TRGO_RESET) || \
 
                                    ((SOURCE) == TIM_TRGO_ENABLE) || \
 
                                    ((SOURCE) == TIM_TRGO_UPDATE) || \
 
                                    ((SOURCE) == TIM_TRGO_OC1) || \
 
                                    ((SOURCE) == TIM_TRGO_OC1REF) || \
 
                                    ((SOURCE) == TIM_TRGO_OC2REF) || \
 
                                    ((SOURCE) == TIM_TRGO_OC3REF) || \
 
                                    ((SOURCE) == TIM_TRGO_OC4REF))
 
 
 
/**
 
  * @}
 
  */   
 
 
/** @defgroup TIM_Slave_Mode TIM Slave Mode
 
  * @{
 
  */
 
 
#define TIM_SLAVEMODE_DISABLE              ((uint32_t)0x0000)
 
#define TIM_SLAVEMODE_RESET                ((uint32_t)0x0004)
 
#define TIM_SLAVEMODE_GATED                ((uint32_t)0x0005)
 
#define TIM_SLAVEMODE_TRIGGER              ((uint32_t)0x0006)
 
#define TIM_SLAVEMODE_EXTERNAL1            ((uint32_t)0x0007)
 
 
#define IS_TIM_SLAVE_MODE(MODE) (((MODE) == TIM_SLAVEMODE_DISABLE) || \
 
                                 ((MODE) == TIM_SLAVEMODE_GATED) || \
 
                                 ((MODE) == TIM_SLAVEMODE_RESET) || \
 
                                 ((MODE) == TIM_SLAVEMODE_TRIGGER) || \
 
                                 ((MODE) == TIM_SLAVEMODE_EXTERNAL1))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Master_Slave_Mode TIM Master/Slave Mode
 
  * @{
 
  */
 
 
#define TIM_MASTERSLAVEMODE_ENABLE          ((uint32_t)0x0080)
 
#define TIM_MASTERSLAVEMODE_DISABLE         ((uint32_t)0x0000)
 
 
#define IS_TIM_MSM_STATE(STATE) (((STATE) == TIM_MASTERSLAVEMODE_ENABLE) || \
 
                                 ((STATE) == TIM_MASTERSLAVEMODE_DISABLE))
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Trigger_Selection TIM Trigger Selection
 
  * @{
 
  */
 
 
#define TIM_TS_ITR0                        ((uint32_t)0x0000)
 
#define TIM_TS_ITR1                        ((uint32_t)0x0010)
 
#define TIM_TS_ITR2                        ((uint32_t)0x0020)
 
#define TIM_TS_ITR3                        ((uint32_t)0x0030)
 
#define TIM_TS_TI1F_ED                     ((uint32_t)0x0040)
 
#define TIM_TS_TI1FP1                      ((uint32_t)0x0050)
 
#define TIM_TS_TI2FP2                      ((uint32_t)0x0060)
 
#define TIM_TS_ETRF                        ((uint32_t)0x0070)
 
#define TIM_TS_NONE                        ((uint32_t)0xFFFF)
 
 
#define IS_TIM_TRIGGER_SELECTION(SELECTION) (((SELECTION) == TIM_TS_ITR0) || \
 
                                             ((SELECTION) == TIM_TS_ITR1) || \
 
                                             ((SELECTION) == TIM_TS_ITR2) || \
 
                                             ((SELECTION) == TIM_TS_ITR3) || \
 
                                             ((SELECTION) == TIM_TS_TI1F_ED) || \
 
                                             ((SELECTION) == TIM_TS_TI1FP1) || \
 
                                             ((SELECTION) == TIM_TS_TI2FP2) || \
 
                                             ((SELECTION) == TIM_TS_ETRF))
 
 
#define IS_TIM_INTERNAL_TRIGGER_SELECTION(SELECTION) (((SELECTION) == TIM_TS_ITR0) || \
 
                                                      ((SELECTION) == TIM_TS_ITR1) || \
 
                                                      ((SELECTION) == TIM_TS_ITR2) || \
 
                                                      ((SELECTION) == TIM_TS_ITR3))
 
 
#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(SELECTION) (((SELECTION) == TIM_TS_ITR0) || \
 
                                                           ((SELECTION) == TIM_TS_ITR1) || \
 
                                                           ((SELECTION) == TIM_TS_ITR2) || \
 
                                                           ((SELECTION) == TIM_TS_ITR3) || \
 
                                                           ((SELECTION) == TIM_TS_NONE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity
 
  * @{
 
  */
 
#define TIM_TRIGGERPOLARITY_INVERTED           TIM_ETRPOLARITY_INVERTED      /*!< Polarity for ETRx trigger sources */ 
 
#define TIM_TRIGGERPOLARITY_NONINVERTED        TIM_ETRPOLARITY_NONINVERTED   /*!< Polarity for ETRx trigger sources */ 
 
#define TIM_TRIGGERPOLARITY_RISING             TIM_INPUTCHANNELPOLARITY_RISING        /*!< Polarity for TIxFPx or TI1_ED trigger sources */ 
 
#define TIM_TRIGGERPOLARITY_FALLING            TIM_INPUTCHANNELPOLARITY_FALLING       /*!< Polarity for TIxFPx or TI1_ED trigger sources */ 
 
#define TIM_TRIGGERPOLARITY_BOTHEDGE           TIM_INPUTCHANNELPOLARITY_BOTHEDGE      /*!< Polarity for TIxFPx or TI1_ED trigger sources */ 
 
 
#define IS_TIM_TRIGGERPOLARITY(POLARITY)     (((POLARITY) == TIM_TRIGGERPOLARITY_INVERTED   ) || \
 
                                              ((POLARITY) == TIM_TRIGGERPOLARITY_NONINVERTED) || \
 
                                              ((POLARITY) == TIM_TRIGGERPOLARITY_RISING     ) || \
 
                                              ((POLARITY) == TIM_TRIGGERPOLARITY_FALLING    ) || \
 
                                              ((POLARITY) == TIM_TRIGGERPOLARITY_BOTHEDGE   ))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler
 
  * @{
 
  */
 
#define TIM_TRIGGERPRESCALER_DIV1             TIM_ETRPRESCALER_DIV1     /*!< No prescaler is used */
 
#define TIM_TRIGGERPRESCALER_DIV2             TIM_ETRPRESCALER_DIV2     /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */
 
#define TIM_TRIGGERPRESCALER_DIV4             TIM_ETRPRESCALER_DIV4     /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */
 
#define TIM_TRIGGERPRESCALER_DIV8             TIM_ETRPRESCALER_DIV8     /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */
 
 
#define IS_TIM_TRIGGERPRESCALER(PRESCALER)  (((PRESCALER) == TIM_TRIGGERPRESCALER_DIV1) || \
 
                                             ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV2) || \
 
                                             ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV4) || \
 
                                             ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV8)) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Trigger_Filter TIM Trigger Filter
 
  * @{
 
  */
 
 
#define IS_TIM_TRIGGERFILTER(ICFILTER)     ((ICFILTER) <= 0xF) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection
 
  * @{
 
  */
 
 
#define TIM_TI1SELECTION_CH1                ((uint32_t)0x0000)
 
#define TIM_TI1SELECTION_XORCOMBINATION     (TIM_CR2_TI1S)
 
 
#define IS_TIM_TI1SELECTION(TI1SELECTION)   (((TI1SELECTION) == TIM_TI1SELECTION_CH1) || \
 
                                             ((TI1SELECTION) == TIM_TI1SELECTION_XORCOMBINATION))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_DMA_Base_address TIM DMA Base address
 
  * @{
 
  */
 
#define TIM_DMABase_CR1                    (0x00000000)
 
#define TIM_DMABase_CR2                    (0x00000001)
 
#define TIM_DMABase_SMCR                   (0x00000002)
 
#define TIM_DMABase_DIER                   (0x00000003)
 
#define TIM_DMABase_SR                     (0x00000004)
 
#define TIM_DMABase_EGR                    (0x00000005)
 
#define TIM_DMABase_CCMR1                  (0x00000006)
 
#define TIM_DMABase_CCMR2                  (0x00000007)
 
#define TIM_DMABase_CCER                   (0x00000008)
 
#define TIM_DMABase_CNT                    (0x00000009)
 
#define TIM_DMABase_PSC                    (0x0000000A)
 
#define TIM_DMABase_ARR                    (0x0000000B)
 
#define TIM_DMABase_RCR                    (0x0000000C)
 
#define TIM_DMABase_CCR1                   (0x0000000D)
 
#define TIM_DMABase_CCR2                   (0x0000000E)
 
#define TIM_DMABase_CCR3                   (0x0000000F)
 
#define TIM_DMABase_CCR4                   (0x00000010)
 
#define TIM_DMABase_BDTR                   (0x00000011)
 
#define TIM_DMABase_DCR                    (0x00000012)
 
#define TIM_DMABase_OR                     (0x00000013)
 
 
#define IS_TIM_DMA_BASE(BASE) (((BASE) == TIM_DMABase_CR1) || \
 
                               ((BASE) == TIM_DMABase_CR2) || \
 
                               ((BASE) == TIM_DMABase_SMCR) || \
 
                               ((BASE) == TIM_DMABase_DIER) || \
 
                               ((BASE) == TIM_DMABase_SR) || \
 
                               ((BASE) == TIM_DMABase_EGR) || \
 
                               ((BASE) == TIM_DMABase_CCMR1) || \
 
                               ((BASE) == TIM_DMABase_CCMR2) || \
 
                               ((BASE) == TIM_DMABase_CCER) || \
 
                               ((BASE) == TIM_DMABase_CNT) || \
 
                               ((BASE) == TIM_DMABase_PSC) || \
 
                               ((BASE) == TIM_DMABase_ARR) || \
 
                               ((BASE) == TIM_DMABase_RCR) || \
 
                               ((BASE) == TIM_DMABase_CCR1) || \
 
                               ((BASE) == TIM_DMABase_CCR2) || \
 
                               ((BASE) == TIM_DMABase_CCR3) || \
 
                               ((BASE) == TIM_DMABase_CCR4) || \
 
                               ((BASE) == TIM_DMABase_BDTR) || \
 
                               ((BASE) == TIM_DMABase_DCR) || \
 
                               ((BASE) == TIM_DMABase_OR))                     
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_DMA_Burst_Length TIM DMA Burst Length
 
  * @{
 
  */
 
 
#define TIM_DMABurstLength_1Transfer           (0x00000000)
 
#define TIM_DMABurstLength_2Transfers          (0x00000100)
 
#define TIM_DMABurstLength_3Transfers          (0x00000200)
 
#define TIM_DMABurstLength_4Transfers          (0x00000300)
 
#define TIM_DMABurstLength_5Transfers          (0x00000400)
 
#define TIM_DMABurstLength_6Transfers          (0x00000500)
 
#define TIM_DMABurstLength_7Transfers          (0x00000600)
 
#define TIM_DMABurstLength_8Transfers          (0x00000700)
 
#define TIM_DMABurstLength_9Transfers          (0x00000800)
 
#define TIM_DMABurstLength_10Transfers         (0x00000900)
 
#define TIM_DMABurstLength_11Transfers         (0x00000A00)
 
#define TIM_DMABurstLength_12Transfers         (0x00000B00)
 
#define TIM_DMABurstLength_13Transfers         (0x00000C00)
 
#define TIM_DMABurstLength_14Transfers         (0x00000D00)
 
#define TIM_DMABurstLength_15Transfers         (0x00000E00)
 
#define TIM_DMABurstLength_16Transfers         (0x00000F00)
 
#define TIM_DMABurstLength_17Transfers         (0x00001000)
 
#define TIM_DMABurstLength_18Transfers         (0x00001100)
 
 
#define IS_TIM_DMA_LENGTH(LENGTH) (((LENGTH) == TIM_DMABurstLength_1Transfer) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_2Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_3Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_4Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_5Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_6Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_7Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_8Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_9Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_10Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_11Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_12Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_13Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_14Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_15Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_16Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_17Transfers) || \
 
                                   ((LENGTH) == TIM_DMABurstLength_18Transfers))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Input_Capture_Filer_Value TIM Input Capture Value
 
  * @{
 
  */
 
 
#define IS_TIM_IC_FILTER(ICFILTER) ((ICFILTER) <= 0xF) 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Handle_index TIM DMA Handle Index
 
  * @{
 
  */
 
#define TIM_DMA_ID_UPDATE                ((uint16_t) 0x0)       /*!< Index of the DMA handle used for Update DMA requests */
 
#define TIM_DMA_ID_CC1                   ((uint16_t) 0x1)       /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */
 
#define TIM_DMA_ID_CC2                   ((uint16_t) 0x2)       /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */
 
#define TIM_DMA_ID_CC3                   ((uint16_t) 0x3)       /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */
 
#define TIM_DMA_ID_CC4                   ((uint16_t) 0x4)       /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */
 
#define TIM_DMA_ID_COMMUTATION           ((uint16_t) 0x5)       /*!< Index of the DMA handle used for Commutation DMA requests */
 
#define TIM_DMA_ID_TRIGGER               ((uint16_t) 0x6)       /*!< Index of the DMA handle used for Trigger DMA requests */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup Channel_CC_State TIM Capture/Compare Channel State
 
  * @{
 
  */
 
#define TIM_CCx_ENABLE                   ((uint32_t)0x0001)
 
#define TIM_CCx_DISABLE                  ((uint32_t)0x0000)
 
#define TIM_CCxN_ENABLE                  ((uint32_t)0x0004)
 
#define TIM_CCxN_DISABLE                 ((uint32_t)0x0000)
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup TIM_Exported_Macros TIM Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reset TIM handle state
 
  * @param  __HANDLE__: TIM handle.
 
  * @retval None
 
  */
 
#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_TIM_STATE_RESET)
 
 
/**
 
  * @brief  Enable the TIM peripheral.
 
  * @param  __HANDLE__: TIM handle
 
  * @retval None
 
 */
 
#define __HAL_TIM_ENABLE(__HANDLE__)                 ((__HANDLE__)->Instance->CR1|=(TIM_CR1_CEN))
 
 
/**
 
  * @brief  Enable the TIM main Output.
 
  * @param  __HANDLE__: TIM handle
 
  * @retval None
 
  */
 
#define __HAL_TIM_MOE_ENABLE(__HANDLE__)             ((__HANDLE__)->Instance->BDTR|=(TIM_BDTR_MOE))
 
 
/**
 
  * @brief  Disable the TIM peripheral.
 
  * @param  __HANDLE__: TIM handle
 
  * @retval None
 
  */
 
#define __HAL_TIM_DISABLE(__HANDLE__) \
 
                        do { \
 
                          if (((__HANDLE__)->Instance->CCER & CCER_CCxE_MASK) == 0) \
 
                            { \
 
                            if(((__HANDLE__)->Instance->CCER & CCER_CCxNE_MASK) == 0) \
 
                            { \
 
                              (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \
 
                            } \
 
                          } \
 
                        } while(0)
 
/* The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN
 
   channels have been disabled */                          
 
/**
 
  * @brief  Disable the TIM main Output.
 
  * @param  __HANDLE__: TIM handle
 
  * @retval None
 
  */
 
#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \
 
                        do { \
 
                          if (((__HANDLE__)->Instance->CCER & CCER_CCxE_MASK) == 0) \
 
                          { \
 
                            if(((__HANDLE__)->Instance->CCER & CCER_CCxNE_MASK) == 0) \
 
                            { \
 
                              (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \
 
                            } \
 
                            } \
 
                        } while(0)
 
 
#define __HAL_TIM_ENABLE_IT(__HANDLE__, __INTERRUPT__)    ((__HANDLE__)->Instance->DIER |= (__INTERRUPT__))
 
#define __HAL_TIM_ENABLE_DMA(__HANDLE__, __DMA__)         ((__HANDLE__)->Instance->DIER |= (__DMA__))
 
#define __HAL_TIM_DISABLE_IT(__HANDLE__, __INTERRUPT__)   ((__HANDLE__)->Instance->DIER &= ~(__INTERRUPT__))
 
#define __HAL_TIM_DISABLE_DMA(__HANDLE__, __DMA__)        ((__HANDLE__)->Instance->DIER &= ~(__DMA__))
 
#define __HAL_TIM_GET_FLAG(__HANDLE__, __FLAG__)          (((__HANDLE__)->Instance->SR &(__FLAG__)) == (__FLAG__))
 
#define __HAL_TIM_CLEAR_FLAG(__HANDLE__, __FLAG__)        ((__HANDLE__)->Instance->SR = ~(__FLAG__))
 
 
#define __HAL_TIM_GET_ITSTATUS(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->DIER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
#define __HAL_TIM_CLEAR_IT(__HANDLE__, __INTERRUPT__)     ((__HANDLE__)->Instance->SR = ~(__INTERRUPT__))
 
 
#define __HAL_TIM_DIRECTION_STATUS(__HANDLE__)            (((__HANDLE__)->Instance->CR1 & (TIM_CR1_DIR)) == (TIM_CR1_DIR))
 
#define __HAL_TIM_PRESCALER (__HANDLE__, __PRESC__)       ((__HANDLE__)->Instance->PSC = (__PRESC__))
 
 
#define __HAL_TIM_SetICPrescalerValue(__HANDLE__, __CHANNEL__, __ICPSC__) \
 
(((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) :\
 
 ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8)) :\
 
 ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) :\
 
 ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8)))
 
 
#define __HAL_TIM_ResetICPrescalerValue(__HANDLE__, __CHANNEL__) \
 
(((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) :\
 
 ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) :\
 
 ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) :\
 
 ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC))
 
                          
 
/**
 
  * @brief  Sets the TIM Capture Compare Register value on runtime without
 
  *         calling another time ConfigChannel function.
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __CHANNEL__ : TIM Channels to be configured.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  __COMPARE__: specifies the Capture Compare register new value.
 
  * @retval None
 
  */
 
#define __HAL_TIM_SetCompare(__HANDLE__, __CHANNEL__, __COMPARE__) \
 
(*(__IO uint32_t *)(&((__HANDLE__)->Instance->CCR1) + ((__CHANNEL__) >> 2)) = (__COMPARE__))
 
 
/**
 
  * @brief  Gets the TIM Capture Compare Register value on runtime
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __CHANNEL__ : TIM Channel associated with the capture compare register
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: get capture/compare 1 register value
 
  *            @arg TIM_CHANNEL_2: get capture/compare 2 register value
 
  *            @arg TIM_CHANNEL_3: get capture/compare 3 register value
 
  *            @arg TIM_CHANNEL_4: get capture/compare 4 register value
 
  * @retval None
 
  */
 
#define __HAL_TIM_GetCompare(__HANDLE__, __CHANNEL__) \
 
  (*(__IO uint32_t *)(&((__HANDLE__)->Instance->CCR1) + ((__CHANNEL__) >> 2)))
 
 
/**
 
  * @brief  Sets the TIM Counter Register value on runtime.
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __COUNTER__: specifies the Counter register new value.
 
  * @retval None
 
  */
 
#define __HAL_TIM_SetCounter(__HANDLE__, __COUNTER__)  ((__HANDLE__)->Instance->CNT = (__COUNTER__))
 
 
/**
 
  * @brief  Gets the TIM Counter Register value on runtime.
 
  * @param  __HANDLE__: TIM handle.
 
  * @retval None
 
  */
 
#define __HAL_TIM_GetCounter(__HANDLE__) \
 
   ((__HANDLE__)->Instance->CNT)
 
     
 
/**
 
  * @brief  Sets the TIM Autoreload Register value on runtime without calling 
 
  *         another time any Init function.
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __AUTORELOAD__: specifies the Counter register new value.
 
  * @retval None
 
  */
 
#define __HAL_TIM_SetAutoreload(__HANDLE__, __AUTORELOAD__) \
 
                        do{                                                    \
 
                              (__HANDLE__)->Instance->ARR = (__AUTORELOAD__);  \
 
                              (__HANDLE__)->Init.Period = (__AUTORELOAD__);    \
 
                          } while(0)
 
 
/**
 
  * @brief  Gets the TIM Autoreload Register value on runtime
 
  * @param  __HANDLE__: TIM handle.
 
  * @retval None
 
  */
 
#define __HAL_TIM_GetAutoreload(__HANDLE__) \
 
   ((__HANDLE__)->Instance->ARR)
 
     
 
/**
 
  * @brief  Sets the TIM Clock Division value on runtime without calling 
 
  *         another time any Init function. 
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __CKD__: specifies the clock division value.
 
  *          This parameter can be one of the following value:
 
  *            @arg TIM_CLOCKDIVISION_DIV1
 
  *            @arg TIM_CLOCKDIVISION_DIV2
 
  *            @arg TIM_CLOCKDIVISION_DIV4                           
 
  * @retval None
 
  */
 
#define __HAL_TIM_SetClockDivision(__HANDLE__, __CKD__) \
 
                        do{                                                    \
 
                              (__HANDLE__)->Instance->CR1 &= ~TIM_CR1_CKD;  \
 
                              (__HANDLE__)->Instance->CR1 |= (__CKD__);                   \
 
                              (__HANDLE__)->Init.ClockDivision = (__CKD__);             \
 
                          } while(0)
 
                            
 
/**
 
  * @brief  Gets the TIM Clock Division value on runtime
 
  * @param  __HANDLE__: TIM handle.                      
 
  * @retval None
 
  */
 
#define __HAL_TIM_GetClockDivision(__HANDLE__)  \
 
   ((__HANDLE__)->Instance->CR1 & TIM_CR1_CKD)
 
     
 
/**
 
  * @brief  Sets the TIM Input Capture prescaler on runtime without calling 
 
  *         another time HAL_TIM_IC_ConfigChannel() function.
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __CHANNEL__ : TIM Channels to be configured.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  __ICPSC__: specifies the Input Capture4 prescaler new value.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPSC_DIV1: no prescaler
 
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
 
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
 
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
 
  * @retval None
 
  */
 
#define __HAL_TIM_SetICPrescaler(__HANDLE__, __CHANNEL__, __ICPSC__) \
 
                        do{                                                    \
 
                              __HAL_TIM_ResetICPrescalerValue((__HANDLE__), (__CHANNEL__));  \
 
                              __HAL_TIM_SetICPrescalerValue((__HANDLE__), (__CHANNEL__), (__ICPSC__)); \
 
                          } while(0)                            
 
 
/**
 
  * @brief  Gets the TIM Input Capture prescaler on runtime
 
  * @param  __HANDLE__: TIM handle.
 
  * @param  __CHANNEL__: TIM Channels to be configured.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: get input capture 1 prescaler value
 
  *            @arg TIM_CHANNEL_2: get input capture 2 prescaler value
 
  *            @arg TIM_CHANNEL_3: get input capture 3 prescaler value
 
  *            @arg TIM_CHANNEL_4: get input capture 4 prescaler value
 
  * @retval None
 
  */
 
#define __HAL_TIM_GetICPrescaler(__HANDLE__, __CHANNEL__)  \
 
  (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 & TIM_CCMR1_IC1PSC) :\
 
   ((__CHANNEL__) == TIM_CHANNEL_2) ? (((__HANDLE__)->Instance->CCMR1 & TIM_CCMR1_IC2PSC) >> 8) :\
 
   ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC3PSC) :\
 
   (((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC4PSC)) >> 8)
 
    
 
/**
 
  * @brief  Set the Update Request Source (URS) bit of the TIMx_CR1 register
 
  * @param  __HANDLE__: TIM handle.
 
  * @note  When the USR bit of the TIMx_CR1 register is set, only counter 
 
  *        overflow/underflow generates an update interrupt or DMA request (if
 
  *        enabled)
 
  * @retval None
 
  */
 
#define __HAL_TIM_URS_ENABLE(__HANDLE__) \
 
    ((__HANDLE__)->Instance->CR1|= (TIM_CR1_URS))
 
 
/**
 
  * @brief  Reset the Update Request Source (URS) bit of the TIMx_CR1 register
 
  * @param  __HANDLE__: TIM handle.
 
  * @note  When the USR bit of the TIMx_CR1 register is reset, any of the 
 
  *        following events generate an update interrupt or DMA request (if 
 
  *        enabled):
 
  *          (+) Counter overflow/underflow
 
  *          (+) Setting the UG bit
 
  *          (+) Update generation through the slave mode controller
 
  * @retval None
 
  */
 
#define __HAL_TIM_URS_DISABLE(__HANDLE__) \
 
      ((__HANDLE__)->Instance->CR1&=~(TIM_CR1_URS))
 
 
/**
 
  * @}
 
  */
 
 
/* Include TIM HAL Extension module */
 
#include "stm32f0xx_hal_tim_ex.h"
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup TIM_Exported_Functions TIM Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group1 Time Base functions 
 
 *  @brief    Time Base functions 
 
 * @{
 
 */
 
/* Time Base functions ********************************************************/
 
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim);
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group2 Time Output Compare functions 
 
 *  @brief    Time Output Compare functions 
 
 * @{
 
 */
 
/* Timer Output Compare functions **********************************************/
 
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim);
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group3 Time PWM functions 
 
 *  @brief    Time PWM functions 
 
 * @{
 
 */
 
/* Timer PWM functions *********************************************************/
 
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim);
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group4 Time Input Capture functions 
 
 *  @brief    Time Input Capture functions 
 
 * @{
 
 */
 
/* Timer Input Capture functions ***********************************************/
 
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim);
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group5 Time One Pulse functions 
 
 *  @brief    Time One Pulse functions 
 
 * @{
 
 */
 
/* Timer One Pulse functions ***************************************************/
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode);
 
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim);
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group6 Time Encoder functions 
 
 *  @brief    Time Encoder functions 
 
 * @{
 
 */
 
/* Timer Encoder functions *****************************************************/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim,  TIM_Encoder_InitTypeDef* sConfig);
 
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim);
 
 /* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group7 TIM IRQ handler management 
 
 *  @brief    IRQ handler management 
 
 * @{
 
 */
 
/* Interrupt Handler functions  **********************************************/
 
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group8 Peripheral Control functions
 
 *  @brief   	Peripheral Control functions 
 
 * @{
 
 */
 
/* Control functions  *********************************************************/
 
HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef* sConfig, uint32_t OutputChannel,  uint32_t InputChannel);
 
HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef * sClearInputConfig, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig);    
 
HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection);
 
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig);
 
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig);
 
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, \
 
                                              uint32_t  *BurstBuffer, uint32_t  BurstLength);
 
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc);
 
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, \
 
                                              uint32_t  *BurstBuffer, uint32_t  BurstLength);
 
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc);
 
HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource);
 
uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group9
 
 *  @brief    TIM Callbacks functions 
 
 * @{
 
 */
 
/* Callback in non blocking modes (Interrupt and DMA) *************************/
 
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIM_Exported_Functions_Group10
 
 *  @brief   Peripheral State functions 
 
 * @{
 
 */
 
/* Peripheral State functions  **************************************************/
 
HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim);
 
HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim);
 
HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim);
 
HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim);
 
HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim);
 
HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Private Macros -----------------------------------------------------------*/
 
/** @defgroup TIM_Private_Macros TIM Private Macros
 
 * @{
 
 */
 
/* The counter of a timer instance is disabled only if all the CCx and CCxN
 
   channels have been disabled */
 
#define CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E))
 
#define CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE))
 
/**
 
  * @}
 
  */  
 
 
/* Private Functions --------------------------------------------------------*/
 
/** @addtogroup TIM_Private_Functions
 
 * @{
 
 */
 
void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure);
 
void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
 
void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
 
void HAL_TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
 
void HAL_TIM_DMAError(DMA_HandleTypeDef *hdma);
 
void HAL_TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma);
 
void TIM_CCxChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelState);
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_TIM_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_tim_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_tim_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of TIM HAL Extended module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_TIM_EX_H
 
#define __STM32F0xx_HAL_TIM_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup TIMEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup TIMEx_Exported_Types TIMEx Extended Exported Types
 
  * @{
 
  */
 
 
/** 
 
  * @brief  TIM Hall sensor Configuration Structure definition  
 
  */
 
 
typedef struct
 
{
 
                                  
 
  uint32_t IC1Polarity;            /*!< Specifies the active edge of the input signal.
 
                                        This parameter can be a value of @ref TIM_Input_Capture_Polarity */
 
                                                                   
 
  uint32_t IC1Prescaler;        /*!< Specifies the Input Capture Prescaler.
 
                                     This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
 
                                  
 
  uint32_t IC1Filter;           /*!< Specifies the input capture filter.
 
                                     This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */  
 
  uint32_t Commutation_Delay;  /*!< Specifies the pulse value to be loaded into the Capture Compare Register. 
 
                                    This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */                              
 
} TIM_HallSensor_InitTypeDef;
 
 
/** 
 
  * @brief  TIM Master configuration Structure definition  
 
  */ 
 
typedef struct {
 
  uint32_t  MasterOutputTrigger;   /*!< Trigger output (TRGO) selection 
 
                                      This parameter can be a value of @ref TIM_Master_Mode_Selection */ 
 
  uint32_t  MasterSlaveMode;       /*!< Master/slave mode selection 
 
                                      This parameter can be a value of @ref TIM_Master_Slave_Mode */
 
}TIM_MasterConfigTypeDef;
 
 
/** 
 
  * @brief  TIM Break and Dead time configuration Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t OffStateRunMode;       /*!< TIM off state in run mode
 
                                     This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */
 
  uint32_t OffStateIDLEMode;	    /*!< TIM off state in IDLE mode
 
                                     This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */
 
  uint32_t LockLevel;             /*!< TIM Lock level
 
                                     This parameter can be a value of @ref TIM_Lock_level */                             
 
  uint32_t DeadTime;              /*!< TIM dead Time 
 
                                     This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */
 
  uint32_t BreakState;            /*!< TIM Break State 
 
                                     This parameter can be a value of @ref TIM_Break_Input_enable_disable */
 
  uint32_t BreakPolarity;         /*!< TIM Break input polarity 
 
                                     This parameter can be a value of @ref TIM_Break_Polarity */
 
  uint32_t AutomaticOutput;       /*!< TIM Automatic Output Enable state 
 
                                     This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */           
 
} TIM_BreakDeadTimeConfigTypeDef;
 
 
/**
 
  * @}
 
  */ 
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup TIMEx_Exported_Constants TIMEx Exported Constants
 
  * @{
 
  */
 
    
 
/** @defgroup TIMEx_Remap TIMEx Remap
 
  * @{
 
  */
 
 
#define TIM_TIM14_GPIO          (0x00000000) /*!< TIM14 TI1 is connected to GPIO */
 
#define TIM_TIM14_RTC           (0x00000001) /*!< TIM14 TI1 is connected to RTC_clock */
 
#define TIM_TIM14_HSE           (0x00000002) /*!< TIM14 TI1 is connected to HSE/32 */
 
#define TIM_TIM14_MCO           (0x00000003) /*!< TIM14 TI1 is connected to MCO */
 
 
#define IS_TIM_REMAP(TIM_REMAP)   (((TIM_REMAP) == TIM_TIM14_GPIO)      ||\
 
                                  ((TIM_REMAP) == TIM_TIM14_RTC)       ||\
 
                                  ((TIM_REMAP) == TIM_TIM14_HSE)       ||\
 
                                  ((TIM_REMAP) == TIM_TIM14_MCO))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Clock_Filter TIM Clock Filter
 
  * @{
 
  */
 
#define IS_TIM_DEADTIME(DEADTIME)      ((DEADTIME) <= 0xFF) 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup TIMEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions 
 
 *  @brief    Timer Hall Sensor functions
 
 * @{
 
 */
 
/*  Timer Hall Sensor functions  **********************************************/
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig);
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim);
 
 
void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim);
 
void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim);
 
 
 /* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim);
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim);
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions
 
 *  @brief   Timer Complementary Output Compare functions
 
 * @{
 
 */
 
/*  Timer Complementary Output Compare functions  *****************************/
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
 
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions
 
 *  @brief    Timer Complementary PWM functions
 
 * @{
 
 */
 
/*  Timer Complementary PWM functions  ****************************************/
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
 
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/* Non-Blocking mode: DMA */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions
 
 *  @brief    Timer Complementary One Pulse functions
 
 * @{
 
 */
 
/*  Timer Complementary One Pulse functions  **********************************/
 
/* Blocking mode: Polling */
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
 
/* Non-Blocking mode: Interrupt */
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group5 Peripheral Control functions
 
 *  @brief    Peripheral Control functions
 
 * @{
 
 */
 
/* Extended Control functions  ************************************************/
 
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t  InputTrigger, uint32_t  CommutationSource);
 
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t  InputTrigger, uint32_t  CommutationSource);
 
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t  InputTrigger, uint32_t  CommutationSource);
 
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig);
 
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig);
 
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions 
 
  * @brief    Extended Callbacks functions
 
  * @{
 
  */
 
/* Extension Callback *********************************************************/
 
void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim);
 
void HAL_TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions 
 
  * @brief    Extended Peripheral State functions
 
  * @{
 
  */
 
/* Extension Peripheral State functions  **************************************/
 
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
 
#endif /* __STM32F0xx_HAL_TIM_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_tsc.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_tsc.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file contains all the functions prototypes for the TSC firmware 
 
  *          library.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_TSC_H
 
#define __STM32F0xx_TSC_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
#if defined(STM32F051x8) || defined(STM32F071xB) || defined(STM32F091xC) || \
 
    defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) ||                         \
 
    defined(STM32F058xx) || defined(STM32F078xx) || defined(STM32F098xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup TSC
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
   
 
/** @defgroup TSC_Exported_Types TSC Exported Types
 
  * @{
 
  */
 
/** 
 
  * @brief TSC state structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_TSC_STATE_RESET  = 0x00, /*!< TSC registers have their reset value */
 
  HAL_TSC_STATE_READY  = 0x01, /*!< TSC registers are initialized or acquisition is completed with success */
 
  HAL_TSC_STATE_BUSY   = 0x02, /*!< TSC initialization or acquisition is on-going */
 
  HAL_TSC_STATE_ERROR  = 0x03  /*!< Acquisition is completed with max count error */
 
} HAL_TSC_StateTypeDef;
 
 
/** 
 
  * @brief TSC group status structure definition  
 
  */ 
 
typedef enum
 
{
 
  TSC_GROUP_ONGOING   = 0x00, /*!< Acquisition on group is on-going or not started */
 
  TSC_GROUP_COMPLETED = 0x01  /*!< Acquisition on group is completed with success (no max count error) */
 
} TSC_GroupStatusTypeDef;
 
 
/** 
 
  * @brief TSC init structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t CTPulseHighLength;       /*!< Charge-transfer high pulse length */
 
  uint32_t CTPulseLowLength;        /*!< Charge-transfer low pulse length */
 
  uint32_t SpreadSpectrum;          /*!< Spread spectrum activation */
 
  uint32_t SpreadSpectrumDeviation; /*!< Spread spectrum deviation */
 
  uint32_t SpreadSpectrumPrescaler; /*!< Spread spectrum prescaler */
 
  uint32_t PulseGeneratorPrescaler; /*!< Pulse generator prescaler */
 
  uint32_t MaxCountValue;           /*!< Max count value */
 
  uint32_t IODefaultMode;           /*!< IO default mode */
 
  uint32_t SynchroPinPolarity;      /*!< Synchro pin polarity */
 
  uint32_t AcquisitionMode;         /*!< Acquisition mode */
 
  uint32_t MaxCountInterrupt;       /*!< Max count interrupt activation */
 
  uint32_t ChannelIOs;              /*!< Channel IOs mask */
 
  uint32_t ShieldIOs;               /*!< Shield IOs mask */
 
  uint32_t SamplingIOs;             /*!< Sampling IOs mask */
 
} TSC_InitTypeDef;
 
 
/** 
 
  * @brief TSC IOs configuration structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t ChannelIOs;  /*!< Channel IOs mask */
 
  uint32_t ShieldIOs;   /*!< Shield IOs mask */
 
  uint32_t SamplingIOs; /*!< Sampling IOs mask */
 
} TSC_IOConfigTypeDef;
 
 
/** 
 
  * @brief  TSC handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  TSC_TypeDef               *Instance; /*!< Register base address */
 
  TSC_InitTypeDef           Init;      /*!< Initialization parameters */
 
  __IO HAL_TSC_StateTypeDef State;     /*!< Peripheral state */
 
  HAL_LockTypeDef           Lock;      /*!< Lock feature */
 
} TSC_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup TSC_Exported_Constants TSC Exported Constants
 
  * @{
 
  */ 
 
 
/** @defgroup TSC_CTPH_Cycles TSC Charge Transfer Pulse High
 
  * @{
 
  */ 
 
#define TSC_CTPH_1CYCLE   ((uint32_t)((uint32_t) 0 << 28))
 
#define TSC_CTPH_2CYCLES  ((uint32_t)((uint32_t) 1 << 28))
 
#define TSC_CTPH_3CYCLES  ((uint32_t)((uint32_t) 2 << 28))
 
#define TSC_CTPH_4CYCLES  ((uint32_t)((uint32_t) 3 << 28))
 
#define TSC_CTPH_5CYCLES  ((uint32_t)((uint32_t) 4 << 28))
 
#define TSC_CTPH_6CYCLES  ((uint32_t)((uint32_t) 5 << 28))
 
#define TSC_CTPH_7CYCLES  ((uint32_t)((uint32_t) 6 << 28))
 
#define TSC_CTPH_8CYCLES  ((uint32_t)((uint32_t) 7 << 28))
 
#define TSC_CTPH_9CYCLES  ((uint32_t)((uint32_t) 8 << 28))
 
#define TSC_CTPH_10CYCLES ((uint32_t)((uint32_t) 9 << 28))
 
#define TSC_CTPH_11CYCLES ((uint32_t)((uint32_t)10 << 28))
 
#define TSC_CTPH_12CYCLES ((uint32_t)((uint32_t)11 << 28))
 
#define TSC_CTPH_13CYCLES ((uint32_t)((uint32_t)12 << 28))
 
#define TSC_CTPH_14CYCLES ((uint32_t)((uint32_t)13 << 28))
 
#define TSC_CTPH_15CYCLES ((uint32_t)((uint32_t)14 << 28))
 
#define TSC_CTPH_16CYCLES ((uint32_t)((uint32_t)15 << 28))
 
#define IS_TSC_CTPH(VAL) (((VAL) == TSC_CTPH_1CYCLE) || \
 
                          ((VAL) == TSC_CTPH_2CYCLES) || \
 
                          ((VAL) == TSC_CTPH_3CYCLES) || \
 
                          ((VAL) == TSC_CTPH_4CYCLES) || \
 
                          ((VAL) == TSC_CTPH_5CYCLES) || \
 
                          ((VAL) == TSC_CTPH_6CYCLES) || \
 
                          ((VAL) == TSC_CTPH_7CYCLES) || \
 
                          ((VAL) == TSC_CTPH_8CYCLES) || \
 
                          ((VAL) == TSC_CTPH_9CYCLES) || \
 
                          ((VAL) == TSC_CTPH_10CYCLES) || \
 
                          ((VAL) == TSC_CTPH_11CYCLES) || \
 
                          ((VAL) == TSC_CTPH_12CYCLES) || \
 
                          ((VAL) == TSC_CTPH_13CYCLES) || \
 
                          ((VAL) == TSC_CTPH_14CYCLES) || \
 
                          ((VAL) == TSC_CTPH_15CYCLES) || \
 
                          ((VAL) == TSC_CTPH_16CYCLES))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_CTPL_Cycles TSC Charge Transfer Pulse Low
 
  * @{
 
  */  
 
#define TSC_CTPL_1CYCLE   ((uint32_t)((uint32_t) 0 << 24))
 
#define TSC_CTPL_2CYCLES  ((uint32_t)((uint32_t) 1 << 24))
 
#define TSC_CTPL_3CYCLES  ((uint32_t)((uint32_t) 2 << 24))
 
#define TSC_CTPL_4CYCLES  ((uint32_t)((uint32_t) 3 << 24))
 
#define TSC_CTPL_5CYCLES  ((uint32_t)((uint32_t) 4 << 24))
 
#define TSC_CTPL_6CYCLES  ((uint32_t)((uint32_t) 5 << 24))
 
#define TSC_CTPL_7CYCLES  ((uint32_t)((uint32_t) 6 << 24))
 
#define TSC_CTPL_8CYCLES  ((uint32_t)((uint32_t) 7 << 24))
 
#define TSC_CTPL_9CYCLES  ((uint32_t)((uint32_t) 8 << 24))
 
#define TSC_CTPL_10CYCLES ((uint32_t)((uint32_t) 9 << 24))
 
#define TSC_CTPL_11CYCLES ((uint32_t)((uint32_t)10 << 24))
 
#define TSC_CTPL_12CYCLES ((uint32_t)((uint32_t)11 << 24))
 
#define TSC_CTPL_13CYCLES ((uint32_t)((uint32_t)12 << 24))
 
#define TSC_CTPL_14CYCLES ((uint32_t)((uint32_t)13 << 24))
 
#define TSC_CTPL_15CYCLES ((uint32_t)((uint32_t)14 << 24))
 
#define TSC_CTPL_16CYCLES ((uint32_t)((uint32_t)15 << 24))
 
#define IS_TSC_CTPL(VAL) (((VAL) == TSC_CTPL_1CYCLE) || \
 
                          ((VAL) == TSC_CTPL_2CYCLES) || \
 
                          ((VAL) == TSC_CTPL_3CYCLES) || \
 
                          ((VAL) == TSC_CTPL_4CYCLES) || \
 
                          ((VAL) == TSC_CTPL_5CYCLES) || \
 
                          ((VAL) == TSC_CTPL_6CYCLES) || \
 
                          ((VAL) == TSC_CTPL_7CYCLES) || \
 
                          ((VAL) == TSC_CTPL_8CYCLES) || \
 
                          ((VAL) == TSC_CTPL_9CYCLES) || \
 
                          ((VAL) == TSC_CTPL_10CYCLES) || \
 
                          ((VAL) == TSC_CTPL_11CYCLES) || \
 
                          ((VAL) == TSC_CTPL_12CYCLES) || \
 
                          ((VAL) == TSC_CTPL_13CYCLES) || \
 
                          ((VAL) == TSC_CTPL_14CYCLES) || \
 
                          ((VAL) == TSC_CTPL_15CYCLES) || \
 
                          ((VAL) == TSC_CTPL_16CYCLES))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TSC_SS_Prescaler_definition TSC Spread spectrum prescaler definition
 
  * @{
 
  */
 
#define TSC_SS_PRESC_DIV1 ((uint32_t)0)  
 
#define TSC_SS_PRESC_DIV2  (TSC_CR_SSPSC) 
 
#define IS_TSC_SS_PRESC(VAL) (((VAL) == TSC_SS_PRESC_DIV1) || ((VAL) == TSC_SS_PRESC_DIV2))
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TSC_PG_Prescaler_definition TSC Pulse Generator prescaler definition
 
  * @{
 
  */
 
#define TSC_PG_PRESC_DIV1   ((uint32_t)(0 << 12))
 
#define TSC_PG_PRESC_DIV2   ((uint32_t)(1 << 12))
 
#define TSC_PG_PRESC_DIV4   ((uint32_t)(2 << 12))
 
#define TSC_PG_PRESC_DIV8   ((uint32_t)(3 << 12))
 
#define TSC_PG_PRESC_DIV16  ((uint32_t)(4 << 12))
 
#define TSC_PG_PRESC_DIV32  ((uint32_t)(5 << 12))
 
#define TSC_PG_PRESC_DIV64  ((uint32_t)(6 << 12))
 
#define TSC_PG_PRESC_DIV128 ((uint32_t)(7 << 12))
 
#define IS_TSC_PG_PRESC(VAL) (((VAL) == TSC_PG_PRESC_DIV1) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV2) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV4) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV8) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV16) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV32) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV64) || \
 
                              ((VAL) == TSC_PG_PRESC_DIV128))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_MCV_definition TSC Max Count Value definition
 
  * @{
 
  */  
 
#define TSC_MCV_255   ((uint32_t)(0 << 5))
 
#define TSC_MCV_511   ((uint32_t)(1 << 5))
 
#define TSC_MCV_1023  ((uint32_t)(2 << 5))
 
#define TSC_MCV_2047  ((uint32_t)(3 << 5))
 
#define TSC_MCV_4095  ((uint32_t)(4 << 5))
 
#define TSC_MCV_8191  ((uint32_t)(5 << 5))
 
#define TSC_MCV_16383 ((uint32_t)(6 << 5))
 
#define IS_TSC_MCV(VAL) (((VAL) == TSC_MCV_255) || \
 
                         ((VAL) == TSC_MCV_511) || \
 
                         ((VAL) == TSC_MCV_1023) || \
 
                         ((VAL) == TSC_MCV_2047) || \
 
                         ((VAL) == TSC_MCV_4095) || \
 
                         ((VAL) == TSC_MCV_8191) || \
 
                         ((VAL) == TSC_MCV_16383))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_IO_default_mode_definition TSC I/O default mode definition
 
  * @{
 
  */  
 
#define TSC_IODEF_OUT_PP_LOW ((uint32_t)0)
 
#define TSC_IODEF_IN_FLOAT   (TSC_CR_IODEF)
 
#define IS_TSC_IODEF(VAL) (((VAL) == TSC_IODEF_OUT_PP_LOW) || ((VAL) == TSC_IODEF_IN_FLOAT))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_Synchronization_pin_polarity TSC Synchronization pin polarity
 
  * @{
 
  */    
 
#define TSC_SYNC_POL_FALL      ((uint32_t)0)
 
#define TSC_SYNC_POL_RISE_HIGH (TSC_CR_SYNCPOL)
 
#define IS_TSC_SYNC_POL(VAL) (((VAL) == TSC_SYNC_POL_FALL) || ((VAL) == TSC_SYNC_POL_RISE_HIGH))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TSC_Acquisition_mode TSC Acquisition mode
 
  * @{
 
  */   
 
#define TSC_ACQ_MODE_NORMAL  ((uint32_t)0)
 
#define TSC_ACQ_MODE_SYNCHRO (TSC_CR_AM)
 
#define IS_TSC_ACQ_MODE(VAL) (((VAL) == TSC_ACQ_MODE_NORMAL) || ((VAL) == TSC_ACQ_MODE_SYNCHRO))
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TSC_IO_mode_definition TSC I/O mode definition
 
  * @{
 
  */
 
#define TSC_IOMODE_UNUSED   ((uint32_t)0)
 
#define TSC_IOMODE_CHANNEL  ((uint32_t)1)
 
#define TSC_IOMODE_SHIELD   ((uint32_t)2)
 
#define TSC_IOMODE_SAMPLING ((uint32_t)3)
 
#define IS_TSC_IOMODE(VAL) (((VAL) == TSC_IOMODE_UNUSED) || \
 
                            ((VAL) == TSC_IOMODE_CHANNEL) || \
 
                            ((VAL) == TSC_IOMODE_SHIELD) || \
 
                            ((VAL) == TSC_IOMODE_SAMPLING))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_interrupts_definition TSC interrupts definition
 
  * @{
 
  */
 
#define TSC_IT_EOA ((uint32_t)TSC_IER_EOAIE)  
 
#define TSC_IT_MCE ((uint32_t)TSC_IER_MCEIE) 
 
#define IS_TSC_MCE_IT(VAL) (((VAL) == DISABLE) || ((VAL) == ENABLE))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup TSC_flags_definition TSC Flags Definition
 
  * @{
 
  */ 
 
#define TSC_FLAG_EOA ((uint32_t)TSC_ISR_EOAF)
 
#define TSC_FLAG_MCE ((uint32_t)TSC_ISR_MCEF)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_groups_definition TSC groups definition
 
  * @{
 
  */ 
 
#define TSC_NB_OF_GROUPS (8)
 
 
#define TSC_GROUP1 ((uint32_t)0x00000001)
 
#define TSC_GROUP2 ((uint32_t)0x00000002)
 
#define TSC_GROUP3 ((uint32_t)0x00000004)
 
#define TSC_GROUP4 ((uint32_t)0x00000008)
 
#define TSC_GROUP5 ((uint32_t)0x00000010)
 
#define TSC_GROUP6 ((uint32_t)0x00000020)
 
#define TSC_GROUP7 ((uint32_t)0x00000040)
 
#define TSC_GROUP8 ((uint32_t)0x00000080)
 
#define TSC_ALL_GROUPS ((uint32_t)0x000000FF)
 
 
#define TSC_GROUP1_IDX ((uint32_t)0)
 
#define TSC_GROUP2_IDX ((uint32_t)1)
 
#define TSC_GROUP3_IDX ((uint32_t)2)
 
#define TSC_GROUP4_IDX ((uint32_t)3)
 
#define TSC_GROUP5_IDX ((uint32_t)4)
 
#define TSC_GROUP6_IDX ((uint32_t)5)
 
#define TSC_GROUP7_IDX ((uint32_t)6)
 
#define TSC_GROUP8_IDX ((uint32_t)7)
 
#define IS_GROUP_INDEX(VAL) (((VAL) == 0) || (((VAL) > 0) && ((VAL) < TSC_NB_OF_GROUPS)))
 
 
#define TSC_GROUP1_IO1 ((uint32_t)0x00000001)
 
#define TSC_GROUP1_IO2 ((uint32_t)0x00000002)
 
#define TSC_GROUP1_IO3 ((uint32_t)0x00000004)
 
#define TSC_GROUP1_IO4 ((uint32_t)0x00000008)
 
#define TSC_GROUP1_ALL_IOS ((uint32_t)0x0000000F)
 
 
#define TSC_GROUP2_IO1 ((uint32_t)0x00000010)
 
#define TSC_GROUP2_IO2 ((uint32_t)0x00000020)
 
#define TSC_GROUP2_IO3 ((uint32_t)0x00000040)
 
#define TSC_GROUP2_IO4 ((uint32_t)0x00000080)
 
#define TSC_GROUP2_ALL_IOS ((uint32_t)0x000000F0)
 
 
#define TSC_GROUP3_IO1 ((uint32_t)0x00000100)
 
#define TSC_GROUP3_IO2 ((uint32_t)0x00000200)
 
#define TSC_GROUP3_IO3 ((uint32_t)0x00000400)
 
#define TSC_GROUP3_IO4 ((uint32_t)0x00000800)
 
#define TSC_GROUP3_ALL_IOS ((uint32_t)0x00000F00)
 
 
#define TSC_GROUP4_IO1 ((uint32_t)0x00001000)
 
#define TSC_GROUP4_IO2 ((uint32_t)0x00002000)
 
#define TSC_GROUP4_IO3 ((uint32_t)0x00004000)
 
#define TSC_GROUP4_IO4 ((uint32_t)0x00008000)
 
#define TSC_GROUP4_ALL_IOS ((uint32_t)0x0000F000)
 
 
#define TSC_GROUP5_IO1 ((uint32_t)0x00010000)
 
#define TSC_GROUP5_IO2 ((uint32_t)0x00020000)
 
#define TSC_GROUP5_IO3 ((uint32_t)0x00040000)
 
#define TSC_GROUP5_IO4 ((uint32_t)0x00080000)
 
#define TSC_GROUP5_ALL_IOS ((uint32_t)0x000F0000)
 
 
#define TSC_GROUP6_IO1 ((uint32_t)0x00100000)
 
#define TSC_GROUP6_IO2 ((uint32_t)0x00200000)
 
#define TSC_GROUP6_IO3 ((uint32_t)0x00400000)
 
#define TSC_GROUP6_IO4 ((uint32_t)0x00800000)
 
#define TSC_GROUP6_ALL_IOS ((uint32_t)0x00F00000)
 
 
#define TSC_GROUP7_IO1 ((uint32_t)0x01000000)
 
#define TSC_GROUP7_IO2 ((uint32_t)0x02000000)
 
#define TSC_GROUP7_IO3 ((uint32_t)0x04000000)
 
#define TSC_GROUP7_IO4 ((uint32_t)0x08000000)
 
#define TSC_GROUP7_ALL_IOS ((uint32_t)0x0F000000)
 
 
#define TSC_GROUP8_IO1 ((uint32_t)0x10000000)
 
#define TSC_GROUP8_IO2 ((uint32_t)0x20000000)
 
#define TSC_GROUP8_IO3 ((uint32_t)0x40000000)
 
#define TSC_GROUP8_IO4 ((uint32_t)0x80000000)
 
#define TSC_GROUP8_ALL_IOS ((uint32_t)0xF0000000)
 
 
#define TSC_ALL_GROUPS_ALL_IOS ((uint32_t)0xFFFFFFFF)
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
 
/* Private macros -----------------------------------------------------------*/
 
/** @defgroup TSC_Private_Macros TSC Private Macros
 
 * @{
 
 */
 
/** @defgroup TSC_Spread_Spectrum  TSC Spread Spectrum
 
  * @{
 
  */  
 
#define IS_TSC_SS(VAL) (((VAL) == DISABLE) || ((VAL) == ENABLE))
 
 
#define IS_TSC_SSD(VAL) (((VAL) == 0) || (((VAL) > 0) && ((VAL) < 128)))
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/* Exported macros -----------------------------------------------------------*/
 
/** @defgroup TSC_Exported_Macros TSC Exported Macros
 
 * @{
 
 */
 
 
/** @brief  Reset TSC handle state
 
  * @param  __HANDLE__: TSC handle.
 
  * @retval None
 
  */
 
#define __HAL_TSC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_TSC_STATE_RESET)
 
 
/**
 
  * @brief Enable the TSC peripheral.
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR |= TSC_CR_TSCE)
 
 
/**
 
  * @brief Disable the TSC peripheral.
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR &= (uint32_t)(~TSC_CR_TSCE))
 
 
/**
 
  * @brief Start acquisition
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_START_ACQ(__HANDLE__) ((__HANDLE__)->Instance->CR |= TSC_CR_START)
 
 
/**
 
  * @brief Stop acquisition
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_STOP_ACQ(__HANDLE__) ((__HANDLE__)->Instance->CR &= (uint32_t)(~TSC_CR_START))
 
 
/**
 
  * @brief Set IO default mode to output push-pull low
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_SET_IODEF_OUTPPLOW(__HANDLE__) ((__HANDLE__)->Instance->CR &= (uint32_t)(~TSC_CR_IODEF))
 
 
/**
 
  * @brief Set IO default mode to input floating
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_SET_IODEF_INFLOAT(__HANDLE__) ((__HANDLE__)->Instance->CR |= TSC_CR_IODEF)
 
 
/**
 
  * @brief Set synchronization polarity to falling edge
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_SET_SYNC_POL_FALL(__HANDLE__) ((__HANDLE__)->Instance->CR &= (uint32_t)(~TSC_CR_SYNCPOL))
 
 
/**
 
  * @brief Set synchronization polarity to rising edge and high level
 
  * @param  __HANDLE__: TSC handle
 
  * @retval None
 
  */
 
#define __HAL_TSC_SET_SYNC_POL_RISE_HIGH(__HANDLE__) ((__HANDLE__)->Instance->CR |= TSC_CR_SYNCPOL)
 
 
/**
 
  * @brief Enable TSC interrupt.
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __INTERRUPT__: TSC interrupt
 
  * @retval None
 
  */
 
#define __HAL_TSC_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->IER |= (__INTERRUPT__))
 
 
/**
 
  * @brief Disable TSC interrupt.
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __INTERRUPT__: TSC interrupt
 
  * @retval None
 
  */
 
#define __HAL_TSC_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->IER &= (uint32_t)(~(__INTERRUPT__)))
 
 
/** @brief Check if the specified TSC interrupt source is enabled or disabled.
 
  * @param  __HANDLE__: TSC Handle
 
  * @param  __INTERRUPT__: TSC interrupt
 
  * @retval SET or RESET
 
  */
 
#define __HAL_TSC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->IER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
 
 
/**
 
  * @brief Get the selected TSC's flag status.
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __FLAG__: TSC flag
 
  * @retval SET or RESET
 
  */
 
#define __HAL_TSC_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->ISR & (__FLAG__)) == (__FLAG__)) ? SET : RESET)
 
 
/**
 
  * @brief Clear the TSC's pending flag.
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __FLAG__: TSC flag
 
  * @retval None
 
  */
 
#define __HAL_TSC_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->ICR = (__FLAG__))
 
 
/**
 
  * @brief Enable schmitt trigger hysteresis on a group of IOs
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_ENABLE_HYSTERESIS(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOHCR |= (__GX_IOY_MASK__))
 
 
/**
 
  * @brief Disable schmitt trigger hysteresis on a group of IOs
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_DISABLE_HYSTERESIS(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOHCR &= (uint32_t)(~(__GX_IOY_MASK__)))
 
 
/**
 
  * @brief Open analog switch on a group of IOs
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_OPEN_ANALOG_SWITCH(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOASCR &= (uint32_t)(~(__GX_IOY_MASK__)))
 
 
/**
 
  * @brief Close analog switch on a group of IOs
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_CLOSE_ANALOG_SWITCH(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOASCR |= (__GX_IOY_MASK__))
 
 
/**
 
  * @brief Enable a group of IOs in channel mode
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_ENABLE_CHANNEL(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOCCR |= (__GX_IOY_MASK__))
 
 
/**
 
  * @brief Disable a group of channel IOs
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_DISABLE_CHANNEL(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOCCR &= (uint32_t)(~(__GX_IOY_MASK__)))
 
 
/**
 
  * @brief Enable a group of IOs in sampling mode
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_ENABLE_SAMPLING(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOSCR |= (__GX_IOY_MASK__))
 
 
/**
 
  * @brief Disable a group of sampling IOs
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_IOY_MASK__: IOs mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_DISABLE_SAMPLING(__HANDLE__, __GX_IOY_MASK__) ((__HANDLE__)->Instance->IOSCR &= (uint32_t)(~(__GX_IOY_MASK__)))
 
 
/**
 
  * @brief Enable acquisition groups
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_MASK__: Groups mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_ENABLE_GROUP(__HANDLE__, __GX_MASK__) ((__HANDLE__)->Instance->IOGCSR |= (__GX_MASK__))
 
 
/**
 
  * @brief Disable acquisition groups
 
  * @param  __HANDLE__: TSC handle
 
  * @param  __GX_MASK__: Groups mask
 
  * @retval None
 
  */
 
#define __HAL_TSC_DISABLE_GROUP(__HANDLE__, __GX_MASK__) ((__HANDLE__)->Instance->IOGCSR &= (uint32_t)(~(__GX_MASK__)))
 
 
/** @brief Gets acquisition group status
 
  * @param  __HANDLE__: TSC Handle
 
  * @param  __GX_INDEX__: Group index
 
  * @retval SET or RESET
 
  */
 
#define __HAL_TSC_GET_GROUP_STATUS(__HANDLE__, __GX_INDEX__) \
 
((((__HANDLE__)->Instance->IOGCSR & (uint32_t)((uint32_t)1 << ((__GX_INDEX__) + (uint32_t)16))) == (uint32_t)((uint32_t)1 << ((__GX_INDEX__) + (uint32_t)16))) ? TSC_GROUP_COMPLETED : TSC_GROUP_ONGOING)
 
 
/**
 
  * @}
 
  */
 
  
 
/* Exported functions --------------------------------------------------------*/  
 
/** @addtogroup TSC_Exported_Functions TSC Exported Functions
 
  * @{
 
  */
 
 
/** @addtogroup TSC_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *  @{
 
 */
 
/* Initialization and de-initialization functions *****************************/
 
HAL_StatusTypeDef HAL_TSC_Init(TSC_HandleTypeDef* htsc);
 
HAL_StatusTypeDef HAL_TSC_DeInit(TSC_HandleTypeDef *htsc);
 
void HAL_TSC_MspInit(TSC_HandleTypeDef* htsc);
 
void HAL_TSC_MspDeInit(TSC_HandleTypeDef* htsc);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TSC_Exported_Functions_Group2 IO operation functions
 
 *  @brief    IO operation functions  *  @{
 
 */
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_TSC_Start(TSC_HandleTypeDef* htsc);
 
HAL_StatusTypeDef HAL_TSC_Start_IT(TSC_HandleTypeDef* htsc);
 
HAL_StatusTypeDef HAL_TSC_Stop(TSC_HandleTypeDef* htsc);
 
HAL_StatusTypeDef HAL_TSC_Stop_IT(TSC_HandleTypeDef* htsc);
 
TSC_GroupStatusTypeDef HAL_TSC_GroupGetStatus(TSC_HandleTypeDef* htsc, uint32_t gx_index);
 
uint32_t HAL_TSC_GroupGetValue(TSC_HandleTypeDef* htsc, uint32_t gx_index);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TSC_Exported_Functions_Group3 Peripheral Control functions
 
 *  @brief    Peripheral Control functions 
 
 *  @{
 
 */
 
/* Peripheral Control functions ***********************************************/
 
HAL_StatusTypeDef HAL_TSC_IOConfig(TSC_HandleTypeDef* htsc, TSC_IOConfigTypeDef* config);
 
HAL_StatusTypeDef HAL_TSC_IODischarge(TSC_HandleTypeDef* htsc, uint32_t choice);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup TSC_Exported_Functions_Group4 State functions
 
 *  @brief   State functions 
 
 *  @{
 
 */
 
/* Peripheral State and Error functions ***************************************/
 
HAL_TSC_StateTypeDef HAL_TSC_GetState(TSC_HandleTypeDef* htsc);
 
HAL_StatusTypeDef HAL_TSC_PollForAcquisition(TSC_HandleTypeDef* htsc);
 
void HAL_TSC_IRQHandler(TSC_HandleTypeDef* htsc);
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup TSC_Exported_Functions_Group5 Callback functions
 
 *  @brief   Callback functions 
 
 *  @{
 
 */
 
/* Callback functions *********************************************************/
 
void HAL_TSC_ConvCpltCallback(TSC_HandleTypeDef* htsc);
 
void HAL_TSC_ErrorCallback(TSC_HandleTypeDef* htsc);
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#endif /* defined(STM32F051x8) || defined(STM32F071xB) || defined(STM32F091xC) || */
 
       /* defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || */
 
       /* defined(STM32F058xx) || defined(STM32F078xx) || defined(STM32F098xx)    */
 
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /*__STM32F0xx_TSC_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_uart.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_uart.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of UART HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_UART_H
 
#define __STM32F0xx_HAL_UART_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup UART
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup UART_Exported_Types UART Exported Types
 
  * @{
 
  */ 
 
 
 
/** 
 
  * @brief UART Init Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t BaudRate;                  /*!< This member configures the UART communication baud rate.
 
                                           The baud rate register is computed using the following formula:
 
                                           - If oversampling is 16 or in LIN mode (LIN mode not available on F030xx devices),
 
                                              Baud Rate Register = ((PCLKx) / ((huart->Init.BaudRate)))
 
                                           - If oversampling is 8,
 
                                              Baud Rate Register[15:4] = ((2 * PCLKx) / ((huart->Init.BaudRate)))[15:4]  
 
                                              Baud Rate Register[3] =  0
 
                                              Baud Rate Register[2:0] =  (((2 * PCLKx) / ((huart->Init.BaudRate)))[3:0]) >> 1      */
 
 
  uint32_t WordLength;                /*!< Specifies the number of data bits transmitted or received in a frame.
 
                                           This parameter can be a value of @ref UARTEx_Word_Length */
 
 
  uint32_t StopBits;                  /*!< Specifies the number of stop bits transmitted.
 
                                           This parameter can be a value of @ref UART_Stop_Bits */
 
 
  uint32_t Parity;                    /*!< Specifies the parity mode.
 
                                           This parameter can be a value of @ref UART_Parity
 
                                           @note When parity is enabled, the computed parity is inserted
 
                                                 at the MSB position of the transmitted data (9th bit when
 
                                                 the word length is set to 9 data bits; 8th bit when the
 
                                                 word length is set to 8 data bits). */
 
 
 
  uint32_t Mode;                      /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
 
                                           This parameter can be a value of @ref UART_Mode */
 
 
  uint32_t HwFlowCtl;                 /*!< Specifies whether the hardware flow control mode is enabled
 
                                           or disabled.
 
                                           This parameter can be a value of @ref UART_Hardware_Flow_Control */
 
  
 
  uint32_t OverSampling;              /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8).
 
                                           This parameter can be a value of @ref UART_Over_Sampling */  
 
                                           
 
  uint32_t OneBitSampling;            /*!< Specifies whether a single sample or three samples' majority vote is selected.
 
                                           Selecting the single sample method increases the receiver tolerance to clock
 
                                           deviations. This parameter can be a value of @ref UART_OneBit_Sampling. */                                                 
 
}UART_InitTypeDef;
 
 
/** 
 
  * @brief  UART Advanced Features initalization structure definition  
 
  */
 
typedef struct                                      
 
{
 
  uint32_t AdvFeatureInit;        /*!< Specifies which advanced UART features is initialized. Several
 
                                       Advanced Features may be initialized at the same time .
 
                                       This parameter can be a value of @ref UART_Advanced_Features_Initialization_Type */
 
  
 
  uint32_t TxPinLevelInvert;      /*!< Specifies whether the TX pin active level is inverted.
 
                                       This parameter can be a value of @ref UART_Tx_Inv  */
 
                                           
 
  uint32_t RxPinLevelInvert;      /*!< Specifies whether the RX pin active level is inverted.
 
                                       This parameter can be a value of @ref UART_Rx_Inv  */
 
 
  uint32_t DataInvert;            /*!< Specifies whether data are inverted (positive/direct logic
 
                                       vs negative/inverted logic).
 
                                       This parameter can be a value of @ref UART_Data_Inv */
 
                                       
 
  uint32_t Swap;                  /*!< Specifies whether TX and RX pins are swapped.   
 
                                       This parameter can be a value of @ref UART_Rx_Tx_Swap */
 
                                       
 
  uint32_t OverrunDisable;        /*!< Specifies whether the reception overrun detection is disabled.   
 
                                       This parameter can be a value of @ref UART_Overrun_Disable */
 
                                       
 
  uint32_t DMADisableonRxError;   /*!< Specifies whether the DMA is disabled in case of reception error.     
 
                                       This parameter can be a value of @ref UART_DMA_Disable_on_Rx_Error */
 
                                       
 
  uint32_t AutoBaudRateEnable;    /*!< Specifies whether auto Baud rate detection is enabled.     
 
                                       This parameter can be a value of @ref UART_AutoBaudRate_Enable */  
 
                                       
 
  uint32_t AutoBaudRateMode;      /*!< If auto Baud rate detection is enabled, specifies how the rate 
 
                                       detection is carried out.     
 
                                       This parameter can be a value of @ref UARTEx_AutoBaud_Rate_Mode */
 
                                    
 
  uint32_t MSBFirst;              /*!< Specifies whether MSB is sent first on UART line.      
 
                                       This parameter can be a value of @ref UART_MSB_First */
 
} UART_AdvFeatureInitTypeDef;
 
 
/** 
 
  * @brief  UART wake up from stop mode parameters  
 
  */
 
typedef struct                                      
 
{
 
  uint32_t WakeUpEvent;        /*!< Specifies which event will activat the Wakeup from Stop mode flag (WUF).
 
                                    This parameter can be a value of @ref UART_WakeUp_from_Stop_Selection.
 
                                    If set to UART_WAKEUP_ON_ADDRESS, the two other fields below must
 
                                    be filled up. */
 
  
 
  uint16_t AddressLength;      /*!< Specifies whether the address is 4 or 7-bit long.
 
                                    This parameter can be a value of @ref UART_WakeUp_Address_Length  */
 
                                           
 
  uint8_t Address;             /*!< UART/USART node address (7-bit long max) */
 
} UART_WakeUpTypeDef;
 
 
/** 
 
  * @brief HAL UART State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_UART_STATE_RESET             = 0x00,    /*!< Peripheral is not initialized                      */
 
  HAL_UART_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use           */
 
  HAL_UART_STATE_BUSY              = 0x02,    /*!< an internal process is ongoing                     */
 
  HAL_UART_STATE_BUSY_TX           = 0x12,    /*!< Data Transmission process is ongoing               */
 
  HAL_UART_STATE_BUSY_RX           = 0x22,    /*!< Data Reception process is ongoing                  */
 
  HAL_UART_STATE_BUSY_TX_RX        = 0x32,    /*!< Data Transmission and Reception process is ongoing */
 
  HAL_UART_STATE_TIMEOUT           = 0x03,    /*!< Timeout state                                      */
 
  HAL_UART_STATE_ERROR             = 0x04     /*!< Error                                              */
 
}HAL_UART_StateTypeDef;
 
 
/** 
 
  * @brief  HAL UART Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_UART_ERROR_NONE      = 0x00,    /*!< No error            */
 
  HAL_UART_ERROR_PE        = 0x01,    /*!< Parity error        */
 
  HAL_UART_ERROR_NE        = 0x02,    /*!< Noise error         */
 
  HAL_UART_ERROR_FE        = 0x04,    /*!< frame error         */
 
  HAL_UART_ERROR_ORE       = 0x08,    /*!< Overrun error       */
 
  HAL_UART_ERROR_DMA       = 0x10     /*!< DMA transfer error  */
 
}HAL_UART_ErrorTypeDef;
 
 
/**
 
  * @brief UART clock sources definition
 
  */
 
typedef enum
 
{
 
  UART_CLOCKSOURCE_PCLK1     = 0x00, /*!< PCLK1 clock source     */
 
  UART_CLOCKSOURCE_HSI       = 0x02, /*!< HSI clock source       */
 
  UART_CLOCKSOURCE_SYSCLK    = 0x04, /*!< SYSCLK clock source    */
 
  UART_CLOCKSOURCE_LSE       = 0x08, /*!< LSE clock source       */
 
  UART_CLOCKSOURCE_UNDEFINED = 0x10  /*!< undefined clock source */  
 
}UART_ClockSourceTypeDef;
 
 
/** 
 
  * @brief  UART handle Structure definition  
 
  */  
 
typedef struct
 
{
 
  USART_TypeDef            *Instance;        /* UART registers base address        */
 
 
  UART_InitTypeDef         Init;             /* UART communication parameters      */
 
 
  UART_AdvFeatureInitTypeDef AdvancedInit;   /* UART Advanced Features initialization parameters */
 
 
  uint8_t                  *pTxBuffPtr;      /* Pointer to UART Tx transfer Buffer */
 
 
  uint16_t                 TxXferSize;       /* UART Tx Transfer size              */
 
 
  uint16_t                 TxXferCount;      /* UART Tx Transfer Counter           */
 
 
  uint8_t                  *pRxBuffPtr;      /* Pointer to UART Rx transfer Buffer */
 
 
  uint16_t                 RxXferSize;       /* UART Rx Transfer size              */
 
 
  uint16_t                 RxXferCount;      /* UART Rx Transfer Counter           */
 
 
  uint16_t                 Mask;             /* UART Rx RDR register mask          */
 
 
  DMA_HandleTypeDef        *hdmatx;          /* UART Tx DMA Handle parameters      */
 
 
  DMA_HandleTypeDef        *hdmarx;          /* UART Rx DMA Handle parameters      */
 
 
  HAL_LockTypeDef           Lock;            /* Locking object                     */
 
 
  HAL_UART_StateTypeDef    State;            /* UART communication state           */
 
  
 
  HAL_UART_ErrorTypeDef    ErrorCode;        /* UART Error code                    */
 
  
 
}UART_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
  
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup UART_Exported_Constants UART Exported constants
 
  * @{
 
  */
 
 
/** @defgroup UART_Stop_Bits   UART Number of Stop Bits
 
  * @{
 
  */
 
#define UART_STOPBITS_1                     ((uint32_t)0x0000)
 
#define UART_STOPBITS_2                     ((uint32_t)USART_CR2_STOP_1)
 
#define IS_UART_STOPBITS(STOPBITS) (((STOPBITS) == UART_STOPBITS_1) || \
 
                                    ((STOPBITS) == UART_STOPBITS_2))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup UART_Parity  UART Parity
 
  * @{
 
  */ 
 
#define UART_PARITY_NONE                    ((uint32_t)0x0000)
 
#define UART_PARITY_EVEN                    ((uint32_t)USART_CR1_PCE)
 
#define UART_PARITY_ODD                     ((uint32_t)(USART_CR1_PCE | USART_CR1_PS)) 
 
#define IS_UART_PARITY(PARITY) (((PARITY) == UART_PARITY_NONE) || \
 
                                ((PARITY) == UART_PARITY_EVEN) || \
 
                                ((PARITY) == UART_PARITY_ODD))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup UART_Hardware_Flow_Control UART Hardware Flow Control
 
  * @{
 
  */ 
 
#define UART_HWCONTROL_NONE                  ((uint32_t)0x0000)
 
#define UART_HWCONTROL_RTS                   ((uint32_t)USART_CR3_RTSE)
 
#define UART_HWCONTROL_CTS                   ((uint32_t)USART_CR3_CTSE)
 
#define UART_HWCONTROL_RTS_CTS               ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE))
 
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
 
                              (((CONTROL) == UART_HWCONTROL_NONE) || \
 
                               ((CONTROL) == UART_HWCONTROL_RTS) || \
 
                               ((CONTROL) == UART_HWCONTROL_CTS) || \
 
                               ((CONTROL) == UART_HWCONTROL_RTS_CTS))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Mode UART Transfer Mode
 
  * @{
 
  */ 
 
#define UART_MODE_RX                        ((uint32_t)USART_CR1_RE)
 
#define UART_MODE_TX                        ((uint32_t)USART_CR1_TE)
 
#define UART_MODE_TX_RX                     ((uint32_t)(USART_CR1_TE |USART_CR1_RE))
 
#define IS_UART_MODE(MODE) ((((MODE) & (~((uint32_t)(UART_MODE_TX_RX)))) == (uint32_t)0x00) && ((MODE) != (uint32_t)0x00))
 
/**
 
  * @}
 
  */
 
    
 
 /** @defgroup UART_State  UART State
 
  * @{
 
  */ 
 
#define UART_STATE_DISABLE                  ((uint32_t)0x0000)
 
#define UART_STATE_ENABLE                   ((uint32_t)USART_CR1_UE)
 
#define IS_UART_STATE(STATE) (((STATE) == UART_STATE_DISABLE) || \
 
                              ((STATE) == UART_STATE_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Over_Sampling UART Over Sampling
 
  * @{
 
  */
 
#define UART_OVERSAMPLING_16                    ((uint32_t)0x0000)
 
#define UART_OVERSAMPLING_8                     ((uint32_t)USART_CR1_OVER8)
 
#define IS_UART_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16) || \
 
                                        ((SAMPLING) == UART_OVERSAMPLING_8))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup UART_OneBit_Sampling UART One Bit Sampling Method
 
  * @{
 
  */
 
#define UART_ONEBIT_SAMPLING_DISABLED   ((uint32_t)0x0000)
 
#define UART_ONEBIT_SAMPLING_ENABLED    ((uint32_t)USART_CR3_ONEBIT)
 
#define IS_UART_ONEBIT_SAMPLING(ONEBIT) (((ONEBIT) == UART_ONEBIT_SAMPLING_DISABLED) || \
 
                                         ((ONEBIT) == UART_ONEBIT_SAMPLING_ENABLED))
 
/**
 
  * @}
 
  */  
 
  
 
 
/** @defgroup UART_Receiver_TimeOut UART Receiver TimeOut 
 
  * @{
 
  */
 
#define UART_RECEIVER_TIMEOUT_DISABLE   ((uint32_t)0x00000000)
 
#define UART_RECEIVER_TIMEOUT_ENABLE    ((uint32_t)USART_CR2_RTOEN)
 
#define IS_UART_RECEIVER_TIMEOUT(TIMEOUT) (((TIMEOUT) == UART_RECEIVER_TIMEOUT_DISABLE) || \
 
                                           ((TIMEOUT) == UART_RECEIVER_TIMEOUT_ENABLE))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup UART_One_Bit     UART One Bit sampling
 
  * @{
 
  */
 
#define UART_ONE_BIT_SAMPLE_DISABLED          ((uint32_t)0x00000000)
 
#define UART_ONE_BIT_SAMPLE_ENABLED           ((uint32_t)USART_CR3_ONEBIT)
 
#define IS_UART_ONEBIT_SAMPLE(ONEBIT)         (((ONEBIT) == UART_ONE_BIT_SAMPLE_DISABLED) || \
 
                                                  ((ONEBIT) == UART_ONE_BIT_SAMPLE_ENABLED))
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup UART_DMA_Tx    UART DMA Tx
 
  * @{
 
  */
 
#define UART_DMA_TX_DISABLE          ((uint32_t)0x00000000)
 
#define UART_DMA_TX_ENABLE           ((uint32_t)USART_CR3_DMAT)
 
#define IS_UART_DMA_TX(DMATX)         (((DMATX) == UART_DMA_TX_DISABLE) || \
 
                                       ((DMATX) == UART_DMA_TX_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_DMA_Rx   UART DMA Rx
 
  * @{
 
  */
 
#define UART_DMA_RX_DISABLE           ((uint32_t)0x0000)
 
#define UART_DMA_RX_ENABLE            ((uint32_t)USART_CR3_DMAR)
 
#define IS_UART_DMA_RX(DMARX)         (((DMARX) == UART_DMA_RX_DISABLE) || \
 
                                       ((DMARX) == UART_DMA_RX_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Half_Duplex_Selection  UART Half Duplex Selection
 
  * @{
 
  */
 
#define UART_HALF_DUPLEX_DISABLE          ((uint32_t)0x0000)
 
#define UART_HALF_DUPLEX_ENABLE           ((uint32_t)USART_CR3_HDSEL)
 
#define IS_UART_HALF_DUPLEX(HDSEL)         (((HDSEL) == UART_HALF_DUPLEX_DISABLE) || \
 
                                            ((HDSEL) == UART_HALF_DUPLEX_ENABLE))
 
/**
 
  * @}
 
  */    
 
 
/** @defgroup UART_WakeUp_Address_Length    UART WakeUp Address Length
 
  * @{
 
  */
 
#define UART_ADDRESS_DETECT_4B                ((uint32_t)0x00000000)
 
#define UART_ADDRESS_DETECT_7B                ((uint32_t)USART_CR2_ADDM7)
 
#define IS_UART_ADDRESSLENGTH_DETECT(ADDRESS) (((ADDRESS) == UART_ADDRESS_DETECT_4B) || \
 
                                               ((ADDRESS) == UART_ADDRESS_DETECT_7B))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_WakeUp_Methods   UART WakeUp Methods
 
  * @{
 
  */
 
#define UART_WAKEUPMETHOD_IDLELINE                ((uint32_t)0x00000000)
 
#define UART_WAKEUPMETHOD_ADDRESSMARK             ((uint32_t)USART_CR1_WAKE)
 
#define IS_UART_WAKEUPMETHOD(WAKEUP) (((WAKEUP) == UART_WAKEUPMETHOD_IDLELINE) || \
 
                                       ((WAKEUP) == UART_WAKEUPMETHOD_ADDRESSMARK))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_IT   UART IT 
 
  *       Elements values convention: 000000000XXYYYYYb
 
  *           - YYYYY  : Interrupt source position in the XX register (5bits)
 
  *           - XX  : Interrupt source register (2bits)
 
  *                 - 01: CR1 register
 
  *                 - 10: CR2 register
 
  *                 - 11: CR3 register
 
  * @{
 
  */
 
#define UART_IT_ERR                         ((uint16_t)0x0060)
 
 
/**       Elements values convention: 0000ZZZZ00000000b
 
  *           - ZZZZ  : Flag position in the ISR register(4bits)
 
  */
 
#define UART_IT_ORE                         ((uint16_t)0x0300)
 
#define UART_IT_NE                          ((uint16_t)0x0200)
 
#define UART_IT_FE                          ((uint16_t)0x0100)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Advanced_Features_Initialization_Type  UART Advanced Feature Initialization Type
 
  * @{
 
  */
 
#define UART_ADVFEATURE_NO_INIT                 ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_TXINVERT_INIT           ((uint32_t)0x00000001)
 
#define UART_ADVFEATURE_RXINVERT_INIT           ((uint32_t)0x00000002)
 
#define UART_ADVFEATURE_DATAINVERT_INIT         ((uint32_t)0x00000004)
 
#define UART_ADVFEATURE_SWAP_INIT               ((uint32_t)0x00000008)
 
#define UART_ADVFEATURE_RXOVERRUNDISABLE_INIT   ((uint32_t)0x00000010)
 
#define UART_ADVFEATURE_DMADISABLEONERROR_INIT  ((uint32_t)0x00000020)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_INIT       ((uint32_t)0x00000040)
 
#define UART_ADVFEATURE_MSBFIRST_INIT           ((uint32_t)0x00000080)
 
#define IS_UART_ADVFEATURE_INIT(INIT)           ((INIT) <= (UART_ADVFEATURE_NO_INIT | \
 
                                                            UART_ADVFEATURE_TXINVERT_INIT | \
 
                                                            UART_ADVFEATURE_RXINVERT_INIT | \
 
                                                            UART_ADVFEATURE_DATAINVERT_INIT | \
 
                                                            UART_ADVFEATURE_SWAP_INIT | \
 
                                                            UART_ADVFEATURE_RXOVERRUNDISABLE_INIT | \
 
                                                            UART_ADVFEATURE_DMADISABLEONERROR_INIT   | \
 
                                                            UART_ADVFEATURE_AUTOBAUDRATE_INIT | \
 
                                                            UART_ADVFEATURE_MSBFIRST_INIT))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Tx_Inv UART Advanced Feature TX Pin Active Level Inversion
 
  * @{
 
  */
 
#define UART_ADVFEATURE_TXINV_DISABLE   ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_TXINV_ENABLE    ((uint32_t)USART_CR2_TXINV)
 
#define IS_UART_ADVFEATURE_TXINV(TXINV) (((TXINV) == UART_ADVFEATURE_TXINV_DISABLE) || \
 
                                         ((TXINV) == UART_ADVFEATURE_TXINV_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Rx_Inv UART Advanced Feature RX Pin Active Level Inversion
 
  * @{
 
  */
 
#define UART_ADVFEATURE_RXINV_DISABLE   ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_RXINV_ENABLE    ((uint32_t)USART_CR2_RXINV)
 
#define IS_UART_ADVFEATURE_RXINV(RXINV) (((RXINV) == UART_ADVFEATURE_RXINV_DISABLE) || \
 
                                         ((RXINV) == UART_ADVFEATURE_RXINV_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Data_Inv  UART Advanced Feature Binary Data Inversion
 
  * @{
 
  */
 
#define UART_ADVFEATURE_DATAINV_DISABLE     ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_DATAINV_ENABLE      ((uint32_t)USART_CR2_DATAINV)
 
#define IS_UART_ADVFEATURE_DATAINV(DATAINV) (((DATAINV) == UART_ADVFEATURE_DATAINV_DISABLE) || \
 
                                             ((DATAINV) == UART_ADVFEATURE_DATAINV_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Rx_Tx_Swap UART Advanced Feature RX TX Pins Swap
 
  * @{
 
  */
 
#define UART_ADVFEATURE_SWAP_DISABLE   ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_SWAP_ENABLE    ((uint32_t)USART_CR2_SWAP)
 
#define IS_UART_ADVFEATURE_SWAP(SWAP) (((SWAP) == UART_ADVFEATURE_SWAP_DISABLE) || \
 
                                       ((SWAP) == UART_ADVFEATURE_SWAP_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Overrun_Disable  UART Advanced Feature Overrun Disable
 
  * @{
 
  */
 
#define UART_ADVFEATURE_OVERRUN_ENABLE   ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_OVERRUN_DISABLE  ((uint32_t)USART_CR3_OVRDIS)
 
#define IS_UART_OVERRUN(OVERRUN)         (((OVERRUN) == UART_ADVFEATURE_OVERRUN_ENABLE) || \
 
                                          ((OVERRUN) == UART_ADVFEATURE_OVERRUN_DISABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_AutoBaudRate_Enable  UART Advanced Feature Auto BaudRate Enable
 
  * @{
 
  */
 
#define UART_ADVFEATURE_AUTOBAUDRATE_DISABLE           ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ENABLE            ((uint32_t)USART_CR2_ABREN)
 
#define IS_UART_ADVFEATURE_AUTOBAUDRATE(AUTOBAUDRATE)  (((AUTOBAUDRATE) == UART_ADVFEATURE_AUTOBAUDRATE_DISABLE) || \
 
                                                        ((AUTOBAUDRATE) == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_DMA_Disable_on_Rx_Error   UART Advanced Feature DMA Disable On Rx Error
 
  * @{
 
  */
 
#define UART_ADVFEATURE_DMA_ENABLEONRXERROR       ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_DMA_DISABLEONRXERROR      ((uint32_t)USART_CR3_DDRE)
 
#define IS_UART_ADVFEATURE_DMAONRXERROR(DMA)      (((DMA) == UART_ADVFEATURE_DMA_ENABLEONRXERROR) || \
 
                                                   ((DMA) == UART_ADVFEATURE_DMA_DISABLEONRXERROR))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_MSB_First   UART Advanced Feature MSB First
 
  * @{
 
  */
 
#define UART_ADVFEATURE_MSBFIRST_DISABLE      ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_MSBFIRST_ENABLE       ((uint32_t)USART_CR2_MSBFIRST)
 
#define IS_UART_ADVFEATURE_MSBFIRST(MSBFIRST) (((MSBFIRST) == UART_ADVFEATURE_MSBFIRST_DISABLE) || \
 
                                               ((MSBFIRST) == UART_ADVFEATURE_MSBFIRST_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Mute_Mode   UART Advanced Feature Mute Mode Enable
 
  * @{
 
  */
 
#define UART_ADVFEATURE_MUTEMODE_DISABLE    ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_MUTEMODE_ENABLE    ((uint32_t)USART_CR1_MME)
 
#define IS_UART_MUTE_MODE(MUTE)           (((MUTE) == UART_ADVFEATURE_MUTEMODE_DISABLE) || \
 
                                           ((MUTE) == UART_ADVFEATURE_MUTEMODE_ENABLE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_CR2_ADDRESS_LSB_POS    UART Address-matching LSB Position In CR2 Register
 
  * @{
 
  */
 
#define UART_CR2_ADDRESS_LSB_POS            ((uint32_t) 24)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_DriverEnable_Polarity      UART DriverEnable Polarity
 
  * @{
 
  */
 
#define UART_DE_POLARITY_HIGH            ((uint32_t)0x00000000)
 
#define UART_DE_POLARITY_LOW             ((uint32_t)USART_CR3_DEP)
 
#define IS_UART_DE_POLARITY(POLARITY)    (((POLARITY) == UART_DE_POLARITY_HIGH) || \
 
                                          ((POLARITY) == UART_DE_POLARITY_LOW))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_CR1_DEAT_ADDRESS_LSB_POS    UART Driver Enable Assertion Time LSB Position In CR1 Register
 
  * @{
 
  */
 
#define UART_CR1_DEAT_ADDRESS_LSB_POS            ((uint32_t) 21)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_CR1_DEDT_ADDRESS_LSB_POS    UART Driver Enable DeAssertion Time LSB Position In CR1 Register
 
  * @{
 
  */
 
#define UART_CR1_DEDT_ADDRESS_LSB_POS            ((uint32_t) 16)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Interruption_Mask    UART Interruptions Flag Mask
 
  * @{
 
  */  
 
#define UART_IT_MASK                             ((uint32_t)0x001F)  
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup UART_TimeOut_Value    UART polling-based communications time-out value
 
  * @{
 
  */   
 
#define HAL_UART_TIMEOUT_VALUE                           0x1FFFFFF  
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup UART_Exported_Macros UART Exported Macros
 
  * @{
 
  */
 
  
 
/** @brief  Reset UART handle state
 
  * @param  __HANDLE__: UART handle.
 
  * @retval None
 
  */
 
#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_UART_STATE_RESET)
 
 
/** @brief  Checks whether the specified UART flag is set or not.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral (datasheet: up to four USART/UARTs)
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg UART_FLAG_REACK: Receive enable ackowledge flag
 
  *            @arg UART_FLAG_TEACK: Transmit enable ackowledge flag
 
  *            @arg UART_FLAG_WUF:   Wake up from stop mode flag (not available on F030xx devices)
 
  *            @arg UART_FLAG_RWU:   Receiver wake up flag (not available on F030xx devices)
 
  *            @arg UART_FLAG_SBKF:  Send Break flag
 
  *            @arg UART_FLAG_CMF:   Character match flag
 
  *            @arg UART_FLAG_BUSY:  Busy flag
 
  *            @arg UART_FLAG_ABRF:  Auto Baud rate detection flag
 
  *            @arg UART_FLAG_ABRE:  Auto Baud rate detection error flag
 
  *            @arg UART_FLAG_EOBF:  End of block flag (not available on F030xx devices) 
 
  *            @arg UART_FLAG_RTOF:  Receiver timeout flag                     
 
  *            @arg UART_FLAG_CTS:   CTS Change flag
 
  *            @arg UART_FLAG_LBD:   LIN Break detection flag (not available on F030xx devices)
 
  *            @arg UART_FLAG_TXE:   Transmit data register empty flag
 
  *            @arg UART_FLAG_TC:    Transmission Complete flag
 
  *            @arg UART_FLAG_RXNE:  Receive data register not empty flag
 
  *            @arg UART_FLAG_IDLE:  Idle Line detection flag
 
  *            @arg UART_FLAG_ORE:   OverRun Error flag
 
  *            @arg UART_FLAG_NE:    Noise Error flag
 
  *            @arg UART_FLAG_FE:    Framing Error flag
 
  *            @arg UART_FLAG_PE:    Parity Error flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->ISR & (__FLAG__)) == (__FLAG__))   
 
 
/** @brief  Enables the specified UART interrupt.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral. (datasheet: up to four USART/UARTs)
 
  * @param  __INTERRUPT__: specifies the UART interrupt source to enable.
 
  *          This parameter can be one of the following values:
 
  *            @arg UART_IT_WUF:  Wakeup from stop mode interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_CM:   Character match interrupt
 
  *            @arg UART_IT_CTS:  CTS change interrupt
 
  *            @arg UART_IT_LBD:  LIN Break detection interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg UART_IT_TC:   Transmission complete interrupt
 
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg UART_IT_IDLE: Idle line detection interrupt
 
  *            @arg UART_IT_PE:   Parity Error interrupt
 
  *            @arg UART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__)   (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 |= (1U << ((__INTERRUPT__) & UART_IT_MASK))): \
 
                                                           ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 |= (1U << ((__INTERRUPT__) & UART_IT_MASK))): \
 
                                                           ((__HANDLE__)->Instance->CR3 |= (1U << ((__INTERRUPT__) & UART_IT_MASK))))
 
 
 
/** @brief  Disables the specified UART interrupt.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral. (datasheet: up to four USART/UARTs)
 
  * @param  __INTERRUPT__: specifies the UART interrupt source to disable.
 
  *          This parameter can be one of the following values:
 
  *            @arg UART_IT_WUF:  Wakeup from stop mode interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_CM:   Character match interrupt            
 
  *            @arg UART_IT_CTS:  CTS change interrupt
 
  *            @arg UART_IT_LBD:  LIN Break detection interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg UART_IT_TC:   Transmission complete interrupt
 
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg UART_IT_IDLE: Idle line detection interrupt
 
  *            @arg UART_IT_PE:   Parity Error interrupt
 
  *            @arg UART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_UART_DISABLE_IT(__HANDLE__, __INTERRUPT__)  (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 &= ~ (1U << ((__INTERRUPT__) & UART_IT_MASK))): \
 
                                                           ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 &= ~ (1U << ((__INTERRUPT__) & UART_IT_MASK))): \
 
                                                           ((__HANDLE__)->Instance->CR3 &= ~ (1U << ((__INTERRUPT__) & UART_IT_MASK))))
 
 
/** @brief  Checks whether the specified UART interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral. (datasheet: up to four USART/UARTs)
 
  * @param  __IT__: specifies the UART interrupt to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg UART_IT_WUF:  Wakeup from stop mode interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_CM:   Character match interrupt              
 
  *            @arg UART_IT_CTS:  CTS change interrupt
 
  *            @arg UART_IT_LBD:  LIN Break detection interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg UART_IT_TC:   Transmission complete interrupt
 
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg UART_IT_IDLE: Idle line detection interrupt
 
  *            @arg UART_IT_ORE:  OverRun Error interrupt
 
  *            @arg UART_IT_NE:   Noise Error interrupt
 
  *            @arg UART_IT_FE:   Framing Error interrupt
 
  *            @arg UART_IT_PE:   Parity Error interrupt  
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_UART_GET_IT(__HANDLE__, __IT__) ((__HANDLE__)->Instance->ISR & ((uint32_t)1 << ((__IT__)>> 0x08))) 
 
 
/** @brief  Checks whether the specified UART interrupt source is enabled.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral. (datasheet: up to four USART/UARTs)
 
  * @param  __IT__: specifies the UART interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg UART_IT_WUF:  Wakeup from stop mode interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_CM:   Character match interrupt              
 
  *            @arg UART_IT_CTS: CTS change interrupt
 
  *            @arg UART_IT_LBD: LIN Break detection interrupt (not available on F030xx devices)
 
  *            @arg UART_IT_TXE: Transmit Data Register empty interrupt
 
  *            @arg UART_IT_TC:  Transmission complete interrupt
 
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg UART_IT_IDLE: Idle line detection interrupt
 
  *            @arg UART_IT_ORE: OverRun Error interrupt
 
  *            @arg UART_IT_NE: Noise Error interrupt
 
  *            @arg UART_IT_FE: Framing Error interrupt
 
  *            @arg UART_IT_PE: Parity Error interrupt  
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_UART_GET_IT_SOURCE(__HANDLE__, __IT__) ((((((uint8_t)(__IT__)) >> 5U) == 1)? (__HANDLE__)->Instance->CR1:(((((uint8_t)(__IT__)) >> 5U) == 2)? \
 
                                                       (__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & ((uint32_t)1 << (((uint16_t)(__IT__)) & UART_IT_MASK)))
 
 
/** @brief  Clears the specified UART ISR flag, in setting the proper ICR register flag.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral. (datasheet: up to four USART/UARTs)
 
  * @param  __IT_CLEAR__: specifies the interrupt clear register flag that needs to be set
 
  *                       to clear the corresponding interrupt
 
  *          This parameter can be one of the following values:
 
  *            @arg UART_CLEAR_PEF: Parity Error Clear Flag          
 
  *            @arg UART_CLEAR_FEF: Framing Error Clear Flag         
 
  *            @arg UART_CLEAR_NEF: Noise detected Clear Flag        
 
  *            @arg UART_CLEAR_OREF: OverRun Error Clear Flag         
 
  *            @arg UART_CLEAR_IDLEF: IDLE line detected Clear Flag    
 
  *            @arg UART_CLEAR_TCF: Transmission Complete Clear Flag 
 
  *            @arg UART_CLEAR_LBDF: LIN Break Detection Clear Flag (not available on F030xx devices)   
 
  *            @arg UART_CLEAR_CTSF: CTS Interrupt Clear Flag      
 
  *            @arg UART_CLEAR_RTOF: Receiver Time Out Clear Flag     
 
  *            @arg UART_CLEAR_EOBF: End Of Block Clear Flag  (not available on F030xx devices)      
 
  *            @arg UART_CLEAR_CMF: Character Match Clear Flag       
 
  *            @arg UART_CLEAR_WUF:  Wake Up from stop mode Clear Flag (not available on F030xx devices) 
 
  * @retval None
 
  */
 
#define __HAL_UART_CLEAR_IT(__HANDLE__, __IT_CLEAR__) ((__HANDLE__)->Instance->ICR = (uint32_t)(__IT_CLEAR__)) 
 
 
/** @brief  Set a specific UART request flag.
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         This parameter can be UARTx where x: 1, 2, 3 or 4 to select the USART or 
 
  *         UART peripheral. (datasheet: up to four USART/UARTs)
 
  * @param  __REQ__: specifies the request flag to set
 
  *          This parameter can be one of the following values:
 
  *            @arg UART_AUTOBAUD_REQUEST: Auto-Baud Rate Request     
 
  *            @arg UART_SENDBREAK_REQUEST: Send Break Request         
 
  *            @arg UART_MUTE_MODE_REQUEST: Mute Mode Request 
 
  *            @arg UART_RXDATA_FLUSH_REQUEST: Receive Data flush Request 
 
  *            @arg UART_TXDATA_FLUSH_REQUEST: Transmit data flush Request (not available on F030xx devices) 
 
  * @retval None
 
  */
 
#define __HAL_UART_SEND_REQ(__HANDLE__, __REQ__) ((__HANDLE__)->Instance->RQR |= (uint16_t)(__REQ__)) 
 
 
/** @brief  Enable UART
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4 or 5 to select the UART peripheral
 
  * @retval None
 
  */ 
 
#define __HAL_UART_ENABLE(__HANDLE__)                   ((__HANDLE__)->Instance->CR1 |=  USART_CR1_UE)
 
 
/** @brief  Disable UART
 
  * @param  __HANDLE__: specifies the UART Handle.
 
  *         The Handle Instance can be UARTx where x: 1, 2, 3, 4 or 5 to select the UART peripheral
 
  * @retval None
 
  */
 
#define __HAL_UART_DISABLE(__HANDLE__)                  ((__HANDLE__)->Instance->CR1 &=  ~USART_CR1_UE)
 
 
/**
 
  * @}
 
  */
 
 
/* Private macros --------------------------------------------------------*/
 
/** @defgroup UART_Private_Macros   UART Private Macros
 
  * @{
 
  */
 
 
/** @brief  BRR division operation to set BRR register in 8-bit oversampling mode
 
  * @param  _PCLK_: UART clock
 
  * @param  _BAUD_: Baud rate set by the user
 
  * @retval Division result
 
  */
 
#define __DIV_SAMPLING8(_PCLK_, _BAUD_)             (((_PCLK_)*2)/((_BAUD_)))
 
 
/** @brief  BRR division operation to set BRR register in 16-bit oversampling mode
 
  * @param  _PCLK_: UART clock
 
  * @param  _BAUD_: Baud rate set by the user
 
  * @retval Division result
 
  */
 
#define __DIV_SAMPLING16(_PCLK_, _BAUD_)             (((_PCLK_))/((_BAUD_)))
 
 
/** @brief  Check UART Baud rate
 
  * @param  BAUDRATE: Baudrate specified by the user
 
  *         The maximum Baud Rate is derived from the maximum clock on F0 (i.e. 48 MHz) 
 
  *         divided by the smallest oversampling used on the USART (i.e. 8) 
 
  * @retval Test result (TRUE or FALSE).
 
  */
 
#define IS_UART_BAUDRATE(BAUDRATE) ((BAUDRATE) < 9000001)
 
 
/** @brief  Check UART assertion time
 
  * @param  TIME: 5-bit value assertion time
 
  * @retval Test result (TRUE or FALSE). 
 
  */ 
 
#define IS_UART_ASSERTIONTIME(TIME)    ((TIME) <= 0x1F)
 
 
/** @brief  Check UART deassertion time
 
  * @param  TIME: 5-bit value deassertion time
 
  * @retval Test result (TRUE or FALSE). 
 
  */
 
#define IS_UART_DEASSERTIONTIME(TIME) ((TIME) <= 0x1F)
 
 
/**
 
  * @}
 
  */
 
 
/* Include UART HAL Extension module */
 
#include "stm32f0xx_hal_uart_ex.h"  
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup UART_Exported_Functions UART Exported Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup UART_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod);
 
HAL_StatusTypeDef HAL_UART_DeInit (UART_HandleTypeDef *huart);
 
void HAL_UART_MspInit(UART_HandleTypeDef *huart);
 
void HAL_UART_MspDeInit(UART_HandleTypeDef *huart);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup UART_Exported_Functions_Group2 IO operation functions 
 
  * @{
 
  */
 
 
/* IO operation functions *****************************************************/
 
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
 
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart);
 
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
 
void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart);
 
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
 
void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart);
 
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup UART_Exported_Functions_Group3 Peripheral Control functions
 
  * @{
 
  */
 
 
/* Peripheral Control functions ***********************************************/
 
void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup UART_Exported_Functions_Group4 Peripheral State and Errors functions 
 
  * @{
 
  */
 
 
/* Peripheral State and Errors functions  **************************************************/
 
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart);
 
uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup UART_Private_Functions
 
  * @{
 
  */
 
void UART_AdvFeatureConfig(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
 
/**
 
  * @}
 
  */ 
 
  
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_UART_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_uart_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_uart_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of UART HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_UART_EX_H
 
#define __STM32F0xx_HAL_UART_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup UARTEx
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup UARTEx_Exported_Constants UARTEx Exported Constants
 
  * @{
 
  */
 
  
 
/** @defgroup UARTEx_Word_Length UARTEx Word Length
 
  * @{
 
  */
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define UART_WORDLENGTH_7B                  ((uint32_t)USART_CR1_M1)
 
#define UART_WORDLENGTH_8B                  ((uint32_t)0x00000000)
 
#define UART_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M0)
 
#define IS_UART_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_7B) || \
 
                                     ((LENGTH) == UART_WORDLENGTH_8B) || \
 
                                     ((LENGTH) == UART_WORDLENGTH_9B))
 
#else
 
#define UART_WORDLENGTH_8B                  ((uint32_t)0x00000000)
 
#define UART_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M)
 
#define IS_UART_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B) || \
 
                                     ((LENGTH) == UART_WORDLENGTH_9B))
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UARTEx_AutoBaud_Rate_Mode    UARTEx Advanced Feature AutoBaud Rate Mode
 
  * @{
 
  */
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT    ((uint32_t)0x0000)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ONFALLINGEDGE ((uint32_t)USART_CR2_ABRMODE_0)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ON0X7FFRAME   ((uint32_t)USART_CR2_ABRMODE_1)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ON0X55FRAME   ((uint32_t)USART_CR2_ABRMODE)
 
#define IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(MODE)  (((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT) || \
 
                                                    ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ONFALLINGEDGE) || \
 
                                                    ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ON0X7FFRAME) || \
 
                                                    ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ON0X55FRAME))
 
#else
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT    ((uint32_t)0x0000)
 
#define UART_ADVFEATURE_AUTOBAUDRATE_ONFALLINGEDGE ((uint32_t)USART_CR2_ABRMODE_0)
 
#define IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(MODE)  (((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT) || \
 
                                                    ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ONFALLINGEDGE))
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */  
 
  
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
/** @defgroup UARTEx_LIN    UARTEx Local Interconnection Network mode
 
  * @{
 
  */
 
#define UART_LIN_DISABLE            ((uint32_t)0x00000000)
 
#define UART_LIN_ENABLE             ((uint32_t)USART_CR2_LINEN)
 
#define IS_UART_LIN(LIN)            (((LIN) == UART_LIN_DISABLE) || \
 
                                     ((LIN) == UART_LIN_ENABLE))
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup UARTEx_LIN_Break_Detection  UARTEx LIN Break Detection
 
  * @{
 
  */
 
#define UART_LINBREAKDETECTLENGTH_10B            ((uint32_t)0x00000000)
 
#define UART_LINBREAKDETECTLENGTH_11B            ((uint32_t)USART_CR2_LBDL)
 
#define IS_UART_LIN_BREAK_DETECT_LENGTH(LENGTH) (((LENGTH) == UART_LINBREAKDETECTLENGTH_10B) || \
 
                                                 ((LENGTH) == UART_LINBREAKDETECTLENGTH_11B))
 
/**
 
  * @}
 
  */   
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */  
 
 
/** @defgroup UART_Flags     UARTEx Status Flags
 
  *        Elements values convention: 0xXXXX
 
  *           - 0xXXXX  : Flag mask in the ISR register
 
  * @{
 
  */
 
#define UART_FLAG_REACK                     ((uint32_t)0x00400000)
 
#define UART_FLAG_TEACK                     ((uint32_t)0x00200000)
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)   
 
#define UART_FLAG_WUF                       ((uint32_t)0x00100000)
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
#define UART_FLAG_RWU                       ((uint32_t)0x00080000)
 
#define UART_FLAG_SBKF                      ((uint32_t)0x00040000
 
#define UART_FLAG_CMF                       ((uint32_t)0x00020000)
 
#define UART_FLAG_BUSY                      ((uint32_t)0x00010000)
 
#define UART_FLAG_ABRF                      ((uint32_t)0x00008000)  
 
#define UART_FLAG_ABRE                      ((uint32_t)0x00004000)
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
#define UART_FLAG_EOBF                      ((uint32_t)0x00001000)
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
#define UART_FLAG_RTOF                      ((uint32_t)0x00000800)
 
#define UART_FLAG_CTS                       ((uint32_t)0x00000400)
 
#define UART_FLAG_CTSIF                     ((uint32_t)0x00000200)
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
#define UART_FLAG_LBDF                      ((uint32_t)0x00000100)
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
#define UART_FLAG_TXE                       ((uint32_t)0x00000080)
 
#define UART_FLAG_TC                        ((uint32_t)0x00000040)
 
#define UART_FLAG_RXNE                      ((uint32_t)0x00000020)
 
#define UART_FLAG_IDLE                      ((uint32_t)0x00000010)
 
#define UART_FLAG_ORE                       ((uint32_t)0x00000008)
 
#define UART_FLAG_NE                        ((uint32_t)0x00000004)
 
#define UART_FLAG_FE                        ((uint32_t)0x00000002)
 
#define UART_FLAG_PE                        ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Interrupt_definition   UARTEx Interrupts Definition
 
  *        Elements values convention: 0000ZZZZ0XXYYYYYb
 
  *           - YYYYY  : Interrupt source position in the XX register (5bits)
 
  *           - XX  : Interrupt source register (2bits)
 
  *                 - 01: CR1 register
 
  *                 - 10: CR2 register
 
  *                 - 11: CR3 register
 
  *           - ZZZZ  : Flag position in the ISR register(4bits)
 
  * @{   
 
  */  
 
#define UART_IT_PE                          ((uint16_t)0x0028)
 
#define UART_IT_TXE                         ((uint16_t)0x0727)
 
#define UART_IT_TC                          ((uint16_t)0x0626)
 
#define UART_IT_RXNE                        ((uint16_t)0x0525)
 
#define UART_IT_IDLE                        ((uint16_t)0x0424)
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
#define UART_IT_LBD                         ((uint16_t)0x0846)
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
#define UART_IT_CTS                         ((uint16_t)0x096A)
 
#define UART_IT_CM                          ((uint16_t)0x142E)
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
#define UART_IT_WUF                         ((uint16_t)0x1476)
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup UART_IT_CLEAR_Flags  UARTEx Interruption Clear Flags
 
  * @{
 
  */
 
#define UART_CLEAR_PEF                       USART_ICR_PECF            /*!< Parity Error Clear Flag */          
 
#define UART_CLEAR_FEF                       USART_ICR_FECF            /*!< Framing Error Clear Flag */         
 
#define UART_CLEAR_NEF                       USART_ICR_NCF             /*!< Noise detected Clear Flag */        
 
#define UART_CLEAR_OREF                      USART_ICR_ORECF           /*!< OverRun Error Clear Flag */         
 
#define UART_CLEAR_IDLEF                     USART_ICR_IDLECF          /*!< IDLE line detected Clear Flag */    
 
#define UART_CLEAR_TCF                       USART_ICR_TCCF            /*!< Transmission Complete Clear Flag */ 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
#define UART_CLEAR_LBDF                      USART_ICR_LBDCF           /*!< LIN Break Detection Clear Flag (not available on F030xx devices)*/
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */    
 
#define UART_CLEAR_CTSF                      USART_ICR_CTSCF           /*!< CTS Interrupt Clear Flag */         
 
#define UART_CLEAR_RTOF                      USART_ICR_RTOCF           /*!< Receiver Time Out Clear Flag */     
 
#define UART_CLEAR_EOBF                      USART_ICR_EOBCF           /*!< End Of Block Clear Flag */          
 
#define UART_CLEAR_CMF                       USART_ICR_CMCF            /*!< Character Match Clear Flag */  
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)      
 
#define UART_CLEAR_WUF                       USART_ICR_WUCF            /*!< Wake Up from stop mode Clear Flag */
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup UART_Request_Parameters UARTEx Request Parameters
 
  * @{
 
  */
 
#define UART_AUTOBAUD_REQUEST            ((uint32_t)USART_RQR_ABRRQ)        /*!< Auto-Baud Rate Request */     
 
#define UART_SENDBREAK_REQUEST           ((uint32_t)USART_RQR_SBKRQ)        /*!< Send Break Request */         
 
#define UART_MUTE_MODE_REQUEST           ((uint32_t)USART_RQR_MMRQ)         /*!< Mute Mode Request */          
 
#define UART_RXDATA_FLUSH_REQUEST        ((uint32_t)USART_RQR_RXFRQ)        /*!< Receive Data flush Request */ 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
#define UART_TXDATA_FLUSH_REQUEST        ((uint32_t)USART_RQR_TXFRQ)        /*!< Transmit data flush Request */
 
#define IS_UART_REQUEST_PARAMETER(PARAM) (((PARAM) == UART_AUTOBAUD_REQUEST) || \
 
                                          ((PARAM) == UART_SENDBREAK_REQUEST) || \
 
                                          ((PARAM) == UART_MUTE_MODE_REQUEST) || \
 
                                          ((PARAM) == UART_RXDATA_FLUSH_REQUEST) || \
 
                                          ((PARAM) == UART_TXDATA_FLUSH_REQUEST))   
 
#else
 
#define IS_UART_REQUEST_PARAMETER(PARAM) (((PARAM) == UART_AUTOBAUD_REQUEST) || \
 
                                          ((PARAM) == UART_SENDBREAK_REQUEST) || \
 
                                          ((PARAM) == UART_MUTE_MODE_REQUEST) || \
 
                                          ((PARAM) == UART_RXDATA_FLUSH_REQUEST))  
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
/**
 
  * @}
 
  */
 
  
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)   
 
/** @defgroup UART_Stop_Mode_Enable   UARTEx Advanced Feature Stop Mode Enable
 
  * @{
 
  */
 
#define UART_ADVFEATURE_STOPMODE_DISABLE      ((uint32_t)0x00000000)
 
#define UART_ADVFEATURE_STOPMODE_ENABLE       ((uint32_t)USART_CR1_UESM)
 
#define IS_UART_ADVFEATURE_STOPMODE(STOPMODE) (((STOPMODE) == UART_ADVFEATURE_STOPMODE_DISABLE) || \
 
                                               ((STOPMODE) == UART_ADVFEATURE_STOPMODE_ENABLE))
 
/**
 
  * @}
 
  */  
 
  
 
/** @defgroup UART_WakeUp_from_Stop_Selection   UART WakeUp From Stop Selection
 
  * @{
 
  */
 
#define UART_WAKEUP_ON_ADDRESS           ((uint32_t)0x0000)
 
#define UART_WAKEUP_ON_STARTBIT          ((uint32_t)USART_CR3_WUS_1)
 
#define UART_WAKEUP_ON_READDATA_NONEMPTY ((uint32_t)USART_CR3_WUS)
 
#define IS_UART_WAKEUP_SELECTION(WAKE)   (((WAKE) == UART_WAKEUP_ON_ADDRESS) || \
 
                                          ((WAKE) == UART_WAKEUP_ON_STARTBIT) || \
 
                                          ((WAKE) == UART_WAKEUP_ON_READDATA_NONEMPTY))
 
/**
 
  * @}
 
  */       
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */   
 
  
 
/**
 
  * @}
 
  */  
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup UARTEx_Exported_Macros UARTEx Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reports the UART clock source.
 
  * @param  __HANDLE__: specifies the UART Handle
 
  * @param  __CLOCKSOURCE__ : output variable   
 
  * @retval UART clocking source, written in __CLOCKSOURCE__.
 
  */
 
 
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx)
 
#define __HAL_UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
     switch(__HAL_RCC_GET_USART1_SOURCE())                    \
 
     {                                                        \
 
      case RCC_USART1CLKSOURCE_PCLK1:                         \
 
        (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;           \
 
        break;                                                \
 
      case RCC_USART1CLKSOURCE_HSI:                           \
 
        (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;             \
 
        break;                                                \
 
      case RCC_USART1CLKSOURCE_SYSCLK:                        \
 
        (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;          \
 
        break;                                                \
 
      case RCC_USART1CLKSOURCE_LSE:                           \
 
        (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;             \
 
        break;                                                \
 
      default:                                                \
 
        (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;       \
 
        break;                                                \
 
     }                                                        \
 
  } while(0) 
 
#elif defined (STM32F030x8) ||                                \
 
      defined (STM32F042x6) || defined (STM32F048xx) ||       \
 
      defined (STM32F051x8) || defined (STM32F058xx)
 
#define __HAL_UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
    if((__HANDLE__)->Instance == USART1)                      \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART1CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART2)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else                                                      \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                         \
 
  } while(0) 
 
#elif defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define __HAL_UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
    if((__HANDLE__)->Instance == USART1)                      \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART1CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART2)                 \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART2CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART3)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART4)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else                                                      \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                         \
 
  } while(0)   
 
#elif defined(STM32F091xC) || defined (STM32F098xx)
 
#define __HAL_UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                        \
 
    if((__HANDLE__)->Instance == USART1)                      \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART1CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART1CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART2)                 \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART2CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART2CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART3)                 \
 
    {                                                         \
 
       switch(__HAL_RCC_GET_USART3_SOURCE())                  \
 
       {                                                      \
 
        case RCC_USART3CLKSOURCE_PCLK1:                       \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;         \
 
          break;                                              \
 
        case RCC_USART3CLKSOURCE_HSI:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI;           \
 
          break;                                              \
 
        case RCC_USART3CLKSOURCE_SYSCLK:                      \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                              \
 
        case RCC_USART3CLKSOURCE_LSE:                         \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE;           \
 
          break;                                              \
 
        default:                                              \
 
          (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                              \
 
       }                                                      \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART4)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART5)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART6)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART7)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else if((__HANDLE__)->Instance == USART8)                 \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1;             \
 
    }                                                         \
 
    else                                                      \
 
    {                                                         \
 
      (__CLOCKSOURCE__) = UART_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                         \
 
  } while(0)
 
  
 
#endif /* defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx) */
 
  
 
 
/** @brief  Computes the UART mask to apply to retrieve the received data
 
  *         according to the word length and to the parity bits activation.
 
  *         If PCE = 1, the parity bit is not included in the data extracted
 
  *         by the reception API().
 
  *         This masking operation is not carried out in the case of
 
  *         DMA transfers.        
 
  * @param  __HANDLE__: specifies the UART Handle
 
  * @retval none
 
  */  
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define __HAL_UART_MASK_COMPUTATION(__HANDLE__)                       \
 
  do {                                                                \
 
  if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B)            \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x01FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B)       \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_7B)       \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x003F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
} while(0) 
 
#else
 
#define __HAL_UART_MASK_COMPUTATION(__HANDLE__)                       \
 
  do {                                                                \
 
  if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B)            \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x01FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B)       \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE)               \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
} while(0) 
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
/** @addtogroup UARTEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup UARTEx_Exported_Functions_Group1
 
  * @brief    Extended Initialization and Configuration Functions
 
  * @{
 
  */
 
/* Initialization and de-initialization functions  ****************************/
 
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t UART_DEPolarity, uint32_t UART_DEAssertionTime, uint32_t UART_DEDeassertionTime);
 
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength);
 
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
 
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup UARTEx_Exported_Functions_Group2
 
  * @brief    Extended I/O operation functions
 
  * @{
 
  */
 
  
 
/* I/O operation functions  ***************************************************/
 
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart);
 
void HAL_UART_WakeupCallback(UART_HandleTypeDef *huart);
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup UARTEx_Exported_Functions_Group3
 
  * @brief    Extended Peripheral Control functions
 
  * @{
 
  */
 
 
/* Peripheral Control functions  **********************************************/
 
void UART_AdvFeatureConfig(UART_HandleTypeDef *huart);
 
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength);
 
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart);
 
/**
 
  * @}
 
  */
 
/* Peripheral State functions  ************************************************/
 
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_UART_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_usart.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_usart.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of USART HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_USART_H
 
#define __STM32F0xx_HAL_USART_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup USART
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
/** @defgroup USART_Exported_Types USART Exported Types
 
  * @{
 
  */ 
 
 
 
/** 
 
  * @brief USART Init Structure definition  
 
  */ 
 
typedef struct
 
{
 
  uint32_t BaudRate;                  /*!< This member configures the Usart communication baud rate.
 
                                           The baud rate is computed using the following formula:
 
                                              Baud Rate Register = ((PCLKx) / ((huart->Init.BaudRate))) */
 
 
  uint32_t WordLength;                /*!< Specifies the number of data bits transmitted or received in a frame.
 
                                           This parameter can be a value of @ref USARTEx_Word_Length */
 
 
  uint32_t StopBits;                  /*!< Specifies the number of stop bits transmitted.
 
                                           This parameter can be a value of @ref USART_Stop_Bits */
 
 
  uint32_t Parity;                   /*!< Specifies the parity mode.
 
                                           This parameter can be a value of @ref USART_Parity
 
                                           @note When parity is enabled, the computed parity is inserted
 
                                                 at the MSB position of the transmitted data (9th bit when
 
                                                 the word length is set to 9 data bits; 8th bit when the
 
                                                 word length is set to 8 data bits). */
 
 
 
  uint32_t Mode;                      /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
 
                                           This parameter can be a value of @ref USART_Mode */
 
 
  uint32_t CLKPolarity;               /*!< Specifies the steady state of the serial clock.
 
                                           This parameter can be a value of @ref USART_Clock_Polarity */
 
 
  uint32_t CLKPhase;                  /*!< Specifies the clock transition on which the bit capture is made.
 
                                           This parameter can be a value of @ref USART_Clock_Phase */
 
 
  uint32_t CLKLastBit;                /*!< Specifies whether the clock pulse corresponding to the last transmitted
 
                                           data bit (MSB) has to be output on the SCLK pin in synchronous mode.
 
                                           This parameter can be a value of @ref USART_Last_Bit */
 
}USART_InitTypeDef;
 
 
/** 
 
  * @brief HAL State structures definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_USART_STATE_RESET             = 0x00,    /*!< Peripheral is not initialized   */
 
  HAL_USART_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use */
 
  HAL_USART_STATE_BUSY              = 0x02,    /*!< an internal process is ongoing */   
 
  HAL_USART_STATE_BUSY_TX           = 0x12,    /*!< Data Transmission process is ongoing */ 
 
  HAL_USART_STATE_BUSY_RX           = 0x22,    /*!< Data Reception process is ongoing */
 
  HAL_USART_STATE_BUSY_TX_RX        = 0x32,    /*!< Data Transmission Reception process is ongoing */
 
  HAL_USART_STATE_TIMEOUT           = 0x03,    /*!< Timeout state */
 
  HAL_USART_STATE_ERROR             = 0x04     /*!< Error */      
 
}HAL_USART_StateTypeDef;
 
 
/** 
 
  * @brief  HAL USART Error Code structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_USART_ERROR_NONE      = 0x00,    /*!< No error            */
 
  HAL_USART_ERROR_PE        = 0x01,    /*!< Parity error        */
 
  HAL_USART_ERROR_NE        = 0x02,    /*!< Noise error         */
 
  HAL_USART_ERROR_FE        = 0x04,    /*!< frame error         */
 
  HAL_USART_ERROR_ORE       = 0x08,    /*!< Overrun error       */
 
  HAL_USART_ERROR_DMA       = 0x10     /*!< DMA transfer error  */
 
}HAL_USART_ErrorTypeDef;
 
 
/** 
 
  * @brief  USART clock sources definitions
 
  */
 
typedef enum
 
{
 
  USART_CLOCKSOURCE_PCLK1     = 0x00, /*!< PCLK1 clock source     */
 
  USART_CLOCKSOURCE_HSI       = 0x02, /*!< HSI clock source       */
 
  USART_CLOCKSOURCE_SYSCLK    = 0x04, /*!< SYSCLK clock source    */
 
  USART_CLOCKSOURCE_LSE       = 0x08, /*!< LSE clock source       */
 
  USART_CLOCKSOURCE_UNDEFINED = 0x10  /*!< undefined clock source */  
 
}USART_ClockSourceTypeDef;
 
 
/** 
 
  * @brief  USART handle Structure definition  
 
  */  
 
typedef struct
 
{
 
  USART_TypeDef                 *Instance;        /*!< USART registers base address        */
 
  
 
  USART_InitTypeDef             Init;             /*!< USART communication parameters      */
 
  
 
  uint8_t                       *pTxBuffPtr;      /*!< Pointer to USART Tx transfer Buffer */
 
  
 
  uint16_t                      TxXferSize;       /*!< USART Tx Transfer size              */
 
  
 
  uint16_t                      TxXferCount;      /*!< USART Tx Transfer Counter           */
 
  
 
  uint8_t                       *pRxBuffPtr;      /*!< Pointer to USART Rx transfer Buffer */
 
  
 
  uint16_t                      RxXferSize;       /*!< USART Rx Transfer size              */
 
  
 
  uint16_t                      RxXferCount;      /*!< USART Rx Transfer Counter           */
 
  
 
  uint16_t                      Mask;             /*!< USART Rx RDR register mask          */
 
  
 
  DMA_HandleTypeDef             *hdmatx;          /*!< USART Tx DMA Handle parameters      */
 
    
 
  DMA_HandleTypeDef             *hdmarx;          /*!< USART Rx DMA Handle parameters      */
 
  
 
  HAL_LockTypeDef                Lock;            /*!< Locking object                      */
 
  
 
  HAL_USART_StateTypeDef         State;           /*!< USART communication state           */
 
  
 
  HAL_USART_ErrorTypeDef         ErrorCode;       /*!< USART Error code                    */
 
  
 
}USART_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup USART_Exported_Constants USART Exported constants
 
  * @{
 
  */
 
 
/** @defgroup USART_Stop_Bits  USART Number of Stop Bits
 
  * @{
 
  */
 
#define USART_STOPBITS_1                     ((uint32_t)0x0000)
 
#define USART_STOPBITS_0_5                   ((uint32_t)USART_CR2_STOP_0)
 
#define USART_STOPBITS_2                     ((uint32_t)USART_CR2_STOP_1)
 
#define USART_STOPBITS_1_5                   ((uint32_t)(USART_CR2_STOP_0 | USART_CR2_STOP_1))
 
#define IS_USART_STOPBITS(STOPBITS) (((STOPBITS) == USART_STOPBITS_1) || \
 
                                         ((STOPBITS) == USART_STOPBITS_0_5) || \
 
                                         ((STOPBITS) == USART_STOPBITS_1_5) || \
 
                                         ((STOPBITS) == USART_STOPBITS_2))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USART_Parity    USART Parity
 
  * @{
 
  */ 
 
#define USART_PARITY_NONE                    ((uint32_t)0x0000)
 
#define USART_PARITY_EVEN                    ((uint32_t)USART_CR1_PCE)
 
#define USART_PARITY_ODD                     ((uint32_t)(USART_CR1_PCE | USART_CR1_PS)) 
 
#define IS_USART_PARITY(PARITY) (((PARITY) == USART_PARITY_NONE) || \
 
                                     ((PARITY) == USART_PARITY_EVEN) || \
 
                                     ((PARITY) == USART_PARITY_ODD))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USART_Mode   USART Mode
 
  * @{
 
  */ 
 
#define USART_MODE_RX                        ((uint32_t)USART_CR1_RE)
 
#define USART_MODE_TX                        ((uint32_t)USART_CR1_TE)
 
#define USART_MODE_TX_RX                     ((uint32_t)(USART_CR1_TE |USART_CR1_RE))
 
#define IS_USART_MODE(MODE) ((((MODE) & (uint32_t)0xFFFFFFF3) == 0x00) && ((MODE) != (uint32_t)0x00))
 
/**
 
  * @}
 
  */
 
    
 
/** @defgroup USART_Clock  USART Clock
 
  * @{
 
  */ 
 
#define USART_CLOCK_DISABLED                 ((uint32_t)0x0000)
 
#define USART_CLOCK_ENABLED                  ((uint32_t)USART_CR2_CLKEN)
 
#define IS_USART_CLOCK(CLOCK)      (((CLOCK) == USART_CLOCK_DISABLED) || \
 
                                   ((CLOCK) == USART_CLOCK_ENABLED))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USART_Clock_Polarity  USART Clock Polarity
 
  * @{
 
  */
 
#define USART_POLARITY_LOW                   ((uint32_t)0x0000)
 
#define USART_POLARITY_HIGH                  ((uint32_t)USART_CR2_CPOL)
 
#define IS_USART_POLARITY(CPOL) (((CPOL) == USART_POLARITY_LOW) || ((CPOL) == USART_POLARITY_HIGH))
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USART_Clock_Phase   USART Clock Phase
 
  * @{
 
  */
 
#define USART_PHASE_1EDGE                    ((uint32_t)0x0000)
 
#define USART_PHASE_2EDGE                    ((uint32_t)USART_CR2_CPHA)
 
#define IS_USART_PHASE(CPHA) (((CPHA) == USART_PHASE_1EDGE) || ((CPHA) == USART_PHASE_2EDGE))
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_Last_Bit  USART Last Bit
 
  * @{
 
  */
 
#define USART_LASTBIT_DISABLE                ((uint32_t)0x0000)
 
#define USART_LASTBIT_ENABLE                 ((uint32_t)USART_CR2_LBCL)
 
#define IS_USART_LASTBIT(LASTBIT) (((LASTBIT) == USART_LASTBIT_DISABLE) || \
 
                                       ((LASTBIT) == USART_LASTBIT_ENABLE))
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup USART_Flags      USART Flags
 
  *        Elements values convention: 0xXXXX
 
  *           - 0xXXXX  : Flag mask in the ISR register
 
  * @{
 
  */
 
#define USART_FLAG_REACK                     ((uint32_t)0x00400000)
 
#define USART_FLAG_TEACK                     ((uint32_t)0x00200000)  
 
#define USART_FLAG_BUSY                      ((uint32_t)0x00010000)
 
#define USART_FLAG_CTS                       ((uint32_t)0x00000400)
 
#define USART_FLAG_CTSIF                     ((uint32_t)0x00000200)
 
#define USART_FLAG_LBDF                      ((uint32_t)0x00000100)
 
#define USART_FLAG_TXE                       ((uint32_t)0x00000080)
 
#define USART_FLAG_TC                        ((uint32_t)0x00000040)
 
#define USART_FLAG_RXNE                      ((uint32_t)0x00000020)
 
#define USART_FLAG_IDLE                      ((uint32_t)0x00000010)
 
#define USART_FLAG_ORE                       ((uint32_t)0x00000008)
 
#define USART_FLAG_NE                        ((uint32_t)0x00000004)
 
#define USART_FLAG_FE                        ((uint32_t)0x00000002)
 
#define USART_FLAG_PE                        ((uint32_t)0x00000001)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_Interrupt_definition USART Interrupts Definition
 
  *        Elements values convention: 0000ZZZZ0XXYYYYYb
 
  *           - YYYYY  : Interrupt source position in the XX register (5bits)
 
  *           - XX  : Interrupt source register (2bits)
 
  *                 - 01: CR1 register
 
  *                 - 10: CR2 register
 
  *                 - 11: CR3 register
 
  *           - ZZZZ  : Flag position in the ISR register(4bits)
 
  * @{
 
  */
 
  
 
#define USART_IT_PE                          ((uint16_t)0x0028)
 
#define USART_IT_TXE                         ((uint16_t)0x0727)
 
#define USART_IT_TC                          ((uint16_t)0x0626)
 
#define USART_IT_RXNE                        ((uint16_t)0x0525)
 
#define USART_IT_IDLE                        ((uint16_t)0x0424)
 
#define USART_IT_ERR                         ((uint16_t)0x0060)
 
 
#define USART_IT_ORE                         ((uint16_t)0x0300)
 
#define USART_IT_NE                          ((uint16_t)0x0200)
 
#define USART_IT_FE                          ((uint16_t)0x0100)
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_IT_CLEAR_Flags    USART Interruption Clear Flags
 
  * @{
 
  */
 
#define USART_CLEAR_PEF                       USART_ICR_PECF            /*!< Parity Error Clear Flag */          
 
#define USART_CLEAR_FEF                       USART_ICR_FECF            /*!< Framing Error Clear Flag */         
 
#define USART_CLEAR_NEF                       USART_ICR_NCF             /*!< Noise detected Clear Flag */        
 
#define USART_CLEAR_OREF                      USART_ICR_ORECF           /*!< OverRun Error Clear Flag */         
 
#define USART_CLEAR_IDLEF                     USART_ICR_IDLECF          /*!< IDLE line detected Clear Flag */    
 
#define USART_CLEAR_TCF                       USART_ICR_TCCF            /*!< Transmission Complete Clear Flag */ 
 
#define USART_CLEAR_CTSF                      USART_ICR_CTSCF           /*!< CTS Interrupt Clear Flag */         
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USART_Request_Parameters  USART Request Parameters
 
  * @{
 
  */
 
#define USART_RXDATA_FLUSH_REQUEST        ((uint32_t)USART_RQR_RXFRQ)        /*!< Receive Data flush Request */ 
 
#define USART_TXDATA_FLUSH_REQUEST        ((uint32_t)USART_RQR_TXFRQ)        /*!< Transmit data flush Request */
 
#define IS_USART_REQUEST_PARAMETER(PARAM) (((PARAM) == USART_RXDATA_FLUSH_REQUEST) || \
 
                                           ((PARAM) == USART_TXDATA_FLUSH_REQUEST))   
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_Interruption_Mask    USART interruptions flag mask
 
  * @{
 
  */  
 
#define USART_IT_MASK                             ((uint16_t)0x001F)  
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
     
 
/* Exported macro ------------------------------------------------------------*/
 
/** @defgroup USART_Exported_Macros USART Exported Macros
 
  * @{
 
  */  
 
 
 
/** @brief  Reset USART handle state
 
  * @param  __HANDLE__: USART handle.
 
  * @retval None
 
  */
 
#define __HAL_USART_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_USART_STATE_RESET)
 
 
/** @brief  Checks whether the specified USART flag is set or not.
 
  * @param  __HANDLE__: specifies the USART Handle
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg USART_FLAG_REACK: Receive enable ackowledge flag
 
  *            @arg USART_FLAG_TEACK: Transmit enable ackowledge flag
 
  *            @arg USART_FLAG_BUSY:  Busy flag                  
 
  *            @arg USART_FLAG_CTS:   CTS Change flag         
 
  *            @arg USART_FLAG_TXE:   Transmit data register empty flag
 
  *            @arg USART_FLAG_TC:    Transmission Complete flag
 
  *            @arg USART_FLAG_RXNE:  Receive data register not empty flag
 
  *            @arg USART_FLAG_IDLE:  Idle Line detection flag
 
  *            @arg USART_FLAG_ORE:   OverRun Error flag
 
  *            @arg USART_FLAG_NE:    Noise Error flag
 
  *            @arg USART_FLAG_FE:    Framing Error flag
 
  *            @arg USART_FLAG_PE:    Parity Error flag
 
  * @retval The new state of __FLAG__ (TRUE or FALSE).
 
  */
 
#define __HAL_USART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->ISR & (__FLAG__)) == (__FLAG__))
 
 
 
/** @brief  Enables the specified USART interrupt.
 
  * @param  __HANDLE__: specifies the USART Handle
 
  * @param  __INTERRUPT__: specifies the USART interrupt source to enable.
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg USART_IT_TC:   Transmission complete interrupt
 
  *            @arg USART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg USART_IT_IDLE: Idle line detection interrupt
 
  *            @arg USART_IT_PE:   Parity Error interrupt
 
  *            @arg USART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_USART_ENABLE_IT(__HANDLE__, __INTERRUPT__)   (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 |= (1U << ((__INTERRUPT__) & USART_IT_MASK))): \
 
                                                            ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 |= (1U << ((__INTERRUPT__) & USART_IT_MASK))): \
 
                                                            ((__HANDLE__)->Instance->CR3 |= (1U << ((__INTERRUPT__) & USART_IT_MASK))))
 
 
/** @brief  Disables the specified USART interrupt.
 
  * @param  __HANDLE__: specifies the USART Handle.
 
  * @param  __INTERRUPT__: specifies the USART interrupt source to disable.
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_IT_TXE:  Transmit Data Register empty interrupt
 
  *            @arg USART_IT_TC:   Transmission complete interrupt
 
  *            @arg USART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg USART_IT_IDLE: Idle line detection interrupt
 
  *            @arg USART_IT_PE:   Parity Error interrupt
 
  *            @arg USART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
 
  * @retval None
 
  */
 
#define __HAL_USART_DISABLE_IT(__HANDLE__, __INTERRUPT__)  (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 &= ~ (1U << ((__INTERRUPT__) & USART_IT_MASK))): \
 
                                                            ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 &= ~ (1U << ((__INTERRUPT__) & USART_IT_MASK))): \
 
                                                            ((__HANDLE__)->Instance->CR3 &= ~ (1U << ((__INTERRUPT__) & USART_IT_MASK))))
 
 
    
 
/** @brief  Checks whether the specified USART interrupt has occurred or not.
 
  * @param  __HANDLE__: specifies the USART Handle
 
  * @param  __IT__: specifies the USART interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_IT_TXE: Transmit Data Register empty interrupt
 
  *            @arg USART_IT_TC:  Transmission complete interrupt
 
  *            @arg USART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg USART_IT_IDLE: Idle line detection interrupt
 
  *            @arg USART_IT_ORE: OverRun Error interrupt
 
  *            @arg USART_IT_NE: Noise Error interrupt
 
  *            @arg USART_IT_FE: Framing Error interrupt
 
  *            @arg USART_IT_PE: Parity Error interrupt
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_USART_GET_IT(__HANDLE__, __IT__) ((__HANDLE__)->Instance->ISR & ((uint32_t)1 << ((__IT__)>> 0x08))) 
 
 
/** @brief  Checks whether the specified USART interrupt source is enabled.
 
  * @param  __HANDLE__: specifies the USART Handle.
 
  * @param  __IT__: specifies the USART interrupt source to check.
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_IT_TXE: Transmit Data Register empty interrupt
 
  *            @arg USART_IT_TC:  Transmission complete interrupt
 
  *            @arg USART_IT_RXNE: Receive Data register not empty interrupt
 
  *            @arg USART_IT_IDLE: Idle line detection interrupt
 
  *            @arg USART_IT_ORE: OverRun Error interrupt
 
  *            @arg USART_IT_NE: Noise Error interrupt
 
  *            @arg USART_IT_FE: Framing Error interrupt
 
  *            @arg USART_IT_PE: Parity Error interrupt
 
  * @retval The new state of __IT__ (TRUE or FALSE).
 
  */
 
#define __HAL_USART_GET_IT_SOURCE(__HANDLE__, __IT__) ((((((uint8_t)(__IT__)) >> 5) == 1)? (__HANDLE__)->Instance->CR1:(((((uint8_t)(__IT__)) >> 5) == 2)? \
 
                                                   (__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & ((uint32_t)1 << \
 
                                                   (((uint16_t)(__IT__)) & USART_IT_MASK)))
 
 
 
/** @brief  Clears the specified USART ISR flag, in setting the proper ICR register flag.
 
  * @param  __HANDLE__: specifies the USART Handle.
 
  * @param  __IT_CLEAR__: specifies the interrupt clear register flag that needs to be set
 
  *                       to clear the corresponding interrupt
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_CLEAR_PEF: Parity Error Clear Flag          
 
  *            @arg USART_CLEAR_FEF: Framing Error Clear Flag         
 
  *            @arg USART_CLEAR_NEF: Noise detected Clear Flag        
 
  *            @arg USART_CLEAR_OREF: OverRun Error Clear Flag         
 
  *            @arg USART_CLEAR_IDLEF: IDLE line detected Clear Flag    
 
  *            @arg USART_CLEAR_TCF: Transmission Complete Clear Flag 
 
  *            @arg USART_CLEAR_CTSF: CTS Interrupt Clear Flag      
 
  * @retval None
 
  */
 
#define __HAL_USART_CLEAR_IT(__HANDLE__, __IT_CLEAR__) ((__HANDLE__)->Instance->ICR = (uint32_t)(__IT_CLEAR__)) 
 
 
/** @brief  Set a specific USART request flag.
 
  * @param  __HANDLE__: specifies the USART Handle.
 
  * @param  __REQ__: specifies the request flag to set
 
  *          This parameter can be one of the following values:
 
  *            @arg USART_RXDATA_FLUSH_REQUEST: Receive Data flush Request 
 
  *            @arg USART_TXDATA_FLUSH_REQUEST: Transmit data flush Request 
 
  *
 
  * @retval None
 
  */ 
 
#define __HAL_USART_SEND_REQ(__HANDLE__, __REQ__) ((__HANDLE__)->Instance->RQR |= (uint16_t)(__REQ__)) 
 
 
/** @brief  Enable USART
 
  * @param  __HANDLE__: specifies the USART Handle.
 
  * @retval None
 
  */ 
 
#define __HAL_USART_ENABLE(__HANDLE__)               ((__HANDLE__)->Instance->CR1 |=  USART_CR1_UE)
 
 
/** @brief  Disable USART
 
  * @param  __HANDLE__: specifies the USART Handle.
 
  * @retval None
 
  */ 
 
#define __HAL_USART_DISABLE(__HANDLE__)              ((__HANDLE__)->Instance->CR1 &=  ~USART_CR1_UE)
 
 
/**
 
  * @}
 
  */  
 
 
/* Private macros --------------------------------------------------------*/
 
/** @defgroup USART_Private_Macros   USART Private Macros
 
  * @{
 
  */
 
 
/** @brief  Check USART Baud rate
 
  * @param  BAUDRATE: Baudrate specified by the user
 
  *         The maximum Baud Rate is derived from the maximum clock on F0 (i.e. 48 MHz) 
 
  *         divided by the smallest oversampling used on the USART (i.e. 8)  
 
  * @retval Test result (TRUE or FALSE) 
 
  */ 
 
#define IS_USART_BAUDRATE(BAUDRATE) ((BAUDRATE) < 9000001)
 
/**
 
  * @}
 
  */
 
 
 
/* Include USART HAL Extension module */
 
#include "stm32f0xx_hal_usart_ex.h"        
 
                                 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup USART_Exported_Functions USART Exported Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup USART_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  * @{
 
  */
 
 
/* Initialization and de-initialization functions  ******************************/
 
HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart);
 
HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart);
 
void HAL_USART_MspInit(USART_HandleTypeDef *husart);
 
void HAL_USART_MspDeInit(USART_HandleTypeDef *husart);
 
void HAL_USART_SetConfig(USART_HandleTypeDef *husart);
 
HAL_StatusTypeDef HAL_USART_CheckIdleState(USART_HandleTypeDef *husart);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup USART_Exported_Functions_Group2 IO operation functions 
 
  * @{
 
  */
 
 
/* IO operation functions *******************************************************/
 
HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout);
 
HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size);
 
HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size);
 
HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData,  uint16_t Size);
 
HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size);
 
HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size);
 
HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size);
 
HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart);
 
HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart);
 
HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart);
 
void HAL_USART_IRQHandler(USART_HandleTypeDef *husart);
 
void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart);
 
void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart);
 
void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart);
 
void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart);
 
void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart);
 
void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart);
 
 
/**
 
  * @}
 
  */
 
 
/* Peripheral Control functions ***********************************************/
 
 
/** @addtogroup USART_Exported_Functions_Group3 Peripheral State and Errors functions 
 
  * @{
 
  */
 
 
/* Peripheral State and Error functions ***************************************/
 
HAL_USART_StateTypeDef HAL_USART_GetState(USART_HandleTypeDef *husart);
 
uint32_t HAL_USART_GetError(USART_HandleTypeDef *husart);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */
 
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_USART_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_usart_ex.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_usart_ex.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of USART HAL Extension module.
 
  ******************************************************************************
 
  * @attention
 
  *                               
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_USART_EX_H
 
#define __STM32F0xx_HAL_USART_EX_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup USARTEx USARTEx Extended HAL module driver
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
/** @defgroup USARTEx_Exported_Constants USARTEx Exported Constants
 
  * @{
 
  */
 
  
 
/** @defgroup USARTEx_Word_Length USARTEx Word Length
 
  * @{
 
  */
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define USART_WORDLENGTH_7B                  ((uint32_t)USART_CR1_M1)
 
#define USART_WORDLENGTH_8B                  ((uint32_t)0x00000000)
 
#define USART_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M0)
 
#define IS_USART_WORD_LENGTH(LENGTH) (((LENGTH) == USART_WORDLENGTH_7B) || \
 
                                      ((LENGTH) == USART_WORDLENGTH_8B) || \
 
                                      ((LENGTH) == USART_WORDLENGTH_9B))
 
#else
 
#define USART_WORDLENGTH_8B                  ((uint32_t)0x00000000)
 
#define USART_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M)
 
#define IS_USART_WORD_LENGTH(LENGTH) (((LENGTH) == USART_WORDLENGTH_8B) || \
 
                                      ((LENGTH) == USART_WORDLENGTH_9B))
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */  
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup USARTEx_Exported_Macros USARTEx Exported Macros
 
  * @{
 
  */
 
 
/** @brief  Reports the USART clock source.
 
  * @param  __HANDLE__: specifies the USART Handle
 
  * @param  __CLOCKSOURCE__ : output variable   
 
  * @retval the USART clocking source, written in __CLOCKSOURCE__.
 
  */
 
#if defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx)
 
#define __HAL_USART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                         \
 
     switch(__HAL_RCC_GET_USART1_SOURCE())                     \
 
     {                                                         \
 
      case RCC_USART1CLKSOURCE_PCLK1:                          \
 
        (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;           \
 
        break;                                                 \
 
      case RCC_USART1CLKSOURCE_HSI:                            \
 
        (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;             \
 
        break;                                                 \
 
      case RCC_USART1CLKSOURCE_SYSCLK:                         \
 
        (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;          \
 
        break;                                                 \
 
      case RCC_USART1CLKSOURCE_LSE:                            \
 
        (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;             \
 
        break;                                                 \
 
      default:                                                 \
 
        (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;       \
 
        break;                                                 \
 
     }                                                         \
 
  } while(0)
 
#elif defined (STM32F030x8) ||                                 \
 
      defined (STM32F042x6) || defined (STM32F048xx) ||        \
 
      defined (STM32F051x8) || defined (STM32F058xx)
 
#define __HAL_USART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                         \
 
    if((__HANDLE__)->Instance == USART1)                       \
 
    {                                                          \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                   \
 
       {                                                       \
 
        case RCC_USART1CLKSOURCE_PCLK1:                        \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;         \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_HSI:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;           \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                       \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_LSE:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;           \
 
          break;                                               \
 
        default:                                               \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                               \
 
       }                                                       \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART2)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else                                                       \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                          \
 
  } while(0)  
 
#elif defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
#define __HAL_USART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                         \
 
    if((__HANDLE__)->Instance == USART1)                       \
 
    {                                                          \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                   \
 
       {                                                       \
 
        case RCC_USART1CLKSOURCE_PCLK1:                        \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;         \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_HSI:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;           \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                       \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_LSE:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;           \
 
          break;                                               \
 
        default:                                               \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                               \
 
       }                                                       \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART2)                  \
 
    {                                                          \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                   \
 
       {                                                       \
 
        case RCC_USART2CLKSOURCE_PCLK1:                        \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;         \
 
          break;                                               \
 
        case RCC_USART2CLKSOURCE_HSI:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;           \
 
          break;                                               \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                       \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                               \
 
        case RCC_USART2CLKSOURCE_LSE:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;           \
 
          break;                                               \
 
        default:                                               \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                               \
 
       }                                                       \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART3)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART4)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else                                                       \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                          \
 
  } while(0)  
 
#elif defined(STM32F091xC) || defined (STM32F098xx)
 
#define __HAL_USART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \
 
  do {                                                         \
 
    if((__HANDLE__)->Instance == USART1)                       \
 
    {                                                          \
 
       switch(__HAL_RCC_GET_USART1_SOURCE())                   \
 
       {                                                       \
 
        case RCC_USART1CLKSOURCE_PCLK1:                        \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;         \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_HSI:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;           \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_SYSCLK:                       \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                               \
 
        case RCC_USART1CLKSOURCE_LSE:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;           \
 
          break;                                               \
 
        default:                                               \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                               \
 
       }                                                       \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART2)                  \
 
    {                                                          \
 
       switch(__HAL_RCC_GET_USART2_SOURCE())                   \
 
       {                                                       \
 
        case RCC_USART2CLKSOURCE_PCLK1:                        \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;         \
 
          break;                                               \
 
        case RCC_USART2CLKSOURCE_HSI:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;           \
 
          break;                                               \
 
        case RCC_USART2CLKSOURCE_SYSCLK:                       \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                               \
 
        case RCC_USART2CLKSOURCE_LSE:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;           \
 
          break;                                               \
 
        default:                                               \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                               \
 
       }                                                       \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART3)                  \
 
    {                                                          \
 
       switch(__HAL_RCC_GET_USART3_SOURCE())                   \
 
       {                                                       \
 
        case RCC_USART3CLKSOURCE_PCLK1:                        \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;         \
 
          break;                                               \
 
        case RCC_USART3CLKSOURCE_HSI:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_HSI;           \
 
          break;                                               \
 
        case RCC_USART3CLKSOURCE_SYSCLK:                       \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_SYSCLK;        \
 
          break;                                               \
 
        case RCC_USART3CLKSOURCE_LSE:                          \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_LSE;           \
 
          break;                                               \
 
        default:                                               \
 
          (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;     \
 
          break;                                               \
 
       }                                                       \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART4)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART5)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART6)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART7)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else if((__HANDLE__)->Instance == USART8)                  \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_PCLK1;             \
 
    }                                                          \
 
    else                                                       \
 
    {                                                          \
 
      (__CLOCKSOURCE__) = USART_CLOCKSOURCE_UNDEFINED;         \
 
    }                                                          \
 
  } while(0)  
 
#endif /* defined(STM32F030x6) || defined(STM32F031x6) || defined(STM32F038xx) */
 
 
  
 
/** @brief  Reports the USART mask to apply to retrieve the received data
 
  *         according to the word length and to the parity bits activation.
 
  *         If PCE = 1, the parity bit is not included in the data extracted
 
  *         by the reception API().
 
  *         This masking operation is not carried out in the case of
 
  *         DMA transfers.    
 
  * @param  __HANDLE__: specifies the USART Handle
 
  * @retval none
 
  */  
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
#define __HAL_USART_MASK_COMPUTATION(__HANDLE__)                      \
 
  do {                                                                \
 
  if ((__HANDLE__)->Init.WordLength == USART_WORDLENGTH_9B)           \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == USART_PARITY_NONE)              \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x01FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == USART_WORDLENGTH_8B)      \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == USART_PARITY_NONE)              \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == USART_WORDLENGTH_7B)      \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == USART_PARITY_NONE)              \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x003F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
} while(0) 
 
#else
 
#define __HAL_USART_MASK_COMPUTATION(__HANDLE__)                      \
 
  do {                                                                \
 
  if ((__HANDLE__)->Init.WordLength == USART_WORDLENGTH_9B)           \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == USART_PARITY_NONE)              \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x01FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
  else if ((__HANDLE__)->Init.WordLength == USART_WORDLENGTH_8B)      \
 
  {                                                                   \
 
     if ((__HANDLE__)->Init.Parity == USART_PARITY_NONE)              \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x00FF ;                                 \
 
     }                                                                \
 
     else                                                             \
 
     {                                                                \
 
        (__HANDLE__)->Mask = 0x007F ;                                 \
 
     }                                                                \
 
  }                                                                   \
 
} while(0) 
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
/* Initialization and de-initialization functions  ****************************/
 
/* I/O operation functions  ***************************************************/
 
/* Peripheral Control functions  **********************************************/
 
/* Peripheral State functions  ************************************************/
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_USART_EX_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Inc/stm32f0xx_hal_wwdg.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_wwdg.h
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Header file of WWDG HAL module.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __STM32F0xx_HAL_WWDG_H
 
#define __STM32F0xx_HAL_WWDG_H
 
 
#ifdef __cplusplus
 
 extern "C" {
 
#endif
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal_def.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @addtogroup WWDG
 
  * @{
 
  */ 
 
 
/* Exported types ------------------------------------------------------------*/ 
 
 
/** @defgroup WWDG_Exported_Types WWDG Exported Types
 
  * @{
 
  */
 
   
 
/** 
 
  * @brief  WWDG HAL State Structure definition  
 
  */ 
 
typedef enum
 
{
 
  HAL_WWDG_STATE_RESET     = 0x00,  /*!< WWDG not yet initialized or disabled */
 
  HAL_WWDG_STATE_READY     = 0x01,  /*!< WWDG initialized and ready for use   */
 
  HAL_WWDG_STATE_BUSY      = 0x02,  /*!< WWDG internal process is ongoing     */ 
 
  HAL_WWDG_STATE_TIMEOUT   = 0x03,  /*!< WWDG timeout state                   */
 
  HAL_WWDG_STATE_ERROR     = 0x04   /*!< WWDG error state                     */
 
}HAL_WWDG_StateTypeDef;
 
 
/** 
 
  * @brief   WWDG Init structure definition  
 
  */
 
typedef struct
 
{
 
  uint32_t Prescaler;      /*!< Specifies the prescaler value of the WWDG.  
 
                                This parameter can be a value of @ref WWDG_Prescaler */
 
 
  uint32_t Window;         /*!< Specifies the WWDG window value to be compared to the downcounter.
 
                                This parameter must be a number lower than Max_Data = 0x80 */ 
 
                               
 
  uint32_t Counter;        /*!< Specifies the WWDG free-running downcounter  value.
 
                                This parameter must be a number between Min_Data = 0x40 and Max_Data = 0x7F */                                    
 
 
} WWDG_InitTypeDef;
 
 
/** 
 
  * @brief  WWDG handle Structure definition  
 
  */ 
 
typedef struct
 
{
 
  WWDG_TypeDef                   *Instance;  /*!< Register base address    */ 
 
  
 
  WWDG_InitTypeDef               Init;       /*!< WWDG required parameters */
 
  
 
  HAL_LockTypeDef                Lock;       /*!< WWDG locking object      */
 
  
 
  __IO HAL_WWDG_StateTypeDef     State;      /*!< WWDG communication state */
 
 
} WWDG_HandleTypeDef;
 
 
/**
 
  * @}
 
  */
 
 
/* Exported constants --------------------------------------------------------*/
 
 
/** @defgroup WWDG_Exported_Constants WWDG Exported Constants
 
  * @{
 
  */
 
 
/** @defgroup WWDG_BitAddress_AliasRegion WWDG BitAddress AliasRegion
 
  * @brief WWDG registers bit address in the alias region
 
  * @{
 
  */  
 
 
/* --- CFR Register ---*/
 
/* Alias word address of EWI bit */
 
#define CFR_BASE        (uint32_t)(WWDG_BASE + 0x04)
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Interrupt_definition WWDG Interrupt definition
 
  * @{
 
  */ 
 
#define WWDG_IT_EWI      ((uint32_t)WWDG_CFR_EWI)  
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Flag_definition WWDG Flag definition
 
  * @brief WWDG Flag definition
 
  * @{
 
  */ 
 
#define WWDG_FLAG_EWIF   ((uint32_t)WWDG_SR_EWIF)  /*!< Early wakeup interrupt flag */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Prescaler WWDG Prescaler
 
  * @{
 
  */ 
 
#define WWDG_PRESCALER_1    ((uint32_t)0x00000000)  /*!< WWDG counter clock = (PCLK1/4096)/1 */
 
#define WWDG_PRESCALER_2   ((uint32_t)WWDG_CFR_WDGTB0)  /*!< WWDG counter clock = (PCLK1/4096)/2 */
 
#define WWDG_PRESCALER_4   ((uint32_t)WWDG_CFR_WDGTB1)  /*!< WWDG counter clock = (PCLK1/4096)/4 */
 
#define WWDG_PRESCALER_8   ((uint32_t)WWDG_CFR_WDGTB)  /*!< WWDG counter clock = (PCLK1/4096)/8 */
 
 
#define IS_WWDG_PRESCALER(__PRESCALER__) (((__PRESCALER__) == WWDG_PRESCALER_1) || \
 
                                          ((__PRESCALER__) == WWDG_PRESCALER_2) || \
 
                                          ((__PRESCALER__) == WWDG_PRESCALER_4) || \
 
                                          ((__PRESCALER__) == WWDG_PRESCALER_8))
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Window WWDG Window
 
  * @{
 
  */ 
 
#define IS_WWDG_WINDOW(__WINDOW__) ((__WINDOW__) <= 0x7F)
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Counter WWDG Counter
 
  * @{
 
  */ 
 
#define IS_WWDG_COUNTER(__COUNTER__) (((__COUNTER__) >= 0x40) && ((__COUNTER__) <= 0x7F))
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported macro ------------------------------------------------------------*/
 
 
/** @defgroup WWDG_Exported_Macros WWDG Exported Macros
 
 * @{
 
 */
 
 
/** @brief Reset WWDG handle state
 
  * @param  __HANDLE__: WWDG handle
 
  * @retval None
 
  */
 
#define __HAL_WWDG_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_WWDG_STATE_RESET)
 
 
/**
 
  * @brief  Enables the WWDG peripheral.
 
  * @param  __HANDLE__: WWDG handle
 
  * @retval None
 
  */
 
#define __HAL_WWDG_ENABLE(__HANDLE__)               SET_BIT((__HANDLE__)->Instance->CR, WWDG_CR_WDGA)
 
 
/**
 
  * @brief  Gets the selected WWDG's flag status.
 
  * @param  __HANDLE__: WWDG handle
 
  * @param  __FLAG__: specifies the flag to check.
 
  *        This parameter can be one of the following values:
 
  *            @arg WWDG_FLAG_EWIF: Early wakeup interrupt flag
 
  * @retval The new state of WWDG_FLAG (SET or RESET).
 
  */
 
#define __HAL_WWDG_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
 
 
/**
 
  * @brief  Clears the WWDG's pending flags.
 
  * @param  __HANDLE__: WWDG handle
 
  * @param  __FLAG__: specifies the flag to clear.
 
  *        This parameter can be one of the following values:
 
  *            @arg WWDG_FLAG_EWIF: Early wakeup interrupt flag
 
  * @retval None
 
  */
 
#define __HAL_WWDG_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR) = ~(__FLAG__))
 
 
/**
 
  * @brief  Enables the WWDG early wakeup interrupt.
 
  * @param  __INTERRUPT__: specifies the interrupt to enable.
 
  *         This parameter can be one of the following values:
 
  *            @arg WWDG_IT_EWI: Early wakeup interrupt
 
  * @note   Once enabled this interrupt cannot be disabled except by a system reset.
 
  * @retval None
 
  */
 
#define __HAL_WWDG_ENABLE_IT(__INTERRUPT__) (*(__IO uint32_t *) CFR_BASE |= (__INTERRUPT__))
 
 
/** @brief  Clear the WWDG's interrupt pending bits
 
  *         bits to clear the selected interrupt pending bits.
 
  * @param  __HANDLE__: WWDG handle
 
  * @param  __INTERRUPT__: specifies the interrupt pending bit to clear.
 
  *         This parameter can be one of the following values:
 
  *            @arg WWDG_FLAG_EWIF: Early wakeup interrupt flag
 
  */
 
#define __HAL_WWDG_CLEAR_IT(__HANDLE__, __INTERRUPT__) __HAL_WWDG_CLEAR_FLAG((__HANDLE__), (__INTERRUPT__))
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions --------------------------------------------------------*/
 
 
/** @addtogroup WWDG_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup WWDG_Exported_Functions_Group1
 
  * @{
 
  */
 
/* Initialization/de-initialization functions  **********************************/
 
HAL_StatusTypeDef     HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg);
 
HAL_StatusTypeDef     HAL_WWDG_DeInit(WWDG_HandleTypeDef *hwwdg);
 
void                  HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg);
 
void                  HAL_WWDG_MspDeInit(WWDG_HandleTypeDef *hwwdg);
 
void                  HAL_WWDG_WakeupCallback(WWDG_HandleTypeDef* hwwdg);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup WWDG_Exported_Functions_Group2
 
  * @{
 
  */
 
/* I/O operation functions ******************************************************/
 
HAL_StatusTypeDef     HAL_WWDG_Start(WWDG_HandleTypeDef *hwwdg);
 
HAL_StatusTypeDef     HAL_WWDG_Start_IT(WWDG_HandleTypeDef *hwwdg);
 
HAL_StatusTypeDef     HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg, uint32_t Counter);
 
void                  HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg);
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup WWDG_Exported_Functions_Group3
 
  * @{
 
  */
 
/* Peripheral State functions  **************************************************/
 
HAL_WWDG_StateTypeDef HAL_WWDG_GetState(WWDG_HandleTypeDef *hwwdg);
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
#ifdef __cplusplus
 
}
 
#endif
 
 
#endif /* __STM32F0xx_HAL_WWDG_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   HAL module driver.
 
  *          This is the common part of the HAL initialization
 
  *
 
  @verbatim
 
  ==============================================================================
 
                     ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
    The common HAL driver contains a set of generic and common APIs that can be
 
    used by the PPP peripheral drivers and the user to start using the HAL. 
 
    [..]
 
    The HAL contains two APIs categories:
 
         (+) HAL Initialization and de-initialization functions
 
         (+) HAL Control functions
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup HAL HAL module driver
 
  * @brief HAL module driver.
 
  * @{
 
  */
 
 
#ifdef HAL_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup HAL_Private Constants
 
  * @{
 
  */
 
/** 
 
  * @brief STM32F0xx HAL Driver version number V1.1.0
 
  */
 
#define __STM32F0xx_HAL_VERSION_MAIN   (0x01) /*!< [31:24] main version */
 
#define __STM32F0xx_HAL_VERSION_SUB1   (0x01) /*!< [23:16] sub1 version */
 
#define __STM32F0xx_HAL_VERSION_SUB2   (0x00) /*!< [15:8]  sub2 version */
 
#define __STM32F0xx_HAL_VERSION_RC     (0x00) /*!< [7:0]  release candidate */ 
 
#define __STM32F0xx_HAL_VERSION         ((__STM32F0xx_HAL_VERSION_MAIN << 24)\
 
                                        |(__STM32F0xx_HAL_VERSION_SUB1 << 16)\
 
                                        |(__STM32F0xx_HAL_VERSION_SUB2 << 8 )\
 
                                        |(__STM32F0xx_HAL_VERSION_RC))
 
 
#define IDCODE_DEVID_MASK    ((uint32_t)0x00000FFF)
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/** @defgroup HAL_Private_Variables HAL Private Variables
 
  * @{
 
  */
 
static __IO uint32_t uwTick;
 
/**
 
  * @}
 
  */
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup HAL_Exported_Functions HAL Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions 
 
  * @brief    Initialization and de-initialization functions
 
  *
 
@verbatim
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
   [..]  This section provides functions allowing to:
 
      (+) Initializes the Flash interface, the NVIC allocation and initial clock 
 
          configuration. It initializes the source of time base also when timeout 
 
          is needed and the backup domain when enabled.
 
      (+) de-Initializes common part of the HAL.
 
      (+) Configure The time base source to have 1ms time base with a dedicated 
 
          Tick interrupt priority. 
 
        (++) Systick timer is used by default as source of time base, but user 
 
             can eventually implement his proper time base source (a general purpose 
 
             timer for example or other time source), keeping in mind that Time base 
 
             duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
 
             handled in milliseconds basis.
 
        (++) Time base configuration function (HAL_InitTick ()) is called automatically 
 
             at the beginning of the program after reset by HAL_Init() or at any time 
 
             when clock is configured, by HAL_RCC_ClockConfig(). 
 
        (++) Source of time base is configured  to generate interrupts at regular 
 
             time intervals. Care must be taken if HAL_Delay() is called from a 
 
             peripheral ISR process, the Tick interrupt line must have higher priority 
 
            (numerically lower) than the peripheral interrupt. Otherwise the caller 
 
            ISR process will be blocked. 
 
       (++) functions affecting time base configurations are declared as __Weak  
 
             to make  override possible  in case of other  implementations in user file.
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  This function configures the Flash prefetch,
 
  *        Configures time base source, NVIC and Low level hardware
 
  * @note This function is called at the beginning of program after reset and before 
 
  *       the clock configuration
 
  * @note The time base configuration is based on HSI clock when exiting from Reset.
 
  *       Once done, time base tick start incrementing.
 
  *       In the default implementation,Systick is used as source of time base.
 
  *       The tick variable is incremented each 1ms in its ISR.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_Init(void)
 
{
 
  /* Configure Flash prefetch */ 
 
#if (PREFETCH_ENABLE != 0)
 
  __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
 
#endif /* PREFETCH_ENABLE */
 
 
  /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
 
 
  HAL_InitTick(TICK_INT_PRIORITY);
 
 
  /* Init the low level hardware */
 
  HAL_MspInit();
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief This function de-Initializes common part of the HAL and stops the source
 
  *        of time base.
 
  * @note This function is optional.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DeInit(void)
 
{
 
  /* Reset of all peripherals */
 
  __APB1_FORCE_RESET();
 
  __APB1_RELEASE_RESET();
 
 
  __APB2_FORCE_RESET();
 
  __APB2_RELEASE_RESET();
 
 
  __AHB_FORCE_RESET();
 
  __AHB_RELEASE_RESET();
 
 
  /* De-Init the low level hardware */
 
  HAL_MspDeInit();
 
    
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the MSP.
 
  * @retval None
 
  */
 
__weak void HAL_MspInit(void)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes the MSP.
 
  * @retval None
 
  */
 
__weak void HAL_MspDeInit(void)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief This function configures the source of the time base. 
 
  *        The time source is configured  to have 1ms time base with a dedicated 
 
  *        Tick interrupt priority.
 
  * @note This function is called  automatically at the beginning of program after
 
  *       reset by HAL_Init() or at any time when clock is reconfigured  by HAL_RCC_ClockConfig(). 
 
  * @note In the default implementation, SysTick timer is the source of time base. 
 
  *       It is used to generate interrupts at regular time intervals. 
 
  *       Care must be taken if HAL_Delay() is called from a peripheral ISR process, 
 
  *       The the SysTick interrupt must have higher priority (numerically lower) 
 
  *       than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
 
  *       The function is declared as __Weak  to be overwritten  in case of other
 
  *       implementation  in user file.
 
  * @param TickPriority: Tick interrupt priority.
 
  * @retval HAL status
 
  */
 
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
 
{
 
  /*Configure the SysTick to have interrupt in 1ms time basis*/
 
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
 
 
  /*Configure the SysTick IRQ priority */
 
  HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority ,0);
 
 
   /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions 
 
  * @brief    HAL Control functions
 
  *
 
@verbatim
 
 ===============================================================================
 
                      ##### HAL Control functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Provide a tick value in millisecond
 
      (+) Provide a blocking delay in millisecond
 
      (+) Suspend the time base source interrupt
 
      (+) Resume the time base source interrupt
 
      (+) Get the HAL API driver version
 
      (+) Get the device identifier
 
      (+) Get the device revision identifier
 
      (+) Enable/Disable Debug module during Sleep mode
 
      (+) Enable/Disable Debug module during STOP mode
 
      (+) Enable/Disable Debug module during STANDBY mode
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief This function is called to increment  a global variable "uwTick"
 
  *        used as application time base.
 
  * @note In the default implementation, this variable is incremented each 1ms
 
  *       in Systick ISR.
 
  * @note This function is declared as __weak to be overwritten in case of other 
 
  *       implementations in user file.
 
  * @retval None
 
  */
 
__weak void HAL_IncTick(void)
 
{
 
  uwTick++;
 
}
 
 
/**
 
  * @brief  Povides a tick value in millisecond.
 
  * @note   The function is declared as __Weak  to be overwritten  in case of other 
 
  *       implementations in user file.
 
  * @retval tick value
 
  */
 
__weak uint32_t HAL_GetTick(void)
 
{
 
  return uwTick;
 
}
 
 
/**
 
  * @brief Suspend Tick increment.
 
  * @note In the default implementation , SysTick timer is the source of time base. It is
 
  *       used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
 
  *       is called, the the SysTick interrupt will be disabled and so Tick increment 
 
  *       is suspended.
 
  * @note This function is declared as __weak to be overwritten in case of other
 
  *       implementations in user file.
 
  * @retval None
 
  */
 
__weak void HAL_SuspendTick(void)
 
 
{
 
  /* Disable SysTick Interrupt */
 
  SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
 
 
}
 
 
/**
 
  * @brief Resume Tick increment.
 
  * @note In the default implementation , SysTick timer is the source of time base. It is
 
  *       used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
 
  *       is called, the the SysTick interrupt will be enabled and so Tick increment 
 
  *       is resumed.
 
  *         The function is declared as __Weak  to be overwritten  in case of other
 
  *       implementations in user file.
 
  * @retval None
 
  */
 
__weak void HAL_ResumeTick(void)
 
{
 
  /* Enable SysTick Interrupt */
 
  SysTick->CTRL  |= SysTick_CTRL_TICKINT_Msk;
 
 
}
 
 
/**
 
  * @brief This function provides accurate delay (in milliseconds) based 
 
  *        on variable incremented.
 
  * @note In the default implementation , SysTick timer is the source of time base.
 
  *       It is used to generate interrupts at regular time intervals where uwTick
 
  *       is incremented.
 
  * @note ThiS function is declared as __weak to be overwritten in case of other
 
  *       implementations in user file.
 
  * @param Delay: specifies the delay time length, in milliseconds.
 
  * @retval None
 
  */
 
__weak void HAL_Delay(__IO uint32_t Delay)
 
{
 
  uint32_t tickstart = 0;
 
  tickstart = HAL_GetTick();
 
  while((HAL_GetTick() - tickstart) < Delay)
 
  {
 
  }
 
}
 
 
/**
 
  * @brief  This method returns the HAL revision
 
  * @retval version : 0xXYZR (8bits for each decimal, R for RC)
 
  */
 
uint32_t HAL_GetHalVersion(void)
 
{
 
 return __STM32F0xx_HAL_VERSION;
 
}
 
 
/**
 
  * @brief  Returns the device revision identifier.
 
  * @retval Device revision identifier
 
  */
 
uint32_t HAL_GetREVID(void)
 
{
 
   return((DBGMCU->IDCODE) >> 16);
 
}
 
 
/**
 
  * @brief  Returns the device identifier.
 
  * @retval Device identifier
 
  */
 
uint32_t HAL_GetDEVID(void)
 
{
 
   return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
 
}
 
 
/**
 
  * @brief  Enable the Debug Module during STOP mode       
 
  * @retval None
 
  */
 
void HAL_EnableDBGStopMode(void)
 
{
 
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
 
}
 
 
/**
 
  * @brief  Disable the Debug Module during STOP mode       
 
  * @retval None
 
  */
 
void HAL_DisableDBGStopMode(void)
 
{
 
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
 
}
 
 
/**
 
  * @brief  Enable the Debug Module during STANDBY mode       
 
  * @retval None
 
  */
 
void HAL_EnableDBGStandbyMode(void)
 
{
 
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
 
}
 
 
/**
 
  * @brief  Disable the Debug Module during STANDBY mode       
 
  * @retval None
 
  */
 
void HAL_DisableDBGStandbyMode(void)
 
{
 
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_adc.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file provides firmware functions to manage the following 
 
  *          functionalities of the Analog to Digital Convertor (ADC)
 
  *          peripheral:
 
  *           + Initialization and de-initialization functions
 
  *             ++ Initialization and Configuration of ADC
 
  *           + Operation functions
 
  *             ++ Start, stop, get result of conversions of regular group,
 
  *             using 3 possible modes: polling, interruption or DMA.
 
  *           + Control functions
 
  *             ++ Analog Watchdog configuration
 
  *             ++ Channels configuration on regular group
 
  *           + State functions
 
  *             ++ ADC state machine management
 
  *             ++ Interrupts and flags management
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                    ##### ADC specific features #####
 
  ==============================================================================
 
  [..] 
 
  (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
 
 
  (#) Interrupt generation at the end of regular conversion and in case of 
 
      analog watchdog or overrun events.
 
  
 
  (#) Single and continuous conversion modes.
 
  
 
  (#) Scan mode for automatic conversion of channel 0 to channel 'n'.
 
  
 
  (#) Data alignment with in-built data coherency.
 
  
 
  (#) Programmable sampling time.
 
  
 
  (#) ADC conversion group Regular.
 
 
  (#) External trigger (timer or EXTI) with configurable polarity.
 
 
  (#) DMA request generation for transfer of conversions data of regular group.
 
 
  (#) ADC calibration
 
  
 
  (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at 
 
      slower speed.
 
  
 
  (#) ADC input range: from Vref minus (connected to Vssa) to Vref plus (connected to 
 
      Vdda or to an external voltage reference).
 
 
 
                     ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
 
    (#) Enable the ADC interface 
 
        (++) As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured  
 
        at RCC top level: clock source and clock prescaler.
 
        (++)Two possible clock sources: synchronous clock derived from APB clock
 
        or asynchronous clock derived from ADC dedicated HSI RC oscillator
 
        14MHz.
 
        (++)Example:
 
          __ADC1_CLK_ENABLE();                         (mandatory)
 
          
 
          HI14 enable or let under control of ADC:     (optional)
 
 
          RCC_OscInitTypeDef   RCC_OscInitStructure;
 
          RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
 
          RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT;
 
          RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL;
 
          RCC_OscInitStructure.PLL...   (optional if used for system clock)
 
          HAL_RCC_OscConfig(&RCC_OscInitStructure);
 
          
 
          Parameter "HSI14State" must be set either:
 
           - to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control 
 
             the HSI14 oscillator enable/disable (if not used to supply the main 
 
             system clock): feature used if ADC mode LowPowerAutoPowerOff is 
 
             enabled.
 
           - to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator
 
             always enabled: can be used to supply the main system clock.
 
 
    (#) ADC pins configuration
 
         (++) Enable the clock for the ADC GPIOs using the following function:
 
             __GPIOx_CLK_ENABLE();   
 
         (++) Configure these ADC pins in analog mode using HAL_GPIO_Init();  
 
  
 
     (#) Configure the ADC parameters (conversion resolution, data alignment,  
 
         continuous mode, ...) using the HAL_ADC_Init() function.
 
 
     (#) Activate the ADC peripheral using one of the start functions: 
 
         HAL_ADC_Start(), HAL_ADC_Start_IT(), HAL_ADC_Start_DMA().
 
  
 
     *** Channels configuration to regular group  ***
 
     ================================================
 
     [..]    
 
       (+) To configure the ADC regular group features, use 
 
           HAL_ADC_Init() and HAL_ADC_ConfigChannel() functions.
 
       (+) To activate the continuous mode, use the HAL_ADC_Init() function.   
 
       (+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
 
              
 
     *** DMA for regular configuration ***
 
     ============================================================= 
 
     [..]
 
       (+) To enable the DMA mode for regular group, use the  
 
           HAL_ADC_Start_DMA() function.
 
       (+) To enable the generation of DMA requests continuously at the end of 
 
           the last DMA transfer, use the HAL_ADC_Init() function.
 
  
 
    @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup ADC ADC HAL module driver
 
  * @brief ADC HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_ADC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup ADC_Private_Constants ADC Private Constants
 
  * @{
 
  */
 
 
  /* Fixed timeout values for ADC calibration, enable settling time, disable  */
 
  /* settling time.                                                           */
 
  /* Values defined to be higher than worst cases: low clock frequency,       */
 
  /* maximum prescaler.                                                       */
 
  /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock         */
 
  /* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits.     */
 
  /* Unit: ms                                                                 */
 
  #define ADC_ENABLE_TIMEOUT             ((uint32_t) 2)
 
  #define ADC_DISABLE_TIMEOUT            ((uint32_t) 2)
 
  #define ADC_STOP_CONVERSION_TIMEOUT    ((uint32_t) 2)
 
 
  /* Delay for temperature sensor stabilization time.                         */
 
  /* Maximum delay is 10us (refer to device datasheet, parameter tSTART).     */
 
  /* Delay in CPU cycles, fixed to worst case: maximum CPU frequency 48MHz to */
 
  /* have the minimum number of CPU cycles to fulfill this delay.             */
 
  #define ADC_TEMPSENSOR_DELAY_CPU_CYCLES ((uint32_t) 480)
 
 
  /* Delay for ADC stabilization time.                                        */
 
  /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB).       */
 
  /* Delay in CPU cycles, fixed to worst case: maximum CPU frequency 48MHz to */
 
  /* have the minimum number of CPU cycles to fulfill this delay.             */
 
  #define ADC_STAB_DELAY_CPU_CYCLES       ((uint32_t)48)
 
/**
 
    * @}
 
    */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup ADC_Private_Functions ADC Private Functions
 
  * @{
 
  */
 
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc);
 
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc);
 
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc);
 
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
 
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
 
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
 
/**
 
    * @}
 
    */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup ADC_Exported_Functions ADC Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize and configure the ADC. 
 
      (+) De-initialize the ADC
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the ADC peripheral and regular group according to  
 
  *         parameters specified in structure "ADC_InitTypeDef".
 
  * @note   As prerequisite, ADC clock must be configured at RCC top level
 
  *         depending on both possible clock sources: APB clock of HSI clock.
 
  *         See commented example code below that can be copied and uncommented 
 
  *         into HAL_ADC_MspInit().
 
  * @note   Possibility to update parameters on the fly:
 
  *         This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
 
  *         coming from ADC state reset. Following calls to this function can
 
  *         be used to reconfigure some parameters of ADC_InitTypeDef  
 
  *         structure on the fly, without modifying MSP configuration. If ADC  
 
  *         MSP has to be modified again, HAL_ADC_DeInit() must be called
 
  *         before HAL_ADC_Init().
 
  *         The setting of these parameters is conditioned to ADC state.
 
  *         For parameters constraints, see comments of structure 
 
  *         "ADC_InitTypeDef".
 
  * @note   This function configures the ADC within 2 scopes: scope of entire 
 
  *         ADC and scope of regular group. For parameters details, see comments 
 
  *         of structure "ADC_InitTypeDef".
 
  * @param  hadc: ADC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  uint32_t tmpCFGR1 = 0;
 
 
  /* Check ADC handle */
 
  if(hadc == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
 
  assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
 
  assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); 
 
  assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
 
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
 
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
 
  assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));   
 
  assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));   
 
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
 
  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
 
  assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
 
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
 
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff));
 
  
 
  /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured    */
 
  /* at RCC top level depending on both possible clock sources:               */
 
  /* APB clock or HSI clock.                                                  */
 
  /* Refer to header of this file for more details on clock enabling procedure*/
 
  
 
  /* Actions performed only if ADC is coming from state reset:                */
 
  /* - Initialization of ADC MSP                                              */
 
  /* - ADC voltage regulator enable                                           */
 
  if (hadc->State == HAL_ADC_STATE_RESET)
 
  {
 
    /* Init the low level hardware */
 
    HAL_ADC_MspInit(hadc);
 
    
 
  }
 
  
 
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
 
  /* correctly completed.                                                     */
 
  /* and if there is no conversion on going on regular group (ADC can be      */ 
 
  /* enabled anyway, in case of call of this function to update a parameter   */
 
  /* on the fly).                                                             */
 
  if ((hadc->State != HAL_ADC_STATE_ERROR)                    &&
 
      (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)  )
 
  {
 
    /* Initialize the ADC state */
 
    hadc->State = HAL_ADC_STATE_BUSY;
 
    
 
    /* Parameters update conditioned to ADC state:                            */
 
    /* Parameters that can be updated only when ADC is disabled:              */
 
    /*  - ADC clock mode                                                      */
 
    /*  - ADC clock prescaler                                                 */
 
    if (__HAL_ADC_IS_ENABLED(hadc) == RESET)
 
    {
 
      /* Some parameters of this register are not reset, since they are set   */
 
      /* by other functions and must be kept in case of usage of this         */
 
      /* function on the fly (update of a parameter of ADC_InitTypeDef        */
 
      /* without needing to reconfigure all other ADC groups/channels         */
 
      /* parameters):                                                         */
 
      /*   - internal measurement paths: Vbat, temperature sensor, Vref       */
 
      /*     (set into HAL_ADC_ConfigChannel() )                              */
 
     
 
      /* Reset configuration of ADC configuration register CFGR2:             */
 
      /*   - ADC clock mode: CKMODE                                           */
 
      hadc->Instance->CFGR2 &= ~(ADC_CFGR2_CKMODE);
 
      
 
      /* Configuration of ADC clock mode: clock source AHB or HSI with        */
 
      /* selectable prescaler                                                 */
 
      hadc->Instance->CFGR2 |= hadc->Init.ClockPrescaler;
 
    }
 
      
 
    /* Configuration of ADC:                                                  */
 
    /*  - discontinuous mode                                                  */
 
    /*  - LowPowerAutoWait mode                                               */
 
    /*  - LowPowerAutoPowerOff mode                                           */
 
    /*  - continuous conversion mode                                          */
 
    /*  - overrun                                                             */
 
    /*  - external trigger to start conversion                                */
 
    /*  - external trigger polarity                                           */
 
    /*  - data alignment                                                      */
 
    /*  - resolution                                                          */
 
    /*  - scan direction                                                      */
 
    /*  - DMA continuous request                                              */
 
    hadc->Instance->CFGR1 &= ~( ADC_CFGR1_DISCEN  |
 
                                ADC_CFGR1_AUTOFF  |
 
                                ADC_CFGR1_AUTDLY  |
 
                                ADC_CFGR1_CONT    |
 
                                ADC_CFGR1_OVRMOD  |
 
                                ADC_CFGR1_EXTSEL  |
 
                                ADC_CFGR1_EXTEN   |
 
                                ADC_CFGR1_ALIGN   |
 
                                ADC_CFGR1_RES     |
 
                                ADC_CFGR1_SCANDIR |
 
                                ADC_CFGR1_DMACFG   );
 
 
    tmpCFGR1 |= (__HAL_ADC_CFGR1_AUTOWAIT(hadc->Init.LowPowerAutoWait)       |
 
                 __HAL_ADC_CFGR1_AUTOOFF(hadc->Init.LowPowerAutoPowerOff)    |
 
                 __HAL_ADC_CFGR1_CONTINUOUS(hadc->Init.ContinuousConvMode)   |
 
                 __HAL_ADC_CFGR1_OVERRUN(hadc->Init.Overrun)                 |
 
                 hadc->Init.DataAlign                                        |
 
                 hadc->Init.Resolution                                       |
 
                 __HAL_ADC_CFGR1_SCANDIR(hadc->Init.ScanConvMode)            |
 
                 __HAL_ADC_CFGR1_DMACONTREQ(hadc->Init.DMAContinuousRequests) );
 
    
 
    /* Enable discontinuous mode only if continuous mode is disabled */
 
    if ((hadc->Init.DiscontinuousConvMode == ENABLE) &&
 
        (hadc->Init.ContinuousConvMode == DISABLE)     )
 
    {
 
      /* Enable discontinuous mode of regular group */ 
 
      tmpCFGR1 |= ADC_CFGR1_DISCEN;
 
    }
 
      
 
    /* Enable external trigger if trigger selection is different of software  */
 
    /* start.                                                                 */
 
    /* Note: This configuration keeps the hardware feature of parameter       */
 
    /*       ExternalTrigConvEdge "trigger edge none" equivalent to           */
 
    /*       software start.                                                  */
 
    if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
 
    {
 
      tmpCFGR1 |= ( hadc->Init.ExternalTrigConv    |
 
                    hadc->Init.ExternalTrigConvEdge );
 
    }
 
    
 
    /* Update ADC configuration register with previous settings */
 
    hadc->Instance->CFGR1 |= tmpCFGR1;
 
    
 
    /* Check back that ADC registers have effectively been configured to      */
 
    /* ensure of no potential problem of ADC core IP clocking.                */
 
    /* Check through register CFGR1 (excluding analog watchdog configuration: */
 
    /* set into separate dedicated function).                                 */
 
    if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL))
 
         == tmpCFGR1)
 
    {
 
      /* Set ADC error code to none */
 
      __HAL_ADC_CLEAR_ERRORCODE(hadc);
 
      
 
      /* Initialize the ADC state */
 
      hadc->State = HAL_ADC_STATE_READY;
 
    }
 
    else
 
    {
 
      /* Update ADC state machine to error */
 
      hadc->State = HAL_ADC_STATE_ERROR;
 
      
 
      /* Set ADC error code to ADC IP internal error */
 
      hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
      
 
      tmpHALStatus = HAL_ERROR;
 
    }
 
  
 
  }
 
  else
 
  {
 
    /* Update ADC state machine to error */
 
    hadc->State = HAL_ADC_STATE_ERROR;
 
        
 
    tmpHALStatus = HAL_ERROR;
 
  }
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
 
/**
 
  * @brief  Deinitialize the ADC peripheral registers to their default reset
 
  *         values, with deinitialization of the ADC MSP.
 
  * @note   For devices with several ADCs: reset of ADC common registers is done 
 
  *         only if all ADCs sharing the same common group are disabled.
 
  *         If this is not the case, reset of these common parameters reset is  
 
  *         bypassed without error reporting: it can be the intended behaviour in
 
  *         case of reset of a single ADC while the other ADCs sharing the same 
 
  *         common group is still running.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  /* Check ADC handle */
 
  if(hadc == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  
 
  /* Change ADC state */
 
  hadc->State = HAL_ADC_STATE_BUSY;
 
  
 
  /* Stop potential conversion on going, on regular group */
 
  tmpHALStatus = ADC_ConversionStop(hadc);
 
  
 
  /* Disable ADC peripheral if conversions are effectively stopped */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {   
 
    /* Disable the ADC peripheral */
 
    tmpHALStatus = ADC_Disable(hadc);
 
    
 
    /* Check if ADC is effectively disabled */
 
    if (tmpHALStatus != HAL_ERROR)
 
    {
 
      /* Change ADC state */
 
      hadc->State = HAL_ADC_STATE_READY;
 
    }
 
  }
 
  
 
  
 
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
 
  /* correctly completed.                                                     */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
  
 
    /* ========== Reset ADC registers ========== */
 
    /* Reset register IER */
 
    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD   | ADC_IT_OVR  |
 
                                ADC_IT_EOS   | ADC_IT_EOC  |
 
                                ADC_IT_EOSMP | ADC_IT_RDY   ) );
 
        
 
    /* Reset register ISR */
 
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD   | ADC_FLAG_OVR  |
 
                                ADC_FLAG_EOS   | ADC_FLAG_EOC  |
 
                                ADC_FLAG_EOSMP | ADC_FLAG_RDY   ) );
 
      
 
    /* Reset register CR */
 
    /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode     */
 
    /* "read-set": no direct reset applicable.                                */
 
 
    /* Reset register CFGR1 */
 
    hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH   | ADC_CFGR1_AWDEN  | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN |
 
                               ADC_CFGR1_AUTOFF  | ADC_CFGR1_WAIT   | ADC_CFGR1_CONT   | ADC_CFGR1_OVRMOD |     
 
                               ADC_CFGR1_EXTEN   | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN  | ADC_CFGR1_RES    |
 
                               ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN                      );
 
    
 
    /* Reset register CFGR2 */
 
    /* Note: Update of ADC clock mode is conditioned to ADC state disabled:   */
 
    /*       already done above.                                              */
 
    hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE;
 
    
 
    /* Reset register SMPR */
 
    hadc->Instance->SMPR &= ~ADC_SMPR_SMP;
 
    
 
    /* Reset register TR1 */
 
    hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT);
 
    
 
    /* Reset register CHSELR */
 
    hadc->Instance->CHSELR &= ~(ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 |
 
                                ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 |
 
                                ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9  | ADC_CHSELR_CHSEL8  |
 
                                ADC_CHSELR_CHSEL7  | ADC_CHSELR_CHSEL6  | ADC_CHSELR_CHSEL5  | ADC_CHSELR_CHSEL4  |
 
                                ADC_CHSELR_CHSEL3  | ADC_CHSELR_CHSEL2  | ADC_CHSELR_CHSEL1  | ADC_CHSELR_CHSEL0   );
 
    
 
    /* Reset register DR */
 
    /* bits in access mode read only, no direct reset applicable*/
 
    
 
    /* Reset register CCR */
 
    ADC->CCR &= ~( ADC_CCR_VBATEN |
 
                   ADC_CCR_TSEN   |
 
                   ADC_CCR_VREFEN  );
 
 
    /* ========== Hard reset ADC peripheral ========== */
 
    /* Performs a global reset of the entire ADC peripheral: ADC state is     */
 
    /* forced to a similar state after device power-on.                       */
 
    /* If needed, copy-paste and uncomment the following reset code into      */
 
    /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)":              */
 
    /*                                                                        */
 
    /*  __ADC1_FORCE_RESET()                                                  */
 
    /*  __ADC1_RELEASE_RESET()                                                */
 
    
 
    /* DeInit the low level hardware */
 
    HAL_ADC_MspDeInit(hadc);
 
    
 
    /* Set ADC error code to none */
 
    __HAL_ADC_CLEAR_ERRORCODE(hadc);
 
    
 
    /* Change ADC state */
 
    hadc->State = HAL_ADC_STATE_RESET; 
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
    
 
/**
 
  * @brief  Initializes the ADC MSP.
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
 
{
 
  /* NOTE : This function should not be modified. When the callback is needed,
 
            function HAL_ADC_MspInit must be implemented in the user file.
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the ADC MSP.
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
 
{
 
  /* NOTE : This function should not be modified. When the callback is needed,
 
            function HAL_ADC_MspDeInit must be implemented in the user file.
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
 
 *  @brief    IO operation functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Start conversion of regular group.
 
      (+) Stop conversion of regular group.
 
      (+) Poll for conversion complete on regular group.
 
      (+) Poll for conversion event.
 
      (+) Get result of regular channel conversion.
 
      (+) Start conversion of regular group and enable interruptions.
 
      (+) Stop conversion of regular group and disable interruptions.
 
      (+) Handle ADC interrupt request
 
      (+) Start conversion of regular group and enable DMA transfer.
 
      (+) Stop conversion of regular group and disable ADC DMA transfer.
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Enables ADC, starts conversion of regular group.
 
  *         Interruptions enabled in this function: None.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
   
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
    
 
  /* Enable the ADC peripheral */
 
  /* If low power mode AutoPowerOff is enabled, power-on/off phases are       */
 
  /* performed automatically by hardware.                                     */
 
  if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
 
  {
 
    tmpHALStatus = ADC_Enable(hadc);
 
  }
 
  
 
  /* Start conversion if ADC is effectively enabled */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
    /* State machine update: Change ADC state */
 
    hadc->State = HAL_ADC_STATE_BUSY_REG;
 
 
    /* Set ADC error code to none */
 
    __HAL_ADC_CLEAR_ERRORCODE(hadc);
 
    
 
    /* Clear regular group conversion flag and overrun flag */
 
    /* (To ensure of no unknown state from potential previous ADC operations) */
 
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
 
    
 
    /* Enable conversion of regular group.                                    */
 
    /* If software start has been selected, conversion starts immediately.    */
 
    /* If external trigger has been selected, conversion will start at next   */
 
    /* trigger event.                                                         */
 
    hadc->Instance->CR |= ADC_CR_ADSTART;
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
/**
 
  * @brief  Stop ADC conversion of regular group, disable ADC peripheral.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
 
{ 
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
  
 
  /* 1. Stop potential conversion on going, on regular group */
 
  tmpHALStatus = ADC_ConversionStop(hadc);
 
  
 
  /* Disable ADC peripheral if conversions are effectively stopped */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
    /* 2. Disable the ADC peripheral */
 
    tmpHALStatus = ADC_Disable(hadc);
 
    
 
    /* Check if ADC is effectively disabled */
 
    if (tmpHALStatus != HAL_ERROR)
 
    {
 
      /* Change ADC state */
 
      hadc->State = HAL_ADC_STATE_READY;
 
    }
 
  }
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
/**
 
  * @brief  Wait for regular group conversion to be completed.
 
  * @param  hadc: ADC handle
 
  * @param  Timeout: Timeout value in millisecond.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
 
{
 
  uint32_t tickstart;
 
  uint32_t tmp_Flag_EOC;
 
 
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
 
  /* If end of conversion selected to end of sequence */
 
  if (hadc->Init.EOCSelection == EOC_SEQ_CONV)
 
  {
 
    tmp_Flag_EOC = ADC_FLAG_EOS;
 
  }
 
  /* If end of conversion selected to end of each conversion */
 
  else /* EOC_SINGLE_CONV */
 
  {
 
    tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS);
 
  }
 
    
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();  
 
     
 
  /* Wait until End of Conversion flag is raised */
 
  while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
 
  {
 
    /* Check if timeout is disabled (set to infinite wait) */
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
 
      {
 
        /* Update ADC state machine to timeout */
 
        hadc->State = HAL_ADC_STATE_TIMEOUT;
 
        
 
        /* Process unlocked */
 
        __HAL_UNLOCK(hadc);
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
  }
 
  
 
  /* Clear end of conversion flag of regular group if low power feature       */
 
  /* "LowPowerAutoWait " is disabled, to not interfere with this feature      */
 
  /* until data register is read using function HAL_ADC_GetValue().           */
 
  if (hadc->Init.LowPowerAutoWait == DISABLE)
 
  {
 
    /* Clear regular group conversion flag */
 
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
 
  }
 
  
 
  /* Update state machine on conversion status if not in error state */
 
  if(hadc->State != HAL_ADC_STATE_ERROR)
 
  {
 
    /* Change ADC state */
 
    hadc->State = HAL_ADC_STATE_EOC_REG;
 
  }
 
  
 
  /* Return ADC state */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Poll for conversion event.
 
  * @param  hadc: ADC handle
 
  * @param  EventType: the ADC event type.
 
  *          This parameter can be one of the following values:
 
  *            @arg AWD_EVENT: ADC Analog watchdog event
 
  *            @arg OVR_EVENT: ADC Overrun event
 
  * @param  Timeout: Timeout value in millisecond.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
 
{
 
  uint32_t tickstart=0; 
 
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  assert_param(IS_ADC_EVENT_TYPE(EventType));
 
  
 
  tickstart = HAL_GetTick();   
 
      
 
  /* Check selected event flag */
 
  while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
 
  {
 
    /* Check if timeout is disabled (set to infinite wait) */
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
 
      {
 
        /* Update ADC state machine to timeout */
 
        hadc->State = HAL_ADC_STATE_TIMEOUT;
 
        
 
        /* Process unlocked */
 
        __HAL_UNLOCK(hadc);
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
  }
 
 
  switch(EventType)
 
  {
 
  /* Analog watchdog (level out of window) event */
 
  case AWD_EVENT:
 
    /* Change ADC state */
 
    hadc->State = HAL_ADC_STATE_AWD;
 
      
 
    /* Clear ADC analog watchdog flag */
 
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
 
    break;
 
  
 
  /* Overrun event */
 
  default: /* Case OVR_EVENT */
 
    /* If overrun is set to overwrite previous data, overrun event is not     */
 
    /* considered as an error.                                                */
 
    /* (cf ref manual "Managing conversions without using the DMA and without */
 
    /* overrun ")                                                             */
 
    if (hadc->Init.Overrun == OVR_DATA_PRESERVED)
 
    {
 
      /* Change ADC state */
 
      hadc->State = HAL_ADC_STATE_ERROR;
 
        
 
      /* Set ADC error code to overrun */
 
      hadc->ErrorCode |= HAL_ADC_ERROR_OVR;
 
    }
 
    
 
    /* Clear ADC Overrun flag */
 
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
 
    break;
 
  }
 
  
 
  /* Return ADC state */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables ADC, starts conversion of regular group with interruption.
 
  *         Interruptions enabled in this function: EOC (end of conversion),
 
  *         overrun.
 
  *         Each of these interruptions has its dedicated callback function.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
    
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
   
 
  /* Enable the ADC peripheral */
 
  /* If low power mode AutoPowerOff is enabled, power-on/off phases are       */
 
  /* performed automatically by hardware.                                     */
 
  if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
 
  {
 
    tmpHALStatus = ADC_Enable(hadc);
 
  }
 
  
 
  /* Start conversion if ADC is effectively enabled */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
    /* State machine update: Change ADC state */
 
    hadc->State = HAL_ADC_STATE_BUSY_REG;
 
    
 
    /* Set ADC error code to none */
 
    __HAL_ADC_CLEAR_ERRORCODE(hadc);
 
    
 
    /* Clear regular group conversion flag and overrun flag */
 
    /* (To ensure of no unknown state from potential previous ADC operations) */
 
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
 
    
 
    /* Enable ADC end of conversion interrupt */
 
    /* Enable ADC overrun interrupt */  
 
    switch(hadc->Init.EOCSelection)
 
    {
 
      case EOC_SEQ_CONV: 
 
        __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
 
        __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR));
 
        break;
 
      /* case EOC_SINGLE_CONV */
 
      default:
 
        __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
 
        break;
 
    }
 
    
 
    /* Enable conversion of regular group.                                    */
 
    /* If software start has been selected, conversion starts immediately.    */
 
    /* If external trigger has been selected, conversion will start at next   */
 
    /* trigger event.                                                         */
 
    hadc->Instance->CR |= ADC_CR_ADSTART;
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
 
/**
 
  * @brief  Stop ADC conversion of regular group, disable interruption of 
 
  *         end-of-conversion, disable ADC peripheral.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
  
 
  /* 1. Stop potential conversion on going, on regular group */
 
  tmpHALStatus = ADC_ConversionStop(hadc);
 
  
 
  /* Disable ADC peripheral if conversions are effectively stopped */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
    /* Disable ADC end of conversion interrupt for regular group */
 
    /* Disable ADC overrun interrupt */
 
    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
 
    
 
    /* 2. Disable the ADC peripheral */
 
    tmpHALStatus = ADC_Disable(hadc);
 
    
 
    /* Check if ADC is effectively disabled */
 
    if (tmpHALStatus != HAL_ERROR)
 
    {
 
      /* Change ADC state */
 
      hadc->State = HAL_ADC_STATE_READY;
 
    }
 
  }
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
/**
 
  * @brief  Enables ADC, starts conversion of regular group and transfers result
 
  *         through DMA.
 
  *         Interruptions enabled in this function:
 
  *         overrun, DMA half transfer, DMA transfer complete. 
 
  *         Each of these interruptions has its dedicated callback function.
 
  * @param  hadc: ADC handle
 
  * @param  pData: The destination Buffer address.
 
  * @param  Length: The length of data to be transferred from ADC peripheral to memory.
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
    
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
      
 
  /* Enable the ADC peripheral */
 
  /* If low power mode AutoPowerOff is enabled, power-on/off phases are       */
 
  /* performed automatically by hardware.                                     */
 
  if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
 
  {
 
    tmpHALStatus = ADC_Enable(hadc);
 
  }
 
  
 
  /* Start conversion if ADC is effectively enabled */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
    /* State machine update: Change ADC state */
 
    hadc->State = HAL_ADC_STATE_BUSY_REG;
 
    
 
    /* Set ADC error code to none */
 
    __HAL_ADC_CLEAR_ERRORCODE(hadc);
 
  
 
    
 
    /* Set the DMA transfer complete callback */
 
    hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
 
 
    /* Set the DMA half transfer complete callback */
 
    hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
 
    
 
    /* Set the DMA error callback */
 
    hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
 
 
    
 
    /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC     */
 
    /* start (in case of SW start):                                           */
 
    
 
    /* Clear regular group conversion flag and overrun flag */
 
    /* (To ensure of no unknown state from potential previous ADC             */
 
    /* operations)                                                            */
 
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
 
    
 
    /* Enable ADC overrun interrupt */
 
    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
 
    
 
    /* Enable ADC DMA mode */
 
    hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN;
 
    
 
    /* Start the DMA channel */
 
    HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
 
         
 
    /* Enable conversion of regular group.                                    */
 
    /* If software start has been selected, conversion starts immediately.    */
 
    /* If external trigger has been selected, conversion will start at next   */
 
    /* trigger event.                                                         */
 
    hadc->Instance->CR |= ADC_CR_ADSTART;
 
  }
 
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
/**
 
  * @brief  Stop ADC conversion of regular group, disable ADC DMA transfer, disable 
 
  *         ADC peripheral.
 
  *         Each of these interruptions has its dedicated callback function.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
 
{  
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
  
 
  /* 1. Stop potential conversion on going, on regular group */
 
  tmpHALStatus = ADC_ConversionStop(hadc);
 
  
 
  /* Disable ADC peripheral if conversions are effectively stopped */
 
  if (tmpHALStatus != HAL_ERROR)
 
  {
 
    /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
 
    hadc->Instance->CFGR1 &= ~ADC_CFGR1_DMAEN;
 
    
 
    /* Disable the DMA channel (in case of DMA in circular mode or stop while */
 
    /* while DMA transfer is on going)                                        */
 
    tmpHALStatus = HAL_DMA_Abort(hadc->DMA_Handle);   
 
    
 
    /* Check if DMA channel effectively disabled */
 
    if (tmpHALStatus != HAL_OK)
 
    {
 
      /* Update ADC state machine to error */
 
      hadc->State = HAL_ADC_STATE_ERROR;      
 
    }
 
    
 
    /* Disable ADC overrun interrupt */
 
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
 
    
 
    /* 2. Disable the ADC peripheral */
 
    /* Update "tmpHALStatus" only if DMA channel disabling passed, to keep in */
 
    /* memory a potential failing status.                                     */
 
    if (tmpHALStatus == HAL_OK)
 
    {
 
      tmpHALStatus = ADC_Disable(hadc);
 
    }
 
    else
 
    {
 
      ADC_Disable(hadc);
 
    }
 
 
    /* Check if ADC is effectively disabled */
 
    if (tmpHALStatus == HAL_OK)
 
    {
 
      /* Change ADC state */
 
      hadc->State = HAL_ADC_STATE_READY;
 
    }
 
    
 
  }
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
/**
 
  * @brief  Get ADC regular group conversion result.
 
  * @param  hadc: ADC handle
 
  * @retval Converted value
 
  */
 
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
 
  /* Note: EOC flag is automatically cleared by hardware when reading         */
 
  /*       register DR. Additionally, clear flag EOS by software.             */
 
  
 
  /* Clear regular group conversion flag */
 
  __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) );
 
  
 
  /* Return ADC converted value */ 
 
  return hadc->Instance->DR;
 
}
 
 
/**
 
  * @brief  DMA transfer complete callback. 
 
  * @param  hdma: pointer to DMA handle.
 
  * @retval None
 
  */
 
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
 
{
 
  /* Retrieve ADC handle corresponding to current DMA handle */
 
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
 
  /* Update state machine on conversion status if not in error state */
 
  if(hadc->State != HAL_ADC_STATE_ERROR)
 
  {
 
    /* Change ADC state */
 
    hadc->State = HAL_ADC_STATE_EOC_REG;
 
  }
 
  
 
  /* Conversion complete callback */
 
  HAL_ADC_ConvCpltCallback(hadc); 
 
}
 
 
/**
 
  * @brief  DMA half transfer complete callback. 
 
  * @param  hdma: pointer to DMA handle.
 
  * @retval None
 
  */
 
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  /* Retrieve ADC handle corresponding to current DMA handle */
 
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* Half conversion callback */
 
  HAL_ADC_ConvHalfCpltCallback(hadc); 
 
}
 
 
/**
 
  * @brief  DMA error callback 
 
  * @param  hdma: pointer to DMA handle.
 
  * @retval None
 
  */
 
static void ADC_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  /* Retrieve ADC handle corresponding to current DMA handle */
 
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* Change ADC state */
 
  hadc->State = HAL_ADC_STATE_ERROR;
 
  
 
  /* Set ADC error code to DMA error */
 
  hadc->ErrorCode |= HAL_ADC_ERROR_DMA;
 
  
 
  /* Error callback */
 
  HAL_ADC_ErrorCallback(hadc); 
 
}
 
 
/**
 
  * @brief  Handles ADC interrupt request.  
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
 
  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
 
  
 
  /* ========== Check End of Conversion flag for regular group ========== */
 
  if( (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) || 
 
      (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOS))   )
 
  {
 
    /* Update state machine on conversion status if not in error state */
 
    if(hadc->State != HAL_ADC_STATE_ERROR)
 
    {
 
      /* Change ADC state */
 
      hadc->State = HAL_ADC_STATE_EOC_REG;
 
    }
 
    
 
    /* Disable interruption if no further conversion upcoming by regular      */
 
    /* external trigger or by continuous mode,                                */
 
    /* and if scan sequence if completed.                                     */
 
    if(__HAL_ADC_IS_SOFTWARE_START_REGULAR(hadc) && 
 
       (hadc->Init.ContinuousConvMode == DISABLE)  )
 
    {
 
      /* If End of Sequence is reached, disable interrupts */
 
      if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
 
      {
 
        /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit           */
 
        /* ADSTART==0 (no conversion on going)                                */
 
        if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
 
        {
 
          /* Disable ADC end of sequence conversion interrupt */
 
          /* Note: Overrun interrupt was enabled with EOC interrupt in        */
 
          /* HAL_Start_IT(), but is not disabled here because can be used     */
 
          /* by overrun IRQ process below.                                    */
 
          __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
 
        }
 
        else
 
        {
 
          /* Change ADC state to error state */
 
          hadc->State = HAL_ADC_STATE_ERROR;
 
          
 
          /* Set ADC error code to ADC IP internal error */
 
          hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
        }
 
      }
 
    }
 
    
 
    /* Conversion complete callback */
 
    /* Note: into callback, to determine if conversion has been triggered     */
 
    /*       from EOC or EOS, possibility to use:                             */
 
    /*        " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) "                */
 
      HAL_ADC_ConvCpltCallback(hadc);
 
 
    
 
    /* Clear regular group conversion flag */
 
    /* Note: in case of overrun set to OVR_DATA_PRESERVED, end of conversion  */
 
    /*       flags clear induces the release of the preserved data.           */
 
    /*       Therefore, if the preserved data value is needed, it must be     */
 
    /*       read preliminarily into HAL_ADC_ConvCpltCallback().              */
 
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) );
 
  }
 
   
 
  /* ========== Check Analog watchdog flags ========== */
 
  if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD))
 
  {
 
    /* Change ADC state */
 
    hadc->State = HAL_ADC_STATE_AWD;
 
 
    /* Clear ADC Analog watchdog flag */
 
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
 
    
 
    /* Level out of window callback */ 
 
    HAL_ADC_LevelOutOfWindowCallback(hadc);
 
  }
 
  
 
  
 
  /* ========== Check Overrun flag ========== */
 
  if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR))
 
  {
 
    /* If overrun is set to overwrite previous data (default setting),        */
 
    /* overrun event is not considered as an error.                           */
 
    /* (cf ref manual "Managing conversions without using the DMA and without */
 
    /* overrun ")                                                             */
 
    /* Exception for usage with DMA overrun event always considered as an     */
 
    /* error.                                                                 */
 
    if ((hadc->Init.Overrun == OVR_DATA_PRESERVED)            ||
 
        HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN)  )
 
    {
 
      /* Change ADC state to error state */
 
      hadc->State = HAL_ADC_STATE_ERROR;
 
      
 
      /* Set ADC error code to overrun */
 
      hadc->ErrorCode |= HAL_ADC_ERROR_OVR;
 
      
 
      /* Error callback */ 
 
      HAL_ADC_ErrorCallback(hadc);
 
    }
 
    
 
    /* Clear the Overrun flag */
 
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
 
  }
 
 
}
 
 
 
/**
 
  * @brief  Conversion complete callback in non blocking mode 
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
 
{
 
  /* NOTE : This function should not be modified. When the callback is needed,
 
            function HAL_ADC_ConvCpltCallback must be implemented in the user file.
 
   */
 
}
 
 
/**
 
  * @brief  Conversion DMA half-transfer callback in non blocking mode 
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
 
{
 
  /* NOTE : This function should not be modified. When the callback is needed,
 
            function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
 
  */
 
}
 
 
/**
 
  * @brief  Analog watchdog callback in non blocking mode. 
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
 
{
 
  /* NOTE : This function should not be modified. When the callback is needed,
 
            function HAL_ADC_LevelOoutOfWindowCallback must be implemented in the user file.
 
  */
 
}
 
 
/**
 
  * @brief  ADC error callback in non blocking mode
 
  *        (ADC conversion with interruption or transfer by DMA)
 
  * @param  hadc: ADC handle
 
  * @retval None
 
  */
 
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
 
{
 
  /* NOTE : This function should not be modified. When the callback is needed,
 
            function HAL_ADC_ErrorCallback must be implemented in the user file.
 
  */
 
}
 
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
 
 *  @brief    Peripheral Control functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
             ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Configure channels on regular group
 
      (+) Configure the analog watchdog
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Configures the the selected channel to be linked to the regular
 
  *         group.
 
  * @note   In case of usage of internal measurement channels:
 
  *         VrefInt/Vbat/TempSensor.
 
  *         Sampling time constraints must be respected (sampling time can be 
 
  *         adjusted in function of ADC clock frequency and sampling time 
 
  *         setting).
 
  *         Refer to device datasheet for timings values, parameters TS_vrefint,
 
  *         TS_vbat, TS_temp (values rough order: 5us to 17us).
 
  *         These internal paths can be be disabled using function 
 
  *         HAL_ADC_DeInit().
 
  * @note   Possibility to update parameters on the fly:
 
  *         This function initializes channel into regular group, following  
 
  *         calls to this function can be used to reconfigure some parameters 
 
  *         of structure "ADC_ChannelConfTypeDef" on the fly, without reseting 
 
  *         the ADC.
 
  *         The setting of these parameters is conditioned to ADC state.
 
  *         For parameters constraints, see comments of structure 
 
  *         "ADC_ChannelConfTypeDef".
 
  * @param  hadc: ADC handle
 
  * @param  sConfig: Structure of ADC channel for regular group.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  __IO uint32_t wait_loop_index = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  assert_param(IS_ADC_CHANNEL(sConfig->Channel));
 
  assert_param(IS_ADC_RANK(sConfig->Rank));
 
  assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
 
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
  
 
  /* Parameters update conditioned to ADC state:                              */
 
  /* Parameters that can be updated when ADC is disabled or enabled without   */
 
  /* conversion on going on regular group:                                    */
 
  /*  - Channel number                                                        */
 
  /*  - Channel sampling time                                                 */
 
  /*  - Management of internal measurement channels: Vbat/VrefInt/TempSensor  */
 
  if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
 
  {
 
    /* Configure channel: depending on rank setting, add it or remove it from */
 
    /* ADC conversion sequencer.                                              */
 
    if (sConfig->Rank != ADC_RANK_NONE)
 
    {
 
      /* Regular sequence configuration */
 
      /* Set the channel selection register from the selected channel */
 
      hadc->Instance->CHSELR |= __HAL_ADC_CHSELR_CHANNEL(sConfig->Channel);
 
      
 
      /* Channel sampling time configuration */
 
      /* Modify sampling time if needed (not needed in case of reoccurrence   */
 
      /* for several channels programmed consecutively into the sequencer)    */
 
      if (sConfig->SamplingTime != __HAL_ADC_GET_SAMPLINGTIME(hadc))
 
      {
 
        /* Channel sampling time configuration */
 
        /* Clear the old sample time */
 
        hadc->Instance->SMPR &= ~(ADC_SMPR_SMP);
 
        
 
        /* Set the new sample time */
 
        hadc->Instance->SMPR |= (sConfig->SamplingTime);
 
      }
 
 
      /* Management of internal measurement channels: Vbat/VrefInt/TempSensor */
 
      /* internal measurement paths enable: If internal channel selected,     */
 
      /* enable dedicated internal buffers and path.                          */
 
      /* Note: these internal measurement paths can be disabled using         */
 
      /* HAL_ADC_DeInit() or removing the channel from sequencer with         */
 
      /* channel configuration parameter "Rank".                              */
 
 
      /* If Channel_16 is selected, enable Temp. sensor measurement path. */
 
      if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
 
      {
 
        ADC->CCR |= ADC_CCR_TSEN;
 
        
 
        /* Delay for temperature sensor stabilization time */
 
        while(wait_loop_index < ADC_TEMPSENSOR_DELAY_CPU_CYCLES)
 
        {
 
          wait_loop_index++;
 
        }
 
      }
 
      /* If Channel_17 is selected, enable VBAT measurement path. */
 
      else if (sConfig->Channel == ADC_CHANNEL_VBAT)
 
      {
 
        ADC->CCR |= ADC_CCR_VBATEN;
 
      }
 
      /* If Channel_18 is selected, enable VREFINT measurement path. */
 
      else if (sConfig->Channel == ADC_CHANNEL_VREFINT)
 
      {
 
        ADC->CCR |= ADC_CCR_VREFEN;
 
      }
 
 
    }
 
    else
 
    {
 
      /* Regular sequence configuration */
 
      /* Reset the channel selection register from the selected channel */
 
      hadc->Instance->CHSELR &= ~__HAL_ADC_CHSELR_CHANNEL(sConfig->Channel);
 
      
 
      /* Management of internal measurement channels: Vbat/VrefInt/TempSensor */
 
      /* internal measurement paths disable: If internal channel selected,    */
 
      /* disable dedicated internal buffers and path.                         */
 
 
      /* If Channel_16 is selected, disable Temp. sensor measurement path. */
 
      if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
 
      {
 
        ADC->CCR &= ~ADC_CCR_TSEN;
 
      }
 
      /* If Channel_17 is selected, disable VBAT measurement path. */
 
      else if (sConfig->Channel == ADC_CHANNEL_VBAT)
 
      {
 
        ADC->CCR &= ~ADC_CCR_VBATEN;
 
      }
 
      /* If Channel_18 is selected, disable VREFINT measurement path. */
 
      else if (sConfig->Channel == ADC_CHANNEL_VREFINT)
 
      {
 
        ADC->CCR &= ~ADC_CCR_VREFEN;
 
      }
 
    }
 
        
 
  }
 
   
 
 
  /* If a conversion is on going on regular group, no update on regular       */
 
  /* channel could be done on neither of the channel configuration structure  */
 
  /* parameters.                                                              */
 
  else
 
  {
 
    /* Update ADC state machine to error */
 
    hadc->State = HAL_ADC_STATE_ERROR;
 
    
 
    tmpHALStatus = HAL_ERROR;
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
 
/**
 
  * @brief  Configures the analog watchdog.
 
  * @note   Possibility to update parameters on the fly:
 
  *         This function initializes the selected analog watchdog, following  
 
  *         calls to this function can be used to reconfigure some parameters 
 
  *         of structure "ADC_AnalogWDGConfTypeDef" on the fly, without reseting 
 
  *         the ADC.
 
  *         The setting of these parameters is conditioned to ADC state.
 
  *         For parameters constraints, see comments of structure 
 
  *         "ADC_AnalogWDGConfTypeDef".
 
  * @param  hadc: ADC handle
 
  * @param  AnalogWDGConfig: Structure of ADC analog watchdog configuration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  
 
  uint32_t tmpAWDHighThresholdShifted;
 
  uint32_t tmpAWDLowThresholdShifted;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
 
  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
 
 
  /* Verify if threshold is within the selected ADC resolution */
 
  assert_param(IS_ADC_RANGE(__HAL_ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
 
  assert_param(IS_ADC_RANGE(__HAL_ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
 
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
  
 
  /* Parameters update conditioned to ADC state:                              */
 
  /* Parameters that can be updated when ADC is disabled or enabled without   */
 
  /* conversion on going on regular group:                                    */
 
  /*  - Analog watchdog channels                                              */
 
  /*  - Analog watchdog thresholds                                            */
 
  if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
 
  {
 
    /* Configuration of analog watchdog:                                      */
 
    /*  - Set the analog watchdog enable mode: one or overall group of        */
 
    /*    channels.                                                           */
 
    /*  - Set the Analog watchdog channel (is not used if watchdog            */
 
    /*    mode "all channels": ADC_CFGR_AWD1SGL=0).                           */
 
    hadc->Instance->CFGR1 &= ~( ADC_CFGR1_AWDSGL |
 
                                ADC_CFGR1_AWDEN  |
 
                                ADC_CFGR1_AWDCH   );
 
    
 
    hadc->Instance->CFGR1 |= ( AnalogWDGConfig->WatchdogMode                 |
 
                               __HAL_ADC_CFGR_AWDCH(AnalogWDGConfig->Channel) );
 
 
    /* Shift the offset in function of the selected ADC resolution: Thresholds*/
 
    /* have to be left-aligned on bit 11, the LSB (right bits) are set to 0   */
 
    tmpAWDHighThresholdShifted = __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
 
    tmpAWDLowThresholdShifted  = __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
 
    
 
    /* Set the high and low thresholds */
 
    hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT);
 
    hadc->Instance->TR |=  ( __HAL_ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) |
 
                             tmpAWDLowThresholdShifted                                 );
 
    
 
    /* Clear the ADC Analog watchdog flag (in case of let enabled by          */
 
    /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler()   */
 
    /* or HAL_ADC_PollForEvent().                                             */
 
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD);
 
    
 
    /* Configure ADC Analog watchdog interrupt */
 
    if(AnalogWDGConfig->ITMode == ENABLE)
 
    {
 
      /* Enable the ADC Analog watchdog interrupt */
 
      __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
 
    }
 
    else
 
    {
 
      /* Disable the ADC Analog watchdog interrupt */
 
      __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
 
    }
 
    
 
  }
 
  /* If a conversion is on going on regular group, no update could be done    */
 
  /* on neither of the AWD configuration structure parameters.                */
 
  else
 
  {
 
    /* Update ADC state machine to error */
 
    hadc->State = HAL_ADC_STATE_ERROR;
 
    
 
    tmpHALStatus = HAL_ERROR;
 
  }
 
  
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
 
 *  @brief    Peripheral State functions
 
 *
 
@verbatim
 
 ===============================================================================
 
            ##### Peripheral State and Errors functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides functions to get in run-time the status of the  
 
    peripheral.
 
      (+) Check the ADC state
 
      (+) Check the ADC error code
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  return the ADC state
 
  * @param  hadc: ADC handle
 
  * @retval HAL state
 
  */
 
HAL_ADC_StateTypeDef HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
  
 
  /* Return ADC state */
 
  return hadc->State;
 
}
 
 
/**
 
  * @brief  Return the ADC error code
 
  * @param  hadc: ADC handle
 
  * @retval ADC Error Code
 
  */
 
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
 
{
 
  return hadc->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */  
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup ADC_Private_Functions ADC Private Functions
 
  * @{
 
  */
 
 
/**
 
  * @brief  Enable the selected ADC.
 
  * @note   Prerequisite condition to use this function: ADC must be disabled
 
  *         and voltage regulator must be enabled (done into HAL_ADC_Init()).
 
  * @param  hadc: ADC handle
 
  * @retval HAL status.
 
  */
 
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
 
{
 
  uint32_t tickstart = 0;
 
  __IO uint32_t wait_loop_index = 0;
 
  
 
  /* ADC enable and wait for ADC ready (in case of ADC is disabled or         */
 
  /* enabling phase not yet completed: flag ADC ready not yet set).           */
 
  /* Timeout implemented to not be stuck if ADC cannot be enabled (possible   */
 
  /* causes: ADC clock not running, ...).                                     */
 
  if (__HAL_ADC_IS_ENABLED(hadc) == RESET)
 
  {
 
    /* Check if conditions to enable the ADC are fulfilled */
 
    if (__HAL_ADC_ENABLING_CONDITIONS(hadc) == RESET)
 
    {
 
      /* Update ADC state machine to error */
 
      hadc->State = HAL_ADC_STATE_ERROR;
 
      
 
      /* Set ADC error code to ADC IP internal error */
 
      hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
      
 
      return HAL_ERROR;
 
    }
 
    
 
    /* Enable the ADC peripheral */
 
    __HAL_ADC_ENABLE(hadc);
 
    
 
    /* Delay for ADC stabilization time.                                      */
 
    /* Delay fixed to worst case: maximum CPU frequency                       */
 
    while(wait_loop_index < ADC_STAB_DELAY_CPU_CYCLES)
 
    {
 
      wait_loop_index++;
 
    }    
 
 
    /* Get timeout */
 
    tickstart = HAL_GetTick();
 
    
 
    /* Wait for ADC effectively enabled */
 
    while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET)
 
    {
 
      if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
 
      {
 
        /* Update ADC state machine to error */
 
        hadc->State = HAL_ADC_STATE_ERROR;
 
        
 
        /* Set ADC error code to ADC IP internal error */
 
        hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
      
 
        return HAL_ERROR;
 
      }
 
    }   
 
    
 
  }
 
   
 
  /* Return HAL status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Disable the selected ADC.
 
  * @note   Prerequisite condition to use this function: ADC conversions must be
 
  *         stopped.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status.
 
  */
 
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc)
 
{
 
  uint32_t tickstart = 0;
 
  
 
  /* Verification if ADC is not already disabled:                             */
 
  /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already  */
 
  /* disabled.                                                                */
 
  if (__HAL_ADC_IS_ENABLED(hadc) != RESET )
 
  {
 
    /* Check if conditions to disable the ADC are fulfilled */
 
    if (__HAL_ADC_DISABLING_CONDITIONS(hadc) != RESET)
 
    {
 
      /* Disable the ADC peripheral */
 
      __HAL_ADC_DISABLE(hadc);
 
    }
 
    else
 
    {
 
      /* Update ADC state machine to error */
 
      hadc->State = HAL_ADC_STATE_ERROR;
 
      
 
      /* Set ADC error code to ADC IP internal error */
 
      hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
      
 
      return HAL_ERROR;
 
    }
 
     
 
    /* Wait for ADC effectively disabled */
 
    tickstart = HAL_GetTick();
 
    
 
    while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN))
 
    {
 
      if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
 
      {
 
        /* Update ADC state machine to error */
 
        hadc->State = HAL_ADC_STATE_ERROR;
 
        
 
        /* Set ADC error code to ADC IP internal error */
 
        hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
  }
 
  
 
  /* Return HAL status */
 
  return HAL_OK;
 
}
 
 
 
/**
 
  * @brief  Stop ADC conversion.
 
  * @note   Prerequisite condition to use this function: ADC conversions must be
 
  *         stopped to disable the ADC.
 
  * @param  hadc: ADC handle
 
  * @retval HAL status.
 
  */
 
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
    
 
  /* Verification if ADC is not already stopped on regular group to bypass    */
 
  /* this function if not needed.                                             */
 
  if (__HAL_ADC_IS_CONVERSION_ONGOING_REGULAR(hadc))
 
  {
 
    
 
    /* Stop potential conversion on going on regular group */
 
    /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
 
    if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && 
 
        HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS)                  )
 
    {
 
      /* Stop conversions on regular group */
 
      hadc->Instance->CR |= ADC_CR_ADSTP;
 
    }
 
    
 
    /* Wait for conversion effectively stopped */
 
    tickstart = HAL_GetTick();
 
      
 
    while((hadc->Instance->CR & ADC_CR_ADSTART) != RESET)
 
    {
 
      if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
 
      {
 
        /* Update ADC state machine to error */
 
        hadc->State = HAL_ADC_STATE_ERROR;
 
        
 
        /* Set ADC error code to ADC IP internal error */
 
        hadc->ErrorCode |= HAL_ADC_ERROR_INTERNAL;
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
    
 
  }
 
   
 
  /* Return HAL status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_ADC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_adc_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file provides firmware functions to manage the following 
 
  *          functionalities of the Analog to Digital Convertor (ADC)
 
  *          peripheral:
 
  *           + Operation functions
 
  *             ++ Calibration (ADC automatic self-calibration)
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                    ##### ADC specific features #####
 
  ==============================================================================
 
  [..] 
 
  (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
 
 
  (#) Interrupt generation at the end of regular conversion and in case of 
 
      analog watchdog or overrun events.
 
  
 
  (#) Single and continuous conversion modes.
 
  
 
  (#) Scan mode for automatic conversion of channel 0 to channel 'n'.
 
  
 
  (#) Data alignment with in-built data coherency.
 
  
 
  (#) Programmable sampling time.
 
  
 
  (#) ADC conversion group Regular.
 
 
  (#) External trigger (timer or EXTI) with configurable polarity.
 
 
  (#) DMA request generation for transfer of conversions data of regular group.
 
 
  (#) ADC calibration
 
  
 
  (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at 
 
      slower speed.
 
  
 
  (#) ADC input range: from Vref minud (connected to Vssa) to Vref plus(connected to 
 
      Vdda or to an external voltage reference).
 
 
 
                     ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
 
    (#) Enable the ADC interface 
 
        As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured  
 
        at RCC top level: clock source and clock prescaler.
 
        Two possible clock sources: synchronous clock derived from APB clock
 
        or asynchronous clock derived from ADC dedicated HSI RC oscillator
 
        14MHz.
 
        Example:
 
          __ADC1_CLK_ENABLE();                         (mandatory)
 
          
 
          HI14 enable or let under control of ADC:     (optional)
 
 
          RCC_OscInitTypeDef   RCC_OscInitStructure;
 
          RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
 
          RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT;
 
          RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL;
 
          RCC_OscInitStructure.PLL...   (optional if used for system clock)
 
          HAL_RCC_OscConfig(&RCC_OscInitStructure);
 
          
 
          Parameter "HSI14State" must be set either:
 
           - to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control 
 
             the HSI14 oscillator enable/disable (if not used to supply the main 
 
             system clock): feature used if ADC mode LowPowerAutoPowerOff is 
 
             enabled.
 
           - to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator
 
             always enabled: can be used to supply the main system clock.
 
 
    (#) ADC pins configuration
 
         (++) Enable the clock for the ADC GPIOs using the following function:
 
             __GPIOx_CLK_ENABLE();   
 
         (++) Configure these ADC pins in analog mode using HAL_GPIO_Init();  
 
  
 
     (#) Configure the ADC parameters (conversion resolution, data alignment,  
 
         continuous mode, ...) using the HAL_ADC_Init() function.
 
 
     (#) Activate the ADC peripheral using one of the start functions: 
 
         HAL_ADC_Start(), HAL_ADC_Start_IT(), HAL_ADC_Start_DMA().
 
  
 
     *** Regular channels group configuration ***
 
     ============================================
 
     [..]    
 
       (+) To configure the ADC regular channels group features, use 
 
           HAL_ADC_Init() and HAL_ADC_ConfigChannel() functions.
 
       (+) To activate the continuous mode, use the HAL_ADC_Init() function.   
 
       (+) To read the ADC converted values, use the HAL_ADC_GetValue() function.
 
              
 
     *** DMA for Regular channels group features configuration ***
 
     ============================================================= 
 
     [..]
 
       (+) To enable the DMA mode for regular channels group, use the  
 
           HAL_ADC_Start_DMA() function.
 
       (+) To enable the generation of DMA requests continuously at the end of 
 
           the last DMA transfer, use the HAL_ADC_Init() function.
 
  
 
    @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup ADCEx ADCEx Extended HAL Module Driver
 
  * @brief ADC HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_ADC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup ADCEx_Private_Constants ADCEx Private Constants
 
  * @{
 
  */ 
 
 
 
/* Fixed timeout values for ADC calibration, enable settling time, disable  */
 
  /* settling time.                                                           */
 
  /* Values defined to be higher than worst cases: low clock frequency,       */
 
  /* maximum prescaler.                                                       */
 
  /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock         */
 
  /* prescaler 4.                                                             */
 
  /* Unit: ms                                                                 */
 
  #define ADC_DISABLE_TIMEOUT           2
 
  #define ADC_CALIBRATION_TIMEOUT       2      
 
/**
 
  * @}
 
  */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup ADCEx_Exported_Functions ADCEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup ADCEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions 
 
 *  @brief    Extended Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Perform the ADC calibration. 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Perform an ADC automatic self-calibration
 
  *         Calibration prerequisite: ADC must be disabled (execute this
 
  *         function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
 
  * @note   Calibration factor can be read after calibration, using function
 
  *         HAL_ADC_GetValue() (value on 7 bits: from DR[6;0]).
 
  * @param  hadc: ADC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc)
 
{
 
  HAL_StatusTypeDef tmpHALStatus = HAL_OK;
 
  uint32_t tickstart=0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
 
 
  /* Process locked */
 
  __HAL_LOCK(hadc);
 
       
 
  /* Calibration prerequisite: ADC must be disabled.                          */
 
  if (__HAL_ADC_IS_ENABLED(hadc) == RESET )
 
  {
 
    /* Change ADC state */
 
    hadc->State = HAL_ADC_STATE_READY;
 
    
 
    /* Start ADC calibration */
 
    hadc->Instance->CR |= ADC_CR_ADCAL;
 
 
    tickstart = HAL_GetTick();  
 
 
    /* Wait for calibration completion */
 
    while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADCAL))
 
    {
 
      if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
 
      {
 
        /* Update ADC state machine to error */
 
        hadc->State = HAL_ADC_STATE_ERROR;
 
        
 
        /* Process unlocked */
 
        __HAL_UNLOCK(hadc);
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
  }
 
  else
 
  {
 
    /* Update ADC state machine to error */
 
    hadc->State = HAL_ADC_STATE_ERROR;
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hadc);
 
  
 
  /* Return function status */
 
  return tmpHALStatus;
 
}
 
 
/**
 
  * @}
 
  */  
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_ADC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_can.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_can.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   CAN HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Controller Area Network (CAN) peripheral:
 
  *           + Initialization and de-initialization functions 
 
  *           + IO operation functions
 
  *           + Peripheral Control functions
 
  *           + Peripheral State and Error functions
 
  *
 
  @verbatim
 
  ==============================================================================    
 
                        ##### How to use this driver #####
 
  ==============================================================================
 
    [..]            
 
      (#) Enable the CAN controller interface clock using __CAN_CLK_ENABLE(); 
 
       
 
      (#) CAN pins configuration
 
        (++) Enable the clock for the CAN GPIOs using the following function:
 
             __GPIOx_CLK_ENABLE();   
 
        (++) Connect and configure the involved CAN pins to AF9 using the 
 
              following function HAL_GPIO_Init(); 
 
              
 
      (#) Initialise and configure the CAN using HAL_CAN_Init() function.   
 
                 
 
      (#) Transmit the desired CAN frame using HAL_CAN_Transmit() function.
 
           
 
      (#) Receive a CAN frame using HAL_CAN_Receive() function.
 
 
     *** Polling mode IO operation ***
 
     =================================
 
     [..]    
 
       (+) Start the CAN peripheral transmission and wait the end of this operation 
 
           using HAL_CAN_Transmit(), at this stage user can specify the value of timeout
 
           according to his end application
 
       (+) Start the CAN peripheral reception and wait the end of this operation 
 
           using HAL_CAN_Receive(), at this stage user can specify the value of timeout
 
           according to his end application 
 
       
 
     *** Interrupt mode IO operation ***    
 
     ===================================
 
     [..]    
 
       (+) Start the CAN peripheral transmission using HAL_CAN_Transmit_IT()
 
       (+) Start the CAN peripheral reception using HAL_CAN_Receive_IT()         
 
       (+) Use HAL_CAN_IRQHandler() called under the used CAN Interrupt subroutine
 
       (+) At CAN end of transmission HAL_CAN_TxCpltCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_CAN_TxCpltCallback 
 
       (+) In case of CAN Error, HAL_CAN_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_CAN_ErrorCallback
 
 
 
     *** CAN HAL driver macros list ***
 
     ============================================= 
 
     [..]
 
       Below the list of most used macros in CAN HAL driver.
 
       
 
      (+) __HAL_CAN_ENABLE_IT: Enable the specified CAN interrupts
 
      (+) __HAL_CAN_DISABLE_IT: Disable the specified CAN interrupts
 
      (+) __HAL_CAN_GET_IT_SOURCE: Check if the specified CAN interrupt source is enabled or disabled
 
      (+) __HAL_CAN_CLEAR_FLAG: Clear the CAN's pending flags
 
      (+) __HAL_CAN_GET_FLAG: Get the selected CAN's flag status
 
      
 
     [..] 
 
      (@) You can refer to the CAN HAL driver header file for more useful macros 
 
                
 
  @endverbatim
 
           
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup CAN CAN HAL Module Driver
 
  * @brief CAN driver modules
 
  * @{
 
  */ 
 
  
 
#ifdef HAL_CAN_MODULE_ENABLED  
 
  
 
#if defined(STM32F072xB) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F091xC) || defined(STM32F098xx) 
 
  
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup CAN_Private_Constants CAN Private Constants
 
  * @{
 
  */
 
#define HAL_CAN_DEFAULT_TIMEOUT 10
 
/**
 
  * @}
 
  */
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup CAN_Private_Functions CAN Private Functions
 
  * @{
 
  */
 
static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber);
 
static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan);
 
/**
 
  * @}
 
  */
 
  
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup CAN_Exported_Functions CAN Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
              ##### Initialization and de-initialization functions #####
 
  ==============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize and configure the CAN. 
 
      (+) De-initialize the CAN. 
 
         
 
@endverbatim
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Initializes the CAN peripheral according to the specified
 
  *         parameters in the CAN_InitStruct.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan)
 
{
 
  uint32_t status = CAN_INITSTATUS_FAILED;  /* Default init status */
 
  uint32_t tickstart = 0;
 
  
 
  /* Check CAN handle */
 
  if(hcan == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
 
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TTCM));
 
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ABOM));
 
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AWUM));
 
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.NART));
 
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.RFLM));
 
  assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TXFP));
 
  assert_param(IS_CAN_MODE(hcan->Init.Mode));
 
  assert_param(IS_CAN_SJW(hcan->Init.SJW));
 
  assert_param(IS_CAN_BS1(hcan->Init.BS1));
 
  assert_param(IS_CAN_BS2(hcan->Init.BS2));
 
  assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler));
 
  
 
  if(hcan->State == HAL_CAN_STATE_RESET)
 
  {
 
    /* Init the low level hardware */
 
    HAL_CAN_MspInit(hcan);
 
  }
 
  
 
  /* Initialize the CAN state*/
 
  hcan->State = HAL_CAN_STATE_BUSY;
 
  
 
  /* Exit from sleep mode */
 
  hcan->Instance->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
 
 
  /* Request initialisation */
 
  hcan->Instance->MCR |= CAN_MCR_INRQ ;
 
 
  /* Get tickstart */
 
  tickstart = HAL_GetTick();   
 
  
 
  /* Wait the acknowledge */
 
  while((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
 
  {
 
    if((HAL_GetTick() - tickstart) > HAL_CAN_DEFAULT_TIMEOUT)
 
    {
 
      hcan->State= HAL_CAN_STATE_TIMEOUT;
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
 
  /* Check acknowledge */
 
  if ((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
 
  {
 
    /* Set the time triggered communication mode */
 
    if (hcan->Init.TTCM == ENABLE)
 
    {
 
      hcan->Instance->MCR |= CAN_MCR_TTCM;
 
    }
 
    else
 
    {
 
      hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TTCM;
 
    }
 
 
    /* Set the automatic bus-off management */
 
    if (hcan->Init.ABOM == ENABLE)
 
    {
 
      hcan->Instance->MCR |= CAN_MCR_ABOM;
 
    }
 
    else
 
    {
 
      hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_ABOM;
 
    }
 
 
    /* Set the automatic wake-up mode */
 
    if (hcan->Init.AWUM == ENABLE)
 
    {
 
      hcan->Instance->MCR |= CAN_MCR_AWUM;
 
    }
 
    else
 
    {
 
      hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_AWUM;
 
    }
 
 
    /* Set the no automatic retransmission */
 
    if (hcan->Init.NART == ENABLE)
 
    {
 
      hcan->Instance->MCR |= CAN_MCR_NART;
 
    }
 
    else
 
    {
 
      hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_NART;
 
    }
 
 
    /* Set the receive FIFO locked mode */
 
    if (hcan->Init.RFLM == ENABLE)
 
    {
 
      hcan->Instance->MCR |= CAN_MCR_RFLM;
 
    }
 
    else
 
    {
 
      hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_RFLM;
 
    }
 
 
    /* Set the transmit FIFO priority */
 
    if (hcan->Init.TXFP == ENABLE)
 
    {
 
      hcan->Instance->MCR |= CAN_MCR_TXFP;
 
    }
 
    else
 
    {
 
      hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TXFP;
 
    }
 
 
    /* Set the bit timing register */
 
    hcan->Instance->BTR = (uint32_t)((uint32_t)hcan->Init.Mode) | \
 
                ((uint32_t)hcan->Init.SJW) | \
 
                ((uint32_t)hcan->Init.BS1) | \
 
                ((uint32_t)hcan->Init.BS2) | \
 
               ((uint32_t)hcan->Init.Prescaler - 1);
 
 
    /* Request leave initialisation */
 
    hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_INRQ;
 
 
    /* Get timeout */
 
    tickstart = HAL_GetTick();   
 
   
 
    /* Wait the acknowledge */
 
    while((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
 
    {
 
      if((HAL_GetTick() - tickstart) > HAL_CAN_DEFAULT_TIMEOUT)
 
      {
 
       hcan->State= HAL_CAN_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Check acknowledged */
 
    if ((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
 
    {
 
      status = CAN_INITSTATUS_SUCCESS;
 
    }
 
  }
 
 
 
  if(status == CAN_INITSTATUS_SUCCESS)
 
  {
 
    /* Set CAN error code to none */
 
    hcan->ErrorCode = HAL_CAN_ERROR_NONE;
 
    
 
    /* Initialize the CAN state */
 
    hcan->State = HAL_CAN_STATE_READY;
 
  
 
    /* Return function status */
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Initialize the CAN state */
 
    hcan->State = HAL_CAN_STATE_ERROR;
 
 
    /* Return function status */
 
    return HAL_ERROR;
 
  }
 
}
 
 
/**
 
  * @brief  Configures the CAN reception filter according to the specified
 
  *         parameters in the CAN_FilterInitStruct.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @param  sFilterConfig: pointer to a CAN_FilterConfTypeDef structure that
 
  *         contains the filter configuration information.
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig)
 
{
 
  uint32_t filternbrbitpos = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_CAN_FILTER_NUMBER(sFilterConfig->FilterNumber));
 
  assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode));
 
  assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale));
 
  assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment));
 
  assert_param(IS_FUNCTIONAL_STATE(sFilterConfig->FilterActivation));
 
  assert_param(IS_CAN_BANKNUMBER(sFilterConfig->BankNumber));
 
  
 
  filternbrbitpos = ((uint32_t)1) << sFilterConfig->FilterNumber;
 
 
  /* Initialisation mode for the filter */
 
  hcan->Instance->FMR |= (uint32_t)CAN_FMR_FINIT;
 
  
 
  /* Filter Deactivation */
 
  hcan->Instance->FA1R &= ~(uint32_t)filternbrbitpos;
 
 
  /* Filter Scale */
 
  if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT)
 
  {
 
    /* 16-bit scale for the filter */
 
    hcan->Instance->FS1R &= ~(uint32_t)filternbrbitpos;
 
 
    /* First 16-bit identifier and First 16-bit mask */
 
    /* Or First 16-bit identifier and Second 16-bit identifier */
 
    hcan->Instance->sFilterRegister[sFilterConfig->FilterNumber].FR1 = 
 
       ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16) |
 
        (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow);
 
 
    /* Second 16-bit identifier and Second 16-bit mask */
 
    /* Or Third 16-bit identifier and Fourth 16-bit identifier */
 
    hcan->Instance->sFilterRegister[sFilterConfig->FilterNumber].FR2 = 
 
       ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) |
 
        (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh);
 
  }
 
 
  if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT)
 
  {
 
    /* 32-bit scale for the filter */
 
    hcan->Instance->FS1R |= filternbrbitpos;
 
    /* 32-bit identifier or First 32-bit identifier */
 
    hcan->Instance->sFilterRegister[sFilterConfig->FilterNumber].FR1 = 
 
       ((0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh) << 16) |
 
        (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow);
 
    /* 32-bit mask or Second 32-bit identifier */
 
    hcan->Instance->sFilterRegister[sFilterConfig->FilterNumber].FR2 = 
 
       ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) |
 
        (0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow);
 
  }
 
 
  /* Filter Mode */
 
  if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK)
 
  {
 
    /*Id/Mask mode for the filter*/
 
    hcan->Instance->FM1R &= ~(uint32_t)filternbrbitpos;
 
  }
 
  else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
 
  {
 
    /*Identifier list mode for the filter*/
 
    hcan->Instance->FM1R |= (uint32_t)filternbrbitpos;
 
  }
 
 
  /* Filter FIFO assignment */
 
  if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0)
 
  {
 
    /* FIFO 0 assignation for the filter */
 
    hcan->Instance->FFA1R &= ~(uint32_t)filternbrbitpos;
 
  }
 
 
  if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO1)
 
  {
 
    /* FIFO 1 assignation for the filter */
 
    hcan->Instance->FFA1R |= (uint32_t)filternbrbitpos;
 
  }
 
  
 
  /* Filter activation */
 
  if (sFilterConfig->FilterActivation == ENABLE)
 
  {
 
    hcan->Instance->FA1R |= filternbrbitpos;
 
  }
 
 
  /* Leave the initialisation mode for the filter */
 
  hcan->Instance->FMR &= ~((uint32_t)CAN_FMR_FINIT);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deinitializes the CANx peripheral registers to their default reset values. 
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan)
 
{
 
  /* Check CAN handle */
 
  if(hcan == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
 
  
 
  /* Change CAN state */
 
  hcan->State = HAL_CAN_STATE_BUSY;
 
  
 
  /* DeInit the low level hardware */
 
  HAL_CAN_MspDeInit(hcan);
 
  
 
  /* Change CAN state */
 
  hcan->State = HAL_CAN_STATE_RESET;
 
 
  /* Release Lock */
 
  __HAL_UNLOCK(hcan);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the CAN MSP.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @retval None
 
  */
 
__weak void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_CAN_MspInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the CAN MSP.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @retval None
 
  */
 
__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_CAN_MspDeInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_Exported_Functions_Group2 I/O operation functions
 
 *  @brief    I/O operation functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                      ##### IO operation functions #####
 
  ==============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Transmit a CAN frame message.
 
      (+) Receive a CAN frame message.
 
      (+) Enter CAN peripheral in sleep mode. 
 
      (+) Wake up the CAN peripheral from sleep mode.
 
               
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initiates and transmits a CAN frame message.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @param  Timeout: Timeout duration.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef* hcan, uint32_t Timeout)
 
{
 
  uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
 
  assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
 
  assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hcan);
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_RX) 
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
 
  }
 
  else
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_TX;
 
  }
 
  
 
  /* Select one empty transmit mailbox */
 
  if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
 
  {
 
    transmitmailbox = 0;
 
  }
 
  else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
 
  {
 
    transmitmailbox = 1;
 
  }
 
  else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
 
  {
 
    transmitmailbox = 2;
 
  }
 
 
  if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX)
 
  {
 
    /* Set up the Id */
 
    hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
 
    if (hcan->pTxMsg->IDE == CAN_ID_STD)
 
    {
 
      assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));  
 
      hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
 
                                                  hcan->pTxMsg->RTR);
 
    }
 
    else
 
    {
 
      assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
 
      hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
 
                                                  hcan->pTxMsg->IDE | \
 
                                                  hcan->pTxMsg->RTR);
 
    }
 
    
 
    /* Set up the DLC */
 
    hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
 
    hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
 
    hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
 
 
    /* Set up the data field */
 
    hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) | 
 
                                             ((uint32_t)hcan->pTxMsg->Data[2] << 16) |
 
                                             ((uint32_t)hcan->pTxMsg->Data[1] << 8) | 
 
                                             ((uint32_t)hcan->pTxMsg->Data[0]));
 
    hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) | 
 
                                             ((uint32_t)hcan->pTxMsg->Data[6] << 16) |
 
                                             ((uint32_t)hcan->pTxMsg->Data[5] << 8) |
 
                                             ((uint32_t)hcan->pTxMsg->Data[4]));
 
    /* Request transmission */
 
    hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
 
  
 
    /* Get timeout */
 
    tickstart = HAL_GetTick();   
 
  
 
    /* Check End of transmission flag */
 
    while(!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox)))
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hcan->State = HAL_CAN_STATE_TIMEOUT;
 
          /* Process unlocked */
 
          __HAL_UNLOCK(hcan);
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
    if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) 
 
    {
 
      /* Change CAN state */
 
      hcan->State = HAL_CAN_STATE_BUSY_RX;
 
    }
 
    else
 
    {
 
      /* Change CAN state */
 
      hcan->State = HAL_CAN_STATE_READY;
 
    }
 
    
 
    /* Process unlocked */
 
    __HAL_UNLOCK(hcan);
 
    
 
    /* Return function status */
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_ERROR; 
 
    
 
    /* Process unlocked */
 
    __HAL_UNLOCK(hcan);
 
 
    /* Return function status */
 
    return HAL_ERROR;
 
  }
 
}
 
 
/**
 
  * @brief  Initiates and transmits a CAN frame message.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef* hcan)
 
{
 
  uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
 
 
  /* Check the parameters */
 
  assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
 
  assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
 
  assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
 
  
 
  if((hcan->State == HAL_CAN_STATE_READY) || (hcan->State == HAL_CAN_STATE_BUSY_RX))
 
  {
 
    /* Process Locked */
 
    __HAL_LOCK(hcan);
 
    
 
    /* Select one empty transmit mailbox */
 
    if((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
 
    {
 
      transmitmailbox = 0;
 
    }
 
    else if((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
 
    {
 
      transmitmailbox = 1;
 
    }
 
    else if((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
 
    {
 
      transmitmailbox = 2;
 
    }
 
 
    if(transmitmailbox != CAN_TXSTATUS_NOMAILBOX)
 
    {
 
      /* Set up the Id */
 
      hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
 
      if(hcan->pTxMsg->IDE == CAN_ID_STD)
 
      {
 
        assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));  
 
        hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
 
                                                  hcan->pTxMsg->RTR);
 
      }
 
      else
 
      {
 
        assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
 
        hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
 
                                                  hcan->pTxMsg->IDE | \
 
                                                  hcan->pTxMsg->RTR);
 
      }
 
    
 
      /* Set up the DLC */
 
      hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
 
      hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
 
      hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
 
 
      /* Set up the data field */
 
      hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) | 
 
                                             ((uint32_t)hcan->pTxMsg->Data[2] << 16) |
 
                                             ((uint32_t)hcan->pTxMsg->Data[1] << 8) | 
 
                                             ((uint32_t)hcan->pTxMsg->Data[0]));
 
      hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) | 
 
                                             ((uint32_t)hcan->pTxMsg->Data[6] << 16) |
 
                                             ((uint32_t)hcan->pTxMsg->Data[5] << 8) |
 
                                             ((uint32_t)hcan->pTxMsg->Data[4]));
 
    
 
      if(hcan->State == HAL_CAN_STATE_BUSY_RX) 
 
      {
 
        /* Change CAN state */
 
        hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
 
      }
 
      else
 
      {
 
        /* Change CAN state */
 
        hcan->State = HAL_CAN_STATE_BUSY_TX;
 
      }
 
      
 
      /* Set CAN error code to none */
 
      hcan->ErrorCode = HAL_CAN_ERROR_NONE;
 
      
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hcan);
 
      
 
      /* Enable Error warning Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG);
 
      
 
      /* Enable Error passive Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV);
 
      
 
      /* Enable Bus-off Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF);
 
      
 
      /* Enable Last error code Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC);
 
      
 
      /* Enable Error Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR);
 
      
 
      /* Enable Transmit mailbox empty Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_TME);
 
      
 
      /* Request transmission */
 
      hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Receives a correct CAN frame.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @param  FIFONumber:    FIFO number.
 
  * @param  Timeout:       Timeout duration.
 
  * @retval HAL status
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef* hcan, uint8_t FIFONumber, uint32_t Timeout)
 
{
 
  uint32_t tickstart = 0;
 
   
 
  /* Check the parameters */
 
  assert_param(IS_CAN_FIFO(FIFONumber));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hcan);
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_TX) 
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
 
  }
 
  else
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_RX;
 
  }
 
    
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();   
 
  
 
  /* Check pending message */
 
  while(__HAL_CAN_MSG_PENDING(hcan, FIFONumber) == 0)
 
  {
 
    /* Check for the Timeout */
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hcan->State = HAL_CAN_STATE_TIMEOUT;
 
        /* Process unlocked */
 
        __HAL_UNLOCK(hcan);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
  
 
  /* Get the Id */
 
  hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
 
  if (hcan->pRxMsg->IDE == CAN_ID_STD)
 
  {
 
    hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21);
 
  }
 
  else
 
  {
 
    hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3);
 
  }
 
  
 
  hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
 
  /* Get the DLC */
 
  hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR;
 
  /* Get the FMI */
 
  hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8);
 
  /* Get the data field */
 
  hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR;
 
  hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8);
 
  hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16);
 
  hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24);
 
  hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR;
 
  hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8);
 
  hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16);
 
  hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24);
 
  
 
  /* Release the FIFO */
 
  if(FIFONumber == CAN_FIFO0)
 
  {
 
    /* Release FIFO0 */
 
    __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0);
 
  }
 
  else /* FIFONumber == CAN_FIFO1 */
 
  {
 
    /* Release FIFO1 */
 
    __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1);
 
  }
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) 
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_TX;
 
  }
 
  else
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_READY;
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hcan);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Receives a correct CAN frame.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @param  FIFONumber:    FIFO number.
 
  * @retval HAL status
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_CAN_FIFO(FIFONumber));
 
  
 
  if((hcan->State == HAL_CAN_STATE_READY) || (hcan->State == HAL_CAN_STATE_BUSY_TX))
 
  {
 
    /* Process locked */
 
    __HAL_LOCK(hcan);
 
  
 
    if(hcan->State == HAL_CAN_STATE_BUSY_TX) 
 
    {
 
      /* Change CAN state */
 
      hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      /* Change CAN state */
 
      hcan->State = HAL_CAN_STATE_BUSY_RX;
 
    }
 
    
 
    /* Set CAN error code to none */
 
    hcan->ErrorCode = HAL_CAN_ERROR_NONE;
 
    
 
    /* Enable Error warning Interrupt */
 
    __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG);
 
      
 
    /* Enable Error passive Interrupt */
 
    __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV);
 
      
 
    /* Enable Bus-off Interrupt */
 
    __HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF);
 
      
 
    /* Enable Last error code Interrupt */
 
    __HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC);
 
      
 
    /* Enable Error Interrupt */
 
    __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR);
 
 
    /* Process unlocked */
 
    __HAL_UNLOCK(hcan);
 
 
    if(FIFONumber == CAN_FIFO0)
 
    {
 
      /* Enable FIFO 0 message pending Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP0);
 
    }
 
    else
 
    {
 
      /* Enable FIFO 1 message pending Interrupt */
 
      __HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP1);
 
    }
 
    
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enters the Sleep (low power) mode.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef* hcan)
 
{
 
  uint32_t tickstart = 0;
 
   
 
  /* Process locked */
 
  __HAL_LOCK(hcan);
 
  
 
  /* Change CAN state */
 
  hcan->State = HAL_CAN_STATE_BUSY; 
 
    
 
  /* Request Sleep mode */
 
   hcan->Instance->MCR = (((hcan->Instance->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
 
   
 
  /* Sleep mode status */
 
  if ((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK)
 
  {
 
    /* Process unlocked */
 
    __HAL_UNLOCK(hcan);
 
 
    /* Return function status */
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();   
 
  
 
  /* Wait the acknowledge */
 
  while((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK)
 
  {
 
    if((HAL_GetTick() - tickstart) > HAL_CAN_DEFAULT_TIMEOUT)
 
    {
 
      hcan->State = HAL_CAN_STATE_TIMEOUT;
 
      /* Process unlocked */
 
      __HAL_UNLOCK(hcan);
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  
 
  /* Change CAN state */
 
  hcan->State = HAL_CAN_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hcan);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Wakes up the CAN peripheral from sleep mode, after that the CAN peripheral
 
  *         is in the normal mode.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef* hcan)
 
{
 
  uint32_t tickstart = 0;
 
    
 
  /* Process locked */
 
  __HAL_LOCK(hcan);
 
  
 
  /* Change CAN state */
 
  hcan->State = HAL_CAN_STATE_BUSY;  
 
 
 
  /* Wake up request */
 
  hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
 
    
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();   
 
  
 
  /* Sleep mode status */
 
  while((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)
 
  {
 
    if((HAL_GetTick() - tickstart) > HAL_CAN_DEFAULT_TIMEOUT)
 
    {
 
      hcan->State= HAL_CAN_STATE_TIMEOUT;
 
      /* Process unlocked */
 
      __HAL_UNLOCK(hcan);
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  if((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)
 
  {
 
    /* Process unlocked */
 
    __HAL_UNLOCK(hcan);
 
 
    /* Return function status */
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Change CAN state */
 
  hcan->State = HAL_CAN_STATE_READY; 
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hcan);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Handles CAN interrupt request  
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval None
 
  */
 
void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan)
 
{
 
  /* Check End of transmission flag */
 
  if(__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_TME))
 
  {
 
    if((__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0)) ||
 
       (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1)) ||
 
       (__HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2)))
 
    {
 
      /* Call transmit function */
 
      CAN_Transmit_IT(hcan);
 
    }
 
  }
 
  
 
  /* Check End of reception flag for FIFO0 */
 
  if((__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP0)) &&
 
     (__HAL_CAN_MSG_PENDING(hcan, CAN_FIFO0) != 0))
 
  {
 
    /* Call receive function */
 
    CAN_Receive_IT(hcan, CAN_FIFO0);
 
  }
 
  
 
  /* Check End of reception flag for FIFO1 */
 
  if((__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP1)) &&
 
     (__HAL_CAN_MSG_PENDING(hcan, CAN_FIFO1) != 0))
 
  {
 
    /* Call receive function */
 
    CAN_Receive_IT(hcan, CAN_FIFO1);
 
  }
 
  
 
  /* Check Error Warning Flag */
 
  if((__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EWG))    &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EWG)) &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR)))
 
  {
 
    /* Set CAN error code to EWG error */
 
    hcan->ErrorCode |= HAL_CAN_ERROR_EWG;
 
    /* No need for clear of Error Warning Flag as read-only */
 
  }
 
  
 
  /* Check Error Passive Flag */
 
  if((__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EPV))    &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EPV)) &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR)))
 
  {
 
    /* Set CAN error code to EPV error */
 
    hcan->ErrorCode |= HAL_CAN_ERROR_EPV;
 
    /* No need for clear of Error Passive Flag as read-only */
 
  }
 
  
 
  /* Check Bus-Off Flag */
 
  if((__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_BOF))    &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_BOF)) &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR)))
 
  {
 
    /* Set CAN error code to BOF error */
 
    hcan->ErrorCode |= HAL_CAN_ERROR_BOF;
 
    /* No need for clear of Bus-Off Flag as read-only */
 
  }
 
  
 
  /* Check Last error code Flag */
 
  if((!HAL_IS_BIT_CLR(hcan->Instance->ESR, CAN_ESR_LEC)) &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_LEC))         &&
 
     (__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR)))
 
  {
 
    switch(hcan->Instance->ESR & CAN_ESR_LEC)
 
    {
 
      case(CAN_ESR_LEC_0):
 
          /* Set CAN error code to STF error */
 
          hcan->ErrorCode |= HAL_CAN_ERROR_STF;
 
          break;
 
      case(CAN_ESR_LEC_1):
 
          /* Set CAN error code to FOR error */
 
          hcan->ErrorCode |= HAL_CAN_ERROR_FOR;
 
          break;
 
      case(CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
 
          /* Set CAN error code to ACK error */
 
          hcan->ErrorCode |= HAL_CAN_ERROR_ACK;
 
          break;
 
      case(CAN_ESR_LEC_2):
 
          /* Set CAN error code to BR error */
 
          hcan->ErrorCode |= HAL_CAN_ERROR_BR;
 
          break;
 
      case(CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
 
          /* Set CAN error code to BD error */
 
          hcan->ErrorCode |= HAL_CAN_ERROR_BD;
 
          break;
 
      case(CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
 
          /* Set CAN error code to CRC error */
 
          hcan->ErrorCode |= HAL_CAN_ERROR_CRC;
 
          break;
 
      default:
 
          break;
 
    }
 
 
    /* Clear Last error code Flag */ 
 
    hcan->Instance->ESR &= ~(CAN_ESR_LEC);
 
  }
 
 
  /* Call the Error call Back in case of Errors */
 
  if(hcan->ErrorCode != HAL_CAN_ERROR_NONE)
 
  {
 
    /* Set the CAN state ready to be able to start again the process */
 
    hcan->State = HAL_CAN_STATE_READY;
 
    /* Call Error callback function */
 
    HAL_CAN_ErrorCallback(hcan);
 
  }  
 
}
 
 
/**
 
  * @brief  Transmission  complete callback in non blocking mode 
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval None
 
  */
 
__weak void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_CAN_TxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Transmission  complete callback in non blocking mode 
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval None
 
  */
 
__weak void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_CAN_RxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Error CAN callback.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval None
 
  */
 
__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_CAN_ErrorCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CAN_Exported_Functions_Group3 Peripheral State and Error functions
 
 *  @brief   CAN Peripheral State functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
            ##### Peripheral State and Error functions #####
 
  ==============================================================================
 
    [..]
 
    This subsection provides functions allowing to :
 
      (+) Check the CAN state.
 
      (+) Check CAN Errors detected during interrupt process
 
         
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  return the CAN state
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval HAL state
 
  */
 
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan)
 
{
 
  /* Return CAN state */
 
  return hcan->State;
 
}
 
 
/**
 
  * @brief  Return the CAN error code
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.
 
  * @retval CAN Error Code
 
  */
 
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan)
 
{
 
  return hcan->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup CAN_Private_Functions CAN Private Functions
 
 *  @brief    CAN Frame message Rx/Tx functions 
 
 *
 
 * @{
 
 */
 
 
/**
 
  * @brief  Initiates and transmits a CAN frame message.
 
  * @param  hcan: pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan)
 
{
 
  /* Disable Transmit mailbox empty Interrupt */
 
  __HAL_CAN_DISABLE_IT(hcan, CAN_IT_TME);
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_TX)
 
  {   
 
    /* Disable Error warning Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG);
 
    
 
    /* Disable Error passive Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV);
 
    
 
    /* Disable Bus-off Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF);
 
    
 
    /* Disable Last error code Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC);
 
    
 
    /* Disable Error Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR);
 
  }
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) 
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_RX;
 
  }
 
  else
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_READY;
 
  }
 
  
 
  /* Transmission complete callback */ 
 
  HAL_CAN_TxCpltCallback(hcan);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Receives a correct CAN frame.
 
  * @param  hcan:       Pointer to a CAN_HandleTypeDef structure that contains
 
  *         the configuration information for the specified CAN.  
 
  * @param  FIFONumber: Specify the FIFO number    
 
  * @retval HAL status
 
  * @retval None
 
  */
 
static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber)
 
{
 
  /* Get the Id */
 
  hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
 
  if (hcan->pRxMsg->IDE == CAN_ID_STD)
 
  {
 
    hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21);
 
  }
 
  else
 
  {
 
    hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3);
 
  }
 
  
 
  hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
 
  /* Get the DLC */
 
  hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR;
 
  /* Get the FMI */
 
  hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8);
 
  /* Get the data field */
 
  hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR;
 
  hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8);
 
  hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16);
 
  hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24);
 
  hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR;
 
  hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8);
 
  hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16);
 
  hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24);
 
  /* Release the FIFO */
 
  /* Release FIFO0 */
 
  if (FIFONumber == CAN_FIFO0)
 
  {
 
    __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0);
 
    
 
    /* Disable FIFO 0 message pending Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP0);
 
  }
 
  /* Release FIFO1 */
 
  else /* FIFONumber == CAN_FIFO1 */
 
  {
 
    __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1);
 
    
 
    /* Disable FIFO 1 message pending Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP1);
 
  }
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_RX)
 
  {   
 
    /* Disable Error warning Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG);
 
    
 
    /* Disable Error passive Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV);
 
    
 
    /* Disable Bus-off Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF);
 
    
 
    /* Disable Last error code Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC);
 
    
 
    /* Disable Error Interrupt */
 
    __HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR);
 
  }
 
  
 
  if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) 
 
  {
 
    /* Disable CAN state */
 
    hcan->State = HAL_CAN_STATE_BUSY_TX;
 
  }
 
  else
 
  {
 
    /* Change CAN state */
 
    hcan->State = HAL_CAN_STATE_READY;
 
  }
 
 
  /* Receive complete callback */ 
 
  HAL_CAN_RxCpltCallback(hcan);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
 
#endif /* defined(STM32F072xB) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
#endif /* HAL_CAN_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cec.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_cec.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   CEC HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the High Definition Multimedia Interface 
 
  *          Consumer Electronics Control Peripheral (CEC).
 
  *           + Initialization and de-initialization function
 
  *           + IO operation function
 
  *           + Peripheral Control function
 
  *
 
  @verbatim
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    The CEC HAL driver can be used as follows:
 
    
 
    (#) Declare a CEC_HandleTypeDef handle structure.
 
    (#) Initialize the CEC low level resources by implementing the HAL_CEC_MspInit ()API:
 
        (++) Enable the CEC interface clock.
 
        (++) CEC pins configuration:
 
            (+++) Enable the clock for the CEC GPIOs.
 
            (+++) Configure these CEC pins as alternate function pull-up.
 
        (++) NVIC configuration if you need to use interrupt process (HAL_CEC_Transmit_IT()
 
             and HAL_CEC_Receive_IT() APIs):
 
            (+++) Configure the CEC interrupt priority.
 
            (+++) Enable the NVIC CEC IRQ handle.
 
 
    (#) Program the Signal Free Time (SFT) and SFT option, Tolerance, reception stop in
 
        in case of Bit Rising Error, Error-Bit generation conditions, device logical
 
        address and Listen mode in the hcec Init structure.
 
 
    (#) Initialize the CEC registers by calling the HAL_CEC_Init() API.
 
        (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
 
             by calling the customed HAL_CEC_MspInit() API.
 
 
        -@@- The specific CEC interrupts (Transmission complete interrupt, 
 
             RXNE interrupt and Error Interrupts) will be managed using the macros
 
             __HAL_CEC_ENABLE_IT() and __HAL_CEC_DISABLE_IT() inside the transmit 
 
             and receive process.
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup CEC CEC HAL Module Driver 
 
  * @brief HAL CEC module driver
 
  * @{
 
  */
 
#ifdef HAL_CEC_MODULE_ENABLED
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||\
 
    defined(STM32F051x8) || defined(STM32F058xx) ||\
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) ||\
 
    defined(STM32F091xC) || defined (STM32F098xx)
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup CEC_Private_Constants CEC Private Constants
 
  * @{
 
  */
 
#define CEC_CFGR_FIELDS     (CEC_CFGR_SFT | CEC_CFGR_RXTOL | CEC_CFGR_BRESTP \
 
                           | CEC_CFGR_BREGEN | CEC_CFGR_LBPEGEN | CEC_CFGR_SFTOPT \
 
                           | CEC_CFGR_BRDNOGEN | CEC_CFGR_OAR | CEC_CFGR_LSTN)
 
/**
 
  * @}
 
  */ 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup CEC_Private_Functions CEC Private Functions
 
  * @{
 
  */
 
static HAL_StatusTypeDef CEC_Transmit_IT(CEC_HandleTypeDef *hcec);
 
static HAL_StatusTypeDef CEC_Receive_IT(CEC_HandleTypeDef *hcec);
 
/**
 
  * @}
 
  */ 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup CEC_Exported_Functions CEC Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup CEC_Exported_Functions_Group1 Initialization/de-initialization function 
 
  *  @brief    Initialization and Configuration functions 
 
  *
 
@verbatim                                               
 
===============================================================================
 
            ##### Initialization and Configuration functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to initialize the CEC
 
      (+) The following parameters need to be configured: 
 
        (++) SignalFreeTime
 
        (++) Tolerance 
 
        (++) BRERxStop                 (RX stopped or not upon Bit Rising Error)
 
        (++) BREErrorBitGen            (Error-Bit generation in case of Bit Rising Error)
 
        (++) LBPEErrorBitGen           (Error-Bit generation in case of Long Bit Period Error)
 
        (++) BroadcastMsgNoErrorBitGen (Error-bit generation in case of broadcast message error)
 
        (++) SignalFreeTimeOption      (SFT Timer start definition)
 
        (++) OwnAddress                (CEC device address)
 
        (++) ListenMode
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Initializes the CEC mode according to the specified
 
  *         parameters in the CEC_InitTypeDef and creates the associated handle .
 
  * @param hcec: CEC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CEC_Init(CEC_HandleTypeDef *hcec)
 
{
 
  uint32_t tmpreg = 0x0;
 
  
 
  /* Check the CEC handle allocation */
 
  if(hcec == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */ 
 
  assert_param(IS_CEC_SIGNALFREETIME(hcec->Init.SignalFreeTime));
 
  assert_param(IS_CEC_TOLERANCE(hcec->Init.Tolerance));  
 
  assert_param(IS_CEC_BRERXSTOP(hcec->Init.BRERxStop));
 
  assert_param(IS_CEC_BREERRORBITGEN(hcec->Init.BREErrorBitGen));
 
  assert_param(IS_CEC_LBPEERRORBITGEN(hcec->Init.LBPEErrorBitGen));
 
  assert_param(IS_CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION(hcec->Init.BroadcastMsgNoErrorBitGen));
 
  assert_param(IS_CEC_SFTOP(hcec->Init.SignalFreeTimeOption)); 
 
  assert_param(IS_CEC_OAR_ADDRESS(hcec->Init.OwnAddress)); 
 
  assert_param(IS_CEC_LISTENING_MODE(hcec->Init.ListenMode));
 
  assert_param(IS_CEC_ADDRESS(hcec->Init.InitiatorAddress));  
 
 
  
 
  if(hcec->State == HAL_CEC_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
  HAL_CEC_MspInit(hcec);
 
  }
 
  
 
  hcec->State = HAL_CEC_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_CEC_DISABLE(hcec);
 
  
 
  tmpreg = hcec->Init.SignalFreeTime;
 
  tmpreg |= hcec->Init.Tolerance;
 
  tmpreg |= hcec->Init.BRERxStop;
 
  tmpreg |= hcec->Init.BREErrorBitGen;
 
  tmpreg |= hcec->Init.LBPEErrorBitGen;
 
  tmpreg |= hcec->Init.BroadcastMsgNoErrorBitGen;
 
  tmpreg |= hcec->Init.SignalFreeTimeOption;
 
  tmpreg |= (hcec->Init.OwnAddress << CEC_CFGR_OAR_LSB_POS);
 
  tmpreg |= hcec->Init.ListenMode;
 
  
 
  /* Write to CEC Control Register */
 
  MODIFY_REG(hcec->Instance->CFGR, CEC_CFGR_FIELDS, tmpreg);
 
 
  /* Enable the Peripheral */
 
  __HAL_CEC_ENABLE(hcec);
 
  
 
  hcec->State = HAL_CEC_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
 
 
/**
 
  * @brief DeInitializes the CEC peripheral 
 
  * @param hcec: CEC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CEC_DeInit(CEC_HandleTypeDef *hcec)
 
{
 
  /* Check the CEC handle allocation */
 
  if(hcec == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance));
 
 
  hcec->State = HAL_CEC_STATE_BUSY;
 
  
 
  /* DeInit the low level hardware */
 
  HAL_CEC_MspDeInit(hcec);
 
  /* Disable the Peripheral */
 
  __HAL_CEC_DISABLE(hcec);
 
  
 
  hcec->ErrorCode = HAL_CEC_ERROR_NONE;
 
  hcec->State = HAL_CEC_STATE_RESET;
 
  
 
  /* Process Unlock */
 
  __HAL_UNLOCK(hcec);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief CEC MSP Init
 
  * @param hcec: CEC handle
 
  * @retval None
 
  */
 
 __weak void HAL_CEC_MspInit(CEC_HandleTypeDef *hcec)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CEC_MspInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief CEC MSP DeInit
 
  * @param hcec: CEC handle
 
  * @retval None
 
  */
 
 __weak void HAL_CEC_MspDeInit(CEC_HandleTypeDef *hcec)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CEC_MspDeInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CEC_Exported_Functions_Group2 IO operation function 
 
  *  @brief CEC Transmit/Receive functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation function ##### 
 
 ===============================================================================  
 
    This subsection provides a set of functions allowing to manage the CEC data transfers.
 
    
 
    (#) The CEC handle must contain the initiator (TX side) and the destination (RX side)
 
        logical addresses (4-bit long addresses, 0xF for broadcast messages destination)
 
    
 
    (#) There are two mode of transfer:
 
       (+) Blocking mode: The communication is performed in polling mode. 
 
            The HAL status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (+) Non Blocking mode: The communication is performed using Interrupts. 
 
           These API's return the HAL status.
 
           The end of the data processing will be indicated through the 
 
           dedicated CEC IRQ when using Interrupt mode.
 
           The HAL_CEC_TxCpltCallback(), HAL_CEC_RxCpltCallback() user callbacks 
 
           will be executed respectivelly at the end of the transmit or Receive process
 
           The HAL_CEC_ErrorCallback()user callback will be executed when a communication 
 
           error is detected
 
 
    (#) Blocking mode API s are :
 
        (+) HAL_CEC_Transmit()
 
        (+) HAL_CEC_Receive() 
 
        
 
    (#) Non-Blocking mode API s with Interrupt are :
 
        (+) HAL_CEC_Transmit_IT()
 
        (+) HAL_CEC_Receive_IT()
 
        (+) HAL_CEC_IRQHandler()
 
 
    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
 
        (+) HAL_CEC_TxCpltCallback()
 
        (+) HAL_CEC_RxCpltCallback()
 
        (+) HAL_CEC_ErrorCallback()
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Send data in blocking mode 
 
  * @param hcec: CEC handle
 
  * @param DestinationAddress: destination logical address      
 
  * @param pData: pointer to input byte data buffer
 
  * @param Size: amount of data to be sent in bytes (without counting the header).
 
  *              0 means only the header is sent (ping operation).
 
  *              Maximum TX size is 15 bytes (1 opcode and up to 14 operands).    
 
  * @param  Timeout: Timeout duration.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CEC_Transmit(CEC_HandleTypeDef *hcec, uint8_t DestinationAddress, uint8_t *pData, uint32_t Size, uint32_t Timeout)
 
{
 
  uint8_t  temp = 0;  
 
  uint32_t tempisr = 0;   
 
  uint32_t tickstart = 0;
 
 
  if((hcec->State == HAL_CEC_STATE_READY) && (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) == RESET)) 
 
  {
 
    hcec->ErrorCode = HAL_CEC_ERROR_NONE;
 
    if((pData == NULL ) && (Size > 0)) 
 
    {
 
      hcec->State = HAL_CEC_STATE_ERROR;
 
      return  HAL_ERROR;                                    
 
    }
 
 
    assert_param(IS_CEC_ADDRESS(DestinationAddress)); 
 
    assert_param(IS_CEC_MSGSIZE(Size));
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hcec);
 
    
 
    hcec->State = HAL_CEC_STATE_BUSY_TX;
 
 
    hcec->TxXferCount = Size;
 
    
 
    /* case no data to be sent, sender is only pinging the system */
 
    if (Size == 0)
 
    {
 
      /* Set TX End of Message (TXEOM) bit, must be set before writing data to TXDR */
 
      __HAL_CEC_LAST_BYTE_TX_SET(hcec);
 
    }
 
    
 
    /* send header block */
 
    temp = ((uint32_t)hcec->Init.InitiatorAddress << CEC_INITIATOR_LSB_POS) | DestinationAddress;
 
    hcec->Instance->TXDR = temp;
 
    /* Set TX Start of Message  (TXSOM) bit */
 
    __HAL_CEC_FIRST_BYTE_TX_SET(hcec);
 
    
 
    while (hcec->TxXferCount > 0)
 
    {
 
      hcec->TxXferCount--;
 
 
      tickstart = HAL_GetTick();
 
      while(HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_TXBR))
 
      {
 
      	if(Timeout != HAL_MAX_DELAY)
 
        {
 
          if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
          {
 
            hcec->State = HAL_CEC_STATE_TIMEOUT;                
 
            /* Process Unlocked */
 
            __HAL_UNLOCK(hcec);       
 
            return HAL_TIMEOUT;
 
          }
 
        }        
 
 
        /* check whether error occured while waiting for TXBR to be set:
 
         * has Tx underrun occurred ?
 
         * has Tx error occurred ?
 
         * has Tx Missing Acknowledge error occurred ? 
 
         * has Arbitration Loss error occurred ? */
 
        tempisr = hcec->Instance->ISR;
 
        if ((tempisr & (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE|CEC_ISR_ARBLST)) != 0)
 
        {
 
          /* copy ISR for error handling purposes */
 
          hcec->ErrorCode = tempisr;
 
         /* clear all error flags by default */
 
         __HAL_CEC_CLEAR_FLAG(hcec, (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE|CEC_ISR_ARBLST));
 
         hcec->State = HAL_CEC_STATE_ERROR;
 
         __HAL_UNLOCK(hcec);
 
         return  HAL_ERROR;                                    
 
        }
 
      } 
 
      /* TXBR to clear BEFORE writing TXDR register */
 
      __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_TXBR);
 
      if (hcec->TxXferCount == 0)
 
      {
 
        /* if last byte transmission, set TX End of Message (TXEOM) bit */
 
        __HAL_CEC_LAST_BYTE_TX_SET(hcec);
 
      }
 
      hcec->Instance->TXDR = *pData++;
 
      
 
      /* error check after TX byte write up */
 
      tempisr = hcec->Instance->ISR;
 
      if ((tempisr & (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE|CEC_ISR_ARBLST)) != 0)
 
      {
 
        /* copy ISR for error handling purposes */
 
        hcec->ErrorCode = tempisr;
 
        /* clear all error flags by default */
 
        __HAL_CEC_CLEAR_FLAG(hcec, (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE|CEC_ISR_ARBLST));
 
        hcec->State = HAL_CEC_STATE_ERROR;
 
        __HAL_UNLOCK(hcec);
 
        return  HAL_ERROR;                                    
 
      }
 
    } /* end while (while (hcec->TxXferCount > 0)) */
 
    
 
   
 
    /* if no error up to this point, check that transmission is  
 
     * complete, that is wait until TXEOM is reset */
 
    tickstart = HAL_GetTick();
 
 
    while (HAL_IS_BIT_SET(hcec->Instance->CR, CEC_CR_TXEOM))
 
    {
 
    	if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hcec->State = HAL_CEC_STATE_ERROR;
 
          __HAL_UNLOCK(hcec);             
 
          return HAL_TIMEOUT;
 
        }
 
      } 
 
    }
 
 
    /* Final error check once all bytes have been transmitted */
 
    tempisr = hcec->Instance->ISR;
 
    if ((tempisr & (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE)) != 0)
 
    {
 
      /* copy ISR for error handling purposes */
 
      hcec->ErrorCode = tempisr;
 
      /* clear all error flags by default */
 
      __HAL_CEC_CLEAR_FLAG(hcec, (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE));
 
      hcec->State = HAL_CEC_STATE_ERROR;
 
      __HAL_UNLOCK(hcec);
 
      return  HAL_ERROR;                                    
 
    } 
 
 
    hcec->State = HAL_CEC_STATE_READY;
 
    __HAL_UNLOCK(hcec);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive data in blocking mode. Must be invoked when RXBR has been set. 
 
  * @param hcec: CEC handle
 
  * @param pData: pointer to received data buffer.
 
  * @param Timeout: Timeout duration.
 
  *       Note that the received data size is not known beforehand, the latter is known
 
  *       when the reception is complete and is stored in hcec->RxXferSize.  
 
  *       hcec->RxXferSize is the sum of opcodes + operands (0 to 14 operands max).
 
  *       If only a header is received, hcec->RxXferSize = 0    
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CEC_Receive(CEC_HandleTypeDef *hcec, uint8_t *pData, uint32_t Timeout)
 
{ 
 
  uint32_t temp;
 
  uint32_t tickstart = 0;   
 
 
  if (hcec->State == HAL_CEC_STATE_READY)
 
  { 
 
    hcec->ErrorCode = HAL_CEC_ERROR_NONE;
 
    if (pData == NULL ) 
 
    {
 
      hcec->State = HAL_CEC_STATE_ERROR;
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    hcec->RxXferSize = 0;
 
    /* Process Locked */
 
    __HAL_LOCK(hcec);
 
    
 
    
 
    /* Rx loop until CEC_ISR_RXEND  is set */
 
    while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXEND))
 
    {
 
      tickstart = HAL_GetTick();
 
      /* Wait for next byte to be received */
 
      while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXBR))
 
      {
 
    	  if(Timeout != HAL_MAX_DELAY)
 
        {
 
          if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
          {
 
            hcec->State = HAL_CEC_STATE_TIMEOUT;
 
            __HAL_UNLOCK(hcec);    
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
        /* any error so far ? 
 
         * has Rx Missing Acknowledge occurred ?
 
         * has Rx Long Bit Period error occurred ?
 
         * has Rx Short Bit Period error occurred ? 
 
         * has Rx Bit Rising error occurred ?             
 
         * has Rx Overrun error occurred ? */
 
        temp = (uint32_t) (hcec->Instance->ISR);
 
        if ((temp & (CEC_ISR_RXACKE|CEC_ISR_LBPE|CEC_ISR_SBPE|CEC_ISR_BRE|CEC_ISR_RXOVR)) != 0)
 
        {
 
          /* copy ISR for error handling purposes */
 
          hcec->ErrorCode = temp;
 
          /* clear all error flags by default */
 
          __HAL_CEC_CLEAR_FLAG(hcec, (CEC_ISR_RXACKE|CEC_ISR_LBPE|CEC_ISR_SBPE|CEC_ISR_BRE|CEC_ISR_RXOVR));
 
          hcec->State = HAL_CEC_STATE_ERROR;
 
          __HAL_UNLOCK(hcec);
 
          return  HAL_ERROR;                                    
 
        }
 
      } /* while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXBR)) */
 
  
 
 
      /* read received data */
 
      *pData++ = hcec->Instance->RXDR;
 
      temp = (uint32_t) (hcec->Instance->ISR);
 
      /* end of message ? */
 
      if ((temp &  CEC_ISR_RXEND) != 0)      
 
      {
 
         assert_param(IS_CEC_MSGSIZE(hcec->RxXferSize));
 
         __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_RXEND);
 
          hcec->State = HAL_CEC_STATE_READY;  
 
         __HAL_UNLOCK(hcec);  
 
         return HAL_OK; 
 
      }
 
      
 
      /* clear Rx-Byte Received flag */
 
      __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_RXBR); 
 
      /* increment payload byte counter */
 
       hcec->RxXferSize++;
 
    } /* while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXEND)) */ 
 
    
 
    /* if the instructions below are executed, it means RXEND was set when RXBR was 
 
     * set for the first time:
 
     * the code within the "while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXEND))"
 
     * loop has not been executed and this means a single byte has been sent */
 
    *pData++ = hcec->Instance->RXDR;
 
     /* only one header is received: RxXferSize is set to 0 (no operand, no opcode) */ 
 
     hcec->RxXferSize = 0;
 
     __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_RXEND);
 
                             
 
    hcec->State = HAL_CEC_STATE_READY;  
 
    __HAL_UNLOCK(hcec);  
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
 
/**
 
  * @brief Send data in interrupt mode 
 
  * @param hcec: CEC handle 
 
  * @param DestinationAddress: destination logical address      
 
  * @param pData: pointer to input byte data buffer
 
  * @param Size: amount of data to be sent in bytes (without counting the header).
 
  *              0 means only the header is sent (ping operation).
 
  *              Maximum TX size is 15 bytes (1 opcode and up to 14 operands).    
 
  * @retval HAL status
 
  */  
 
HAL_StatusTypeDef HAL_CEC_Transmit_IT(CEC_HandleTypeDef *hcec, uint8_t DestinationAddress, uint8_t *pData, uint32_t Size)
 
{
 
  uint8_t  temp = 0; 
 
  /* if the IP isn't already busy and if there is no previous transmission
 
     already pending due to arbitration lost */
 
  if (((hcec->State == HAL_CEC_STATE_READY) || (hcec->State == HAL_CEC_STATE_STANDBY_RX)) 
 
  &&   (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) == RESET)) 
 
  {    
 
    if((pData == NULL ) && (Size > 0)) 
 
    {
 
      hcec->State = HAL_CEC_STATE_ERROR;
 
      return  HAL_ERROR;                                    
 
    }
 
 
    assert_param(IS_CEC_ADDRESS(DestinationAddress)); 
 
    assert_param(IS_CEC_MSGSIZE(Size));
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hcec);
 
    hcec->pTxBuffPtr = pData;
 
    hcec->State = HAL_CEC_STATE_BUSY_TX;
 
    hcec->ErrorCode = HAL_CEC_ERROR_NONE;
 
    
 
    /* Disable Peripheral to write CEC_IER register */
 
    __HAL_CEC_DISABLE(hcec);
 
    
 
    /* Enable the following two CEC Transmission interrupts as
 
     * well as the following CEC Transmission Errors interrupts: 
 
     * Tx Byte Request IT 
 
     * End of Transmission IT
 
     * Tx Missing Acknowledge IT
 
     * Tx-Error IT
 
     * Tx-Buffer Underrun IT 
 
     * Tx arbitration lost     */
 
    __HAL_CEC_ENABLE_IT(hcec, CEC_IER_TXBRIE|CEC_IER_TXENDIE|CEC_IER_TX_ALL_ERR);
 
                                     
 
    /* Enable the Peripheral */
 
    __HAL_CEC_ENABLE(hcec);
 
  
 
    /* initialize the number of bytes to send,
 
     * 0 means only one header is sent (ping operation) */
 
    hcec->TxXferCount = Size;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hcec); 
 
    
 
    /* in case of no payload (Size = 0), sender is only pinging the system;
 
     * Set TX End of Message (TXEOM) bit, must be set before writing data to TXDR */
 
    if (Size == 0)
 
    {
 
      __HAL_CEC_LAST_BYTE_TX_SET(hcec);
 
    }
 
    
 
    /* send header block */
 
    temp = ((uint32_t)hcec->Init.InitiatorAddress << CEC_INITIATOR_LSB_POS) | DestinationAddress;
 
    hcec->Instance->TXDR = temp;
 
    /* Set TX Start of Message  (TXSOM) bit */
 
    __HAL_CEC_FIRST_BYTE_TX_SET(hcec);
 
    
 
    return HAL_OK;
 
  }
 
    /* if the IP is already busy or if there is a previous transmission
 
     already pending due to arbitration loss */
 
  else if ((hcec->State == HAL_CEC_STATE_BUSY_TX)
 
        || (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) != RESET))
 
  {
 
    __HAL_LOCK(hcec);
 
    /* set state to BUSY TX, in case it wasn't set already (case
 
     * of transmission new attempt after arbitration loss) */
 
    if (hcec->State != HAL_CEC_STATE_BUSY_TX)
 
    {
 
      hcec->State = HAL_CEC_STATE_BUSY_TX;
 
    }
 
 
    /* if all data have been sent */
 
    if(hcec->TxXferCount == 0)
 
    {
 
      /* Disable Peripheral to write CEC_IER register */
 
      __HAL_CEC_DISABLE(hcec);
 
      
 
      /* Disable the CEC Transmission Interrupts */
 
      __HAL_CEC_DISABLE_IT(hcec, CEC_IER_TXBRIE|CEC_IER_TXENDIE);
 
      /* Disable the CEC Transmission Error Interrupts */
 
      __HAL_CEC_DISABLE_IT(hcec, CEC_IER_TX_ALL_ERR);
 
      
 
      /* Enable the Peripheral */
 
      __HAL_CEC_ENABLE(hcec);
 
    
 
      __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_TXBR|CEC_ISR_TXEND);
 
          
 
      hcec->State = HAL_CEC_STATE_READY;
 
      /* Call the Process Unlocked before calling the Tx call back API to give the possibility to
 
      start again the Transmission under the Tx call back API */
 
      __HAL_UNLOCK(hcec);
 
      
 
      HAL_CEC_TxCpltCallback(hcec);
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {
 
      if (hcec->TxXferCount == 1)
 
      {
 
        /* if this is the last byte transmission, set TX End of Message (TXEOM) bit */
 
        __HAL_CEC_LAST_BYTE_TX_SET(hcec);
 
      }
 
      /* clear Tx-Byte request flag */
 
       __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_TXBR); 
 
       hcec->Instance->TXDR = *hcec->pTxBuffPtr++;
 
      hcec->TxXferCount--;
 
      
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hcec);
 
  
 
      return HAL_OK;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
 
/**
 
  * @brief Receive data in interrupt mode. 
 
  * @param hcec: CEC handle
 
  * @param pData: pointer to received data buffer.
 
  * Note that the received data size is not known beforehand, the latter is known
 
  * when the reception is complete and is stored in hcec->RxXferSize.  
 
  * hcec->RxXferSize is the sum of opcodes + operands (0 to 14 operands max).
 
  * If only a header is received, hcec->RxXferSize = 0    
 
  * @retval HAL status
 
  */  
 
HAL_StatusTypeDef HAL_CEC_Receive_IT(CEC_HandleTypeDef *hcec, uint8_t *pData)
 
{  
 
  if(hcec->State == HAL_CEC_STATE_READY)
 
  {
 
    if(pData == NULL ) 
 
    {
 
      hcec->State = HAL_CEC_STATE_ERROR;
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hcec);
 
    hcec->RxXferSize = 0;
 
    hcec->pRxBuffPtr = pData;
 
    hcec->ErrorCode = HAL_CEC_ERROR_NONE;
 
    /* the IP is moving to a ready to receive state */
 
    hcec->State = HAL_CEC_STATE_STANDBY_RX;
 
 
    /* Disable Peripheral to write CEC_IER register */
 
    __HAL_CEC_DISABLE(hcec);
 
    
 
    /* Enable the following CEC Reception Error Interrupts: 
 
     * Rx overrun
 
     * Rx bit rising error
 
     * Rx short bit period error
 
     * Rx long bit period error
 
     * Rx missing acknowledge  */
 
    __HAL_CEC_ENABLE_IT(hcec, CEC_IER_RX_ALL_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hcec);
 
    
 
    /* Enable the following two CEC Reception interrupts: 
 
     * Rx Byte Received IT 
 
     * End of Reception IT */
 
    __HAL_CEC_ENABLE_IT(hcec, CEC_IER_RXBRIE|CEC_IER_RXENDIE);
 
    
 
    __HAL_CEC_ENABLE(hcec);
 
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
 
    
 
/**
 
  * @brief This function handles CEC interrupt requests.
 
  * @param hcec: CEC handle
 
  * @retval None
 
  */
 
void HAL_CEC_IRQHandler(CEC_HandleTypeDef *hcec)
 
{
 
  /* save interrupts register for further error or interrupts handling purposes */
 
  hcec->ErrorCode = hcec->Instance->ISR;
 
  /* CEC TX missing acknowledge error interrupt occurred -------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_TXACKE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_TXACKEIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_TXACKE);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }
 
  
 
  /* CEC transmit error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_TXERR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_TXERRIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_TXERR);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }
 
  
 
  /* CEC TX underrun error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_TXUDR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_TXUDRIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_TXUDR);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }
 
  
 
  /* CEC TX arbitration error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_ARBLST) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_ARBLSTIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_ARBLST);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }
 
  
 
  /* CEC RX overrun error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_RXOVR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_RXOVRIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_RXOVR);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  } 
 
  
 
  /* CEC RX bit rising error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_BRE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_BREIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_BRE);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }   
 
  
 
  /* CEC RX short bit period error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_SBPE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_SBPEIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_SBPE);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }   
 
  
 
  /* CEC RX long bit period error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_LBPE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_LBPEIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_LBPE);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }   
 
  
 
  /* CEC RX missing acknowledge error interrupt occured --------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_RXACKE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_RXACKEIE) != RESET))
 
  { 
 
    __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_RXACKE);
 
    hcec->State = HAL_CEC_STATE_ERROR;
 
  }   
 
 
  if ((hcec->ErrorCode & CEC_ISR_ALL_ERROR) != 0)
 
  {
 
    HAL_CEC_ErrorCallback(hcec);
 
  }
 
 
  /* CEC RX byte received interrupt  ---------------------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_RXBR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_RXBRIE) != RESET))
 
  { 
 
    /* RXBR IT is cleared during HAL_CEC_Transmit_IT processing */
 
    CEC_Receive_IT(hcec);
 
  }
 
  
 
  /* CEC RX end received interrupt  ---------------------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_RXEND) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_RXENDIE) != RESET))
 
  { 
 
    /* RXBR IT is cleared during HAL_CEC_Transmit_IT processing */
 
    CEC_Receive_IT(hcec);
 
  }
 
  
 
  
 
  /* CEC TX byte request interrupt ------------------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_TXBR) != RESET) &&(__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_TXBRIE) != RESET))
 
  {
 
    /* TXBR IT is cleared during HAL_CEC_Transmit_IT processing */
 
    CEC_Transmit_IT(hcec);
 
  } 
 
  
 
  /* CEC TX end interrupt ------------------------------------------------*/
 
  if((__HAL_CEC_GET_IT(hcec, CEC_ISR_TXEND) != RESET) &&(__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IER_TXENDIE) != RESET))
 
  {
 
   /* TXEND IT is cleared during HAL_CEC_Transmit_IT processing */
 
    CEC_Transmit_IT(hcec);
 
  } 
 
  
 
}
 
 
 
/**
 
  * @brief Tx Transfer completed callback
 
  * @param hcec: CEC handle
 
  * @retval None
 
  */
 
 __weak void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CEC_TxCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Rx Transfer completed callback
 
  * @param hcec: CEC handle
 
  * @retval None
 
  */
 
__weak void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CEC_TxCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief CEC error callbacks
 
  * @param hcec: CEC handle
 
  * @retval None
 
  */
 
 __weak void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CEC_ErrorCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CEC_Exported_Functions_Group3 Peripheral Control function 
 
  *  @brief   CEC control functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control function #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the CEC.
 
     (+) HAL_CEC_GetState() API can be helpful to check in run-time the state of the CEC peripheral. 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief return the CEC state
 
  * @param hcec: CEC handle
 
  * @retval HAL state
 
  */
 
HAL_CEC_StateTypeDef HAL_CEC_GetState(CEC_HandleTypeDef *hcec)
 
{
 
  return hcec->State;
 
}
 
 
/**
 
* @brief  Return the CEC error code
 
* @param  hcec : pointer to a CEC_HandleTypeDef structure that contains
 
  *              the configuration information for the specified CEC.
 
* @retval CEC Error Code
 
*/
 
uint32_t HAL_CEC_GetError(CEC_HandleTypeDef *hcec)
 
{
 
  return hcec->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CEC_Private_Functions CEC Private Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief Send data in interrupt mode 
 
  * @param hcec: CEC handle. 
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_CEC_Transmit_IT()   
 
  * @retval HAL status
 
  */  
 
static HAL_StatusTypeDef CEC_Transmit_IT(CEC_HandleTypeDef *hcec)
 
{
 
  /* if the IP is already busy or if there is a previous transmission
 
     already pending due to arbitration loss */
 
  if ((hcec->State == HAL_CEC_STATE_BUSY_TX)
 
        || (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) != RESET))
 
  {
 
 
    /* set state to BUSY TX, in case it wasn't set already (case
 
     * of transmission new attempt after arbitration loss) */
 
    if (hcec->State != HAL_CEC_STATE_BUSY_TX)
 
    {
 
      hcec->State = HAL_CEC_STATE_BUSY_TX;
 
    }
 
 
    /* if all data have been sent */
 
    if(hcec->TxXferCount == 0)
 
    {
 
      /* Disable Peripheral to write CEC_IER register */
 
      __HAL_CEC_DISABLE(hcec);
 
      
 
      /* Disable the CEC Transmission Interrupts */
 
      __HAL_CEC_DISABLE_IT(hcec, CEC_IER_TXBRIE|CEC_IER_TXENDIE);
 
      /* Disable the CEC Transmission Error Interrupts */
 
      __HAL_CEC_DISABLE_IT(hcec, CEC_IER_TX_ALL_ERR);
 
      
 
      /* Enable the Peripheral */
 
      __HAL_CEC_ENABLE(hcec);
 
    
 
      __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_TXBR|CEC_ISR_TXEND);
 
          
 
      hcec->State = HAL_CEC_STATE_READY;
 
      
 
      HAL_CEC_TxCpltCallback(hcec);
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {
 
      if (hcec->TxXferCount == 1)
 
      {
 
        /* if this is the last byte transmission, set TX End of Message (TXEOM) bit */
 
        __HAL_CEC_LAST_BYTE_TX_SET(hcec);
 
      }
 
      /* clear Tx-Byte request flag */
 
       __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_TXBR); 
 
       hcec->Instance->TXDR = *hcec->pTxBuffPtr++;
 
      hcec->TxXferCount--;
 
  
 
      return HAL_OK;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
 
/**
 
  * @brief Receive data in interrupt mode. 
 
  * @param hcec: CEC handle.
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_CEC_Receive_IT()   
 
  * @retval HAL status
 
  */  
 
static HAL_StatusTypeDef CEC_Receive_IT(CEC_HandleTypeDef *hcec)
 
{
 
  uint32_t tempisr;
 
  
 
  /* Three different conditions are tested to carry out the RX IT processing:
 
   * - the IP is in reception stand-by (the IP state is HAL_CEC_STATE_STANDBY_RX) and 
 
   *   the reception of the first byte is starting
 
   * - a message reception is already on-going (the IP state is HAL_CEC_STATE_BUSY_RX)
 
   *   and a new byte is being received
 
   * - a transmission has just been started (the IP state is HAL_CEC_STATE_BUSY_TX)
 
   *   but has been interrupted by a new message reception or discarded due to 
 
   *   arbitration loss: the reception of the first or higher priority message 
 
   *   (the arbitration winner) is starting */
 
  if ((hcec->State == HAL_CEC_STATE_STANDBY_RX) 
 
  ||  (hcec->State == HAL_CEC_STATE_BUSY_RX)
 
  ||  (hcec->State == HAL_CEC_STATE_BUSY_TX)) 
 
  {
 
    /* reception is starting */ 
 
    hcec->State = HAL_CEC_STATE_BUSY_RX;
 
    tempisr =  (uint32_t) (hcec->Instance->ISR);
 
    if ((tempisr & CEC_ISR_RXBR) != 0)
 
    {
 
      /* read received byte */
 
      *hcec->pRxBuffPtr++ = hcec->Instance->RXDR;
 
      /* if last byte has been received */      
 
      if ((tempisr & CEC_ISR_RXEND) != 0)
 
      {
 
        /* clear IT */
 
        __HAL_CEC_CLEAR_FLAG(hcec,CEC_ISR_RXBR|CEC_ISR_RXEND);
 
        /* RX interrupts are not disabled at this point.
 
         * Indeed, to disable the IT, the IP must be disabled first
 
         * which resets the TXSOM flag. In case of arbitration loss,
 
         * this leads to a transmission abort.
 
         * Therefore, RX interruptions disabling if so required,
 
         * is done in HAL_CEC_RxCpltCallback */
 
 
 
        /* IP state is moved to READY.
 
         * If the IP must remain in standby mode to listen
 
         * any new message, it is up to HAL_CEC_RxCpltCallback
 
         * to move it again to HAL_CEC_STATE_STANDBY_RX */  
 
        hcec->State = HAL_CEC_STATE_READY; 
 
 
        HAL_CEC_RxCpltCallback(hcec);
 
        
 
        return HAL_OK;
 
      } 
 
      __HAL_CEC_CLEAR_FLAG(hcec, CEC_ISR_RXBR);  
 
 
      hcec->RxXferSize++;
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {
 
      return HAL_BUSY; 
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
#endif /* defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F051x8) || defined(STM32F058xx) || */
 
       /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || */
 
       /* defined(STM32F091xC) || defined (STM32F098xx) */
 
 
#endif /* HAL_CEC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_comp.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_comp.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   COMP HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the COMP peripheral:
 
  *           + Initialization/de-initialization functions
 
  *           + I/O operation functions
 
  *           + Peripheral Control functions 
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
================================================================================
 
          ##### COMP Peripheral features #####
 
================================================================================
 
           
 
  [..]       
 
      The STM32F0xx device family integrates up to 2 analog comparators COMP1 and COMP2:
 
      (#) The non inverting input and inverting input can be set to GPIO pins
 
          as shown in table1. COMP Inputs below.
 
  
 
      (#) The COMP output is available using HAL_COMP_GetOutputLevel()
 
          and can be set on GPIO pins. Refer to table 2. COMP Outputs below.
 
  
 
      (#) The COMP output can be redirected to embedded timers (TIM1, TIM2 and TIM3)
 
          Refer to table 3. COMP Outputs redirection to embedded timers below.
 
  
 
      (#) The comparators COMP1 and COMP2 can be combined in window mode.
 
  
 
      (#) The comparators have interrupt capability with wake-up
 
          from Sleep and Stop modes (through the EXTI controller):
 
          (++) COMP1 is internally connected to EXTI Line 21
 
          (++) COMP2 is internally connected to EXTI Line 22
 
          From the corresponding IRQ handler, the right interrupt source can be retrieved with the 
 
          macro __HAL_COMP_EXTI_GET_FLAG(). Possible values are:
 
          (++) COMP_EXTI_LINE_COMP1_EVENT
 
          (++) COMP_EXTI_LINE_COMP2_EVENT
 
 
 
[..] Table 1. COMP Inputs for the STM32F05x and STM32F07x devices
 
 +--------------------------------------------------+    
 
 |                 |                | COMP1 | COMP2 |
 
 |-----------------|----------------|---------------|
 
 |                 | 1/4 VREFINT    |  OK   |  OK   |
 
 |                 | 1/2 VREFINT    |  OK   |  OK   |
 
 |                 | 3/4 VREFINT    |  OK   |  OK   |
 
 | Inverting Input | VREFINT        |  OK   |  OK   |
 
 |                 | DAC1 OUT (PA4) |  OK   |  OK   |
 
 |                 | DAC2 OUT (PA5) |  OK   |  OK   |
 
 |                 | IO1            |  PA0  |  PA2  |
 
 |-----------------|----------------|-------|-------|
 
 |  Non Inverting  |                |  PA1  |  PA3  |
 
 |    Input        |                |       |       |
 
 +--------------------------------------------------+  
 
  
 
 [..] Table 2. COMP Outputs for the STM32F05x and STM32F07x devices
 
 +---------------+     
 
 | COMP1 | COMP2 |
 
 |-------|-------|
 
 |  PA0  |  PA2  |
 
 |  PA6  |  PA7  |
 
 |  PA11 |  PA12 |
 
 +---------------+
 
 
 [..] Table 3. COMP Outputs redirection to embedded timers for the STM32F05x and STM32F07x devices
 
 +---------------------------------+     
 
 |     COMP1      |     COMP2      |
 
 |----------------|----------------|
 
 |  TIM1 BKIN     |  TIM1 BKIN     |
 
 |                |                |
 
 |  TIM1 OCREFCLR |  TIM1 OCREFCLR |
 
 |                |                |
 
 |  TIM1 IC1      |  TIM1 IC1      |
 
 |                |                |
 
 |  TIM2 IC4      |  TIM2 IC4      |
 
 |                |                |
 
 |  TIM2 OCREFCLR |  TIM2 OCREFCLR |
 
 |                |                |
 
 |  TIM3 IC1      |  TIM3 IC1      |
 
 |                |                |
 
 |  TIM3 OCREFCLR |  TIM3 OCREFCLR |
 
 +---------------------------------+
 
 
            ##### How to use this driver #####
 
================================================================================
 
  [..]
 
      This driver provides functions to configure and program the Comparators of STM32F05x and STM32F07x devices.
 
 
      To use the comparator, perform the following steps:
 
  
 
      (#) Fill in the HAL_COMP_MspInit() to
 
      (++) Configure the comparator input in analog mode using HAL_GPIO_Init()
 
      (++) Configure the comparator output in alternate function mode using HAL_GPIO_Init() to map the comparator 
 
           output to the GPIO pin
 
      (++) If required enable the COMP interrupt by configuring and enabling EXTI line in Interrupt mode and 
 
           selecting the desired sensitivity level using HAL_GPIO_Init() function. After that enable the comparator
 
           interrupt vector using HAL_NVIC_EnableIRQ() function.
 
  
 
      (#) Configure the comparator using HAL_COMP_Init() function:
 
      (++) Select the inverting input
 
      (++) Select the non inverting input
 
      (++) Select the output polarity  
 
      (++) Select the output redirection
 
      (++) Select the hysteresis level
 
      (++) Select the power mode
 
      (++) Select the event/interrupt mode
 
  
 
      (#) Enable the comparator using HAL_COMP_Start() function or HAL_COMP_Start_IT() function for interrupt mode
 
    
 
      (#) Read the comparator output level with HAL_COMP_GetOutputLevel()
 
    
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined (STM32F098xx)
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup COMP COMP HAL Module Driver 
 
  * @brief COMP HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_COMP_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup COMP_Private_Constants COMP Private Constants
 
  * @{
 
  */
 
/* CSR register reset value */ 
 
#define COMP_CSR_RESET_VALUE            ((uint32_t)0x00000000)
 
/* CSR register masks */ 
 
#define COMP_CSR_RESET_PARAMETERS_MASK   ((uint32_t)0x00003FFF)
 
#define COMP_CSR_UPDATE_PARAMETERS_MASK  ((uint32_t)0x00003FFE)
 
/* CSR COMPx non inverting input mask */ 
 
#define COMP_CSR_COMPxNONINSEL_MASK      ((uint16_t)COMP_CSR_COMP1SW1)
 
/* CSR COMP2 shift */ 
 
#define COMP_CSR_COMP1_SHIFT             0U
 
#define COMP_CSR_COMP2_SHIFT             16U
 
/**
 
  * @}
 
  */
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup COMP_Exported_Functions COMP Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup COMP_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and Configuration functions #####
 
 ===============================================================================
 
    [..]  This section provides functions to initialize and de-initialize comparators 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the COMP according to the specified
 
  *         parameters in the COMP_InitTypeDef and create the associated handle.
 
  * @note   If the selected comparator is locked, initialization can't be performed.
 
  *         To unlock the configuration, perform a system reset.
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp)
 
{ 
 
  HAL_StatusTypeDef status = HAL_OK;
 
  uint32_t regshift = COMP_CSR_COMP1_SHIFT;
 
  
 
  /* Check the COMP handle allocation and lock status */
 
  if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
 
  {
 
    status = HAL_ERROR;
 
  }
 
  else
 
  {
 
    /* Check the parameter */
 
    assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
    assert_param(IS_COMP_INVERTINGINPUT(hcomp->Init.InvertingInput));
 
    assert_param(IS_COMP_NONINVERTINGINPUT(hcomp->Init.NonInvertingInput));
 
    assert_param(IS_COMP_OUTPUT(hcomp->Init.Output));
 
    assert_param(IS_COMP_OUTPUTPOL(hcomp->Init.OutputPol));
 
    assert_param(IS_COMP_HYSTERESIS(hcomp->Init.Hysteresis));
 
    assert_param(IS_COMP_MODE(hcomp->Init.Mode));
 
    
 
    if(hcomp->Init.NonInvertingInput == COMP_NONINVERTINGINPUT_DAC1SWITCHCLOSED)
 
    {
 
      assert_param(IS_COMP_DAC1SWITCH_INSTANCE(hcomp->Instance));
 
    }
 
  
 
    if(hcomp->Init.WindowMode != COMP_WINDOWMODE_DISABLED)
 
    {
 
      assert_param(IS_COMP_WINDOWMODE_INSTANCE(hcomp->Instance));
 
    }
 
  
 
    if(hcomp->State == HAL_COMP_STATE_RESET)
 
    {
 
      /* Init SYSCFG and the low level hardware to access comparators */
 
      __SYSCFG_CLK_ENABLE();
 
 
      HAL_COMP_MspInit(hcomp);
 
    }
 
  
 
    /* Set COMP parameters */
 
    /*     Set COMPxINSEL bits according to hcomp->Init.InvertingInput value        */
 
    /*     Set COMPxOUTSEL bits according to hcomp->Init.Output value               */
 
    /*     Set COMPxPOL bit according to hcomp->Init.OutputPol value                */
 
    /*     Set COMPxHYST bits according to hcomp->Init.Hysteresis value             */
 
    /*     Set COMPxMODE bits according to hcomp->Init.Mode value                   */
 
    if(hcomp->Instance == COMP2)
 
    {
 
      regshift = COMP_CSR_COMP2_SHIFT;
 
    }
 
    MODIFY_REG(COMP->CSR, 
 
               (uint32_t)(COMP_CSR_COMPxINSEL  | COMP_CSR_COMPxNONINSEL_MASK | \
 
                COMP_CSR_COMPxOUTSEL | COMP_CSR_COMPxPOL           | \
 
                COMP_CSR_COMPxHYST   | COMP_CSR_COMPxMODE) << regshift,
 
               (hcomp->Init.InvertingInput    | \
 
                hcomp->Init.NonInvertingInput | \
 
                hcomp->Init.Output            | \
 
                hcomp->Init.OutputPol         | \
 
                hcomp->Init.Hysteresis        | \
 
                hcomp->Init.Mode) << regshift);   
 
    
 
    if(hcomp->Init.WindowMode != COMP_WINDOWMODE_DISABLED)
 
    {
 
      COMP->CSR |= COMP_CSR_WNDWEN;
 
    }
 
 
    /* Initialize the COMP state*/
 
    if(hcomp->State == HAL_COMP_STATE_RESET)
 
    {
 
      hcomp->State = HAL_COMP_STATE_READY;
 
    }
 
  }
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  DeInitializes the COMP peripheral 
 
  * @note   Deinitialization can't be performed if the COMP configuration is locked.
 
  *         To unlock the configuration, perform a system reset.
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_COMP_DeInit(COMP_HandleTypeDef *hcomp)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
  uint32_t regshift = COMP_CSR_COMP1_SHIFT;
 
 
  /* Check the COMP handle allocation and lock status */
 
  if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
 
  {
 
    status = HAL_ERROR;
 
  }
 
  else
 
  {
 
    /* Check the parameter */
 
    assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
 
    /* Set COMP_CSR register to reset value for the corresponding COMP instance */
 
    if(hcomp->Instance == COMP2)
 
    {
 
      regshift = COMP_CSR_COMP2_SHIFT;
 
    }
 
    MODIFY_REG(COMP->CSR, 
 
               COMP_CSR_RESET_PARAMETERS_MASK << regshift, 
 
               COMP_CSR_RESET_VALUE << regshift);
 
    
 
    /* DeInit the low level hardware: SYSCFG, GPIO, CLOCK and NVIC */
 
    HAL_COMP_MspDeInit(hcomp);
 
 
    hcomp->State = HAL_COMP_STATE_RESET;
 
  }
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  Initializes the COMP MSP.
 
  * @param  hcomp: COMP handle
 
  * @retval None
 
  */
 
__weak void HAL_COMP_MspInit(COMP_HandleTypeDef *hcomp)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_COMP_MspInit could be implenetd in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes COMP MSP.
 
  * @param  hcomp: COMP handle
 
  * @retval None
 
  */
 
__weak void HAL_COMP_MspDeInit(COMP_HandleTypeDef *hcomp)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_COMP_MspDeInit could be implenetd in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_Exported_Functions_Group2 I/O operation functions 
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to manage the COMP data 
 
    transfers.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Start the comparator 
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_COMP_Start(COMP_HandleTypeDef *hcomp)
 
{ 
 
  HAL_StatusTypeDef status = HAL_OK;
 
  uint32_t regshift = COMP_CSR_COMP1_SHIFT;
 
  
 
  /* Check the COMP handle allocation and lock status */
 
  if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
 
  {
 
    status = HAL_ERROR;
 
  }
 
  else
 
  {
 
    /* Check the parameter */
 
    assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
 
    if(hcomp->State == HAL_COMP_STATE_READY)
 
    {
 
      /* Enable the selected comparator */
 
      if(hcomp->Instance == COMP2)
 
      {
 
        regshift = COMP_CSR_COMP2_SHIFT;
 
      }
 
      SET_BIT(COMP->CSR, (uint32_t)COMP_CSR_COMPxEN << regshift);
 
 
      hcomp->State = HAL_COMP_STATE_BUSY;      
 
    }
 
    else
 
    {
 
      status = HAL_ERROR;
 
    }
 
  }
 
 
  return status;
 
}
 
 
/**
 
  * @brief  Stop the comparator 
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_COMP_Stop(COMP_HandleTypeDef *hcomp)
 
{ 
 
  HAL_StatusTypeDef status = HAL_OK;
 
  uint32_t regshift = COMP_CSR_COMP1_SHIFT;
 
  
 
  /* Check the COMP handle allocation and lock status */
 
  if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
 
  {
 
    status = HAL_ERROR;
 
  }
 
  else
 
  {
 
    /* Check the parameter */
 
    assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
 
    if(hcomp->State == HAL_COMP_STATE_BUSY)
 
    {
 
      /* Disable the selected comparator */
 
      if(hcomp->Instance == COMP2)
 
      {
 
        regshift = COMP_CSR_COMP2_SHIFT;
 
      }
 
      CLEAR_BIT(COMP->CSR, (uint32_t)COMP_CSR_COMPxEN << regshift);
 
 
      hcomp->State = HAL_COMP_STATE_READY;
 
    }
 
    else
 
    {
 
      status = HAL_ERROR;
 
    }
 
  }
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  Enables the interrupt and starts the comparator
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_COMP_Start_IT(COMP_HandleTypeDef *hcomp)
 
{ 
 
  HAL_StatusTypeDef status = HAL_OK;
 
  uint32_t extiline = 0;
 
  
 
  /* Check the parameter */
 
  assert_param(IS_COMP_TRIGGERMODE(hcomp->Init.TriggerMode));
 
 
  status = HAL_COMP_Start(hcomp);
 
  if(status == HAL_OK)
 
  {
 
    /* Check the Exti Line output configuration */
 
    extiline = __HAL_COMP_GET_EXTI_LINE(hcomp->Instance);
 
    /* Configure the rising edge */
 
    if((hcomp->Init.TriggerMode & COMP_TRIGGERMODE_IT_RISING) != RESET)
 
    {
 
      __HAL_COMP_EXTI_RISING_IT_ENABLE(extiline);
 
    }
 
    else
 
    {
 
      __HAL_COMP_EXTI_RISING_IT_DISABLE(extiline);
 
    }
 
    /* Configure the falling edge */
 
    if((hcomp->Init.TriggerMode & COMP_TRIGGERMODE_IT_FALLING) != RESET)
 
    {
 
      __HAL_COMP_EXTI_FALLING_IT_ENABLE(extiline);
 
    }
 
    else
 
    {
 
      __HAL_COMP_EXTI_FALLING_IT_DISABLE(extiline);
 
    }
 
    /* Enable Exti interrupt mode */
 
    __HAL_COMP_EXTI_ENABLE_IT(extiline);
 
    /* Clear COMP Exti pending bit */
 
    __HAL_COMP_EXTI_CLEAR_FLAG(extiline);    
 
  }
 
 
  return status;
 
}
 
 
/**
 
  * @brief  Disable the interrupt and Stop the comparator 
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_COMP_Stop_IT(COMP_HandleTypeDef *hcomp)
 
{ 
 
  HAL_StatusTypeDef status = HAL_OK;
 
  
 
  /* Disable the Exti Line interrupt mode */
 
  __HAL_COMP_EXTI_DISABLE_IT(__HAL_COMP_GET_EXTI_LINE(hcomp->Instance));
 
  
 
  status = HAL_COMP_Stop(hcomp);
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  Comparator IRQ Handler 
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
void HAL_COMP_IRQHandler(COMP_HandleTypeDef *hcomp)
 
{
 
  uint32_t extiline = __HAL_COMP_GET_EXTI_LINE(hcomp->Instance);
 
  
 
  /* Check COMP Exti flag */
 
  if(__HAL_COMP_EXTI_GET_FLAG(extiline) != RESET)
 
  {
 
    /* Clear COMP Exti pending bit */
 
    __HAL_COMP_EXTI_CLEAR_FLAG(extiline);
 
 
    /* COMP trigger user callback */
 
    HAL_COMP_TriggerCallback(hcomp);    
 
  }  
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_Exported_Functions_Group3 Peripheral Control functions 
 
 *  @brief   management functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the COMP data 
 
    transfers.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Lock the selected comparator configuration. 
 
  * @param  hcomp: COMP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_COMP_Lock(COMP_HandleTypeDef *hcomp)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
  uint32_t regshift = COMP_CSR_COMP1_SHIFT;
 
 
  /* Check the COMP handle allocation and lock status */
 
  if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET))
 
  {
 
    status = HAL_ERROR;
 
  }
 
  else
 
  {
 
    /* Check the parameter */
 
    assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
 
    /* Set lock flag */
 
    hcomp->State |= COMP_STATE_BIT_LOCK;
 
 
    /* Set the lock bit corresponding to selected comparator */
 
    if(hcomp->Instance == COMP2)
 
    {
 
      regshift = COMP_CSR_COMP2_SHIFT;
 
    }
 
    SET_BIT(COMP->CSR, (uint32_t)COMP_CSR_COMPxLOCK << regshift);
 
  }
 
  
 
  return status; 
 
}
 
 
/**
 
  * @brief  Return the output level (high or low) of the selected comparator. 
 
  *         The output level depends on the selected polarity.
 
  *         If the polarity is not inverted:
 
  *           - Comparator output is low when the non-inverting input is at a lower
 
  *             voltage than the inverting input
 
  *           - Comparator output is high when the non-inverting input is at a higher
 
  *             voltage than the inverting input
 
  *         If the polarity is inverted:
 
  *           - Comparator output is high when the non-inverting input is at a lower
 
  *             voltage than the inverting input
 
  *           - Comparator output is low when the non-inverting input is at a higher
 
  *             voltage than the inverting input
 
  * @param  hcomp: COMP handle
 
  * @retval Returns the selected comparator output level: COMP_OUTPUTLEVEL_LOW or COMP_OUTPUTLEVEL_HIGH.
 
  *       
 
  */
 
uint32_t HAL_COMP_GetOutputLevel(COMP_HandleTypeDef *hcomp)
 
{
 
  uint32_t level=0;
 
  uint32_t regshift = COMP_CSR_COMP1_SHIFT;
 
  
 
  /* Check the parameter */
 
  assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
  
 
  if(hcomp->Instance == COMP2)
 
  {
 
    regshift = COMP_CSR_COMP2_SHIFT;
 
  }
 
  level = READ_BIT(COMP->CSR, (uint32_t)COMP_CSR_COMPxOUT << regshift);
 
  
 
  if(level != 0)
 
  {
 
    return(COMP_OUTPUTLEVEL_HIGH);
 
  }
 
  return(COMP_OUTPUTLEVEL_LOW);
 
}
 
 
/**
 
  * @brief  Comparator callback.
 
  * @param  hcomp: COMP handle
 
  * @retval None
 
  */
 
__weak void HAL_COMP_TriggerCallback(COMP_HandleTypeDef *hcomp)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_COMP_TriggerCallback should be implemented in the user file
 
   */
 
}
 
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup COMP_Exported_Functions_Group4 Peripheral State functions 
 
 *  @brief   Peripheral State functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the COMP state
 
  * @param  hcomp : COMP handle
 
  * @retval HAL state
 
  */
 
HAL_COMP_StateTypeDef HAL_COMP_GetState(COMP_HandleTypeDef *hcomp)
 
{
 
  /* Check the COMP handle allocation */
 
  if(hcomp == NULL)
 
  {
 
    return HAL_COMP_STATE_RESET;
 
  }
 
 
  /* Check the parameter */
 
  assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance));
 
 
  return hcomp->State;
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_COMP_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F051x8 || STM32F058xx || */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || defined (STM32F098xx) */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_cortex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   CORTEX HAL module driver.
 
  *          This file provides firmware functions to manage the following
 
  *          functionalities of the CORTEX:
 
  *           + Initialization and de-initialization functions
 
  *           + Peripheral Control functions 
 
  *
 
  *  @verbatim
 
  ==============================================================================
 
                        ##### How to use this driver #####
 
  ==============================================================================
 
 
    [..]  
 
    *** How to configure Interrupts using CORTEX HAL driver ***
 
    ===========================================================
 
    [..]
 
    This section provides functions allowing to configure the NVIC interrupts (IRQ).
 
    The Cortex-M0 exceptions are managed by CMSIS functions.
 
      (#) Enable and Configure the priority of the selected IRQ Channels. 
 
             The priority can be 0..3. 
 
 
        -@- Lower priority values gives higher priority.
 
        -@- Priority Order:
 
            (#@) Lowest priority.
 
            (#@) Lowest hardware priority (IRQn position).  
 
 
      (#)  Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority()
 
 
      (#)  Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ()
 
 
 
    [..]
 
    *** How to configure Systick using CORTEX HAL driver ***
 
    ========================================================
 
    [..]
 
    Setup SysTick Timer for time base 
 
           
 
   (+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
 
       is a CMSIS function that:
 
        (++) Configures the SysTick Reload register with value passed as function parameter.
 
        (++) Configures the SysTick IRQ priority to the lowest value (0x03).
 
        (++) Resets the SysTick Counter register.
 
        (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
 
        (++) Enables the SysTick Interrupt.
 
        (++) Starts the SysTick Counter.
 
    
 
   (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
 
       __HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
 
       HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined
 
       inside the stm32f0xx_hal_cortex.h file.
 
 
   (+) You can change the SysTick IRQ priority by calling the
 
       HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function 
 
       call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
 
 
   (+) To adjust the SysTick time base, use the following formula:
 
 
       Reload Value = SysTick Counter Clock (Hz) x  Desired Time base (s)
 
       (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
 
       (++) Reload Value should not exceed 0xFFFFFF
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup CORTEX CORTEX HAL module driver
 
  * @brief CORTEX CORTEX HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_CORTEX_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
 
  * @{
 
  */
 
 
 
/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions
 
 *
 
@verbatim
 
  ==============================================================================
 
              ##### Initialization and de-initialization functions #####
 
  ==============================================================================
 
    [..]
 
      This section provides the CORTEX HAL driver functions allowing to configure Interrupts
 
      Systick functionalities 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Sets the priority of an interrupt.
 
  * @param  IRQn: External interrupt number .
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to stm32l0xx.h file)
 
  * @param  PreemptPriority: The pre-emption priority for the IRQn channel.
 
  *         This parameter can be a value between 0 and 3.
 
  *         A lower priority value indicates a higher priority
 
  * @param  SubPriority: The subpriority level for the IRQ channel.
 
  *         with stm32f0xx devices, this parameter is a dummy value and it is ignored, because 
 
  *         no subpriority supported in Cortex M0 based products.   
 
  * @retval None
 
  */
 
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
 
{ 
 
  /* Check the parameters */
 
  assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
 
  NVIC_SetPriority(IRQn,PreemptPriority);
 
}
 
 
/**
 
  * @brief  Enables a device specific interrupt in the NVIC interrupt controller.
 
  * @note   To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
 
  *         function should be called before. 
 
  * @param  IRQn External interrupt number
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
 
  * @retval None
 
  */
 
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
 
{
 
  /* Enable interrupt */
 
  NVIC_EnableIRQ(IRQn);
 
}
 
 
/**
 
  * @brief  Disables a device specific interrupt in the NVIC interrupt controller.
 
  * @param  IRQn External interrupt number
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
 
  * @retval None
 
  */
 
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
 
{
 
  /* Disable interrupt */
 
  NVIC_DisableIRQ(IRQn);
 
}
 
 
/**
 
  * @brief  Initiates a system reset request to reset the MCU.
 
  * @retval None
 
  */
 
void HAL_NVIC_SystemReset(void)
 
{
 
  /* System Reset */
 
  NVIC_SystemReset();
 
}
 
 
/**
 
  * @brief  Initializes the System Timer and its interrupt, and starts the System Tick Timer.
 
  *         Counter is in free running mode to generate periodic interrupts.
 
  * @param  TicksNumb: Specifies the ticks Number of ticks between two interrupts.
 
  * @retval status:  - 0  Function succeeded.
 
  *                  - 1  Function failed.
 
  */
 
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
 
{
 
   return SysTick_Config(TicksNumb);
 
}
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions 
 
 *  @brief   Cortex control functions
 
 *
 
@verbatim
 
  ==============================================================================
 
                      ##### Peripheral Control functions #####
 
  ==============================================================================
 
    [..]
 
      This subsection provides a set of functions allowing to control the CORTEX
 
      (NVIC, SYSTICK) functionalities.
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
 
/**
 
  * @brief  Gets the priority of an interrupt.
 
  * @param  IRQn: External interrupt number
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
 
  * @retval None
 
  */
 
uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn)
 
{
 
  /* Get priority for Cortex-M system or device specific interrupts */
 
  return NVIC_GetPriority(IRQn);
 
}
 
 
/**
 
  * @brief  Sets Pending bit of an external interrupt.
 
  * @param  IRQn External interrupt number
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
 
  * @retval None
 
  */
 
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
 
{
 
  /* Set interrupt pending */
 
  NVIC_SetPendingIRQ(IRQn);
 
}
 
 
/**
 
  * @brief  Gets Pending Interrupt (reads the pending register in the NVIC
 
  *         and returns the pending bit for the specified interrupt).
 
  * @param  IRQn External interrupt number
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
 
  * @retval status: - 0  Interrupt status is not pending.
 
  *                 - 1  Interrupt status is pending.
 
  */
 
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
 
{
 
  /* Return 1 if pending else 0 */
 
  return NVIC_GetPendingIRQ(IRQn);
 
}
 
 
/**
 
  * @brief  Clears the pending bit of an external interrupt.
 
  * @param  IRQn External interrupt number
 
  *         This parameter can be an enumerator of IRQn_Type enumeration
 
  *         (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
 
  * @retval None
 
  */
 
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
 
{
 
  /* Clear pending interrupt */
 
  NVIC_ClearPendingIRQ(IRQn);
 
}
 
 
/**
 
  * @brief  Configures the SysTick clock source.
 
  * @param  CLKSource: specifies the SysTick clock source.
 
  *         This parameter can be one of the following values:
 
  *             @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
 
  *             @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
 
  * @retval None
 
  */
 
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
 
  if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
 
  {
 
    SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
 
  }
 
  else
 
  {
 
    SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
 
  }
 
}
 
 
/**
 
  * @brief  This function handles SYSTICK interrupt request.
 
  * @retval None
 
  */
 
void HAL_SYSTICK_IRQHandler(void)
 
{
 
  HAL_SYSTICK_Callback();
 
}
 
 
/**
 
  * @brief  SYSTICK callback.
 
  * @retval None
 
  */
 
__weak void HAL_SYSTICK_Callback(void)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SYSTICK_Callback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_CORTEX_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_crc.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   CRC HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Cyclic Redundancy Check (CRC) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + Peripheral Control functions 
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
 ===============================================================================
 
            ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
         (#) Enable CRC AHB clock using __CRC_CLK_ENABLE();
 
         (#) Initialize CRC calculator
 
             (++)specify generating polynomial (IP default or non-default one)
 
             (++)specify initialization value (IP default or non-default one)
 
             (++)specify input data format
 
             (++)specify input or output data inversion mode if any
 
         (#) Use HAL_CRC_Accumulate() function to compute the CRC value of the 
 
             input data buffer starting with the previously computed CRC as 
 
             initialization value
 
         (#) Use HAL_CRC_Calculate() function to compute the CRC value of the 
 
             input data buffer starting with the defined initialization value 
 
             (default or non-default) to initiate CRC calculation
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup CRC CRC HAL module driver 
 
  * @brief CRC HAL module driver.
 
  * @{
 
  */
 
 
#ifdef HAL_CRC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup CRC_Private_Functions CRC Private Functions
 
  * @{
 
  */
 
static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength);
 
static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength);
 
/**
 
  * @}
 
  */
 
  
 
/* Exported functions ---------------------------------------------------------*/
 
/** @defgroup CRC_Exported_Functions CRC Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup CRC_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions. 
 
 *
 
@verbatim    
 
 ===============================================================================
 
            ##### Initialization and Configuration functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize the CRC according to the specified parameters 
 
          in the CRC_InitTypeDef and create the associated handle
 
      (+) DeInitialize the CRC peripheral
 
      (+) Initialize the CRC MSP
 
      (+) DeInitialize CRC MSP 
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the CRC according to the specified
 
  *         parameters in the CRC_InitTypeDef and creates the associated handle.
 
  * @param  hcrc: CRC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc)
 
{
 
  /* Check the CRC handle allocation */
 
  if(hcrc == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance));
 
 
  if(hcrc->State == HAL_CRC_STATE_RESET)
 
  {   
 
    /* Init the low level hardware */
 
    HAL_CRC_MspInit(hcrc);
 
  }
 
  
 
  hcrc->State = HAL_CRC_STATE_BUSY; 
 
  
 
  /* Extended initialization: if programmable polynomial feature is 
 
     applicable to device, set default or non-default generating 
 
     polynomial according to hcrc->Init parameters.
 
     If feature is non-applicable to device in use, HAL_CRCEx_Init straight 
 
     away reports HAL_OK. */
 
  if (HAL_CRCEx_Init(hcrc) != HAL_OK)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* check whether or not non-default CRC initial value has been 
 
   * picked up by user */
 
  assert_param(IS_DEFAULT_INIT_VALUE(hcrc->Init.DefaultInitValueUse));
 
  if (hcrc->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_ENABLE)
 
  {
 
    WRITE_REG(hcrc->Instance->INIT, DEFAULT_CRC_INITVALUE);  
 
  }
 
  else
 
  {
 
    WRITE_REG(hcrc->Instance->INIT, hcrc->Init.InitValue);
 
  }
 
  
 
 
  /* set input data inversion mode */
 
  assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(hcrc->Init.InputDataInversionMode)); 
 
  MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, hcrc->Init.InputDataInversionMode); 
 
  
 
  /* set output data inversion mode */
 
  assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(hcrc->Init.OutputDataInversionMode)); 
 
  MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, hcrc->Init.OutputDataInversionMode);  
 
  
 
  /* makes sure the input data format (bytes, halfwords or words stream)
 
   * is properly specified by user */
 
  assert_param(IS_CRC_INPUTDATA_FORMAT(hcrc->InputDataFormat));
 
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the CRC peripheral. 
 
  * @param  hcrc: CRC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc)
 
{ 
 
  /* Check the CRC handle allocation */
 
  if(hcrc == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance));
 
  
 
  /* Check the CRC peripheral state */
 
  if(hcrc->State == HAL_CRC_STATE_BUSY)
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_BUSY;
 
 
  /* DeInit the low level hardware */
 
  HAL_CRC_MspDeInit(hcrc);
 
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_RESET;
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hcrc);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the CRC MSP.
 
  * @param  hcrc: CRC handle
 
  * @retval None
 
  */
 
__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CRC_MspInit can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes the CRC MSP.
 
  * @param  hcrc: CRC handle
 
  * @retval None
 
  */
 
__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_CRC_MspDeInit can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions 
 
 *  @brief    management functions. 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer
 
          using combination of the previous CRC value and the new one.
 
          
 
          or
 
          
 
      (+) Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer
 
          independently of the previous CRC value.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**                  
 
  * @brief  Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer
 
  *         starting with the previously computed CRC as initialization value.
 
  * @param  hcrc: CRC handle
 
  * @param  pBuffer: pointer to the input data buffer, exact input data format is
 
  *         provided by hcrc->InputDataFormat.  
 
  * @param  BufferLength: input data buffer length
 
  * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
 
  */
 
uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
 
{
 
  uint32_t index = 0; /* CRC input data buffer index */
 
  uint32_t temp = 0;  /* CRC output (read from hcrc->Instance->DR register) */
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hcrc); 
 
    
 
  /* Change CRC peripheral state */  
 
  hcrc->State = HAL_CRC_STATE_BUSY;
 
  
 
  switch (hcrc->InputDataFormat)
 
  {
 
    case CRC_INPUTDATA_FORMAT_WORDS:  
 
      /* Enter Data to the CRC calculator */
 
      for(index = 0; index < BufferLength; index++)
 
      {
 
        hcrc->Instance->DR = pBuffer[index];
 
      }
 
      temp = hcrc->Instance->DR;
 
      break;
 
      
 
    case CRC_INPUTDATA_FORMAT_BYTES: 
 
      temp = CRC_Handle_8(hcrc, (uint8_t*)pBuffer, BufferLength);
 
      break;
 
      
 
    case CRC_INPUTDATA_FORMAT_HALFWORDS: 
 
      temp = CRC_Handle_16(hcrc, (uint16_t*)pBuffer, BufferLength);
 
      break;
 
    
 
    default:
 
      break;
 
  }
 
  
 
  /* Change CRC peripheral state */    
 
  hcrc->State = HAL_CRC_STATE_READY; 
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hcrc);
 
  
 
  /* Return the CRC computed value */ 
 
  return temp;
 
}
 
 
 
/**                  
 
  * @brief  Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer
 
  *         starting with hcrc->Instance->INIT as initialization value.
 
  * @param  hcrc: CRC handle
 
  * @param  pBuffer: pointer to the input data buffer, exact input data format is
 
  *         provided by hcrc->InputDataFormat.  
 
  * @param  BufferLength: input data buffer length
 
  * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
 
  */  
 
uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
 
{
 
  uint32_t index = 0; /* CRC input data buffer index */
 
  uint32_t temp = 0;  /* CRC output (read from hcrc->Instance->DR register) */
 
    
 
  /* Process locked */
 
  __HAL_LOCK(hcrc); 
 
  
 
  /* Change CRC peripheral state */  
 
  hcrc->State = HAL_CRC_STATE_BUSY;
 
  
 
  /* Reset CRC Calculation Unit (hcrc->Instance->INIT is 
 
  *  written in hcrc->Instance->DR) */
 
  __HAL_CRC_DR_RESET(hcrc);
 
  
 
  switch (hcrc->InputDataFormat)
 
  {
 
    case CRC_INPUTDATA_FORMAT_WORDS:  
 
      /* Enter 32-bit input data to the CRC calculator */
 
      for(index = 0; index < BufferLength; index++)
 
      {
 
        hcrc->Instance->DR = pBuffer[index];
 
      }
 
      temp = hcrc->Instance->DR;
 
      break;
 
      
 
    case CRC_INPUTDATA_FORMAT_BYTES: 
 
      /* Specific 8-bit input data handling  */
 
      temp = CRC_Handle_8(hcrc, (uint8_t*)pBuffer, BufferLength);
 
      break;
 
      
 
    case CRC_INPUTDATA_FORMAT_HALFWORDS: 
 
      /* Specific 16-bit input data handling  */
 
      temp = CRC_Handle_16(hcrc, (uint16_t*)pBuffer, BufferLength);
 
      break;
 
 
    default:
 
      break;
 
  }
 
 
  /* Change CRC peripheral state */    
 
  hcrc->State = HAL_CRC_STATE_READY; 
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hcrc);
 
  
 
  /* Return the CRC computed value */ 
 
  return temp;
 
}
 
/**
 
  * @}
 
  */
 
 
/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions 
 
 *  @brief    Peripheral State functions. 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permits to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Returns the CRC state.
 
  * @param  hcrc: CRC handle
 
  * @retval HAL state
 
  */
 
HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc)
 
{
 
  return hcrc->State;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup CRC_Private_Functions CRC Private Functions
 
  * @{
 
  */
 
/**             
 
  * @brief  Enter 8-bit input data to the CRC calculator.
 
  *         Specific data handling to optimize processing time.  
 
  * @param  hcrc: CRC handle
 
  * @param  pBuffer: pointer to the input data buffer
 
  * @param  BufferLength: input data buffer length
 
  * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
 
  */
 
static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength)
 
{
 
  uint32_t i = 0; /* input data buffer index */
 
  
 
   /* Processing time optimization: 4 bytes are entered in a row with a single word write,
 
    * last bytes must be carefully fed to the CRC calculator to ensure a correct type
 
    * handling by the IP */
 
   for(i = 0; i < (BufferLength/4); i++)
 
   {
 
      hcrc->Instance->DR = ((uint32_t)pBuffer[4*i]<<24) | ((uint32_t)pBuffer[4*i+1]<<16) | ((uint32_t)pBuffer[4*i+2]<<8) | (uint32_t)pBuffer[4*i+3];      
 
   }
 
   /* last bytes specific handling */
 
   if ((BufferLength%4) != 0)
 
   {
 
     if  (BufferLength%4 == 1)
 
     {
 
       *(uint8_t*) (&hcrc->Instance->DR) = pBuffer[4*i];
 
     }
 
     if  (BufferLength%4 == 2)
 
     {
 
       *(uint16_t*) (&hcrc->Instance->DR) = ((uint16_t)pBuffer[4*i]<<8) | (uint16_t)pBuffer[4*i+1];
 
     }
 
     if  (BufferLength%4 == 3)
 
     {
 
       *(uint16_t*) (&hcrc->Instance->DR) = ((uint16_t)pBuffer[4*i]<<8) | (uint16_t)pBuffer[4*i+1];
 
       *(uint8_t*) (&hcrc->Instance->DR) = pBuffer[4*i+2];       
 
     }
 
   }
 
  
 
  /* Return the CRC computed value */ 
 
  return hcrc->Instance->DR;
 
}
 
 
 
 
/**             
 
  * @brief  Enter 16-bit input data to the CRC calculator.
 
  *         Specific data handling to optimize processing time.  
 
  * @param  hcrc: CRC handle
 
  * @param  pBuffer: pointer to the input data buffer
 
  * @param  BufferLength: input data buffer length
 
  * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
 
  */  
 
static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength)
 
{
 
  uint32_t i = 0;  /* input data buffer index */
 
  
 
  /* Processing time optimization: 2 HalfWords are entered in a row with a single word write,
 
   * in case of odd length, last HalfWord must be carefully fed to the CRC calculator to ensure 
 
   * a correct type handling by the IP */
 
  for(i = 0; i < (BufferLength/2); i++)
 
  {
 
    hcrc->Instance->DR = (pBuffer[2*i]<<16) | pBuffer[2*i+1];     
 
  }
 
  if ((BufferLength%2) != 0)
 
  {
 
    *(uint16_t*) (&hcrc->Instance->DR) = pBuffer[2*i]; 
 
  }
 
   
 
  /* Return the CRC computed value */ 
 
  return hcrc->Instance->DR;
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_CRC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_crc_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended CRC HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the CRC peripheral:
 
  *           + Extended initialization functions
 
  *         
 
  @verbatim
 
================================================================================
 
          ##### Product specific features  #####
 
================================================================================
 
   
 
            ##### How to use this driver #####
 
================================================================================
 
    [..]
 
         (+) Extended initialization
 
         (+) Set or not user-defined generating
 
            polynomial other than default one
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup CRCEx CRCEx Extended HAL Module Driver 
 
  * @brief CRC Extended HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_CRC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup CRCEx_Exported_Functions CRCEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup CRCEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions
 
  * @brief    Extended Initialization and Configuration functions.
 
  *
 
@verbatim    
 
 ===============================================================================
 
            ##### Initialization and Configuration functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize the CRC generating polynomial: if programmable polynomial 
 
          feature is applicable to device, set default or non-default generating 
 
          polynomial according to hcrc->Init.DefaultPolynomialUse parameter.
 
          If feature is non-applicable to device in use, HAL_CRCEx_Init straight 
 
          away reports HAL_OK.
 
      (+) Set the generating polynomial
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
 
/**
 
  * @brief  Extended initialization to set generating polynomial
 
  * @param  hcrc: CRC handle             
 
  * @retval HAL status
 
  */             
 
HAL_StatusTypeDef HAL_CRCEx_Init(CRC_HandleTypeDef *hcrc)
 
{
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined (STM32F098xx)    
 
  /* check whether or not non-default generating polynomial has been 
 
   * picked up by user */
 
  assert_param(IS_DEFAULT_POLYNOMIAL(hcrc->Init.DefaultPolynomialUse)); 
 
  if (hcrc->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_ENABLE)
 
  {
 
    /* initialize IP with default generating polynomial */
 
    WRITE_REG(hcrc->Instance->POL, DEFAULT_CRC32_POLY);  
 
    MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, CRC_POLYLENGTH_32B);
 
  }
 
  else
 
  {
 
    /* initialize CRC IP with generating polynomial defined by user */
 
    if (HAL_CRCEx_Polynomial_Set(hcrc, hcrc->Init.GeneratingPolynomial, hcrc->Init.CRCLength) != HAL_OK)
 
    {
 
      return HAL_ERROR;
 
    }
 
  }
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined (STM32F098xx) */    
 
 
   return HAL_OK;
 
}
 
 
/**
 
  * @brief  Set the Reverse Input data mode.
 
  * @param  hcrc: CRC handle
 
  * @param  InputReverseMode: Input Data inversion mode
 
  *         This parameter can be one of the following values:
 
  *          @arg CRC_INPUTDATA_NOINVERSION: no change in bit order (default value)
 
  *          @arg CRC_INPUTDATA_INVERSION_BYTE: Byte-wise bit reversal
 
  *          @arg CRC_INPUTDATA_INVERSION_HALFWORD: HalfWord-wise bit reversal
 
  *          @arg CRC_INPUTDATA_INVERSION_WORD: Word-wise bit reversal              
 
  * @retval HAL status
 
  */                                   
 
HAL_StatusTypeDef HAL_CRCEx_Input_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t InputReverseMode)
 
{  
 
  /* Check the parameters */
 
  assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(InputReverseMode));
 
  
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_BUSY;
 
 
  /* set input data inversion mode */
 
  MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, InputReverseMode);    
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Set the Reverse Output data mode.
 
  * @param  hcrc: CRC handle
 
  * @param  OutputReverseMode: Output Data inversion mode
 
  *         This parameter can be one of the following values:
 
  *          @arg CRC_OUTPUTDATA_INVERSION_DISABLED: no CRC inversion (default value)
 
  *          @arg CRC_OUTPUTDATA_INVERSION_ENABLED: bit-level inversion (e.g for a 8-bit CRC: 0xB5 becomes 0xAD)            
 
  * @retval HAL status
 
  */                                   
 
HAL_StatusTypeDef HAL_CRCEx_Output_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t OutputReverseMode)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(OutputReverseMode));
 
  
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_BUSY;
 
 
  /* set output data inversion mode */
 
  MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, OutputReverseMode); 
 
      
 
  /* Change CRC peripheral state */
 
  hcrc->State = HAL_CRC_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
#if defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || defined (STM32F091xC) || defined (STM32F098xx)
 
/**
 
  * @brief  Initializes the CRC polynomial if different from default one.
 
  * @param  hcrc: CRC handle
 
  * @param  Pol: CRC generating polynomial (7, 8, 16 or 32-bit long)
 
  *         This parameter is written in normal representation, e.g.
 
  *         for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 
 
  *         for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021     
 
  * @param  PolyLength: CRC polynomial length 
 
  *         This parameter can be one of the following values:
 
  *          @arg CRC_POLYLENGTH_7B: 7-bit long CRC (generating polynomial of degree 7)
 
  *          @arg CRC_POLYLENGTH_8B: 8-bit long CRC (generating polynomial of degree 8)
 
  *          @arg CRC_POLYLENGTH_16B: 16-bit long CRC (generating polynomial of degree 16)
 
  *          @arg CRC_POLYLENGTH_32B: 32-bit long CRC (generating polynomial of degree 32)                
 
  * @retval HAL status
 
  */                                   
 
HAL_StatusTypeDef HAL_CRCEx_Polynomial_Set(CRC_HandleTypeDef *hcrc, uint32_t Pol, uint32_t PolyLength)
 
{
 
  uint32_t msb = 31; /* polynomial degree is 32 at most, so msb is initialized to max value */
 
 
  /* Check the parameters */
 
  assert_param(IS_CRC_POL_LENGTH(PolyLength));
 
  
 
  /* check polynomial definition vs polynomial size:
 
   * polynomial length must be aligned with polynomial
 
   * definition. HAL_ERROR is reported if Pol degree is 
 
   * larger than that indicated by PolyLength.
 
   * Look for MSB position: msb will contain the degree of
 
   *  the second to the largest polynomial member. E.g., for
 
   *  X^7 + X^6 + X^5 + X^2 + 1, msb = 6. */
 
  while (((Pol & (1U << msb)) == 0) && (msb-- > 0))
 
  {}
 
 
  switch (PolyLength)
 
  {
 
    case CRC_POLYLENGTH_7B:
 
      if (msb >= HAL_CRC_LENGTH_7B)
 
      {
 
        return  HAL_ERROR;
 
      }
 
      break;
 
    case CRC_POLYLENGTH_8B:
 
      if (msb >= HAL_CRC_LENGTH_8B)
 
      { 
 
        return  HAL_ERROR;
 
      }
 
      break;
 
    case CRC_POLYLENGTH_16B:
 
      if (msb >= HAL_CRC_LENGTH_16B)
 
      {
 
        return  HAL_ERROR;
 
      }
 
      break;
 
    case CRC_POLYLENGTH_32B:
 
      /* no polynomial definition vs. polynomial length issue possible */
 
      break;      
 
    default:
 
      break;
 
  }
 
 
  /* set generating polynomial */
 
  WRITE_REG(hcrc->Instance->POL, Pol);
 
  
 
  /* set generating polynomial size */
 
  MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, PolyLength);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
#endif /* #if defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || defined (STM32F091xC) || defined (STM32F098xx) */
 
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */
 
 
 
#endif /* HAL_CRC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dac.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   DAC HAL module driver.
 
  *         This file provides firmware functions to manage the following 
 
  *         functionalities of the Digital to Analog Converter (DAC) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral Control functions
 
  *           + Peripheral State and Errors functions      
 
  *     
 
  *
 
  @verbatim      
 
  ==============================================================================
 
                      ##### DAC Peripheral features #####
 
  ==============================================================================
 
    [..]        
 
      *** DAC Channels ***
 
      ====================  
 
    [..]  
 
    STM32F0 devices integrates no, one or two 12-bit Digital Analog Converters.
 
    STM32F05x devices have one converter (channel1)
 
    STM32F07x & STM32F09x devices have two converters (i.e. channel1 & channel2)
 
 
    When 2 converters are present (i.e. channel1 & channel2)  they 
 
    can be used independently or simultaneously (dual mode):
 
      (#) DAC channel1 with DAC_OUT1 (PA4) as output
 
      (#) DAC channel2 with DAC_OUT2 (PA5) as output
 
      
 
      *** DAC Triggers ***
 
      ====================
 
    [..]
 
    Digital to Analog conversion can be non-triggered using DAC_Trigger_None
 
    and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register. 
 
    [..] 
 
    Digital to Analog conversion can be triggered by:
 
      (#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_Trigger_Ext_IT9.
 
          The used pin (GPIOx_Pin9) must be configured in input mode.
 
  
 
      (#) Timers TRGO: TIM2, TIM3, TIM6, and TIM15 
 
          (DAC_Trigger_T2_TRGO, DAC_Trigger_T3_TRGO...)
 
  
 
      (#) Software using DAC_Trigger_Software
 
  
 
      *** DAC Buffer mode feature ***
 
      =============================== 
 
      [..] 
 
      Each DAC channel integrates an output buffer that can be used to 
 
      reduce the output impedance, and to drive external loads directly
 
      without having to add an external operational amplifier.
 
      To enable, the output buffer use  
 
      sConfig.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
 
      [..]           
 
      (@) Refer to the device datasheet for more details about output 
 
          impedance value with and without output buffer.
 
            
 
       *** DAC wave generation feature ***
 
       =================================== 
 
       [..]     
 
       Both DAC channels can be used to generate
 
         (#) Noise wave 
 
         (#) Triangle wave
 
            
 
       *** DAC data format ***
 
       =======================
 
       [..]   
 
       The DAC data format can be:
 
         (#) 8-bit right alignment using DAC_ALIGN_8B_R
 
         (#) 12-bit left alignment using DAC_ALIGN_12B_L
 
         (#) 12-bit right alignment using DAC_ALIGN_12B_R
 
  
 
       *** DAC data value to voltage correspondence ***  
 
       ================================================ 
 
       [..] 
 
       The analog output voltage on each DAC channel pin is determined
 
       by the following equation: 
 
       DAC_OUTx = VREF+ * DOR / 4095
 
       with  DOR is the Data Output Register
 
          VEF+ is the input voltage reference (refer to the device datasheet)
 
        e.g. To set DAC_OUT1 to 0.7V, use
 
          Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V
 
  
 
       *** DMA requests  ***
 
       =====================
 
       [..]    
 
       A DMA1 request can be generated when an external trigger (but not
 
       a software trigger) occurs if DMA1 requests are enabled using
 
       HAL_DAC_Start_DMA()
 
       [..]
 
       DMA1 requests are mapped as following:
 
         (#) DAC channel1 : mapped on DMA1 channel3 which must be 
 
             already configured
 
         (#) DAC channel2 : mapped on DMA1 channel4 which must be 
 
             already configured
 
       
 
    -@- For Dual mode and specific signal (Triangle and noise) generation please 
 
        refer to Extension Features Driver description        
 
        STM32F0 devices with one channel (one converting capability) does not
 
        support Dual mode and specific signal (Triangle and noise) generation.
 
      
 
                      ##### How to use this driver #####
 
  ==============================================================================
 
    [..]          
 
      (+) DAC APB clock must be enabled to get write access to DAC
 
          registers using HAL_DAC_Init()
 
      (+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode.
 
      (+) Configure the DAC channel using HAL_DAC_ConfigChannel() function.
 
      (+) Enable the DAC channel using HAL_DAC_Start() or HAL_DAC_Start_DMA functions
 
 
     *** Polling mode IO operation ***
 
     =================================
 
     [..]    
 
       (+) Start the DAC peripheral using HAL_DAC_Start() 
 
       (+) To read the DAC last data output value value, use the HAL_DAC_GetValue() function.
 
       (+) Stop the DAC peripheral using HAL_DAC_Stop()
 
       
 
     *** DMA mode IO operation ***    
 
     ==============================
 
     [..]    
 
       (+) Start the DAC peripheral using HAL_DAC_Start_DMA(), at this stage the user specify the length 
 
           of data to be transfered at each end of conversion 
 
       (+) At The end of data transfer HAL_DAC_ConvCpltCallbackCh1()or HAL_DAC_ConvCpltCallbackCh2()  
 
           function is executed and user can add his own code by customization of function pointer 
 
           HAL_DAC_ConvCpltCallbackCh1 or HAL_DAC_ConvCpltCallbackCh2
 
       (+) In case of transfer Error, HAL_DAC_ErrorCallbackCh1() function is executed and user can 
 
            add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1
 
       (+) Stop the DAC peripheral using HAL_DAC_Stop_DMA()
 
                    
 
     *** DAC HAL driver macros list ***
 
     ============================================= 
 
     [..]
 
       Below the list of most used macros in DAC HAL driver.
 
       
 
      (+) __HAL_DAC_ENABLE : Enable the DAC peripheral
 
      (+) __HAL_DAC_DISABLE : Disable the DAC peripheral
 
      (+) __HAL_DAC_CLEAR_FLAG: Clear the DAC's pending flags
 
      (+) __HAL_DAC_GET_FLAG: Get the selected DAC's flag status
 
      
 
     [..]
 
      (@) You can refer to the DAC HAL driver header file for more useful macros  
 
   
 
 @endverbatim    
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup DAC DAC HAL module driver
 
  * @brief DAC driver modules
 
  * @{
 
  */ 
 
 
#ifdef HAL_DAC_MODULE_ENABLED
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined (STM32F098xx)
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup DAC_Exported_Functions DAC Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup DAC_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
              ##### Initialization and de-initialization functions #####
 
  ==============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize and configure the DAC. 
 
      (+) De-initialize the DAC. 
 
         
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the DAC peripheral according to the specified parameters
 
  *         in the DAC_InitStruct.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef* hdac)
 
{ 
 
  /* Check DAC handle */
 
  if(hdac == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
  /* Check the parameters */
 
  assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance));
 
  
 
  if(hdac->State == HAL_DAC_STATE_RESET)
 
  {  
 
    /* Init the low level hardware */
 
    HAL_DAC_MspInit(hdac);
 
  }
 
  
 
  /* Initialize the DAC state*/
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Set DAC error code to none */
 
  hdac->ErrorCode = HAL_DAC_ERROR_NONE;
 
  
 
  /* Initialize the DAC state*/
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deinitializes the DAC peripheral registers to their default reset values.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef* hdac)
 
{
 
  /* Check DAC handle */
 
  if(hdac == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance));
 
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
 
  /* DeInit the low level hardware */
 
  HAL_DAC_MspDeInit(hdac);
 
 
  /* Set DAC error code to none */
 
  hdac->ErrorCode = HAL_DAC_ERROR_NONE;
 
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_RESET;
 
 
  /* Release Lock */
 
  __HAL_UNLOCK(hdac);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the DAC MSP.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac)
 
{ 
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_MspInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the DAC MSP.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.  
 
  * @retval None
 
  */
 
__weak void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_MspDeInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_Exported_Functions_Group2 IO operation functions
 
 *  @brief    IO operation functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
             ##### IO operation functions #####
 
  ==============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Start conversion.
 
      (+) Stop conversion.
 
      (+) Start conversion and enable DMA transfer.
 
      (+) Stop conversion and disable DMA transfer.
 
      (+) Get result of conversion.
 
                     
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Enables DAC and starts conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @retval HAL status
 
  */
 
__weak HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  /* Note : This function is defined into this file for library reference. */
 
  /*        Function content is located into file stm32f0xx_hal_dac_ex.c   */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @brief  Disables DAC and stop conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Disable the Peripheral */
 
  __HAL_DAC_DISABLE(hdac, Channel);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables DAC and starts conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @param  pData: The destination peripheral Buffer address.
 
  * @param  Length: The length of data to be transferred from memory to DAC peripheral
 
  * @param  Alignment: Specifies the data alignment for DAC channel.
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_ALIGN_8B_R: 8bit right data alignment selected
 
  *            @arg DAC_ALIGN_12B_L: 12bit left data alignment selected
 
  *            @arg DAC_ALIGN_12B_R: 12bit right data alignment selected
 
  * @retval HAL status
 
  */
 
__weak HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment)
 
{
 
  /* Note : This function is defined into this file for library reference. */
 
  /*        Function content is located into file stm32f0xx_hal_dac_ex.c   */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @brief  Disables DAC and stop conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected   
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
   HAL_StatusTypeDef status = HAL_OK;
 
    
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Disable the selected DAC channel DMA request */
 
    hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << Channel);
 
    
 
  /* Disable the Peripharal */
 
  __HAL_DAC_DISABLE(hdac, Channel);
 
  
 
  /* Disable the DMA Channel */
 
  /* Channel1 is used */
 
  if (Channel == DAC_CHANNEL_1)
 
  {
 
    status = HAL_DMA_Abort(hdac->DMA_Handle1);   
 
  }
 
  else /* Channel2 is used for */
 
  {
 
    status = HAL_DMA_Abort(hdac->DMA_Handle2);   
 
  }
 
  
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Return function status */
 
  return status;
 
}
 
 
/**
 
  * @brief  Conversion complete callback in non blocking mode for Channel1 
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef* hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_ConvCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Conversion half DMA transfer callback in non blocking mode for Channel1 
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef* hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_ConvHalfCpltCallbackCh1 could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Error DAC callback for Channel1.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_ErrorCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DMA underrun DAC callback for channel1.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup DAC_Exported_Functions_Group3 Peripheral Control functions
 
 *  @brief   	Peripheral Control functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
             ##### Peripheral Control functions #####
 
  ==============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Configure channels. 
 
      (+) Set the specified data holding register value for DAC channel.
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Configures the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  sConfig: DAC configuration structure.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @retval HAL status
 
  */
 
__weak HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel)
 
{
 
  /* Note : This function is defined into this file for library reference. */
 
  /*        Function content is located into file stm32f0xx_hal_dac_ex.c   */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @brief  Set the specified data holding register value for DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected  
 
  * @param  Alignment: Specifies the data alignment.
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_ALIGN_8B_R: 8bit right data alignment selected
 
  *            @arg DAC_ALIGN_12B_L: 12bit left data alignment selected
 
  *            @arg DAC_ALIGN_12B_R: 12bit right data alignment selected
 
  * @param  Data: Data to be loaded in the selected data holding register.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data)
 
{  
 
  __IO uint32_t tmp = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  assert_param(IS_DAC_ALIGN(Alignment));
 
  assert_param(IS_DAC_DATA(Data));
 
  
 
  tmp = (uint32_t)hdac->Instance; 
 
  if(Channel == DAC_CHANNEL_1)
 
  {
 
    tmp += __HAL_DHR12R1_ALIGNEMENT(Alignment);
 
  }
 
  else
 
  {
 
    tmp += __HAL_DHR12R2_ALIGNEMENT(Alignment);
 
  }
 
 
  /* Set the DAC channel1 selected data holding register */
 
  *(__IO uint32_t *) tmp = Data;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Returns the last data output value of the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @retval The selected DAC channel data output value.
 
  */
 
__weak uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  /* Note : This function is defined into this file for library reference. */
 
  /*        Function content is located into file stm32f0xx_hal_dac_ex.c   */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DAC_Exported_Functions_Group4 Peripheral State and Errors functions
 
 *  @brief   Peripheral State and Errors functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
            ##### Peripheral State and Errors functions #####
 
  ==============================================================================  
 
    [..]
 
    This subsection provides functions allowing to
 
      (+) Check the DAC state.
 
      (+) Check the DAC Errors.
 
        
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  return the DAC state
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval HAL state
 
  */
 
HAL_DAC_StateTypeDef HAL_DAC_GetState(DAC_HandleTypeDef* hdac)
 
{
 
  /* Return DAC state */
 
  return hdac->State;
 
}
 
 
 
/**
 
  * @brief  Return the DAC error code
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval DAC Error Code
 
  */
 
uint32_t HAL_DAC_GetError(DAC_HandleTypeDef *hdac)
 
{
 
  return hdac->ErrorCode;
 
}
 
 
/**
 
  * @brief  Handles DAC interrupt request  
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac)
 
{
 
  /* Note : This function is defined into this file for library reference. */
 
  /*        Function content is located into file stm32f0xx_hal_dac_ex.c   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */
 
#endif /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#endif /* HAL_DAC_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dac_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   DAC HAL module driver.
 
  *         This file provides firmware functions to manage the following 
 
  *         functionalities of DAC extension peripheral:
 
  *           + Extended features functions
 
  *     
 
  *
 
  @verbatim      
 
  ==============================================================================
 
                      ##### How to use this driver #####
 
  ==============================================================================
 
    [..]          
 
      (+) When Dual mode is enabled (i.e DAC Channel1 and Channel2 are used simultaneously) :
 
          Use HAL_DACEx_DualGetValue() to get digital data to be converted and use
 
          HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in Channel 1 and Channel 2.  
 
      (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal.
 
      (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal.
 
   
 
 @endverbatim    
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup DACEx DACEx Extended HAL module driver
 
  * @brief DACEx driver module
 
  * @{
 
  */ 
 
 
#ifdef HAL_DAC_MODULE_ENABLED
 
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
/** @defgroup DACEx_Private_Functions DACEx Private Functions
 
  * @{
 
  */
 
static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma);
 
static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma);
 
static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma); 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup DACEx_Exported_Functions DACEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup DACEx_Exported_Functions_Group1 Extended features functions
 
 *  @brief    Extended features functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                 ##### Extended features functions #####
 
  ==============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Start conversion.
 
      (+) Stop conversion.
 
      (+) Start conversion and enable DMA transfer.
 
      (+) Stop conversion and disable DMA transfer.
 
      (+) Get result of conversion.
 
      (+) Get result of dual mode conversion.
 
                     
 
@endverbatim
 
  * @{
 
  */
 
 
#endif /* STM32F051x8 STM32F058xx  */
 
       /* STM32F071xB STM32F072xB STM32F078xx */
 
       /* STM32F091xC STM32F098xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/**
 
  * @brief  Configures the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  sConfig: DAC configuration structure.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel)
 
{
 
  uint32_t tmpreg1 = 0, tmpreg2 = 0;
 
 
  /* Check the DAC parameters */
 
  assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger));
 
  assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer));
 
  assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger));
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Get the DAC CR value */
 
  tmpreg1 = DAC->CR;
 
  /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
 
  tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); 
 
  /* Configure for the selected DAC channel: buffer output, trigger */
 
  /* Set TSELx and TENx bits according to DAC_Trigger value */
 
  /* Set BOFFx bit according to DAC_OutputBuffer value */   
 
  tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer);
 
  /* Calculate CR register value depending on DAC_Channel */
 
  tmpreg1 |= tmpreg2 << Channel;
 
  /* Write to DAC CR */
 
  DAC->CR = tmpreg1;
 
  /* Disable wave generation */
 
  DAC->CR &= ~(DAC_CR_WAVE1 << Channel);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdac);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
#endif /* STM32F071xB STM32F072xB STM32F078xx */
 
       /* STM32F091xC STM32F098xx  */
 
 
#if defined (STM32F051x8) || defined (STM32F058xx)
 
 
/**
 
  * @brief  Configures the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  sConfig: DAC configuration structure.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel)
 
{
 
  uint32_t tmpreg1 = 0, tmpreg2 = 0;
 
 
  /* Check the DAC parameters */
 
  assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger));
 
  assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer));
 
  assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger));
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Get the DAC CR value */
 
  tmpreg1 = DAC->CR;
 
  /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
 
  // tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); 
 
  tmpreg1 &= ~(((uint32_t)(DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); 
 
  /* Configure for the selected DAC channel: buffer output, trigger */
 
  /* Set TSELx and TENx bits according to DAC_Trigger value */
 
  /* Set BOFFx bit according to DAC_OutputBuffer value */   
 
  tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer);
 
  /* Calculate CR register value depending on DAC_Channel */
 
  tmpreg1 |= tmpreg2 << Channel;
 
  /* Write to DAC CR */
 
  DAC->CR = tmpreg1;
 
  /* Disable wave generation */
 
  //  DAC->CR &= ~(DAC_CR_WAVE1 << Channel);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdac);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
#endif /* STM32F051x8 STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
/* DAC 1 has 2 channels 1 & 2 */
 
 
/**
 
  * @brief  Returns the last data output value of the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @retval The selected DAC channel data output value.
 
  */
 
uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Returns the DAC channel data output register value */
 
  if(Channel == DAC_CHANNEL_1)
 
  {
 
    return hdac->Instance->DOR1;
 
  }
 
  else
 
  {
 
    return hdac->Instance->DOR2;
 
  }
 
}
 
 
#endif /* STM32F071xB  STM32F072xB  STM32F078xx */
 
       /* STM32F091xC  STM32F098xx */
 
  
 
#if defined (STM32F051x8) || defined (STM32F058xx)
 
 
/* DAC 1 has 1 channels  */
 
 
/**
 
  * @brief  Returns the last data output value of the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
    * @retval The selected DAC channel data output value.
 
  */
 
uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Returns the DAC channel data output register value */
 
  return hdac->Instance->DOR1;
 
}
 
 
 
 
#endif /* STM32F051x8 STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/**
 
  * @brief  Enables DAC and starts conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  uint32_t tmp1 = 0, tmp2 = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Enable the Peripharal */
 
  __HAL_DAC_ENABLE(hdac, Channel);
 
  
 
  if(Channel == DAC_CHANNEL_1)
 
  {
 
    tmp1 = hdac->Instance->CR & DAC_CR_TEN1;
 
    tmp2 = hdac->Instance->CR & DAC_CR_TSEL1;
 
    /* Check if software trigger enabled */
 
    if((tmp1 ==  DAC_CR_TEN1) && (tmp2 ==  DAC_CR_TSEL1))
 
    {
 
      /* Enable the selected DAC software conversion */
 
      hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1;
 
    }
 
  }
 
  else
 
  {
 
    tmp1 = hdac->Instance->CR & DAC_CR_TEN2;
 
    tmp2 = hdac->Instance->CR & DAC_CR_TSEL2;    
 
    /* Check if software trigger enabled */
 
    if((tmp1 == DAC_CR_TEN2) && (tmp2 == DAC_CR_TSEL2))
 
    {
 
      /* Enable the selected DAC software conversion*/
 
      hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG2;
 
    }
 
  }
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdac);
 
    
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables DAC and starts conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  *            @arg DAC_CHANNEL_2: DAC Channel2 selected
 
  * @param  pData: The destination peripheral Buffer address.
 
  * @param  Length: The length of data to be transferred from memory to DAC peripheral
 
  * @param  Alignment: Specifies the data alignment for DAC channel.
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_ALIGN_8B_R: 8bit right data alignment selected
 
  *            @arg DAC_ALIGN_12B_L: 12bit left data alignment selected
 
  *            @arg DAC_ALIGN_12B_R: 12bit right data alignment selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment)
 
{
 
  uint32_t tmpreg = 0;
 
    
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  assert_param(IS_DAC_ALIGN(Alignment));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  if(Channel == DAC_CHANNEL_1)
 
  {
 
    /* Set the DMA transfer complete callback for channel1 */
 
    hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1;
 
    
 
    /* Set the DMA half transfer complete callback for channel1 */
 
    hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1;
 
       
 
    /* Set the DMA error callback for channel1 */
 
    hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1;
 
    
 
    /* Enable the selected DAC channel1 DMA request */
 
    hdac->Instance->CR |= DAC_CR_DMAEN1;
 
    
 
    /* Case of use of channel 1 */
 
    switch(Alignment)
 
    {
 
      case DAC_ALIGN_12B_R:
 
        /* Get DHR12R1 address */
 
        tmpreg = (uint32_t)&hdac->Instance->DHR12R1;
 
        break;
 
      case DAC_ALIGN_12B_L:
 
        /* Get DHR12L1 address */
 
        tmpreg = (uint32_t)&hdac->Instance->DHR12L1;
 
        break;
 
      case DAC_ALIGN_8B_R:
 
        /* Get DHR8R1 address */
 
        tmpreg = (uint32_t)&hdac->Instance->DHR8R1;
 
        break;
 
      default:
 
        break;
 
    }
 
  }
 
  else
 
  {
 
    /* Set the DMA transfer complete callback for channel2 */
 
    hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2;
 
    
 
    /* Set the DMA half transfer complete callback for channel2 */
 
    hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2;
 
       
 
    /* Set the DMA error callback for channel2 */
 
    hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2;
 
    
 
    /* Enable the selected DAC channel2 DMA request */
 
    hdac->Instance->CR |= DAC_CR_DMAEN2;
 
    
 
    /* Case of use of channel 2 */
 
    switch(Alignment)
 
    {
 
      case DAC_ALIGN_12B_R:
 
        /* Get DHR12R2 address */
 
        tmpreg = (uint32_t)&hdac->Instance->DHR12R2;
 
        break;
 
      case DAC_ALIGN_12B_L:
 
        /* Get DHR12L2 address */
 
        tmpreg = (uint32_t)&hdac->Instance->DHR12L2;
 
        break;
 
      case DAC_ALIGN_8B_R:
 
        /* Get DHR8R2 address */
 
        tmpreg = (uint32_t)&hdac->Instance->DHR8R2;
 
        break;
 
      default:
 
        break;
 
    }
 
  }
 
  
 
  /* Enable the DMA channel */
 
  if(Channel == DAC_CHANNEL_1)
 
  {
 
    /* Enable the DAC DMA underrun interrupt */
 
    __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1);
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length);
 
  } 
 
  else
 
  {
 
    /* Enable the DAC DMA underrun interrupt */
 
    __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2);
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length);
 
  }
 
  
 
  /* Enable the Peripharal */
 
  __HAL_DAC_ENABLE(hdac, Channel);
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hdac);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
 
 
#endif /* STM32F071xB  STM32F072xB  STM32F078xx */
 
       /* STM32F091xC  STM32F098xx */
 
 
#if defined (STM32F051x8) || defined (STM32F058xx)
 
 
HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel)
 
{
 
  uint32_t tmp1 = 0, tmp2 = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Enable the Peripharal */
 
  __HAL_DAC_ENABLE(hdac, Channel);
 
  
 
  if(Channel == DAC_CHANNEL_1)
 
  {
 
    tmp1 = hdac->Instance->CR & DAC_CR_TEN1;
 
    tmp2 = hdac->Instance->CR & DAC_CR_TSEL1;
 
    /* Check if software trigger enabled */
 
    if((tmp1 ==  DAC_CR_TEN1) && (tmp2 ==  DAC_CR_TSEL1))
 
    {
 
      /* Enable the selected DAC software conversion */
 
      hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1;
 
    }
 
  }
 
 
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdac);
 
    
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables DAC and starts conversion of channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_CHANNEL_1: DAC Channel1 selected
 
  * @param  pData: The destination peripheral Buffer address.
 
  * @param  Length: The length of data to be transferred from memory to DAC peripheral
 
  * @param  Alignment: Specifies the data alignment for DAC channel.
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_ALIGN_8B_R: 8bit right data alignment selected
 
  *            @arg DAC_ALIGN_12B_L: 12bit left data alignment selected
 
  *            @arg DAC_ALIGN_12B_R: 12bit right data alignment selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment)
 
{
 
  uint32_t tmpreg = 0;
 
    
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  assert_param(IS_DAC_ALIGN(Alignment));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Set the DMA transfer complete callback for channel1 */
 
  hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1;
 
  
 
  /* Set the DMA half transfer complete callback for channel1 */
 
  hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1;
 
     
 
  /* Set the DMA error callback for channel1 */
 
  hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1;
 
  
 
  /* Enable the selected DAC channel1 DMA request */
 
  hdac->Instance->CR |= DAC_CR_DMAEN1;
 
 
  /* Case of use of channel 1 */
 
  switch(Alignment)
 
  {
 
    case DAC_ALIGN_12B_R:
 
      /* Get DHR12R1 address */
 
      tmpreg = (uint32_t)&hdac->Instance->DHR12R1;
 
      break;
 
    case DAC_ALIGN_12B_L:
 
      /* Get DHR12L1 address */
 
      tmpreg = (uint32_t)&hdac->Instance->DHR12L1;
 
      break;
 
    case DAC_ALIGN_8B_R:
 
      /* Get DHR8R1 address */
 
      tmpreg = (uint32_t)&hdac->Instance->DHR8R1;
 
      break;
 
    default:
 
      break;
 
  }
 
 
  /* Enable the DMA channel */
 
  /* Enable the DAC DMA underrun interrupt */
 
  __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1);
 
    
 
  /* Enable the DMA channel */
 
  HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length);
 
  
 
  /* Enable the DAC DMA underrun interrupt */
 
  __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1);
 
    
 
  /* Enable the DMA channel */
 
  HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length);
 
    
 
  /* Enable the Peripharal */
 
  __HAL_DAC_ENABLE(hdac, Channel);
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hdac);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
#endif  /* STM32F051x8 STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
/* DAC channel 2 is available on top of DAC channel 1 */
 
 
/**
 
  * @brief  Handles DAC interrupt request  
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac)
 
{
 
  /* Check Overrun flag */
 
  if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1))
 
  {
 
    /* Change DAC state to error state */
 
    hdac->State = HAL_DAC_STATE_ERROR;
 
    
 
    /* Set DAC error code to chanel1 DMA underrun error */
 
    hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1;
 
    
 
    /* Clear the underrun flag */
 
    __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1);
 
    
 
    /* Disable the selected DAC channel1 DMA request */
 
    hdac->Instance->CR &= ~DAC_CR_DMAEN1;
 
    
 
    /* Error callback */ 
 
    HAL_DAC_DMAUnderrunCallbackCh1(hdac);
 
  }
 
  else
 
  {
 
    /* Change DAC state to error state */
 
    hdac->State = HAL_DAC_STATE_ERROR;
 
    
 
    /* Set DAC error code to channel2 DMA underrun error */
 
    hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH2;
 
    
 
    /* Clear the underrun flag */
 
    __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR2);
 
    
 
    /* Disable the selected DAC channel1 DMA request */
 
    hdac->Instance->CR &= ~DAC_CR_DMAEN2;
 
    
 
    /* Error callback */ 
 
    HAL_DACEx_DMAUnderrunCallbackCh2(hdac);
 
  }
 
}
 
 
#endif  /* STM32F071xB  STM32F072xB  STM32F078xx */
 
        /* STM32F091xC  STM32F098xx */
 
 
#if defined (STM32F051x8) || defined (STM32F058xx)
 
/* DAC channel 2 is NOT available. Only DAC channel 1 is available */
 
 
/**
 
  * @brief  Handles DAC interrupt request  
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac)
 
{
 
  /* Check Overrun flag */
 
  if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1))
 
  {
 
    /* Change DAC state to error state */
 
    hdac->State = HAL_DAC_STATE_ERROR;
 
    
 
    /* Set DAC error code to chanel1 DMA underrun error */
 
    hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1;
 
    
 
    /* Clear the underrun flag */
 
    __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1);
 
    
 
    /* Disable the selected DAC channel1 DMA request */
 
    hdac->Instance->CR &= ~DAC_CR_DMAEN1;
 
    
 
    /* Error callback */ 
 
    HAL_DAC_DMAUnderrunCallbackCh1(hdac);
 
  }
 
}
 
 
#endif  /* STM32F051x8 STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx) 
 
      
 
/**
 
  * @brief  Returns the last data output value of the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval The selected DAC channel data output value.
 
  */
 
uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac)
 
{
 
  uint32_t tmp = 0;
 
  
 
  tmp |= hdac->Instance->DOR1;
 
 
  /* DAC channel 2 is present in DAC 1 */
 
  tmp |= hdac->Instance->DOR2 << 16;
 
  
 
  /* Returns the DAC channel data output register value */
 
  return tmp;
 
}
 
 
#endif /* STM32F071xB  STM32F072xB  STM32F078xx */
 
       /* STM32F091xC  STM32F098xx */
 
 
#if defined (STM32F051x8) || defined (STM32F058xx)
 
 
/**
 
  * @brief  Returns the last data output value of the selected DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval The selected DAC channel data output value.
 
  */
 
uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac)
 
{
 
  uint32_t tmp = 0;
 
  
 
  tmp |= hdac->Instance->DOR1;
 
  
 
  /* Returns the DAC channel data output register value */
 
  return tmp;
 
}
 
 
#endif /* STM32F051x8 STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/**
 
  * @brief  Enables or disables the selected DAC channel wave generation.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            DAC_CHANNEL_1 / DAC_CHANNEL_2
 
  * @param  Amplitude: Select max triangle amplitude. 
 
  *          This parameter can be one of the following values:
 
  *            @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1
 
  *            @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3
 
  *            @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7
 
  *            @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15
 
  *            @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31
 
  *            @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63
 
  *            @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127
 
  *            @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255
 
  *            @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511
 
  *            @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023
 
  *            @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047
 
  *            @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095                               
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude)
 
{  
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Enable the selected wave generation for the selected DAC channel */
 
  hdac->Instance->CR |= (DAC_WAVE_TRIANGLE | Amplitude) << Channel;
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdac);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables or disables the selected DAC channel wave generation.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC. 
 
  * @param  Channel: The selected DAC channel. 
 
  *          This parameter can be one of the following values:
 
  *            DAC_CHANNEL_1 / DAC_CHANNEL_2
 
  * @param  Amplitude: Unmask DAC channel LFSR for noise wave generation. 
 
  *          This parameter can be one of the following values: 
 
  *            @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation
 
  *            @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation  
 
  *            @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation
 
  *            @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation 
 
  *            @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude)
 
{  
 
  /* Check the parameters */
 
  assert_param(IS_DAC_CHANNEL(Channel));
 
  assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(hdac);
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_BUSY;
 
  
 
  /* Enable the selected wave generation for the selected DAC channel */
 
  hdac->Instance->CR |= (DAC_WAVE_NOISE | Amplitude) << Channel;
 
  
 
  /* Change DAC state */
 
  hdac->State = HAL_DAC_STATE_READY;
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdac);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
#endif   /* STM32F071xB  STM32F072xB  STM32F078xx */
 
         /* STM32F091xC  STM32F098xx */
 
  
 
#if defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/**
 
  * @brief  Set the specified data holding register value for dual DAC channel.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DAC.
 
  * @param  Alignment: Specifies the data alignment for dual channel DAC.
 
  *          This parameter can be one of the following values:
 
  *            DAC_ALIGN_8B_R: 8bit right data alignment selected
 
  *            DAC_ALIGN_12B_L: 12bit left data alignment selected
 
  *            DAC_ALIGN_12B_R: 12bit right data alignment selected
 
  * @param  Data1: Data for DAC Channel2 to be loaded in the selected data holding register.
 
  * @param  Data2: Data for DAC Channel1 to be loaded in the selected data  holding register.
 
  * @note   In dual mode, a unique register access is required to write in both
 
  *          DAC channels at the same time.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef* hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2)
 
{  
 
  uint32_t data = 0, tmp = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_DAC_ALIGN(Alignment));
 
  assert_param(IS_DAC_DATA(Data1));
 
  assert_param(IS_DAC_DATA(Data2));
 
  
 
  /* Calculate and set dual DAC data holding register value */
 
  if (Alignment == DAC_ALIGN_8B_R)
 
  {
 
    data = ((uint32_t)Data2 << 8) | Data1; 
 
  }
 
  else
 
  {
 
    data = ((uint32_t)Data2 << 16) | Data1;
 
  }
 
  
 
  tmp = (uint32_t)hdac->Instance;
 
  tmp += __HAL_DHR12RD_ALIGNEMENT(Alignment);
 
 
  /* Set the dual DAC selected data holding register */
 
  *(__IO uint32_t *)tmp = data;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup DACEx_Private_Functions
 
  * @{
 
  */
 
 
/**
 
  * @brief  DMA conversion complete callback. 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma)   
 
{
 
  DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  HAL_DAC_ConvCpltCallbackCh1(hdac); 
 
  
 
  hdac->State= HAL_DAC_STATE_READY;
 
}
 
 
/**
 
  * @brief  DMA half transfer complete callback. 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma)   
 
{
 
    DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
    /* Conversion complete callback */
 
    HAL_DAC_ConvHalfCpltCallbackCh1(hdac); 
 
}
 
 
/**
 
  * @brief  DMA error callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma)   
 
{
 
  DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
    
 
  /* Set DAC error code to DMA error */
 
  hdac->ErrorCode |= HAL_DAC_ERROR_DMA;
 
    
 
  HAL_DAC_ErrorCallbackCh1(hdac); 
 
    
 
  hdac->State= HAL_DAC_STATE_READY;
 
}
 
/**
 
  * @}
 
  */
 
#endif /* STM32F051x8  STM32F058xx */
 
       /* STM32F071xB  STM32F072xB  STM32F078xx */
 
       /* STM32F091xC  STM32F098xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/** @addtogroup DACEx_Exported_Functions
 
  * @{
 
  */
 
 
/** @addtogroup DACEx_Exported_Functions_Group1
 
 *  @brief    Extended features functions
 
   * @{
 
  */
 
/**
 
  * @brief  Conversion complete callback in non blocking mode for Channel2 
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_ConvCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Conversion half DMA transfer callback in non blocking mode for Channel2 
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_ConvHalfCpltCallbackCh2 could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Error DAC callback for Channel2.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_ErrorCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DMA underrun DAC callback for channel2.
 
  * @param  hdac: pointer to a DAC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified DAC.
 
  * @retval None
 
  */
 
__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_DAC_DMAUnderrunCallbackCh2 could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DMA conversion complete callback. 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma)   
 
{
 
  DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  HAL_DACEx_ConvCpltCallbackCh2(hdac); 
 
  
 
  hdac->State= HAL_DAC_STATE_READY;
 
}
 
 
/**
 
  * @brief  DMA half transfer complete callback. 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma)   
 
{
 
    DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
    /* Conversion complete callback */
 
    HAL_DACEx_ConvHalfCpltCallbackCh2(hdac); 
 
}
 
 
/**
 
  * @brief  DMA error callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma)   
 
{
 
  DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
    
 
  /* Set DAC error code to DMA error */
 
  hdac->ErrorCode |= HAL_DAC_ERROR_DMA;
 
    
 
  HAL_DACEx_ErrorCallbackCh2(hdac); 
 
    
 
  hdac->State= HAL_DAC_STATE_READY;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
#endif /* STM32F071xB  STM32F072xB  STM32F078xx */
 
       /* STM32F091xC  STM32F098xx */
 
 
#endif /* HAL_DAC_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_dma.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   DMA HAL module driver.
 
  *    
 
  *         This file provides firmware functions to manage the following 
 
  *         functionalities of the Direct Memory Access (DMA) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral State and errors functions
 
  @verbatim     
 
  ==============================================================================      
 
                        ##### How to use this driver #####
 
  ============================================================================== 
 
  [..]
 
   (#) Enable and configure the peripheral to be connected to the DMA Channel
 
       (except for internal SRAM / FLASH memories: no initialization is 
 
       necessary) please refer to Reference manual for connection between peripherals
 
       and DMA requests .
 
 
   (#) For a given Channel, program the required configuration through the following parameters:   
 
       Transfer Direction, Source and Destination data formats, 
 
       Circular or Normal mode, Channel Priority level, Source and Destination Increment mode, 
 
       using HAL_DMA_Init() function.
 
 
   (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error 
 
       detection.
 
                    
 
   (#) Use HAL_DMA_Abort() function to abort the current transfer
 
                   
 
     -@-   In Memory-to-Memory transfer mode, Circular mode is not allowed.
 
     *** Polling mode IO operation ***
 
     =================================   
 
    [..] 
 
      (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source 
 
          address and destination address and the Length of data to be transferred
 
      (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this  
 
          case a fixed Timeout can be configured by User depending from his application.
 
 
     *** Interrupt mode IO operation ***    
 
     =================================== 
 
    [..]
 
      (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
 
      (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() 
 
      (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of  
 
          Source address and destination address and the Length of data to be transferred. 
 
          In this case the DMA interrupt is configured 
 
      (+) Use HAL_DMAy_Channelx_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
 
      (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can 
 
          add his own function by customization of function pointer XferCpltCallback and 
 
          XferErrorCallback (i.e a member of DMA handle structure). 
 
 
     *** DMA HAL driver macros list ***
 
     ============================================= 
 
     [..]
 
       Below the list of most used macros in DMA HAL driver.
 
 
       (+) __HAL_DMA_ENABLE: Enable the specified DMA Channel.
 
       (+) __HAL_DMA_DISABLE: Disable the specified DMA Channel.
 
       (+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags.
 
       (+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags.
 
       (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts.
 
       (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts.
 
       (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt has occurred or not. 
 
 
     [..] 
 
      (@) You can refer to the DMA HAL driver header file for more useful macros  
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup DMA DMA
 
  * @brief DMA HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_DMA_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup DMA_Private_Constants DMA Private Constants
 
  * @{
 
  */
 
#define HAL_TIMEOUT_DMA_ABORT    ((uint32_t)1000)  /* 1s  */
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup DMA_Private_Functions DMA Private Functions
 
  * @{
 
  */
 
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup DMA_Exported_Functions DMA Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief   Initialization and de-initialization functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
             ##### Initialization and de-initialization functions  #####
 
 ===============================================================================  
 
    [..]
 
    This section provides functions allowing to initialize the DMA Channel source
 
    and destination addresses, incrementation and data sizes, transfer direction, 
 
    circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
 
    [..]
 
    The HAL_DMA_Init() function follows the DMA configuration procedures as described in
 
    reference manual.  
 
 
@endverbatim
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Initializes the DMA according to the specified
 
  *         parameters in the DMA_InitTypeDef and create the associated handle.
 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA Channel.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma)
 
{ 
 
  uint32_t tmp = 0;
 
  
 
  /* Check the DMA handle allocation */
 
  if(hdma == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
 
  assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
 
  assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
 
  assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
 
  assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
 
  assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
 
  assert_param(IS_DMA_MODE(hdma->Init.Mode));
 
  assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));
 
  
 
  /* Change DMA peripheral state */
 
  hdma->State = HAL_DMA_STATE_BUSY;
 
 
  /* Get the CR register value */
 
  tmp = hdma->Instance->CCR;
 
  
 
  /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR bits */
 
  tmp &= ((uint32_t)~(DMA_CCR_PL    | DMA_CCR_MSIZE  | DMA_CCR_PSIZE  | \
 
                      DMA_CCR_MINC  | DMA_CCR_PINC   | DMA_CCR_CIRC   | \
 
                      DMA_CCR_DIR));
 
  
 
  /* Prepare the DMA Channel configuration */
 
  tmp |=  hdma->Init.Direction        |
 
          hdma->Init.PeriphInc           | hdma->Init.MemInc           |
 
          hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment |
 
          hdma->Init.Mode                | hdma->Init.Priority;
 
 
  /* Write to DMA Channel CR register */
 
  hdma->Instance->CCR = tmp;  
 
  
 
  /* Initialise the error code */
 
  hdma->ErrorCode = HAL_DMA_ERROR_NONE;
 
 
  /* Initialize the DMA state*/
 
  hdma->State  = HAL_DMA_STATE_READY;
 
  
 
  return HAL_OK;
 
}  
 
  
 
/**
 
  * @brief  DeInitializes the DMA peripheral 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA Channel.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma)
 
{
 
  /* Check the DMA handle allocation */
 
  if(hdma == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
 
 
  /* Check the DMA peripheral state */
 
  if(hdma->State == HAL_DMA_STATE_BUSY)
 
  {
 
     return HAL_ERROR;
 
  }
 
 
  /* Disable the selected DMA Channelx */
 
  __HAL_DMA_DISABLE(hdma);
 
  
 
  /* Reset DMA Channel control register */
 
  hdma->Instance->CCR  = 0;
 
  
 
  /* Reset DMA Channel Number of Data to Transfer register */
 
  hdma->Instance->CNDTR = 0;
 
  
 
  /* Reset DMA Channel peripheral address register */
 
  hdma->Instance->CPAR  = 0;
 
  
 
  /* Reset DMA Channel memory address register */
 
  hdma->Instance->CMAR = 0;
 
 
  /* Clear all flags */
 
  __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
 
  __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
 
  __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
 
  
 
  /* Initialise the error code */
 
  hdma->ErrorCode = HAL_DMA_ERROR_NONE;
 
 
  /* Initialize the DMA state */
 
  hdma->State = HAL_DMA_STATE_RESET;
 
 
  /* Release Lock */
 
  __HAL_UNLOCK(hdma);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions 
 
 *  @brief   I/O operation functions  
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      #####  IO operation functions  #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Configure the source, destination address and data length and Start DMA transfer
 
      (+) Configure the source, destination address and data length and 
 
          Start DMA transfer with interrupt
 
      (+) Abort DMA transfer
 
      (+) Poll for transfer complete
 
      (+) Handle DMA interrupt request  
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Starts the DMA Transfer.
 
  * @param  hdma      : pointer to a DMA_HandleTypeDef structure that contains
 
  *                     the configuration information for the specified DMA Channel.  
 
  * @param  SrcAddress: The source memory Buffer address
 
  * @param  DstAddress: The destination memory Buffer address
 
  * @param  DataLength: The length of data to be transferred from source to destination
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
 
{ 
 
  /* Process locked */
 
  __HAL_LOCK(hdma);  
 
 
  /* Change DMA peripheral state */  
 
  hdma->State = HAL_DMA_STATE_BUSY;  
 
 
   /* Check the parameters */
 
  assert_param(IS_DMA_BUFFER_SIZE(DataLength));
 
  
 
  /* Disable the peripheral */
 
  __HAL_DMA_DISABLE(hdma);  
 
  
 
  /* Configure the source, destination address and the data length */
 
  DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
 
 
  /* Enable the Peripheral */
 
  __HAL_DMA_ENABLE(hdma);  
 
 
  return HAL_OK; 
 
} 
 
 
/**
 
  * @brief  Start the DMA Transfer with interrupt enabled.
 
  * @param  hdma:       pointer to a DMA_HandleTypeDef structure that contains
 
  *                     the configuration information for the specified DMA Channel.  
 
  * @param  SrcAddress: The source memory Buffer address
 
  * @param  DstAddress: The destination memory Buffer address
 
  * @param  DataLength: The length of data to be transferred from source to destination
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
 
{
 
  /* Process locked */
 
  __HAL_LOCK(hdma);
 
 
  /* Change DMA peripheral state */  
 
  hdma->State = HAL_DMA_STATE_BUSY;  
 
 
   /* Check the parameters */
 
  assert_param(IS_DMA_BUFFER_SIZE(DataLength));
 
  
 
  /* Disable the peripheral */
 
  __HAL_DMA_DISABLE(hdma);
 
  
 
  /* Configure the source, destination address and the data length */  
 
  DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
 
  
 
  /* Enable the transfer complete interrupt */
 
  __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TC);
 
 
  /* Enable the Half transfer complete interrupt */
 
  __HAL_DMA_ENABLE_IT(hdma, DMA_IT_HT);  
 
 
  /* Enable the transfer Error interrupt */
 
  __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TE);
 
  
 
   /* Enable the Peripheral */
 
  __HAL_DMA_ENABLE(hdma);   
 
  
 
  return HAL_OK;    
 
} 
 
 
/**
 
  * @brief  Aborts the DMA Transfer.
 
  * @param  hdma  : pointer to a DMA_HandleTypeDef structure that contains
 
  *                 the configuration information for the specified DMA Channel.
 
  *                   
 
  * @note  After disabling a DMA Channel, a check for wait until the DMA Channel is 
 
  *        effectively disabled is added. If a Channel is disabled 
 
  *        while a data transfer is ongoing, the current data will be transferred
 
  *        and the Channel will be effectively disabled only after the transfer of
 
  *        this single data is finished.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
 
{
 
  uint32_t tickstart = 0x00;
 
  
 
  /* Disable the channel */
 
  __HAL_DMA_DISABLE(hdma);
 
  
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();
 
  
 
  /* Check if the DMA Channel is effectively disabled */
 
  while((hdma->Instance->CCR & DMA_CCR_EN) != 0) 
 
  {
 
    /* Check for the Timeout */
 
    if((HAL_GetTick() - tickstart) > HAL_TIMEOUT_DMA_ABORT)
 
    {
 
      /* Update error code */
 
      SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);
 
 
      /* Change the DMA state */
 
      hdma->State = HAL_DMA_STATE_TIMEOUT;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hdma);
 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  /* Change the DMA state*/
 
  hdma->State = HAL_DMA_STATE_READY; 
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hdma);
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief  Polling for transfer complete.
 
  * @param  hdma:    pointer to a DMA_HandleTypeDef structure that contains
 
  *                  the configuration information for the specified DMA Channel.
 
  * @param  CompleteLevel: Specifies the DMA level complete.  
 
  * @param  Timeout:       Timeout duration.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout)
 
{
 
  uint32_t temp;
 
  uint32_t tickstart = 0x00;
 
  
 
  /* Get the level transfer complete flag */
 
  if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
 
  {
 
    /* Transfer Complete flag */
 
    temp = __HAL_DMA_GET_TC_FLAG_INDEX(hdma);
 
  }
 
  else
 
  {
 
    /* Half Transfer Complete flag */
 
    temp = __HAL_DMA_GET_HT_FLAG_INDEX(hdma);
 
  }
 
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();
 
 
  while(__HAL_DMA_GET_FLAG(hdma, temp) == RESET)
 
  {
 
    if((__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET))
 
    {      
 
      /* Clear the transfer error flags */
 
      __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
 
      
 
      /* Update error code */
 
      SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);
 
 
      /* Change the DMA state */
 
      hdma->State= HAL_DMA_STATE_ERROR;       
 
      
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hdma);
 
      
 
      return HAL_ERROR;      
 
    }      
 
    /* Check for the Timeout */
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        /* Update error code */
 
        SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TIMEOUT);
 
        
 
        /* Change the DMA state */
 
        hdma->State = HAL_DMA_STATE_TIMEOUT;
 
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hdma);
 
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  if(CompleteLevel == HAL_DMA_FULL_TRANSFER)
 
  {
 
    /* Clear the transfer complete flag */
 
    __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
 
 
    /* The selected Channelx EN bit is cleared (DMA is disabled and 
 
    all transfers are complete) */
 
    hdma->State = HAL_DMA_STATE_READY;
 
 
  }
 
  else
 
  { 
 
    /* Clear the half transfer complete flag */
 
    __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
 
  
 
    /* The selected Channelx EN bit is cleared (DMA is disabled and 
 
    all transfers of half buffer are complete) */
 
    hdma->State = HAL_DMA_STATE_READY_HALF;
 
  }
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(hdma);  
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Handles DMA interrupt request.
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA Channel.  
 
  * @retval None
 
  */
 
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
 
{        
 
  /* Transfer Error Interrupt management ***************************************/
 
  if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET)
 
  {
 
    if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TE) != RESET)
 
    {
 
      /* Disable the transfer error interrupt */
 
      __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE);
 
    
 
      /* Clear the transfer error flag */
 
      __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma));
 
    
 
      /* Update error code */
 
      SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_TE);
 
 
      /* Change the DMA state */
 
      hdma->State = HAL_DMA_STATE_ERROR;    
 
    
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hdma); 
 
    
 
      if (hdma->XferErrorCallback != NULL)
 
      {
 
        /* Transfer error callback */
 
        hdma->XferErrorCallback(hdma);
 
      }
 
    }
 
  }
 
 
  /* Half Transfer Complete Interrupt management ******************************/
 
  if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)) != RESET)
 
  {
 
    if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_HT) != RESET)
 
    { 
 
      /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
 
      if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
 
      {
 
        /* Disable the half transfer interrupt */
 
        __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT);
 
      }
 
      /* Clear the half transfer complete flag */
 
      __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma));
 
 
      /* Change DMA peripheral state */
 
      hdma->State = HAL_DMA_STATE_READY_HALF;
 
 
      if(hdma->XferHalfCpltCallback != NULL)
 
      {
 
        /* Half transfer callback */
 
        hdma->XferHalfCpltCallback(hdma);
 
      }
 
    }
 
  }
 
  
 
  /* Transfer Complete Interrupt management ***********************************/
 
  if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)) != RESET)
 
  {
 
    if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TC) != RESET)
 
    {
 
      if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
 
      {
 
        /* Disable the transfer complete interrupt */
 
        __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TC);
 
      }
 
      /* Clear the transfer complete flag */
 
      __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma));
 
    
 
      /* Update error code */
 
      SET_BIT(hdma->ErrorCode, HAL_DMA_ERROR_NONE);
 
 
      /* Change the DMA state */
 
      hdma->State = HAL_DMA_STATE_READY;    
 
    
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hdma);
 
    
 
      if(hdma->XferCpltCallback != NULL)
 
      {       
 
        /* Transfer complete callback */
 
        hdma->XferCpltCallback(hdma);
 
      }
 
    }
 
  }
 
}  
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions
 
 *  @brief    Peripheral State functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                    ##### State and Errors functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides functions allowing to
 
      (+) Check the DMA state
 
      (+) Get error code
 
 
@endverbatim
 
  * @{
 
  */  
 
 
/**
 
  * @brief  Returns the DMA state.
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA Channel.  
 
  * @retval HAL state
 
  */
 
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma)
 
{
 
  return hdma->State;
 
}
 
 
/**
 
  * @brief  Return the DMA error code
 
  * @param  hdma : pointer to a DMA_HandleTypeDef structure that contains
 
  *              the configuration information for the specified DMA Channel.
 
  * @retval DMA Error Code
 
  */
 
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma)
 
{
 
  return hdma->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup DMA_Private_Functions DMA Private Functions
 
  * @{
 
  */
 
 
/**
 
  * @brief  Sets the DMA Transfer parameter.
 
  * @param  hdma:       pointer to a DMA_HandleTypeDef structure that contains
 
  *                     the configuration information for the specified DMA Channel.  
 
  * @param  SrcAddress: The source memory Buffer address
 
  * @param  DstAddress: The destination memory Buffer address
 
  * @param  DataLength: The length of data to be transferred from source to destination
 
  * @retval HAL status
 
  */
 
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
 
{  
 
  /* Configure DMA Channel data length */
 
  hdma->Instance->CNDTR = DataLength;
 
  
 
  /* Peripheral to Memory */
 
  if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
 
  {   
 
    /* Configure DMA Channel destination address */
 
    hdma->Instance->CPAR = DstAddress;
 
    
 
    /* Configure DMA Channel source address */
 
    hdma->Instance->CMAR = SrcAddress;
 
  }
 
  /* Memory to Peripheral */
 
  else
 
  {
 
    /* Configure DMA Channel source address */
 
    hdma->Instance->CPAR = SrcAddress;
 
    
 
    /* Configure DMA Channel destination address */
 
    hdma->Instance->CMAR = DstAddress;
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_DMA_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_flash.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   FLASH HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the internal FLASH memory:
 
  *           + Program operations functions
 
  *           + Memory Control functions 
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                        ##### FLASH peripheral features #####
 
  ==============================================================================
 
           
 
  [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses 
 
       to the Flash memory. It implements the erase and program Flash memory operations 
 
       and the read and write protection mechanisms.
 
      
 
  [..] The Flash memory interface accelerates code execution with a system of instruction
 
      prefetch. 
 
 
  [..] The FLASH main features are:
 
      (+) Flash memory read operations
 
      (+) Flash memory program/erase operations
 
      (+) Read / write protections
 
      (+) Prefetch on I-Code
 
      (+) Option Bytes programming
 
      
 
                     ##### How to use this driver #####
 
  ==============================================================================
 
  [..]                             
 
      This driver provides functions and macros to configure and program the FLASH 
 
      memory of all STM32F0xx devices. These functions are split in 3 groups:
 
    
 
      (#) FLASH Memory I/O Programming functions: this group includes all needed
 
          functions to erase and program the main memory:
 
        (++) Lock and Unlock the FLASH interface
 
        (++) Erase function: Erase page, erase all pages
 
        (++) Program functions: half word and word
 
    
 
      (#) Option Bytes Programming functions: this group includes all needed
 
          functions to manage the Option Bytes:
 
        (++) Lock and Unlock the Option Bytes
 
        (++) Erase Option Bytes
 
        (++) Set/Reset the write protection
 
        (++) Set the Read protection Level
 
        (++) Program the user Option Bytes
 
        (++) Program the data Option Bytes
 
        (++) Launch the Option Bytes loader
 
    
 
      (#) Interrupts and flags management functions : this group 
 
          includes all needed functions to:
 
        (++) Handle FLASH interrupts
 
        (++) Wait for last FLASH operation according to its status
 
        (++) Get error flag status           
 
 
  [..] In addition to these function, this driver includes a set of macros allowing
 
       to handle the following operations:
 
      
 
      (+) Set the latency
 
      (+) Enable/Disable the prefetch buffer
 
      (+) Enable/Disable the FLASH interrupts
 
      (+) Monitor the FLASH flags status
 
          
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup FLASH FLASH HAL module driver
 
  * @brief FLASH HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_FLASH_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
 
/** @defgroup FLASH_Private_Variables FLASH Private Variables
 
  * @{
 
  */  
 
/* Variables used for Erase pages under interruption*/
 
FLASH_ProcessTypeDef pFlash;
 
/**
 
  * @}
 
  */
 
  
 
/* Private function prototypes -----------------------------------------------*/
 
 
/** @defgroup FLASH_Private_Functions FLASH Private Functions
 
  * @{
 
  */
 
/* Erase operations */
 
void              FLASH_PageErase(uint32_t PageAddress);
 
 
/* Program operations */
 
static void       FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
 
 
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout);
 
static void       FLASH_SetErrorCode(void);
 
 
/**
 
  * @}
 
  */
 
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
 
  * @{
 
  */
 
  
 
/** @defgroup FLASH_Exported_Functions_Group1 I/O operation functions 
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                        ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to manage the FLASH 
 
    program operations (write/erase).
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Program halfword, word or double word at a specified address
 
  * @note   The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
 
  *
 
  * @note   If an erase and a program operations are requested simultaneously,    
 
  *         the erase operation is performed before the program one.
 
  *  
 
  * @param  TypeProgram:  Indicate the way to program at a specified address.
 
  *                       This parameter can be a value of @ref FLASH_Type_Program
 
  * @param  Address:      Specifies the address to be programmed.
 
  * @param  Data:         Specifies the data to be programmed
 
  * 
 
  * @retval HAL_StatusTypeDef HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
 
{
 
  HAL_StatusTypeDef status = HAL_ERROR;
 
  uint8_t index = 0;
 
  uint8_t nbiterations = 0;
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(&pFlash);
 
 
  /* Check the parameters */
 
  assert_param(IS_TYPEPROGRAM(TypeProgram));
 
  assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
  
 
  if(status == HAL_OK)
 
  {
 
    if(TypeProgram == TYPEPROGRAM_HALFWORD)
 
    {
 
      /* Program halfword (16-bit) at a specified address. */
 
      nbiterations = 1;
 
    }
 
    else if(TypeProgram == TYPEPROGRAM_WORD)
 
    {
 
      /* Program word (32-bit = 2*16-bit) at a specified address. */
 
      nbiterations = 2;
 
    }
 
    else
 
    {
 
      /* Program double word (64-bit = 4*16-bit) at a specified address. */
 
      nbiterations = 4;
 
    }
 
 
    for (index = 0; index < nbiterations; index++)
 
    {
 
      FLASH_Program_HalfWord((Address + (2*index)), (uint16_t)(Data >> (16*index)));
 
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    
 
      /* Check FLASH End of Operation flag  */
 
      if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
 
      {
 
        /* Clear FLASH End of Operation pending bit */
 
        __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
 
      }
 
 
      /* If the program operation is completed, disable the PG Bit */
 
      CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
 
    }
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(&pFlash);
 
 
  return status;
 
}
 
 
/**
 
  * @brief  Program halfword, word or double word at a specified address  with interrupt enabled.
 
  * @note   The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
 
  *
 
  * @note   If an erase and a program operations are requested simultaneously,    
 
  *         the erase operation is performed before the program one.
 
  *  
 
  * @param  TypeProgram: Indicate the way to program at a specified address.
 
  *                      This parameter can be a value of @ref FLASH_Type_Program
 
  * @param  Address:     Specifies the address to be programmed.
 
  * @param  Data:        Specifies the data to be programmed
 
  * 
 
  * @retval HAL_StatusTypeDef HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(&pFlash);
 
 
  /* Check the parameters */
 
  assert_param(IS_TYPEPROGRAM(TypeProgram));
 
  assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
 
 
  /* Enable End of FLASH Operation and Error source interrupts */
 
  __HAL_FLASH_ENABLE_IT((FLASH_IT_EOP | FLASH_IT_ERR));
 
  
 
  pFlash.Address = Address;
 
  pFlash.Data = Data;
 
 
  if(TypeProgram == TYPEPROGRAM_HALFWORD)
 
  {
 
    pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
 
    /*Program halfword (16-bit) at a specified address.*/
 
    pFlash.DataRemaining = 1;
 
  }
 
  else if(TypeProgram == TYPEPROGRAM_WORD)
 
  {
 
    pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
 
    /*Program word (32-bit : 2*16-bit) at a specified address.*/
 
    pFlash.DataRemaining = 2;
 
  }
 
  else
 
  {
 
    pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
 
    /*Program double word (64-bit : 4*16-bit) at a specified address.*/
 
    pFlash.DataRemaining = 4;
 
  }
 
 
  /*Program halfword (16-bit) at a specified address.*/
 
  FLASH_Program_HalfWord(Address, (uint16_t)Data);
 
 
  return status;
 
}
 
 
/**
 
  * @brief This function handles FLASH interrupt request.
 
  * @retval None
 
  */
 
void HAL_FLASH_IRQHandler(void)
 
{
 
  uint32_t addresstmp;
 
  /* If the operation is completed, disable the PG, PER and MER Bits */
 
  CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
 
 
  /* Check FLASH End of Operation flag  */
 
  if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
 
  {
 
    /* Clear FLASH End of Operation pending bit */
 
    __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
 
    
 
    if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
 
    {
 
      /* Nb of pages to erased can be decreased */
 
      pFlash.DataRemaining--;
 
 
      /* Indicate user which page address has been erased*/
 
      HAL_FLASH_EndOfOperationCallback(pFlash.Address);
 
 
      /* Check if there are still pages to erase*/
 
      if(pFlash.DataRemaining != 0)
 
      {
 
        /* Increment page address to next page */
 
        pFlash.Address += FLASH_PAGE_SIZE;
 
        addresstmp = pFlash.Address;
 
        FLASH_PageErase(addresstmp);
 
      }
 
      else
 
      {
 
        /*No more pages to Erase*/
 
 
        /*Reset Address and stop Erase pages procedure*/
 
        pFlash.Address = 0xFFFFFFFF;
 
        pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
 
      }
 
    }
 
    else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
 
    {
 
      /*MassErase ended. Return the selected bank*/
 
      /* FLASH EOP interrupt user callback */
 
      HAL_FLASH_EndOfOperationCallback(0);
 
 
      /* Stop Mass Erase procedure*/
 
      pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
 
    }
 
    else
 
    {
 
      /* Nb of 16-bit data to program can be decreased */
 
      pFlash.DataRemaining--;
 
      
 
      /* Check if there are still 16-bit data to program */
 
      if(pFlash.DataRemaining != 0)
 
      {
 
        /* Increment address to 16-bit */
 
        pFlash.Address += 2;
 
        addresstmp = pFlash.Address;
 
 
        /* Shift to have next 16-bit data */
 
        pFlash.Data = (pFlash.Data >> 16);
 
 
        /*Program halfword (16-bit) at a specified address.*/
 
        FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
 
      }
 
      else
 
      {
 
        /*Program ended. Return the selected address*/
 
        /* FLASH EOP interrupt user callback */
 
        if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
 
        {
 
          HAL_FLASH_EndOfOperationCallback(pFlash.Address);
 
        }
 
        else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
 
        {
 
          HAL_FLASH_EndOfOperationCallback(pFlash.Address-2);
 
        }
 
        else 
 
        {
 
          HAL_FLASH_EndOfOperationCallback(pFlash.Address-6);
 
        }
 
 
        /* Reset Address and stop Program procedure*/
 
        pFlash.Address = 0xFFFFFFFF;
 
        pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
 
      }
 
    }
 
  }
 
  
 
  /* Check FLASH operation error flags */
 
  if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR))
 
  {
 
    /*Save the Error code*/
 
    FLASH_SetErrorCode();
 
    
 
    /* FLASH error interrupt user callback */
 
    HAL_FLASH_OperationErrorCallback(pFlash.Address);
 
 
    /* Clear FLASH error pending bits */
 
    __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR);
 
 
    /* Reset address and stop the procedure ongoing*/
 
    pFlash.Address = 0xFFFFFFFF;
 
    pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
 
  }
 
 
  if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
 
  {
 
    /* Disable End of FLASH Operation and Error source interrupts */
 
    __HAL_FLASH_DISABLE_IT((FLASH_IT_EOP | FLASH_IT_ERR));
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(&pFlash);
 
  }
 
}
 
 
 
/**
 
  * @brief  FLASH end of operation interrupt callback
 
  * @param  ReturnValue: The value saved in this parameter depends on the ongoing procedure
 
  *                 - Mass Erase: No return value expected
 
  *                 - Pages Erase: Address of the page which has been erased 
 
  *                 - Program: Address which was selected for data program
 
  * @retval none
 
  */
 
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  FLASH operation error interrupt callback
 
  * @param  ReturnValue: The value saved in this parameter depends on the ongoing procedure
 
  *                 - Mass Erase: No return value expected
 
  *                 - Pages Erase: Address of the page which returned an error
 
  *                 - Program: Address which was selected for data program
 
  * @retval none
 
  */
 
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_FLASH_OperationErrorCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions 
 
 *  @brief   management functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the FLASH 
 
    memory operations.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Unlock the FLASH control register access
 
  * @retval HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
 
{
 
  if((READ_BIT(FLASH->CR, FLASH_CR_LOCK)) != RESET)
 
  {
 
    /* Authorize the FLASH Registers access */
 
    WRITE_REG(FLASH->KEYR, FLASH_FKEY1);
 
    WRITE_REG(FLASH->KEYR, FLASH_FKEY2);
 
  }
 
  else
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief  Locks the FLASH control register access
 
  * @retval HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASH_Lock(void)
 
{
 
  /* Set the LOCK Bit to lock the FLASH Registers access */
 
  SET_BIT(FLASH->CR, FLASH_CR_LOCK);
 
  
 
  return HAL_OK;  
 
}
 
 
 
/**
 
  * @brief  Unlock the FLASH Option Control Registers access.
 
  * @retval HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
 
{
 
  if((READ_BIT(FLASH->CR, FLASH_CR_OPTWRE)) == RESET)
 
  {
 
    /* Authorizes the Option Byte register programming */
 
    WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
 
    WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
 
  }
 
  else
 
  {
 
    return HAL_ERROR;
 
  }  
 
  
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  Lock the FLASH Option Control Registers access.
 
  * @retval HAL Status 
 
  */
 
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
 
{
 
  /* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
 
  CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
 
  
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  Launch the option byte loading.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
 
{
 
  /* Set the bit to force the option byte reloading */
 
  SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH); 
 
 
  /* Wait for last operation to be completed */
 
  return(FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE)); 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions 
 
 *  @brief   Peripheral Errors functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                ##### Peripheral Errors functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permit to get in run-time Errors of the FLASH peripheral.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Get the specific FLASH error flag.
 
  * @retval FLASH_ErrorCode: The returned value can be:
 
  *            @arg FLASH_ERROR_PG: FLASH Programming error flag 
 
  *            @arg FLASH_ERROR_WRP: FLASH Write protected error flag
 
  */
 
FLASH_ErrorTypeDef HAL_FLASH_GetError(void)
 
{ 
 
   return pFlash.ErrorCode;
 
}  
 
  
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */     
 
 
/** @addtogroup FLASH_Private_Functions
 
  * @{
 
  */   
 
/**
 
  * @brief  Erase the specified FLASH memory page
 
  * @param  PageAddress: FLASH page to erase
 
  *         The value of this parameter depend on device used within the same series      
 
  * 
 
  * @retval None
 
  */
 
void FLASH_PageErase(uint32_t PageAddress)
 
{
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
  
 
  /* Proceed to erase the page */
 
  SET_BIT(FLASH->CR, FLASH_CR_PER);
 
  WRITE_REG(FLASH->AR, PageAddress);
 
  SET_BIT(FLASH->CR, FLASH_CR_STRT);
 
}
 
 
/**
 
  * @brief  Program a half-word (16-bit) at a specified address.
 
  * @param  Address: specifies the address to be programmed.
 
  * @param  Data: specifies the data to be programmed.
 
  * @retval None
 
  */
 
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
 
{
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
  
 
  /* Proceed to program the new data */
 
  SET_BIT(FLASH->CR, FLASH_CR_PG);
 
  
 
  *(__IO uint16_t*)Address = Data;
 
}
 
 
/**
 
  * @brief  Wait for a FLASH operation to complete.
 
  * @param  Timeout: maximum flash operationtimeout
 
  * @retval HAL_StatusTypeDef HAL Status
 
  */
 
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
 
{ 
 
  /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
 
     Even if the FLASH operation fails, the BUSY flag will be reset and an error
 
     flag will be set */
 
     
 
  uint32_t tickstart = HAL_GetTick();
 
     
 
  while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) 
 
  { 
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
  
 
  if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
 
  {
 
    /*Save the error code*/
 
    FLASH_SetErrorCode();
 
    return HAL_ERROR;
 
  }
 
 
  /* If there is an error flag set */
 
  return HAL_OK;
 
  
 
}
 
 
/**
 
  * @brief  Set the specific FLASH error flag.
 
  * @retval None
 
  */
 
static void FLASH_SetErrorCode(void)
 
{ 
 
  if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
 
  {
 
    pFlash.ErrorCode = FLASH_ERROR_WRP;
 
  }
 
  if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
 
  {
 
     pFlash.ErrorCode |= FLASH_ERROR_PG;
 
  }
 
}  
 
 
/**
 
  * @}
 
  */    
 
 
#endif /* HAL_FLASH_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_flash_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended FLASH HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the FLASH peripheral:
 
  *           + Extended Initialization/de-initialization functions
 
  *           + Extended I/O operation functions
 
  *           + Extended Peripheral Control functions 
 
  *           + Extended Peripheral State functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
               ##### Flash peripheral extended features  #####
 
  ==============================================================================
 
           
 
                      ##### How to use this driver #####
 
  ==============================================================================
 
  [..] This driver provides functions to configure and program the FLASH memory 
 
       of all STM32F0xxx devices. It includes
 
       
 
        (+) Set/Reset the write protection
 
        (+) Program the user Option Bytes
 
        (+) Get the Read protection Level
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup FLASHEx FLASHEx Extended HAL module driver
 
  * @brief FLASH Extended HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_FLASH_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
 
/** @addtogroup FLASHEx_Private_Constants FLASHEx Private Constants
 
  * @{
 
  */ 
 
#define HAL_FLASH_TIMEOUT_VALUE   ((uint32_t)50000)/* 50 s */
 
 
/**
 
  * @}
 
  */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/** @addtogroup FLASHEx_Private_Variables FLASHEx Private Variables
 
  * @{
 
  */ 
 
  
 
/* Variables used for Erase pages under interruption*/
 
extern FLASH_ProcessTypeDef pFlash;
 
 
/**
 
  * @}
 
  */
 
    
 
/* Private function prototypes -----------------------------------------------*/
 
/** @addtogroup FLASHEx_Private_Functions FLASHEx Private Functions
 
  * @{
 
  */
 
  
 
/* Erase operations */
 
extern void              FLASH_PageErase(uint32_t PageAddress);
 
static void              FLASH_MassErase(void);
 
 
/* Option bytes control */
 
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage);
 
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage);
 
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel);
 
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig);
 
static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data);
 
static uint32_t          FLASH_OB_GetWRP(void);
 
static FlagStatus        FLASH_OB_GetRDP(void);
 
static uint8_t           FLASH_OB_GetUser(void);
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASHEx_Extern_Functions FLASHEx Extern Functions
 
  * @{
 
  */
 
/* Private functions ---------------------------------------------------------*/
 
extern HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout);
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup FLASHEx_Exported_Functions_Group2 Extended I/O operation functions
 
  * @brief    Extended I/O operation functions
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Perform a mass erase or erase the specified FLASH memory pages 
 
  * @note   The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
 
  * @param[in]  pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that
 
  *         contains the configuration information for the erasing.
 
  * 
 
  * @param[out]  PageError: pointer to variable  that
 
  *         contains the configuration information on faulty page in case of error 
 
  *         (0xFFFFFFFF means that all the pages have been correctly erased)
 
  * 
 
  * @retval HAL_StatusTypeDef HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError)
 
{
 
  HAL_StatusTypeDef status = HAL_ERROR;
 
  uint32_t address = 0;
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(&pFlash);
 
 
  /* Check the parameters */
 
  assert_param(IS_TYPEERASE(pEraseInit->TypeErase));
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
  if (status == HAL_OK)
 
  {
 
    if (pEraseInit->TypeErase == TYPEERASE_MASSERASE)
 
    {
 
      /*Mass erase to be done*/
 
      FLASH_MassErase();
 
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
      
 
      /* Check FLASH End of Operation flag  */
 
      if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
 
      {
 
        /* Clear FLASH End of Operation pending bit */
 
        __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
 
      }
 
 
      /* If the erase operation is completed, disable the MER Bit */
 
      CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
 
    }
 
    else
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
 
      assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
 
 
      /*Initialization of PageError variable*/
 
      *PageError = 0xFFFFFFFF;
 
    
 
      /* Erase by page by page to be done*/
 
      for(address = pEraseInit->PageAddress; 
 
          address < (pEraseInit->PageAddress + (pEraseInit->NbPages)*FLASH_PAGE_SIZE); 
 
          address += FLASH_PAGE_SIZE)
 
      {
 
        FLASH_PageErase(address);
 
 
        /* Wait for last operation to be completed */
 
        status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
        
 
        /* Check FLASH End of Operation flag  */
 
        if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
 
        {
 
          /* Clear FLASH End of Operation pending bit */
 
          __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
 
        }
 
    
 
        /* If the erase operation is completed, disable the PER Bit */
 
        CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
 
 
        if (status != HAL_OK) 
 
        {
 
          /* In case of error, stop erase procedure and return the faulty address */
 
          *PageError = address;
 
          break;
 
        }
 
      }
 
    }
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(&pFlash);
 
 
  return status;
 
}
 
 
/**
 
  * @brief  Perform a mass erase or erase the specified FLASH memory sectors with interrupt enabled
 
  * @note   The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
 
  * @param  pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that
 
  *         contains the configuration information for the erasing.
 
  * 
 
  * @retval HAL_StatusTypeDef HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
 
  /* Process Locked */
 
  __HAL_LOCK(&pFlash);
 
 
  /* Check the parameters */
 
  assert_param(IS_TYPEERASE(pEraseInit->TypeErase));
 
 
  /* Enable End of FLASH Operation and Error source interrupts */
 
  __HAL_FLASH_ENABLE_IT((FLASH_IT_EOP | FLASH_IT_ERR));
 
  
 
  if (pEraseInit->TypeErase == TYPEERASE_MASSERASE)
 
  {
 
    /*Mass erase to be done*/
 
    pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE;
 
    FLASH_MassErase();
 
  }
 
  else
 
  {
 
    /* Erase by page to be done*/
 
 
    /* Check the parameters */
 
    assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
 
    assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
 
 
    pFlash.ProcedureOnGoing = FLASH_PROC_PAGEERASE;
 
    pFlash.DataRemaining = pEraseInit->NbPages;
 
    pFlash.Address = pEraseInit->PageAddress;
 
 
    /*Erase 1st page and wait for IT*/
 
    FLASH_PageErase(pEraseInit->PageAddress);
 
  }
 
 
  return status;
 
}
 
 
/**
 
  * @}
 
  */
 
    
 
/** @defgroup FLASHEx_Exported_Functions_Group3 Extended Peripheral Control functions
 
  * @brief    Extended Peripheral Control functions
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the FLASH 
 
    memory operations.
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Erases the FLASH option bytes.
 
  * @note   This functions erases all option bytes except the Read protection (RDP). 
 
  *         The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
 
  *         The function HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes 
 
  *         (system reset will occur)
 
  * @retval HAL status
 
  */
 
 
HAL_StatusTypeDef HAL_FLASHEx_OBErase(void)
 
{
 
  uint8_t rdptmp = OB_RDP_LEVEL_0;
 
  HAL_StatusTypeDef status = HAL_ERROR;
 
  FLASH_OBProgramInitTypeDef optionsbytes;
 
 
  /* Get the actual read protection Option Byte value */
 
  HAL_FLASHEx_OBGetConfig(&optionsbytes);
 
  if(optionsbytes.RDPLevel != RESET)
 
  {
 
    rdptmp = OB_RDP_LEVEL_1;  
 
  }
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
 
  if(status == HAL_OK)
 
  {   
 
    /* If the previous operation is completed, proceed to erase the option bytes */
 
    SET_BIT(FLASH->CR, FLASH_CR_OPTER);
 
    SET_BIT(FLASH->CR, FLASH_CR_STRT);
 
 
    /* Wait for last operation to be completed */
 
    status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    
 
    /* If the erase operation is completed, disable the OPTER Bit */
 
    CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
 
 
    if(status == HAL_OK)
 
    {
 
      /* Restore the last read protection Option Byte value */
 
      optionsbytes.OptionType = OPTIONBYTE_RDP;
 
      optionsbytes.RDPLevel = rdptmp;
 
      status = HAL_FLASHEx_OBProgram(&optionsbytes);
 
    }
 
  }
 
 
  /* Return the erase status */
 
  return status;
 
}
 
 
/**
 
  * @brief  Program option bytes
 
  * @note   The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
 
  *         The function HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes 
 
  *         (system reset will occur)
 
  *
 
  * @param  pOBInit: pointer to an FLASH_OBInitStruct structure that
 
  *         contains the configuration information for the programming.
 
  * 
 
  * @retval HAL_StatusTypeDef HAL Status
 
  */
 
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
 
{
 
  HAL_StatusTypeDef status = HAL_ERROR;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
 
 
  /* Write protection configuration */
 
  if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
 
  {
 
    assert_param(IS_WRPSTATE(pOBInit->WRPState));
 
    if (pOBInit->WRPState == WRPSTATE_ENABLE)
 
    {
 
      /* Enable of Write protection on the selected page */
 
      status = FLASH_OB_EnableWRP(pOBInit->WRPPage);
 
    }
 
    else
 
    {
 
      /* Disable of Write protection on the selected page */
 
      status = FLASH_OB_DisableWRP(pOBInit->WRPPage);
 
    }
 
  }
 
 
  /* Read protection configuration */
 
  if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP)
 
  {
 
    status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel);
 
  }
 
 
  /* USER configuration */
 
  if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER)
 
  {
 
    status = FLASH_OB_UserConfig(pOBInit->USERConfig);
 
  }
 
 
  /* DATA configuration*/
 
  if((pOBInit->OptionType & OPTIONBYTE_DATA) == OPTIONBYTE_DATA)
 
  {
 
    status = FLASH_OB_ProgramData(pOBInit->DATAAddress, pOBInit->DATAData);
 
  }
 
 
  return status;
 
}
 
 
/**
 
  * @brief  Get the Option byte configuration
 
  * @param  pOBInit: pointer to an FLASH_OBInitStruct structure that
 
  *         contains the configuration information for the programming.
 
  * 
 
  * @retval None
 
  */
 
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
 
{
 
  pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER;
 
 
  /*Get WRP*/
 
  pOBInit->WRPPage = FLASH_OB_GetWRP();
 
 
  /*Get RDP Level*/
 
  pOBInit->RDPLevel = FLASH_OB_GetRDP();
 
 
  /*Get USER*/
 
  pOBInit->USERConfig = FLASH_OB_GetUser();
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
 
  * @{
 
  */  
 
 
/**
 
  * @brief  Mass erase of FLASH memory
 
  * @retval None
 
  */
 
static void FLASH_MassErase(void)
 
{
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
  
 
  /* Proceed to erase all sectors */
 
  SET_BIT(FLASH->CR, FLASH_CR_MER);
 
  SET_BIT(FLASH->CR, FLASH_CR_STRT);
 
}
 
 
/**
 
  * @brief  Enable the write protection of the desired pages
 
  * @note   When the memory read protection level is selected (RDP level = 1), 
 
  *         it is not possible to program or erase the flash page i if CortexM4  
 
  *         debug features are connected or boot code is executed in RAM, even if nWRPi = 1 
 
  * 
 
  * @param  WriteProtectPage: specifies the page(s) to be write protected.
 
  *         The value of this parameter depend on device used within the same series 
 
  * @retval HAL status 
 
  */
 
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F058xx)
 
  uint16_t WRP0_Data = 0xFFFF;
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
  uint16_t WRP1_Data = 0xFFFF;
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F038xx || STM32F051x8 || STM32F042x6 || STM32F048xx || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  uint16_t WRP0_Data = 0xFFFF, WRP1_Data = 0xFFFF, WRP2_Data = 0xFFFF, WRP3_Data = 0xFFFF;
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
  
 
  /* Check the parameters */
 
  assert_param(IS_OB_WRP(WriteProtectPage));
 
    
 
  WriteProtectPage = (uint32_t)(~WriteProtectPage);
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F058xx)
 
  WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
  WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8);
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F038xx || STM32F051x8 || STM32F042x6 || STM32F048xx || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
 
  WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8);
 
  WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16);
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
  WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24); 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx */
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
  WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24); 
 
#endif /* STM32F091xC || STM32F098xx */
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
 
  if(status == HAL_OK)
 
  { 
 
    SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
 
    if(WRP0_Data != 0xFF)
 
    {
 
      OB->WRP0 &= WRP0_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
    if((status == HAL_OK) && (WRP1_Data != 0xFF))
 
    {
 
      OB->WRP1 &= WRP1_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx || STM32F071xB || 
 
          STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
          
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
    if((status == HAL_OK) && (WRP2_Data != 0xFF))
 
    {
 
      OB->WRP2 &= WRP2_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
 
    if((status == HAL_OK) && (WRP3_Data != 0xFF))
 
    {
 
      OB->WRP3 &= WRP3_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
 
    /* if the program operation is completed, disable the OPTPG Bit */
 
    CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
  }
 
  
 
  return status;
 
 
}
 
 
/**
 
  * @brief  Disable the write protection of the desired pages
 
  * @note   When the memory read protection level is selected (RDP level = 1), 
 
  *         it is not possible to program or erase the flash page i if CortexM4  
 
  *         debug features are connected or boot code is executed in RAM, even if nWRPi = 1 
 
  * 
 
  * @param  WriteProtectPage: specifies the page(s) to be write unprotected.
 
  *         The value of this parameter depend on device used within the same series 
 
  * @retval HAL status 
 
  */
 
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F058xx)
 
  uint16_t WRP0_Data = 0xFFFF;
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
  uint16_t WRP1_Data = 0xFFFF;
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F038xx || STM32F051x8 || STM32F042x6 || STM32F048xx || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  uint16_t WRP0_Data = 0xFFFF, WRP1_Data = 0xFFFF, WRP2_Data = 0xFFFF, WRP3_Data = 0xFFFF;
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
  
 
  /* Check the parameters */
 
  assert_param(IS_OB_WRP(WriteProtectPage));
 
 
#if defined(STM32F030x6) || defined(STM32F030x8) || defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F058xx)
 
  WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx)
 
  WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8);
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx */
 
#endif /* STM32F030x6 || STM32F030x8 || STM32F031x6 || STM32F038xx || STM32F051x8 || STM32F042x6 || STM32F048xx || STM32F058xx */
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
 
  WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8);
 
  WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16);
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)
 
  WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24); 
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx */
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
  WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24); 
 
#endif /* STM32F091xC || STM32F098xx */
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
 
  if(status == HAL_OK)
 
  { 
 
    SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
 
    if(WRP0_Data != 0xFF)
 
    {
 
      OB->WRP0 |= WRP0_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
 
#if defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
    if((status == HAL_OK) && (WRP1_Data != 0xFF))
 
    {
 
      OB->WRP1 |= WRP1_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
#endif /* STM32F030x8 || STM32F051x8 || STM32F058xx || STM32F071xB || 
 
          STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
          
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
    if((status == HAL_OK) && (WRP2_Data != 0xFF))
 
    {
 
      OB->WRP2 |= WRP2_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
 
    if((status == HAL_OK) && (WRP3_Data != 0xFF))
 
    {
 
      OB->WRP3 |= WRP3_Data;
 
      
 
      /* Wait for last operation to be completed */
 
      status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    }
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx  || STM32F091xC || STM32F098xx */
 
 
    /* if the program operation is completed, disable the OPTPG Bit */
 
    CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
  }
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  Set the read protection level.
 
  * @param  ReadProtectLevel: specifies the read protection level.
 
  *         This parameter can be one of the following values:
 
  *            @arg OB_RDP_LEVEL_0: No protection
 
  *            @arg OB_RDP_LEVEL_1: Read protection of the memory
 
  *            @arg OB_RDP_LEVEL_2: Full chip protection
 
  *   
 
  * @note   Warning: When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0
 
  *    
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_OB_RDP_LEVEL(ReadProtectLevel));
 
    
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
 
  if(status == HAL_OK)
 
  { 
 
    /* Enable the Option Bytes Programming operation */
 
    SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
 
    WRITE_REG(OB->RDP, ReadProtectLevel);
 
 
    /* Wait for last operation to be completed */
 
    status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE); 
 
 
      /* if the program operation is completed, disable the OPTPG Bit */
 
      CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
    }
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  Program the FLASH User Option Byte.    
 
  * @note   Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
 
  * @param  UserConfig: The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), BOOT1(Bit4),
 
  *         VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6). 
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig)
 
{
 
  HAL_StatusTypeDef status = HAL_OK;
 
 
  /* Check the parameters */
 
  assert_param(IS_OB_WDG_SOURCE((UserConfig&OB_WDG_SW)));
 
  assert_param(IS_OB_STOP_SOURCE((UserConfig&OB_STOP_NO_RST)));
 
  assert_param(IS_OB_STDBY_SOURCE((UserConfig&OB_STDBY_NO_RST)));
 
  assert_param(IS_OB_BOOT1((UserConfig&OB_BOOT1_SET)));
 
  assert_param(IS_OB_VDDA_ANALOG((UserConfig&OB_VDDA_ANALOG_ON)));
 
  assert_param(IS_OB_SRAM_PARITY((UserConfig&OB_RAM_PARITY_CHECK_RESET)));
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
  assert_param(IS_OB_BOOT_SEL((UserConfig&OB_BOOT_SEL_SET)));
 
  assert_param(IS_OB_BOOT0((UserConfig&OB_BOOT0_SET)));
 
#endif /* STM32F042x6 || STM32F048xx || STM32F091xC || STM32F098xx */
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
  
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
  
 
  if(status == HAL_OK)
 
  {     
 
    /* Enable the Option Bytes Programming operation */
 
    SET_BIT(FLASH->CR, FLASH_CR_OPTPG); 
 
           
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
    OB->USER = UserConfig;
 
#else
 
    OB->USER = (UserConfig | 0x88);
 
#endif /* STM32F042x6 || STM32F048xx || STM32F091xC || STM32F098xx */
 
  
 
    /* Wait for last operation to be completed */
 
    status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
    /* if the program operation is completed, disable the OPTPG Bit */
 
    CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
  }
 
  
 
  return status; 
 
}
 
 
/**
 
  * @brief  Programs a half word at a specified Option Byte Data address.
 
  * @note   The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
 
  *         The function HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
 
  *         The function HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes 
 
  *         (system reset will occur)
 
  *         Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
 
  * @param  Address: specifies the address to be programmed.
 
  *         This parameter can be 0x1FFFF804 or 0x1FFFF806. 
 
  * @param  Data: specifies the data to be programmed.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data)
 
{
 
  HAL_StatusTypeDef status = HAL_ERROR;
 
 
  /* Check the parameters */
 
  assert_param(IS_OB_DATA_ADDRESS(Address));
 
 
  /* Wait for last operation to be completed */
 
  status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
 
  /* Clear pending flags (if any) */  
 
  __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); 
 
 
  if(status == HAL_OK)
 
  {
 
    /* Enables the Option Bytes Programming operation */
 
    SET_BIT(FLASH->CR, FLASH_CR_OPTPG); 
 
    *(__IO uint16_t*)Address = Data;
 
    
 
    /* Wait for last operation to be completed */
 
    status = FLASH_WaitForLastOperation((uint32_t)HAL_FLASH_TIMEOUT_VALUE);
 
    
 
      /* If the program operation is completed, disable the OPTPG Bit */
 
      CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
 
    }
 
  /* Return the Option Byte Data Program Status */
 
  return status;
 
}
 
 
/**
 
  * @brief  Return the FLASH Write Protection Option Bytes value.
 
  * @retval The FLASH Write Protection Option Bytes value
 
  */
 
static uint32_t FLASH_OB_GetWRP(void)
 
{
 
  /* Return the FLASH write protection Register value */
 
  return (uint32_t)(READ_REG(FLASH->WRPR));
 
}
 
 
/**
 
  * @brief  Returns the FLASH Read Protection level.
 
  * @retval FLASH ReadOut Protection Status:
 
  *           - SET, when OB_RDP_Level_1 or OB_RDP_Level_2 is set
 
  *           - RESET, when OB_RDP_Level_0 is set
 
  */
 
static FlagStatus FLASH_OB_GetRDP(void)
 
{
 
  FlagStatus readstatus = RESET;
 
 
  if ((uint8_t)READ_BIT(FLASH->OBR, FLASH_OBR_RDPRT1) != RESET)
 
  {
 
    readstatus = SET;
 
  }
 
 
  return readstatus;
 
}
 
 
/**
 
  * @brief  Return the FLASH User Option Byte value.
 
  * @retval The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), BOOT1(Bit4),
 
  *         VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6).
 
  */
 
static uint8_t FLASH_OB_GetUser(void)
 
{
 
  /* Return the User Option Byte */
 
  return (uint8_t)(READ_REG(FLASH->OBR) >> 8);
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_FLASH_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_gpio.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   GPIO HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the General Purpose Input/Output (GPIO) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                    ##### GPIO Peripheral features #####
 
  ==============================================================================         
 
  [..] 
 
  Each port bit of the general-purpose I/O (GPIO) ports can be individually 
 
  configured by software in several modes:
 
  (+) Input mode 
 
  (+) Analog mode
 
  (+) Output mode
 
  (+) Alternate function mode
 
  (+) External interrupt/event lines
 
 
 
  [..]  
 
  During and just after reset, the alternate functions and external interrupt  
 
  lines are not active and the I/O ports are configured in input floating mode.
 
  
 
  [..]   
 
  All GPIO pins have weak internal pull-up and pull-down resistors, which can be 
 
  activated or not.
 
           
 
  [..]
 
  In Output or Alternate mode, each IO can be configured on open-drain or push-pull
 
  type and the IO speed can be selected depending on the VDD value.
 
       
 
  [..]
 
  The microcontroller IO pins are connected to onboard peripherals/modules through a 
 
  multiplexer that allows only one peripheral s alternate function (AF) connected 
 
  to an IO pin at a time. In this way, there can be no conflict between peripherals 
 
  sharing the same IO pin. 
 
  
 
  [..]  
 
  All ports have external interrupt/event capability. To use external interrupt 
 
  lines, the port must be configured in input mode. All available GPIO pins are 
 
  connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
 
  
 
  [..]  
 
  The external interrupt/event controller consists of up to 23 edge detectors 
 
  (16 lines are connected to GPIO) for generating event/interrupt requests (each 
 
  input line can be independently configured to select the type (interrupt or event) 
 
  and the corresponding trigger event (rising or falling or both). Each line can 
 
  also be masked independently. 
 
   
 
            ##### How to use this driver #####
 
  ==============================================================================  
 
  [..]
 
   (#) Enable the GPIO AHB clock using the following function : __GPIOx_CLK_ENABLE(). 
 
                                    
 
   (#) Configure the GPIO pin(s) using HAL_GPIO_Init().
 
       (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
 
       (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef 
 
            structure.
 
       (++) In case of Output or alternate function mode selection: the speed is 
 
            configured through "Speed" member from GPIO_InitTypeDef structure, 
 
            the speed is configurable: 2 MHz, 10 MHz and 50 MHz.
 
       (++) If alternate mode is selected, the alternate function connected to the IO
 
            is configured through "Alternate" member from GPIO_InitTypeDef structure
 
       (++) Analog mode is required when a pin is to be used as ADC channel 
 
            or DAC output.
 
       (++) In case of external interrupt/event selection the "Mode" member from 
 
            GPIO_InitTypeDef structure select the type (interrupt or event) and 
 
            the corresponding trigger event (rising or falling or both).
 
  
 
   (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority 
 
       mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
 
       HAL_NVIC_EnableIRQ().
 
  
 
   (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
 
  
 
   (#) To set/reset the level of a pin configured in output mode use 
 
       HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
 
  
 
   (#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
 
  
 
   (#) During and just after reset, the alternate functions are not 
 
       active and the GPIO pins are configured in input floating mode (except JTAG
 
       pins).
 
  
 
   (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose 
 
       (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has 
 
       priority over the GPIO function.
 
  
 
   (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as 
 
       general purpose PD0 and PD1, respectively, when the HSE oscillator is off. 
 
       The HSE has priority over the GPIO function.
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup GPIO GPIO HAL module driver
 
  * @brief GPIO HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_GPIO_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup GPIO_Private_Define GPIO Private Define
 
  * @{
 
  */
 
#define GPIO_MODE             ((uint32_t)0x00000003)
 
#define EXTI_MODE             ((uint32_t)0x10000000)
 
#define GPIO_MODE_IT          ((uint32_t)0x00010000)
 
#define GPIO_MODE_EVT         ((uint32_t)0x00020000)
 
#define RISING_EDGE           ((uint32_t)0x00100000)
 
#define FALLING_EDGE          ((uint32_t)0x00200000)
 
#define GPIO_OUTPUT_TYPE      ((uint32_t)0x00000010)
 
 
#define GPIO_NUMBER           ((uint32_t)16)
 
 
 
/**
 
  * @}
 
  */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exporte functions ---------------------------------------------------------*/
 
 
/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup GPIO_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init.
 
  * @param  GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F0 family
 
  *   @note   GPIOD is only available on STM32F05xx, STM32F07xx and STM32F09xx
 
  *   @note   GPIOE is only available on STM32F07xx and STM32F09xx
 
  * @param  GPIO_Init: pointer to a GPIO_InitTypeDef structure that contains
 
  *         the configuration information for the specified GPIO peripheral.
 
  * @retval None
 
  */
 
void HAL_GPIO_Init(GPIO_TypeDef  *GPIOx, GPIO_InitTypeDef *GPIO_Init)
 
{ 
 
  uint32_t position;
 
  uint32_t ioposition = 0x00;
 
  uint32_t iocurrent = 0x00;
 
  uint32_t temp = 0x00;
 
 
  /* Check the parameters */
 
  assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
 
  assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
 
  assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
 
  assert_param(IS_GPIO_PULL(GPIO_Init->Pull)); 
 
 
  /* Configure the port pins */
 
  for (position = 0; position < GPIO_NUMBER; position++)
 
  {
 
    /* Get the IO position */
 
    ioposition = ((uint32_t)0x01) << position;
 
    /* Get the current IO position */
 
    iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition;
 
 
 
    if (iocurrent == ioposition)
 
    {
 
      /*--------------------- GPIO Mode Configuration ------------------------*/
 
      /* In case of Alternate function mode selection */
 
      if((GPIO_Init->Mode == GPIO_MODE_AF_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) 
 
      {
 
        /* Check the Alternate function parameter */
 
        assert_param(IS_GPIO_AF(GPIO_Init->Alternate));
 
        /* Configure Alternate function mapped with the current IO */ 
 
        temp = GPIOx->AFR[position >> 3];
 
        temp &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ;
 
        temp |= ((uint32_t)(GPIO_Init->Alternate) << (((uint32_t)position & (uint32_t)0x07) * 4));
 
        GPIOx->AFR[position >> 3] = temp;
 
      }
 
 
      /* Configure IO Direction mode (Input, Output, Alternate or Analog) */
 
      temp = GPIOx->MODER;
 
      temp &= ~(GPIO_MODER_MODER0 << (position * 2));
 
      temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2));
 
      GPIOx->MODER = temp;
 
 
      /* In case of Output or Alternate function mode selection */
 
      if ((GPIO_Init->Mode == GPIO_MODE_OUTPUT_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_PP) ||
 
          (GPIO_Init->Mode == GPIO_MODE_OUTPUT_OD) || (GPIO_Init->Mode == GPIO_MODE_AF_OD))
 
      {
 
        /* Check the Speed parameter */
 
        assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
 
        /* Configure the IO Speed */
 
        temp = GPIOx->OSPEEDR; 
 
        temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2));
 
        temp |= (GPIO_Init->Speed << (position * 2));
 
        GPIOx->OSPEEDR = temp;
 
 
        /* Configure the IO Output Type */
 
        temp = GPIOx->OTYPER;
 
        temp &= ~(GPIO_OTYPER_OT_0 << position) ;
 
        temp |= (((GPIO_Init->Mode & GPIO_OUTPUT_TYPE) >> 4) << position);
 
        GPIOx->OTYPER = temp;
 
      }
 
 
      /* Activate the Pull-up or Pull down resistor for the current IO */
 
      temp = GPIOx->PUPDR;
 
      temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2));
 
      temp |= ((GPIO_Init->Pull) << (position * 2));
 
      GPIOx->PUPDR = temp;
 
 
      /*--------------------- EXTI Mode Configuration ------------------------*/
 
      /* Configure the External Interrupt or event for the current IO */
 
      if((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE) 
 
      {
 
        /* Enable SYSCFG Clock */
 
        __SYSCFG_CLK_ENABLE();
 
  
 
        temp = SYSCFG->EXTICR[position >> 2];
 
        temp &= ~(((uint32_t)0x0F) << (4 * (position & 0x03)));
 
        temp |= (GET_GPIO_INDEX(GPIOx) << (4 * (position & 0x03)));
 
        SYSCFG->EXTICR[position >> 2] = temp;
 
                  
 
        /* Clear EXTI line configuration */
 
        temp = EXTI->IMR;
 
        temp &= ~((uint32_t)iocurrent);
 
        if((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT)
 
        {
 
          temp |= iocurrent;
 
        }
 
        EXTI->IMR = temp;
 
 
        temp = EXTI->EMR;
 
        temp &= ~((uint32_t)iocurrent);
 
        if((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT)
 
        { 
 
          temp |= iocurrent;
 
        }
 
        EXTI->EMR = temp;
 
  
 
        /* Clear Rising Falling edge configuration */
 
        temp = EXTI->RTSR;
 
        temp &= ~((uint32_t)iocurrent);
 
        if((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE)
 
        {
 
          temp |= iocurrent;
 
        }
 
        EXTI->RTSR = temp;
 
 
        temp = EXTI->FTSR;
 
        temp &= ~((uint32_t)iocurrent);
 
        if((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE)
 
        {
 
          temp |= iocurrent;
 
        }
 
        EXTI->FTSR = temp;
 
      }
 
      else
 
      {
 
        temp = SYSCFG->EXTICR[position >> 2];
 
        temp &= (((uint32_t)0x0F) << (4 * (position & 0x03)));
 
        if(temp == (GET_GPIO_INDEX(GPIOx) << (4 * (position & 0x03))))
 
        {
 
          /* Configure the External Interrupt or event for the current IO */
 
          temp = ((uint32_t)0x0F) << (4 * (position & 0x03));
 
          SYSCFG->EXTICR[position >> 2] &= ~temp;
 
          
 
          /* Clear EXTI line configuration */
 
          EXTI->IMR &= ~((uint32_t)iocurrent);
 
          EXTI->EMR &= ~((uint32_t)iocurrent);
 
          
 
          /* Clear Rising Falling edge configuration */
 
          EXTI->RTSR &= ~((uint32_t)iocurrent);
 
          EXTI->FTSR &= ~((uint32_t)iocurrent);
 
        }
 
      }
 
    }
 
  } 
 
}
 
 
/**
 
  * @brief  De-initializes the GPIOx peripheral registers to their default reset values.
 
  * @param  GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F0 family
 
  *   @note   GPIOD is only available on STM32F05xx, STM32F07xx and STM32F09xx
 
  *   @note   GPIOE is only available on STM32F07xx and STM32F09xx
 
  * @param  GPIO_Pin: specifies the port bit to be written.
 
  *         This parameter can be one of GPIO_PIN_x where x can be (0..15).
 
  * @retval None
 
  */
 
void HAL_GPIO_DeInit(GPIO_TypeDef  *GPIOx, uint32_t GPIO_Pin)
 
{
 
  uint32_t position;
 
  uint32_t ioposition = 0x00;
 
  uint32_t iocurrent = 0x00;
 
  uint32_t tmp = 0x00;
 
 
  /* Check the parameters */
 
  assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
 
 
  /* Configure the port pins */
 
  for (position = 0; position < GPIO_NUMBER; position++)
 
  {
 
    /* Get the IO position */
 
    ioposition = ((uint32_t)0x01) << position;
 
    /* Get the current IO position */
 
    iocurrent = (GPIO_Pin) & ioposition;
 
 
    if (iocurrent == ioposition)
 
    {
 
      /*------------------------- GPIO Mode Configuration --------------------*/
 
      /* Configure IO Direction in Input Floting Mode */
 
      GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2));
 
  
 
      /* Configure the default Alternate Function in current IO */ 
 
      GPIOx->AFR[position >> 3] &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ;
 
  
 
      /* Configure the default value for IO Speed */
 
      GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2));
 
                  
 
      /* Configure the default value IO Output Type */
 
      GPIOx->OTYPER  &= ~(GPIO_OTYPER_OT_0 << position) ;
 
  
 
      /* Deactivate the Pull-up oand Pull-down resistor for the current IO */
 
      GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2));
 
 
      /*------------------------- EXTI Mode Configuration --------------------*/
 
      /* Clear the External Interrupt or Event for the current IO */
 
      
 
      tmp = SYSCFG->EXTICR[position >> 2];
 
      tmp &= (((uint32_t)0x0F) << (4 * (position & 0x03)));
 
      if(tmp == (GET_GPIO_INDEX(GPIOx) << (4 * (position & 0x03))))
 
      {
 
        tmp = ((uint32_t)0x0F) << (4 * (position & 0x03));
 
        SYSCFG->EXTICR[position >> 2] &= ~tmp;
 
        
 
        /* Clear EXTI line configuration */
 
        EXTI->IMR &= ~((uint32_t)iocurrent);
 
        EXTI->EMR &= ~((uint32_t)iocurrent);
 
        
 
        /* Clear Rising Falling edge configuration */
 
        EXTI->RTSR &= ~((uint32_t)iocurrent);
 
        EXTI->FTSR &= ~((uint32_t)iocurrent);
 
      }
 
    }
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions 
 
 *  @brief GPIO Read, Write, Toggle, Lock and EXTI management functions.
 
 *
 
@verbatim   
 
 ===============================================================================
 
                       ##### IO operation functions #####
 
 ===============================================================================  
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Reads the specified input port pin.
 
  * @param  GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F0 family
 
  *   @note   GPIOD is only available on STM32F05xx, STM32F07xx and STM32F09xx
 
  *   @note   GPIOE is only available on STM32F07xx and STM32F09xx
 
  * @param  GPIO_Pin: specifies the port bit to read.
 
  *         This parameter can be GPIO_PIN_x where x can be (0..15).
 
  * @retval The input port pin value.
 
  */
 
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
 
{
 
  GPIO_PinState bitstatus;
 
 
  /* Check the parameters */
 
  assert_param(IS_GPIO_PIN(GPIO_Pin));
 
 
  if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET)
 
  {
 
    bitstatus = GPIO_PIN_SET;
 
  }
 
  else
 
  {
 
    bitstatus = GPIO_PIN_RESET;
 
  }
 
  return bitstatus;
 
  }
 
 
/**
 
  * @brief  Sets or clears the selected data port bit.
 
  * @note   This function uses GPIOx_BSRR register to allow atomic read/modify 
 
  *         accesses. In this way, there is no risk of an IRQ occurring between
 
  *         the read and the modify access.
 
  * @param  GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F0 family
 
  *   @note   GPIOD is only available on STM32F05xx, STM32F07xx and STM32F09xx
 
  *   @note   GPIOE is only available on STM32F07xx and STM32F09xx
 
  * @param  GPIO_Pin: specifies the port bit to be written.
 
  *          This parameter can be one of GPIO_PIN_x where x can be (0..15).
 
  * @param  PinState: specifies the value to be written to the selected bit.
 
  *          This parameter can be one of the GPIO_PinState enum values:
 
  *            @arg GPIO_PIN_RESET: to clear the port pin
 
  *            @arg GPIO_PIN_SET: to set the port pin
 
  * @retval None
 
  */
 
void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_GPIO_PIN(GPIO_Pin));
 
  assert_param(IS_GPIO_PIN_ACTION(PinState));
 
 
  if (PinState != GPIO_PIN_RESET)
 
  {
 
    GPIOx->BSRR = (uint32_t)GPIO_Pin;
 
  }
 
  else
 
  {
 
    GPIOx->BSRR = (uint32_t)GPIO_Pin << 16 ;
 
  }
 
}
 
  
 
/**
 
  * @brief  Toggles the specified GPIO pin
 
  * @param  GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F0 family
 
  *   @note   GPIOD is only available on STM32F05xx, STM32F07xx and STM32F09xx
 
  *   @note   GPIOE is only available on STM32F07xx and STM32F09xx
 
  * @param  GPIO_Pin: specifies the pins to be toggled.
 
  * @retval None
 
  */
 
void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_GPIO_PIN(GPIO_Pin));
 
 
  GPIOx->ODR ^= GPIO_Pin;
 
}
 
 
/**
 
* @brief  Locks GPIO Pins configuration registers.
 
* @note   The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
 
*         GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
 
* @note   The configuration of the locked GPIO pins can no longer be modified
 
*         until the next reset.
 
* @param  GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F0 family
 
*   @note   GPIOD is only available on STM32F05xx, STM32F07xx and STM32F09xx
 
*   @note   GPIOE is only available on STM32F07xx and STM32F09xx
 
* @param  GPIO_Pin: specifies the port bit to be locked.
 
*         This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
 
* @retval None
 
*/
 
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
 
{
 
  __IO uint32_t tmp = GPIO_LCKR_LCKK;
 
 
  /* Check the parameters */
 
  assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
 
  assert_param(IS_GPIO_PIN(GPIO_Pin));
 
 
  /* Apply lock key write sequence */
 
  tmp |= GPIO_Pin;
 
  /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
 
  GPIOx->LCKR = tmp;
 
  /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
 
  GPIOx->LCKR = GPIO_Pin;
 
  /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
 
  GPIOx->LCKR = tmp;
 
  /* Read LCKK bit*/
 
  tmp = GPIOx->LCKR;
 
 
  if((GPIOx->LCKR & GPIO_LCKR_LCKK) != RESET)
 
  {
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_ERROR;
 
  }
 
}
 
 
/**
 
  * @brief  This function handles EXTI interrupt request.
 
  * @param  GPIO_Pin: Specifies the port pin connected to corresponding EXTI line.
 
  * @retval None
 
  */
 
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
 
{
 
  /* EXTI line interrupt detected */
 
  if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != RESET) 
 
  { 
 
    __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
 
    HAL_GPIO_EXTI_Callback(GPIO_Pin);
 
  }
 
}
 
 
/**
 
  * @brief  EXTI line detection callbacks.
 
  * @param  GPIO_Pin: Specifies the port pin connected to corresponding EXTI line.
 
  * @retval None
 
  */
 
__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_GPIO_EXTI_Callback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_GPIO_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_i2c.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   I2C HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Inter Integrated Circuit (I2C) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                        ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
    The I2C HAL driver can be used as follows:
 
    
 
    (#) Declare a I2C_HandleTypeDef handle structure, for example:
 
        I2C_HandleTypeDef  hi2c; 
 
 
    (#)Initialize the I2C low level resources by implement the HAL_I2C_MspInit ()API:
 
        (++) Enable the I2Cx interface clock
 
        (++) I2C pins configuration
 
            (+++) Enable the clock for the I2C GPIOs
 
            (+++) Configure I2C pins as alternate function open-drain
 
        (++) NVIC configuration if you need to use interrupt process
 
            (+++) Configure the I2Cx interrupt priority
 
            (+++) Enable the NVIC I2C IRQ Channel
 
        (++) DMA Configuration if you need to use DMA process
 
            (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel
 
            (+++) Enable the DMAx interface clock using
 
            (+++) Configure the DMA handle parameters
 
            (+++) Configure the DMA Tx or Rx channel
 
            (+++) Associate the initilalized DMA handle to the hi2c DMA Tx or Rx handle
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx channel
 
 
    (#) Configure the Communication Clock Timing, Own Address1, Master Adressing Mode, Dual Addressing mode,
 
        Own Address2, Own Address2 Mask, General call and Nostretch mode in the hi2c Init structure.
 
 
    (#) Initialize the I2C registers by calling the HAL_I2C_Init() API:
 
        (++) These API s configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
 
             by calling the customed HAL_I2C_MspInit(&hi2c) API.
 
 
    (#) To check if target device is ready for communication, use the function HAL_I2C_IsDeviceReady()
 
 
    (#) For I2C IO and IO MEM operations, three modes of operations are available within this driver :
 
 
    *** Polling mode IO operation ***
 
    =================================
 
    [..]
 
      (+) Transmit in master mode an amount of data in blocking mode using HAL_I2C_Master_Transmit()
 
      (+) Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive()
 
      (+) Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit()
 
      (+) Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive()
 
 
    *** Polling mode IO MEM operation ***
 
    =====================================
 
    [..]
 
      (+) Write an amount of data in blocking mode to a specific memory address using HAL_I2C_Mem_Write()
 
      (+) Read an amount of data in blocking mode from a specific memory address using HAL_I2C_Mem_Read()
 
 
 
    *** Interrupt mode IO operation ***
 
    ===================================
 
    [..]
 
      (+) Transmit in master mode an amount of data in non blocking mode using HAL_I2C_Master_Transmit_IT()
 
      (+) At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback
 
      (+) Receive in master mode an amount of data in non blocking mode using HAL_I2C_Master_Receive_IT()
 
      (+) At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback
 
      (+) Transmit in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Transmit_IT()
 
      (+) At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback
 
      (+) Receive in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Receive_IT()
 
      (+) At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback
 
      (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_ErrorCallback
 
 
    *** Interrupt mode IO MEM operation ***
 
    =======================================
 
    [..]
 
      (+) Write an amount of data in no-blocking mode with Interrupt to a specific memory address using
 
          HAL_I2C_Mem_Write_IT()
 
      (+) At MEM end of write transfer HAL_I2C_MemTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback
 
      (+) Read an amount of data in no-blocking mode with Interrupt from a specific memory address using
 
          HAL_I2C_Mem_Read_IT()
 
      (+) At MEM end of read transfer HAL_I2C_MemRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback
 
      (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_ErrorCallback
 
 
    *** DMA mode IO operation ***
 
    ==============================
 
    [..]
 
      (+) Transmit in master mode an amount of data in non blocking mode (DMA) using
 
          HAL_I2C_Master_Transmit_DMA()
 
      (+) At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback
 
      (+) Receive in master mode an amount of data in non blocking mode (DMA) using
 
          HAL_I2C_Master_Receive_DMA()
 
      (+) At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback
 
      (+) Transmit in slave mode an amount of data in non blocking mode (DMA) using
 
          HAL_I2C_Slave_Transmit_DMA()
 
      (+) At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback
 
      (+) Receive in slave mode an amount of data in non blocking mode (DMA) using
 
          HAL_I2C_Slave_Receive_DMA()
 
      (+) At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback
 
      (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_ErrorCallback
 
 
    *** DMA mode IO MEM operation ***
 
    =================================
 
    [..]
 
      (+) Write an amount of data in no-blocking mode with DMA to a specific memory address using
 
          HAL_I2C_Mem_Write_DMA()
 
      (+) At MEM end of write transfer HAL_I2C_MemTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback
 
      (+) Read an amount of data in no-blocking mode with DMA from a specific memory address using
 
          HAL_I2C_Mem_Read_DMA()
 
      (+) At MEM end of read transfer HAL_I2C_MemRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback
 
      (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can
 
           add his own code by customization of function pointer HAL_I2C_ErrorCallback
 
 
 
     *** I2C HAL driver macros list ***
 
     ==================================
 
     [..]
 
       Below the list of most used macros in I2C HAL driver.
 
 
      (+) __HAL_I2C_ENABLE: Enable the I2C peripheral
 
      (+) __HAL_I2C_DISABLE: Disable the I2C peripheral
 
      (+) __HAL_I2C_GET_FLAG : Checks whether the specified I2C flag is set or not
 
      (+) __HAL_I2C_CLEAR_FLAG : Clears the specified I2C pending flag
 
      (+) __HAL_I2C_ENABLE_IT: Enables the specified I2C interrupt
 
      (+) __HAL_I2C_DISABLE_IT: Disables the specified I2C interrupt
 
 
     [..]
 
       (@) You can refer to the I2C HAL driver header file for more useful macros
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup I2C I2C HAL module driver
 
  * @brief I2C HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_I2C_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
 
/** @defgroup I2C_Private_Define I2C Private Define
 
  * @{
 
  */
 
#define TIMING_CLEAR_MASK       ((uint32_t)0xF0FFFFFF)  /*<! I2C TIMING clear register Mask */
 
#define I2C_TIMEOUT_ADDR    ((uint32_t)10000)  /* 10 s  */
 
#define I2C_TIMEOUT_BUSY    ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_DIR     ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_RXNE    ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_STOPF   ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_TC      ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_TCR     ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_TXIS    ((uint32_t)25)     /* 25 ms */
 
#define I2C_TIMEOUT_FLAG    ((uint32_t)25)     /* 25 ms */
 
/**
 
  * @}
 
  */ 
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
 
/** @defgroup I2C_Private_Functions I2C Private Functions
 
  * @{
 
  */
 
static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma);
 
static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma);
 
static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void I2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma);
 
static void I2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void I2C_DMAError(DMA_HandleTypeDef *hdma);
 
 
static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout);
 
static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout);
 
static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
 
static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout);
 
static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout);
 
static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout);
 
static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout);
 
 
static HAL_StatusTypeDef I2C_MasterTransmit_ISR(I2C_HandleTypeDef *hi2c);
 
static HAL_StatusTypeDef I2C_MasterReceive_ISR(I2C_HandleTypeDef *hi2c);
 
 
static HAL_StatusTypeDef I2C_SlaveTransmit_ISR(I2C_HandleTypeDef *hi2c);
 
static HAL_StatusTypeDef I2C_SlaveReceive_ISR(I2C_HandleTypeDef *hi2c);
 
 
static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c,  uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request);
 
/**
 
  * @}
 
  */ 
 
  
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup I2C_Exported_Functions I2C Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and Configuration functions #####
 
 ===============================================================================
 
    [..]  This subsection provides a set of functions allowing to initialize and 
 
          de-initialiaze the I2Cx peripheral:
 
 
      (+) User must Implement HAL_I2C_MspInit() function in which he configures 
 
          all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
 
 
      (+) Call the function HAL_I2C_Init() to configure the selected device with 
 
          the selected configuration:
 
        (++) Clock Timing
 
        (++) Own Address 1
 
        (++) Addressing mode (Master, Slave)
 
        (++) Dual Addressing mode
 
        (++) Own Address 2
 
        (++) Own Address 2 Mask
 
        (++) General call mode
 
        (++) Nostretch mode
 
 
      (+) Call the function HAL_I2C_DeInit() to restore the default configuration 
 
          of the selected I2Cx periperal.       
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the I2C according to the specified parameters 
 
  *         in the I2C_InitTypeDef and create the associated handle.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c)
 
{ 
 
  /* Check the I2C handle allocation */
 
  if(hi2c == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1));
 
  assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode));
 
  assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode));
 
  assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2));
 
  assert_param(IS_I2C_OWN_ADDRESS2_MASK(hi2c->Init.OwnAddress2Masks));
 
  assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode));
 
  assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode));
 
 
  if(hi2c->State == HAL_I2C_STATE_RESET)
 
  {
 
    /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
 
    HAL_I2C_MspInit(hi2c);
 
  }
 
 
  hi2c->State = HAL_I2C_STATE_BUSY;
 
  
 
  /* Disable the selected I2C peripheral */
 
  __HAL_I2C_DISABLE(hi2c);
 
  
 
  /*---------------------------- I2Cx TIMINGR Configuration ------------------*/
 
  /* Configure I2Cx: Frequency range */
 
  hi2c->Instance->TIMINGR = hi2c->Init.Timing & TIMING_CLEAR_MASK;
 
  
 
  /*---------------------------- I2Cx OAR1 Configuration ---------------------*/
 
  /* Configure I2Cx: Own Address1 and ack own address1 mode */
 
  hi2c->Instance->OAR1 &= ~I2C_OAR1_OA1EN;
 
  if(hi2c->Init.OwnAddress1 != 0)
 
  {
 
    if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT)
 
    {
 
      hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | hi2c->Init.OwnAddress1);
 
    }
 
    else /* I2C_ADDRESSINGMODE_10BIT */
 
    {
 
      hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hi2c->Init.OwnAddress1);
 
    }
 
  }
 
 
  /*---------------------------- I2Cx CR2 Configuration ----------------------*/
 
  /* Configure I2Cx: Addressing Master mode */
 
  if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT)
 
  {
 
    hi2c->Instance->CR2 = (I2C_CR2_ADD10);
 
  }
 
  /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */
 
  hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK);
 
  
 
  /*---------------------------- I2Cx OAR2 Configuration ---------------------*/
 
  /* Configure I2Cx: Dual mode and Own Address2 */
 
  hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2 | (hi2c->Init.OwnAddress2Masks << 8));
 
 
  /*---------------------------- I2Cx CR1 Configuration ----------------------*/
 
  /* Configure I2Cx: Generalcall and NoStretch mode */
 
  hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode);
 
  
 
  /* Enable the selected I2C peripheral */
 
  __HAL_I2C_ENABLE(hi2c);
 
  
 
  hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
  hi2c->State = HAL_I2C_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the I2C peripheral. 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c)
 
{
 
  /* Check the I2C handle allocation */
 
  if(hi2c == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  
 
  hi2c->State = HAL_I2C_STATE_BUSY;
 
  
 
  /* Disable the I2C Peripheral Clock */
 
  __HAL_I2C_DISABLE(hi2c);
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
 
  HAL_I2C_MspDeInit(hi2c);
 
  
 
  hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
  hi2c->State = HAL_I2C_STATE_RESET;
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(hi2c);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief I2C MSP Init.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
 __weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_MspInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief I2C MSP DeInit
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
 __weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_MspDeInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions 
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to manage the I2C data 
 
    transfers.
 
 
    (#) There is two mode of transfer:
 
       (++) Blocking mode : The communication is performed in the polling mode. 
 
            The status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) No-Blocking mode : The communication is performed using Interrupts 
 
            or DMA. These functions return the status of the transfer startup.
 
            The end of the data processing will be indicated through the 
 
            dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when 
 
            using DMA mode.
 
 
    (#) Blocking mode functions are :
 
        (++) HAL_I2C_Master_Transmit()
 
        (++) HAL_I2C_Master_Receive()
 
        (++) HAL_I2C_Slave_Transmit()
 
        (++) HAL_I2C_Slave_Receive()
 
        (++) HAL_I2C_Mem_Write()
 
        (++) HAL_I2C_Mem_Read()
 
        (++) HAL_I2C_IsDeviceReady()
 
        
 
    (#) No-Blocking mode functions with Interrupt are :
 
        (++) HAL_I2C_Master_Transmit_IT()
 
        (++) HAL_I2C_Master_Receive_IT()
 
        (++) HAL_I2C_Slave_Transmit_IT()
 
        (++) HAL_I2C_Slave_Receive_IT()
 
        (++) HAL_I2C_Mem_Write_IT()
 
        (++) HAL_I2C_Mem_Read_IT()
 
 
    (#) No-Blocking mode functions with DMA are :
 
        (++) HAL_I2C_Master_Transmit_DMA()
 
        (++) HAL_I2C_Master_Receive_DMA()
 
        (++) HAL_I2C_Slave_Transmit_DMA()
 
        (++) HAL_I2C_Slave_Receive_DMA()
 
        (++) HAL_I2C_Mem_Write_DMA()
 
        (++) HAL_I2C_Mem_Read_DMA()
 
 
    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
 
        (++) HAL_I2C_MemTxCpltCallback()
 
        (++) HAL_I2C_MemRxCpltCallback()
 
        (++) HAL_I2C_MasterTxCpltCallback()
 
        (++) HAL_I2C_MasterRxCpltCallback()
 
        (++) HAL_I2C_SlaveTxCpltCallback()
 
        (++) HAL_I2C_SlaveRxCpltCallback()
 
        (++) HAL_I2C_ErrorCallback()
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Transmits in master mode an amount of data in blocking mode.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  uint32_t sizetmp = 0;
 
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {    
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MASTER_BUSY_TX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    /* Size > 255, need to set RELOAD bit */
 
    if(Size > 255)
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE);
 
      sizetmp = 255;
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE);
 
      sizetmp = Size;
 
    }
 
      
 
    do
 
    {
 
      /* Wait until TXIS flag is set */
 
      if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
      {
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          return HAL_ERROR;
 
        }
 
        else
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
      /* Write data to TXDR */
 
      hi2c->Instance->TXDR = (*pData++);
 
      sizetmp--;
 
      Size--;
 
 
      if((sizetmp == 0)&&(Size!=0))
 
      {
 
        /* Wait until TXE flag is set */
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        if(Size > 255)
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
          sizetmp = 255;
 
        }
 
        else
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
          sizetmp = Size;
 
        }
 
      }
 
 
    }while(Size > 0);
 
    
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is set */
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
 
    hi2c->State = HAL_I2C_STATE_READY; 	  
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief  Receives in master mode an amount of data in blocking mode. 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  uint32_t sizetmp = 0;
 
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {    
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MASTER_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    /* Size > 255, need to set RELOAD bit */
 
    if(Size > 255)
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
 
      sizetmp = 255;
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
 
      sizetmp = Size;
 
    }
 
    
 
    do
 
    {
 
      /* Wait until RXNE flag is set */
 
      if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK)      
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
     
 
      /* Write data to RXDR */
 
      (*pData++) =hi2c->Instance->RXDR;
 
      sizetmp--;
 
      Size--;
 
 
      if((sizetmp == 0)&&(Size!=0))
 
      {
 
        /* Wait until TCR flag is set */
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        if(Size > 255)
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
          sizetmp = 255;
 
        }
 
        else
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
          sizetmp = Size;
 
        }
 
      }
 
 
    }while(Size > 0);
 
    
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is set */
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_READY; 	  
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief  Transmits in slave mode an amount of data in blocking mode. 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {    
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_SLAVE_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    /* Enable Address Acknowledge */
 
    hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    /* Wait until ADDR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
    
 
    /* Clear ADDR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR);
 
 
    /* If 10bit addressing mode is selected */
 
    if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT)
 
    {
 
      /* Wait until ADDR flag is set */
 
      if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout) != HAL_OK)      
 
      {
 
        /* Disable Address Acknowledge */
 
        hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
        return HAL_TIMEOUT;
 
      }
 
    
 
      /* Clear ADDR flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR);
 
    }
 
 
    /* Wait until DIR flag is set Transmitter mode */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, Timeout) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
    do
 
    {
 
      /* Wait until TXIS flag is set */
 
      if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
      {
 
        /* Disable Address Acknowledge */
 
        hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          return HAL_ERROR;
 
        }
 
        else
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
      
 
      /* Read data from TXDR */
 
      hi2c->Instance->TXDR = (*pData++);
 
      Size--;
 
    }while(Size > 0);
 
    
 
    /* Wait until STOP flag is set */
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
	/* Normal use case for Transmitter mode */
 
	/* A NACK is generated to confirm the end of transfer */
 
	hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Clear STOP flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_STOPF);
 
    
 
    /* Wait until BUSY flag is reset */ 
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
    
 
    /* Disable Address Acknowledge */
 
    hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
    hi2c->State = HAL_I2C_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief  Receive in slave mode an amount of data in blocking mode 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {  
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_SLAVE_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    /* Enable Address Acknowledge */
 
    hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    /* Wait until ADDR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
    /* Clear ADDR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR);
 
    
 
    /* Wait until DIR flag is reset Receiver mode */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, Timeout) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
    while(Size > 0)
 
    {
 
      /* Wait until RXNE flag is set */
 
      if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout) != HAL_OK)      
 
      {
 
        /* Disable Address Acknowledge */
 
        hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        else
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
      
 
      /* Read data from RXDR */
 
      (*pData++) = hi2c->Instance->RXDR;
 
      Size--;
 
    }
 
    
 
    /* Wait until STOP flag is set */
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Clear STOP flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_STOPF);
 
    
 
    /* Wait until BUSY flag is reset */ 
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
    
 
    /* Disable Address Acknowledge */
 
    hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
    
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief  Transmit in master mode an amount of data in no-blocking mode with Interrupt
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
 
{   
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MASTER_BUSY_TX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE);
 
    }
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c); 
 
 
    /* Note : The I2C interrupts must be enabled after unlocking current process 
 
              to avoid the risk of I2C interrupt handle execution before current
 
              process unlock */
 
 
 
    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
 
    /* possible to enable all of these */
 
    /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
 
    __HAL_I2C_ENABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_TXI );
 
        
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  } 
 
}
 
 
/**
 
  * @brief  Receive in master mode an amount of data in no-blocking mode with Interrupt
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MASTER_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
 
    }
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c); 
 
 
    /* Note : The I2C interrupts must be enabled after unlocking current process 
 
              to avoid the risk of I2C interrupt handle execution before current
 
              process unlock */
 
    
 
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
 
    /* possible to enable all of these */
 
    /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
 
    __HAL_I2C_ENABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI );
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief  Transmit in slave mode an amount of data in no-blocking mode with Interrupt 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_SLAVE_BUSY_TX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    /* Enable Address Acknowledge */
 
    hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferSize = Size;
 
    hi2c->XferCount = Size;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c); 
 
 
    /* Note : The I2C interrupts must be enabled after unlocking current process 
 
              to avoid the risk of I2C interrupt handle execution before current
 
              process unlock */
 
    
 
    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
 
    /* possible to enable all of these */
 
    /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
 
    __HAL_I2C_ENABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_TXI );
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief  Receive in slave mode an amount of data in no-blocking mode with Interrupt 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_SLAVE_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    /* Enable Address Acknowledge */
 
    hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferSize = Size;
 
    hi2c->XferCount = Size;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c); 
 
 
    /* Note : The I2C interrupts must be enabled after unlocking current process 
 
              to avoid the risk of I2C interrupt handle execution before current
 
              process unlock */
 
    
 
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
 
    /* possible to enable all of these */
 
    /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
 
    __HAL_I2C_ENABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief  Transmit in master mode an amount of data in no-blocking mode with DMA
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }     
 
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MASTER_BUSY_TX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Set the I2C DMA transfer complete callback */
 
    hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE);
 
    }  
 
 
    /* Wait until TXIS flag is set */
 
    if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, I2C_TIMEOUT_TXIS) != HAL_OK)
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    
 
    /* Enable DMA Request */
 
    hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN;   
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Receive in master mode an amount of data in no-blocking mode with DMA 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }  
 
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MASTER_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Set the I2C DMA transfer complete callback */
 
    hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize);
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
 
    }
 
 
    /* Wait until RXNE flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, I2C_TIMEOUT_RXNE) != HAL_OK)      
 
    {
 
      return HAL_TIMEOUT;
 
    }
 
 
    
 
    /* Enable DMA Request */
 
    hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN;   
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Transmit in slave mode an amount of data in no-blocking mode with DMA 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }   
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c); 
 
    
 
    hi2c->State = HAL_I2C_STATE_SLAVE_BUSY_TX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    hi2c->XferSize = Size;
 
    
 
    /* Set the I2C DMA transfer complete callback */
 
    hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
 
    
 
    /* Enable Address Acknowledge */
 
    hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    /* Wait until ADDR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, I2C_TIMEOUT_ADDR) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
    /* Clear ADDR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR);
 
    
 
    /* If 10bits addressing mode is selected */
 
    if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT)
 
    {
 
      /* Wait until ADDR flag is set */
 
      if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, I2C_TIMEOUT_ADDR) != HAL_OK)      
 
      {
 
        /* Disable Address Acknowledge */
 
        hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
        return HAL_TIMEOUT;
 
      }
 
 
      /* Clear ADDR flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR);
 
    }
 
    
 
    /* Wait until DIR flag is set Transmitter mode */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, I2C_TIMEOUT_BUSY) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
      
 
    /* Enable DMA Request */
 
    hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; 
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Receive in slave mode an amount of data in no-blocking mode with DMA 
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size)
 
{
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }   
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_SLAVE_BUSY_RX;
 
    hi2c->ErrorCode   = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferSize = Size;
 
    hi2c->XferCount = Size;
 
    
 
    /* Set the I2C DMA transfer complete callback */
 
    hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, Size);
 
    
 
    /* Enable Address Acknowledge */
 
    hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    /* Wait until ADDR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, I2C_TIMEOUT_ADDR) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
    /* Clear ADDR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR);
 
    
 
    /* Wait until DIR flag is set Receiver mode */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, I2C_TIMEOUT_DIR) != HAL_OK)      
 
    {
 
      /* Disable Address Acknowledge */
 
      hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
      return HAL_TIMEOUT;
 
    }
 
 
 
    /* Enable DMA Request */
 
    hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN;  
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Write an amount of data in blocking mode to a specific memory address
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  uint32_t Sizetmp = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
 
  
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  { 
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MEM_BUSY_TX;
 
    hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
    
 
    /* Send Slave Address and Memory Address */
 
    if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Set NBYTES to write and reload if size > 255 */
 
    /* Size > 255, need to set RELOAD bit */
 
    if(Size > 255)
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
      Sizetmp = 255;
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
      Sizetmp = Size;
 
    }
 
    
 
    do
 
    {
 
      /* Wait until TXIS flag is set */
 
      if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
      {
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          return HAL_ERROR;
 
        }
 
        else
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
     
 
      /* Write data to DR */
 
      hi2c->Instance->TXDR = (*pData++);
 
      Sizetmp--;
 
      Size--;
 
 
      if((Sizetmp == 0)&&(Size!=0))
 
      {
 
        /* Wait until TCR flag is set */
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
 
        
 
        if(Size > 255)
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
          Sizetmp = 255;
 
        }
 
        else
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
          Sizetmp = Size;
 
        }
 
      }
 
      
 
    }while(Size > 0);
 
    
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is reset */ 
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
 
    hi2c->State = HAL_I2C_STATE_READY; 	  
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Read an amount of data in blocking mode from a specific memory address
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  uint32_t Sizetmp = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
 
  
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {    
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MEM_BUSY_RX;
 
    hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
    
 
    /* Send Slave Address and Memory Address */
 
    if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    /* Size > 255, need to set RELOAD bit */
 
    if(Size > 255)
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
 
      Sizetmp = 255;
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
 
      Sizetmp = Size;
 
    }
 
    
 
    do
 
    {  
 
      /* Wait until RXNE flag is set */
 
      if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK)      
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
          
 
      /* Read data from RXDR */
 
      (*pData++) = hi2c->Instance->RXDR;
 
 
      /* Decrement the Size counter */
 
      Sizetmp--;
 
      Size--;   
 
 
      if((Sizetmp == 0)&&(Size!=0))
 
      {
 
        /* Wait until TCR flag is set */
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        if(Size > 255)
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
          Sizetmp = 255;
 
        }
 
        else
 
        {
 
          I2C_TransferConfig(hi2c,DevAddress,Size, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
          Sizetmp = Size;
 
        }
 
      }
 
 
    }while(Size > 0);
 
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is reset */ 
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Write an amount of data in no-blocking mode with Interrupt to a specific memory address
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
 
  
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MEM_BUSY_TX;
 
    hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Send Slave Address and Memory Address */
 
    if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Set NBYTES to write and reload if size > 255 */
 
    /* Size > 255, need to set RELOAD bit */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
    }  
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c); 
 
 
    /* Note : The I2C interrupts must be enabled after unlocking current process 
 
              to avoid the risk of I2C interrupt handle execution before current
 
              process unlock */
 
    
 
    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
 
    /* possible to enable all of these */
 
    /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
 
    __HAL_I2C_ENABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_TXI );
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Read an amount of data in no-blocking mode with Interrupt from a specific memory address
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
 
  
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MEM_BUSY_RX;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Send Slave Address and Memory Address */
 
    if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
      
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    /* Size > 255, need to set RELOAD bit */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
 
    }
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c); 
 
 
    /* Note : The I2C interrupts must be enabled after unlocking current process 
 
              to avoid the risk of I2C interrupt handle execution before current
 
              process unlock */
 
    
 
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
 
    /* possible to enable all of these */
 
    /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
 
    __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_RXI );
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }   
 
}
 
 
/**
 
  * @brief  Write an amount of data in no-blocking mode with DMA to a specific memory address
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
 
  
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MEM_BUSY_TX;
 
    hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
    
 
    /* Set the I2C DMA transfer complete callback */
 
    hi2c->hdmatx->XferCpltCallback = I2C_DMAMemTransmitCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2c->hdmatx->XferErrorCallback = I2C_DMAError;
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
 
    
 
    /* Send Slave Address and Memory Address */
 
    if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > 255 */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
    }
 
    
 
    /* Wait until TXIS flag is set */
 
    if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, I2C_TIMEOUT_TXIS) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Enable DMA Request */
 
    hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN;  
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Reads an amount of data in no-blocking mode with DMA from a specific memory address.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be read
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_MEMADD_SIZE(MemAddSize));
 
  
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_MEM_BUSY_RX;
 
    
 
    hi2c->pBuffPtr = pData;
 
    hi2c->XferCount = Size;
 
    if(Size > 255)
 
    {
 
      hi2c->XferSize = 255;
 
    }
 
    else
 
    {
 
      hi2c->XferSize = Size;
 
    }
 
 
    /* Set the I2C DMA transfer complete callback */
 
    hi2c->hdmarx->XferCpltCallback = I2C_DMAMemReceiveCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2c->hdmarx->XferErrorCallback = I2C_DMAError;
 
    
 
    /* Enable the DMA channel */
 
    HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize);
 
    
 
    /* Send Slave Address and Memory Address */
 
    if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
 
    if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
 
    }
 
    else
 
    {
 
      I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
 
    }
 
 
    /* Wait until RXNE flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, I2C_TIMEOUT_RXNE) != HAL_OK)      
 
    {
 
      return HAL_TIMEOUT;
 
    }
 
    
 
    /* Enable DMA Request */
 
    hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN;  
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Checks if target device is ready for communication. 
 
  * @note   This function is used with Memory devices
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  Trials: Number of trials
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0;
 
  
 
  __IO uint32_t I2C_Trials = 0;
 
 
 
  if(hi2c->State == HAL_I2C_STATE_READY)
 
  {
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_BUSY;
 
    hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
    
 
    do
 
    {
 
      /* Generate Start */
 
      hi2c->Instance->CR2 = __HAL_I2C_GENERATE_START(hi2c->Init.AddressingMode,DevAddress);
 
      
 
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
      /* Wait until STOPF flag is set or a NACK flag is set*/
 
      tickstart = HAL_GetTick();
 
      while((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) && (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) && (hi2c->State != HAL_I2C_STATE_TIMEOUT))
 
      {
 
        if(Timeout != HAL_MAX_DELAY)
 
        {
 
          if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
          {
 
            /* Device is ready */
 
            hi2c->State = HAL_I2C_STATE_READY;
 
            /* Process Unlocked */
 
            __HAL_UNLOCK(hi2c);
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
      
 
      /* Check if the NACKF flag has not been set */
 
      if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET)
 
      {
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout) != HAL_OK)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        /* Clear STOP Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
 
        /* Device is ready */
 
        hi2c->State = HAL_I2C_STATE_READY;
 
        
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
        
 
        return HAL_OK;
 
      }
 
      else
 
      {
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout) != HAL_OK)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
 
        /* Clear NACK Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
        /* Clear STOP Flag, auto generated with autoend*/
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
      }
 
      
 
      /* Check if the maximum allowed number of trials has been reached */
 
      if (I2C_Trials++ == Trials)
 
      {
 
        /* Generate Stop */
 
        hi2c->Instance->CR2 |= I2C_CR2_STOP;
 
        
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout) != HAL_OK)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        /* Clear STOP Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
      }      
 
    }while(I2C_Trials < Trials);
 
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
        
 
    return HAL_TIMEOUT;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  This function handles I2C event interrupt request.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c)
 
{
 
  /* I2C in mode Transmitter ---------------------------------------------------*/
 
  if (((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TCR) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TC) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET)) && (__HAL_I2C_GET_IT_SOURCE(hi2c, (I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI | I2C_IT_ADDRI)) == SET))
 
  {     
 
    /* Slave mode selected */
 
    if (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_TX)
 
    {
 
      I2C_SlaveTransmit_ISR(hi2c);
 
    }
 
  }
 
    
 
  if (((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TCR) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TC) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)) && (__HAL_I2C_GET_IT_SOURCE(hi2c, (I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI)) == SET))
 
  {     
 
    /* Master mode selected */
 
    if ((hi2c->State == HAL_I2C_STATE_MASTER_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_MEM_BUSY_TX))
 
    {
 
      I2C_MasterTransmit_ISR(hi2c);
 
    }
 
  }
 
    
 
  /* I2C in mode Receiver ----------------------------------------------------*/
 
  if (((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TCR) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TC) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET)) && (__HAL_I2C_GET_IT_SOURCE(hi2c, (I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_RXI | I2C_IT_ADDRI)) == SET))
 
  {
 
    /* Slave mode selected */
 
    if (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_RX)
 
    {
 
      I2C_SlaveReceive_ISR(hi2c);
 
    }
 
  } 
 
  if (((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TCR) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TC) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) || (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)) && (__HAL_I2C_GET_IT_SOURCE(hi2c, (I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_RXI)) == SET))
 
  {
 
    /* Master mode selected */
 
    if ((hi2c->State == HAL_I2C_STATE_MASTER_BUSY_RX) || (hi2c->State == HAL_I2C_STATE_MEM_BUSY_RX))
 
    {
 
      I2C_MasterReceive_ISR(hi2c);
 
    }
 
  } 
 
}
 
 
 
/**
 
  * @brief  This function handles I2C error interrupt request.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c)
 
{
 
  /* I2C Bus error interrupt occurred ------------------------------------*/
 
  if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BERR) == SET) && (__HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERRI) == SET))
 
  { 
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_BERR;
 
   
 
    /* Clear BERR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
 
  }
 
  
 
  /* I2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/
 
  if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_OVR) == SET) && (__HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERRI) == SET))
 
  { 
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_OVR;
 
 
    /* Clear OVR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
 
  }
 
 
  /* I2C Arbitration Loss error interrupt occurred -------------------------------------*/
 
  if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ARLO) == SET) && (__HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERRI) == SET))
 
  { 
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO;
 
 
    /* Clear ARLO flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
 
  }
 
 
  /* Call the Error Callback in case of Error detected */
 
  if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
  {
 
    hi2c->State = HAL_I2C_STATE_READY;
 
    
 
    HAL_I2C_ErrorCallback(hi2c);
 
  }
 
}
 
 
/**
 
  * @brief  Master Tx Transfer completed callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
 __weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_TxCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Master Rx Transfer completed callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_TxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/** @brief  Slave Tx Transfer completed callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
 __weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_TxCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Slave Rx Transfer completed callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_TxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Memory Tx Transfer completed callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
 __weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_TxCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Memory Rx Transfer completed callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_TxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  I2C error callbacks.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval None
 
  */
 
 __weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2C_ErrorCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2C_Exported_Functions_Group3 Peripheral State and Errors functions
 
 *  @brief   Peripheral State and Errors functions
 
 *
 
@verbatim   
 
 ===============================================================================
 
            ##### Peripheral State and Errors functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Returns the I2C state.
 
  * @param  hi2c : I2C handle
 
  * @retval HAL state
 
  */
 
HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c)
 
{
 
  return hi2c->State;
 
}
 
 
/**
 
* @brief  Return the I2C error code
 
* @param  hi2c : pointer to a I2C_HandleTypeDef structure that contains
 
  *              the configuration information for the specified I2C.
 
* @retval I2C Error Code
 
*/
 
uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c)
 
{
 
  return hi2c->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */   
 
 
/** @addtogroup I2C_Private_Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Handle Interrupt Flags Master Transmit Mode
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_MasterTransmit_ISR(I2C_HandleTypeDef *hi2c) 
 
{
 
  uint16_t DevAddress;
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c); 
 
  
 
  if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == SET)
 
  {
 
    /* Write data to TXDR */
 
    hi2c->Instance->TXDR = (*hi2c->pBuffPtr++);
 
    hi2c->XferSize--;
 
    hi2c->XferCount--;	
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TCR) == SET)
 
  {
 
    if((hi2c->XferSize == 0)&&(hi2c->XferCount!=0))
 
    {
 
      DevAddress = (hi2c->Instance->CR2 & I2C_CR2_SADD);
 
      
 
      if(hi2c->XferCount > 255)
 
      {    
 
        I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
        hi2c->XferSize = 255;
 
      }
 
      else
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferCount, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
        hi2c->XferSize = hi2c->XferCount;
 
      }
 
    }
 
    else
 
    {
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
      
 
      /* Wrong size Status regarding TCR flag event */
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_SIZE;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TC) == SET)
 
  {
 
    if(hi2c->XferCount == 0)
 
    {
 
      /* Generate Stop */
 
      hi2c->Instance->CR2 |= I2C_CR2_STOP;
 
    }
 
    else
 
    {
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
      
 
      /* Wrong size Status regarding TCR flag event */
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_SIZE;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
 
  {
 
    /* Disable ERR, TC, STOP, NACK, TXI interrupt */
 
    __HAL_I2C_DISABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_TXI );
 
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
 
    if(hi2c->State == HAL_I2C_STATE_MEM_BUSY_TX)
 
    {
 
      HAL_I2C_MemTxCpltCallback(hi2c);
 
    }
 
    else
 
    {
 
      HAL_I2C_MasterTxCpltCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)
 
  {
 
    /* Clear NACK Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
    HAL_I2C_ErrorCallback(hi2c);
 
  }
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
  
 
  return HAL_OK;    
 
}  
 
 
/**
 
  * @brief  Handle Interrupt Flags Master Receive Mode
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_MasterReceive_ISR(I2C_HandleTypeDef *hi2c) 
 
{
 
  uint16_t DevAddress;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c);
 
  
 
  if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET)
 
  {  
 
    /* Read data from RXDR */
 
    (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR;
 
    hi2c->XferSize--;
 
    hi2c->XferCount--;
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TCR) == SET)
 
  {
 
    if((hi2c->XferSize == 0)&&(hi2c->XferCount!=0))
 
    {                  
 
      DevAddress = (hi2c->Instance->CR2 & I2C_CR2_SADD);
 
      
 
      if(hi2c->XferCount > 255)
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,255, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
        hi2c->XferSize = 255;
 
      }      
 
      else
 
      {    
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferCount, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
        hi2c->XferSize = hi2c->XferCount;
 
      } 
 
    } 
 
    else
 
    {
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
      
 
      /* Wrong size Status regarding TCR flag event */
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_SIZE;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TC) == SET)
 
  {
 
    if(hi2c->XferCount == 0)
 
    {
 
      /* Generate Stop */
 
      hi2c->Instance->CR2 |= I2C_CR2_STOP;
 
    }
 
    else
 
    {
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
      
 
      /* Wrong size Status regarding TCR flag event */
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_SIZE;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
 
  {
 
    /* Disable ERR, TC, STOP, NACK, TXI interrupt */
 
    __HAL_I2C_DISABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_RXI );
 
      
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
      
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
    
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    if(hi2c->State == HAL_I2C_STATE_MEM_BUSY_RX)
 
    {
 
      HAL_I2C_MemRxCpltCallback(hi2c);
 
    }
 
    else
 
    {
 
      HAL_I2C_MasterRxCpltCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)
 
  {
 
    /* Clear NACK Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
    HAL_I2C_ErrorCallback(hi2c);
 
  }
 
    
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c); 
 
  
 
  return HAL_OK; 
 
 
}  
 
 
/**
 
  * @brief  Handle Interrupt Flags Slave Transmit Mode
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_SlaveTransmit_ISR(I2C_HandleTypeDef *hi2c) 
 
{
 
  /* Process locked */
 
  __HAL_LOCK(hi2c);
 
  
 
  if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) != RESET)
 
  {
 
    /* Check that I2C transfer finished */
 
    /* if yes, normal usecase, a NACK is sent by the MASTER when Transfer is finished */
 
    /* Mean XferCount == 0*/
 
    /* So clear Flag NACKF only */
 
    if(hi2c->XferCount == 0)
 
    {
 
      /* Clear NACK Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
    }
 
    else
 
    {
 
      /* if no, error usecase, a Non-Acknowledge of last Data is generated by the MASTER*/
 
      /* Clear NACK Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
      /* Set ErrorCode corresponding to a Non-Acknowledge */
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
    
 
      /* Call the Error callback to prevent upper layer */
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET)
 
  {
 
    /* Clear ADDR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR);
 
  }
 
  /* Check first if STOPF is set          */
 
  /* to prevent a Write Data in TX buffer */
 
  /* which is stuck in TXDR until next    */
 
  /* communication with Master            */
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
 
  {
 
    /* Disable ERRI, TCI, STOPI, NACKI, ADDRI, RXI, TXI interrupt */
 
    __HAL_I2C_DISABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI );
 
    
 
    /* Disable Address Acknowledge */
 
    hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
 
    hi2c->State = HAL_I2C_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
 
    HAL_I2C_SlaveTxCpltCallback(hi2c);
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == SET)
 
  {
 
    /* Write data to TXDR only if XferCount not reach "0" */
 
    /* A TXIS flag can be set, during STOP treatment      */
 
    if(hi2c->XferCount > 0)
 
    {
 
      /* Write data to TXDR */
 
      hi2c->Instance->TXDR = (*hi2c->pBuffPtr++);
 
      hi2c->XferCount--;
 
    }
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
  
 
  return HAL_OK;
 
}  
 
 
/**
 
  * @brief  Handle Interrupt Flags Slave Receive Mode
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_SlaveReceive_ISR(I2C_HandleTypeDef *hi2c) 
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c);
 
  
 
  if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) != RESET)
 
  {
 
    /* Clear NACK Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
    
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
    HAL_I2C_ErrorCallback(hi2c);
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET)
 
  {
 
    /* Clear ADDR flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR);
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET)
 
  {
 
    /* Read data from RXDR */
 
    (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR;
 
    hi2c->XferSize--;
 
    hi2c->XferCount--;
 
  }
 
  else if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
 
  {
 
    /* Disable ERRI, TCI, STOPI, NACKI, ADDRI, RXI, TXI interrupt */
 
    __HAL_I2C_DISABLE_IT(hi2c,I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_RXI );
 
    
 
    /* Disable Address Acknowledge */
 
    hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
 
    hi2c->State = HAL_I2C_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
 
    HAL_I2C_SlaveRxCpltCallback(hi2c);
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
  
 
  return HAL_OK;     
 
}  
 
 
/**
 
  * @brief  Master sends target device address followed by internal memory address for write request.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout)   
 
{
 
  I2C_TransferConfig(hi2c,DevAddress,MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE);
 
 
  /* Wait until TXIS flag is set */
 
  if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
  {
 
    if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
    {
 
      return HAL_ERROR;
 
    }
 
    else
 
    {
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
 
  /* If Memory address size is 8Bit */
 
  if(MemAddSize == I2C_MEMADD_SIZE_8BIT)
 
  {
 
    /* Send Memory Address */
 
    hi2c->Instance->TXDR = __HAL_I2C_MEM_ADD_LSB(MemAddress);    
 
  }      
 
  /* If Memory address size is 16Bit */
 
  else
 
  {
 
    /* Send MSB of Memory Address */
 
    hi2c->Instance->TXDR = __HAL_I2C_MEM_ADD_MSB(MemAddress); 
 
    
 
    /* Wait until TXIS flag is set */
 
    if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Send LSB of Memory Address */
 
    hi2c->Instance->TXDR = __HAL_I2C_MEM_ADD_LSB(MemAddress);  
 
  }
 
  
 
  /* Wait until TCR flag is set */
 
  if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
 
  {
 
    return HAL_TIMEOUT;
 
  }
 
 
return HAL_OK;
 
}
 
 
/**
 
  * @brief  Master sends target device address followed by internal memory address for read request.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  DevAddress: Target device address
 
  * @param  MemAddress: Internal memory address
 
  * @param  MemAddSize: Size of internal memory address
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout)
 
{
 
  I2C_TransferConfig(hi2c,DevAddress,MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE);
 
  
 
  /* Wait until TXIS flag is set */
 
  if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
  {
 
    if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
    {
 
      return HAL_ERROR;
 
    }
 
    else
 
    {
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  
 
  /* If Memory address size is 8Bit */
 
  if(MemAddSize == I2C_MEMADD_SIZE_8BIT)
 
  {
 
    /* Send Memory Address */
 
    hi2c->Instance->TXDR = __HAL_I2C_MEM_ADD_LSB(MemAddress);    
 
  }      
 
  /* If Mememory address size is 16Bit */
 
  else
 
  {
 
    /* Send MSB of Memory Address */
 
    hi2c->Instance->TXDR = __HAL_I2C_MEM_ADD_MSB(MemAddress); 
 
    
 
    /* Wait until TXIS flag is set */
 
    if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        return HAL_ERROR;
 
      }
 
      else
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
    
 
    /* Send LSB of Memory Address */
 
    hi2c->Instance->TXDR = __HAL_I2C_MEM_ADD_LSB(MemAddress);  
 
  }
 
  
 
  /* Wait until TC flag is set */
 
  if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TC, RESET, Timeout) != HAL_OK)      
 
  {
 
    return HAL_TIMEOUT;
 
  }
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DMA I2C master transmit process complete callback.
 
  * @param  hdma: DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) 
 
{
 
  uint16_t DevAddress;
 
  I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
  
 
  /* Check if last DMA request was done with RELOAD */
 
  /* Set NBYTES to write and reload if size > 255 */
 
  if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
  {
 
    /* Wait until TCR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, I2C_TIMEOUT_TCR) != HAL_OK)      
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
    }
 
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; 
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
      /* Wait until STOPF flag is reset */ 
 
      if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
      {
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
        }
 
        else
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
        }
 
      }
 
    
 
      /* Clear STOP Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
          
 
      /* Clear Configuration Register 2 */
 
      __HAL_I2C_RESET_CR2(hi2c);
 
 
      hi2c->XferCount = 0;
 
    
 
      hi2c->State = HAL_I2C_STATE_READY;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      hi2c->pBuffPtr += hi2c->XferSize;
 
      hi2c->XferCount -= hi2c->XferSize;
 
      if(hi2c->XferCount > 255)
 
      {
 
        hi2c->XferSize = 255;
 
      }
 
      else
 
      {
 
        hi2c->XferSize = hi2c->XferCount;
 
      }
 
 
      DevAddress = (hi2c->Instance->CR2 & I2C_CR2_SADD);
 
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
 
 
      /* Send Slave Address */
 
      /* Set NBYTES to write and reload if size > 255 */
 
      if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
      }
 
      else
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
      }  
 
 
      /* Wait until TXIS flag is set */
 
      if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, I2C_TIMEOUT_TXIS) != HAL_OK)
 
      {
 
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
        {
 
          if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
          }
 
          else
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
          }
 
        }
 
 
        /* Clear STOP Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
            
 
        /* Clear Configuration Register 2 */
 
        __HAL_I2C_RESET_CR2(hi2c);
 
 
        hi2c->XferCount = 0;
 
 
        hi2c->State = HAL_I2C_STATE_READY;
 
        HAL_I2C_ErrorCallback(hi2c);
 
      }
 
      else
 
      {
 
        /* Enable DMA Request */
 
        hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN;
 
      }
 
    }
 
  }
 
  else
 
  {
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is reset */ 
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
      }
 
      else
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      }
 
    }
 
  
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; 
 
  
 
    hi2c->XferCount = 0;
 
  
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
   /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      HAL_I2C_MasterTxCpltCallback(hi2c);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  DMA I2C slave transmit process complete callback. 
 
  * @param  hdma: DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) 
 
{
 
  I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
  
 
  /* Wait until STOP flag is set */
 
  if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
  {
 
    if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
    {
 
      /* Normal Use case, a AF is generated by master */
 
      /* to inform slave the end of transfer */
 
      hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
    }
 
    else
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
    }
 
  }
 
  
 
  /* Clear STOP flag */
 
  __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_STOPF);
 
  
 
  /* Wait until BUSY flag is reset */ 
 
  if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY) != HAL_OK)      
 
  {
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
  }
 
  
 
  /* Disable DMA Request */
 
  hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; 
 
  
 
  hi2c->XferCount = 0;
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
 
  /* Check if Errors has been detected during transfer */
 
  if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
  {
 
    HAL_I2C_ErrorCallback(hi2c);
 
  }
 
  else
 
  {
 
    HAL_I2C_SlaveTxCpltCallback(hi2c);
 
  }
 
}
 
 
/**
 
  * @brief DMA I2C master receive process complete callback 
 
  * @param  hdma: DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) 
 
{
 
  I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
  uint16_t DevAddress;
 
  
 
  /* Check if last DMA request was done with RELOAD */
 
  /* Set NBYTES to write and reload if size > 255 */
 
  if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
  {
 
    /* Wait until TCR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, I2C_TIMEOUT_TCR) != HAL_OK)      
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
    }
 
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; 
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
      /* Wait until STOPF flag is reset */ 
 
      if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
      {
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
        }
 
        else
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
        }
 
      }
 
    
 
      /* Clear STOP Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
          
 
      /* Clear Configuration Register 2 */
 
      __HAL_I2C_RESET_CR2(hi2c);
 
    
 
      hi2c->XferCount = 0;
 
    
 
      hi2c->State = HAL_I2C_STATE_READY;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      hi2c->pBuffPtr += hi2c->XferSize;
 
      hi2c->XferCount -= hi2c->XferSize;
 
      if(hi2c->XferCount > 255)
 
      {
 
        hi2c->XferSize = 255;
 
      }
 
      else
 
      {
 
        hi2c->XferSize = hi2c->XferCount;
 
      }
 
 
      DevAddress = (hi2c->Instance->CR2 & I2C_CR2_SADD);
 
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
 
 
      /* Send Slave Address */
 
      /* Set NBYTES to write and reload if size > 255 */
 
      if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
      }
 
      else
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
      }  
 
 
      /* Wait until RXNE flag is set */
 
      if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, I2C_TIMEOUT_RXNE) != HAL_OK)      
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      }
 
 
      /* Check if Errors has been detected during transfer */
 
      if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
      {
 
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
        {
 
          if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
          }
 
          else
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
          }
 
        }
 
      
 
        /* Clear STOP Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
            
 
        /* Clear Configuration Register 2 */
 
        __HAL_I2C_RESET_CR2(hi2c);
 
      
 
        hi2c->XferCount = 0;
 
      
 
        hi2c->State = HAL_I2C_STATE_READY;
 
 
        HAL_I2C_ErrorCallback(hi2c);
 
      }
 
      else
 
      {
 
        /* Enable DMA Request */
 
        hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN;
 
      }
 
    }
 
  }
 
  else
 
  {
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is reset */ 
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
      }
 
      else
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      }
 
    }
 
  
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
  
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; 
 
  
 
    hi2c->XferCount = 0;
 
  
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      HAL_I2C_MasterRxCpltCallback(hi2c);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  DMA I2C slave receive process complete callback.
 
  * @param  hdma: DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) 
 
{  
 
  I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
  
 
  /* Wait until STOPF flag is reset */ 
 
  if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
  {
 
    if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
    }
 
    else
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
    }
 
  }
 
  
 
  /* Clear STOPF flag */
 
  __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  
 
  /* Wait until BUSY flag is reset */ 
 
  if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY) != HAL_OK)      
 
  {
 
    hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
  }
 
  
 
  /* Disable DMA Request */
 
  hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; 
 
  
 
  /* Disable Address Acknowledge */
 
  hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
 
  hi2c->XferCount = 0;
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
 
  /* Check if Errors has been detected during transfer */
 
  if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
  {
 
    HAL_I2C_ErrorCallback(hi2c);
 
  }
 
  else
 
  {
 
    HAL_I2C_SlaveRxCpltCallback(hi2c);
 
  }
 
}
 
 
/**
 
  * @brief DMA I2C Memory Write process complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  uint16_t DevAddress;
 
  I2C_HandleTypeDef* hi2c = ( I2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* Check if last DMA request was done with RELOAD */
 
  /* Set NBYTES to write and reload if size > 255 */
 
  if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
  {
 
    /* Wait until TCR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, I2C_TIMEOUT_TCR) != HAL_OK)      
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
    }
 
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; 
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
      /* Wait until STOPF flag is reset */ 
 
      if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
      {
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
        }
 
        else
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
        }
 
      }
 
    
 
      /* Clear STOP Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
          
 
      /* Clear Configuration Register 2 */
 
      __HAL_I2C_RESET_CR2(hi2c);
 
 
      hi2c->XferCount = 0;
 
    
 
      hi2c->State = HAL_I2C_STATE_READY;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      hi2c->pBuffPtr += hi2c->XferSize;
 
      hi2c->XferCount -= hi2c->XferSize;
 
      if(hi2c->XferCount > 255)
 
      {
 
        hi2c->XferSize = 255;
 
      }
 
      else
 
      {
 
        hi2c->XferSize = hi2c->XferCount;
 
      }
 
 
      DevAddress = (hi2c->Instance->CR2 & I2C_CR2_SADD);
 
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
 
 
      /* Send Slave Address */
 
      /* Set NBYTES to write and reload if size > 255 */
 
      if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
      }
 
      else
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
      }  
 
 
      /* Wait until TXIS flag is set */
 
      if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, I2C_TIMEOUT_TXIS) != HAL_OK)
 
      {
 
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
        {
 
          if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
          }
 
          else
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
          }
 
        }
 
 
        /* Clear STOP Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
            
 
        /* Clear Configuration Register 2 */
 
        __HAL_I2C_RESET_CR2(hi2c);
 
 
        hi2c->XferCount = 0;
 
 
        hi2c->State = HAL_I2C_STATE_READY;
 
        HAL_I2C_ErrorCallback(hi2c);
 
      }
 
      else
 
      {
 
        /* Enable DMA Request */
 
        hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN;
 
      }
 
    }
 
  }
 
  else
 
  {
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is reset */ 
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
      }
 
      else
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      }
 
    }
 
  
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; 
 
  
 
    hi2c->XferCount = 0;
 
  
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      HAL_I2C_MemTxCpltCallback(hi2c);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  DMA I2C Memory Read process complete callback
 
  * @param  hdma: DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma)   
 
{  
 
  I2C_HandleTypeDef* hi2c = ( I2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;  
 
  uint16_t DevAddress;
 
  
 
  /* Check if last DMA request was done with RELOAD */
 
  /* Set NBYTES to write and reload if size > 255 */
 
  if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
  {
 
    /* Wait until TCR flag is set */
 
    if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, I2C_TIMEOUT_TCR) != HAL_OK)      
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
    }
 
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; 
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
      /* Wait until STOPF flag is reset */ 
 
      if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
      {
 
        if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
        }
 
        else
 
        {
 
          hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
        }
 
      }
 
    
 
      /* Clear STOP Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
          
 
      /* Clear Configuration Register 2 */
 
      __HAL_I2C_RESET_CR2(hi2c);
 
    
 
      hi2c->XferCount = 0;
 
    
 
      hi2c->State = HAL_I2C_STATE_READY;
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      hi2c->pBuffPtr += hi2c->XferSize;
 
      hi2c->XferCount -= hi2c->XferSize;
 
      if(hi2c->XferCount > 255)
 
      {
 
        hi2c->XferSize = 255;
 
      }
 
      else
 
      {
 
        hi2c->XferSize = hi2c->XferCount;
 
      }
 
 
      DevAddress = (hi2c->Instance->CR2 & I2C_CR2_SADD);
 
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize);
 
 
      /* Send Slave Address */
 
      /* Set NBYTES to write and reload if size > 255 */
 
      if( (hi2c->XferSize == 255) && (hi2c->XferSize < hi2c->XferCount) )
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
 
      }
 
      else
 
      {
 
        I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
 
      }  
 
 
      /* Wait until RXNE flag is set */
 
      if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, I2C_TIMEOUT_RXNE) != HAL_OK)      
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      }
 
 
      /* Check if Errors has been detected during transfer */
 
      if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
      {
 
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
        /* Wait until STOPF flag is reset */ 
 
        if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
        {
 
          if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
          }
 
          else
 
          {
 
            hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
          }
 
        }
 
      
 
        /* Clear STOP Flag */
 
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
            
 
        /* Clear Configuration Register 2 */
 
        __HAL_I2C_RESET_CR2(hi2c);
 
      
 
        hi2c->XferCount = 0;
 
 
        hi2c->State = HAL_I2C_STATE_READY;
 
        HAL_I2C_ErrorCallback(hi2c);
 
      }
 
      else
 
      {
 
        /* Enable DMA Request */
 
        hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN;
 
      }
 
    }
 
  }
 
  else
 
  {
 
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
    /* Wait until STOPF flag is reset */ 
 
    if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, I2C_TIMEOUT_STOPF) != HAL_OK)
 
    {
 
      if(hi2c->ErrorCode == HAL_I2C_ERROR_AF)
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
 
      }
 
      else
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      }
 
    }
 
  
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
  	
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
  
 
    /* Disable DMA Request */
 
    hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; 
 
  
 
    hi2c->XferCount = 0;
 
  
 
    hi2c->State = HAL_I2C_STATE_READY;
 
 
    /* Check if Errors has been detected during transfer */
 
    if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE)
 
    {
 
      HAL_I2C_ErrorCallback(hi2c);
 
    }
 
    else
 
    {
 
      HAL_I2C_MemRxCpltCallback(hi2c);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  DMA I2C communication error callback. 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void I2C_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  I2C_HandleTypeDef* hi2c = ( I2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* Disable Acknowledge */
 
  hi2c->Instance->CR2 |= I2C_CR2_NACK;
 
  
 
  hi2c->XferCount = 0;
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
  
 
  hi2c->ErrorCode |= HAL_I2C_ERROR_DMA;
 
  
 
  HAL_I2C_ErrorCallback(hi2c);
 
}
 
 
/**
 
  * @brief  This function handles I2C Communication Timeout.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  Flag: specifies the I2C flag to check.
 
  * @param  Status: The new Flag status (SET or RESET).
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
 
{  
 
  uint32_t tickstart = HAL_GetTick();
 
 
  /* Wait until flag is set */
 
  if(Status == RESET)
 
  {    
 
    while(__HAL_I2C_GET_FLAG(hi2c, Flag) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hi2c->State= HAL_I2C_STATE_READY;
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hi2c);
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_I2C_GET_FLAG(hi2c, Flag) != RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hi2c->State= HAL_I2C_STATE_READY;
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hi2c);
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief  This function handles I2C Communication Timeout for specific usage of TXIS flag.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout)  
 
{  
 
  uint32_t tickstart = HAL_GetTick();
 
  
 
  while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET)
 
  {
 
    /* Check if a NACK is detected */
 
    if(I2C_IsAcknowledgeFailed(hi2c, Timeout) != HAL_OK)
 
    {
 
      return HAL_ERROR;
 
    }
 
 
    /* Check for the Timeout */
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
        hi2c->State= HAL_I2C_STATE_READY;
 
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hi2c);
 
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief  This function handles I2C Communication Timeout for specific usage of STOP flag.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0x00;
 
  tickstart = HAL_GetTick();
 
  
 
  while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET)
 
  {
 
    /* Check if a NACK is detected */
 
    if(I2C_IsAcknowledgeFailed(hi2c, Timeout) != HAL_OK)
 
    {
 
      return HAL_ERROR;
 
    }
 
 
    /* Check for the Timeout */
 
    if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      hi2c->State= HAL_I2C_STATE_READY;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles I2C Communication Timeout for specific usage of RXNE flag.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0x00;
 
  tickstart = HAL_GetTick();
 
  
 
  while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET)
 
  {
 
    /* Check if a STOPF is detected */
 
    if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
 
    {
 
      /* Clear STOP Flag */
 
      __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
 
      /* Clear Configuration Register 2 */
 
      __HAL_I2C_RESET_CR2(hi2c);
 
 
      hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
 
      hi2c->State= HAL_I2C_STATE_READY;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
 
      return HAL_ERROR;
 
    }
 
		
 
    /* Check for the Timeout */
 
    if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
    {
 
      hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT;
 
      hi2c->State= HAL_I2C_STATE_READY;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hi2c);
 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles Acknowledge failed detection during an I2C Communication.
 
  * @param  hi2c : Pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2C.
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout)
 
{
 
  uint32_t tickstart = 0x00;
 
  tickstart = HAL_GetTick();
 
 
  if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)
 
  {
 
    /* Generate stop if necessary only in case of I2C peripheral in MASTER mode */
 
    if((hi2c->State == HAL_I2C_STATE_MASTER_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_MEM_BUSY_TX)
 
       || (hi2c->State == HAL_I2C_STATE_MEM_BUSY_RX))
 
    {
 
      /* No need to generate the STOP condition if AUTOEND mode is enabled */
 
      /* Generate the STOP condition only in case of SOFTEND mode is enabled */
 
      if((hi2c->Instance->CR2 & I2C_AUTOEND_MODE) != I2C_AUTOEND_MODE)
 
      {
 
        /* Generate Stop */
 
        hi2c->Instance->CR2 |= I2C_CR2_STOP;
 
      }
 
    }
 
		
 
    /* Wait until STOP Flag is reset */
 
    /* AutoEnd should be initiate after AF */
 
    while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hi2c->State= HAL_I2C_STATE_READY;
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hi2c);
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
 
    /* Clear NACKF Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
 
 
    /* Clear STOP Flag */
 
    __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
 
 
    /* Clear Configuration Register 2 */
 
    __HAL_I2C_RESET_CR2(hi2c);
 
 
    hi2c->ErrorCode = HAL_I2C_ERROR_AF;
 
    hi2c->State= HAL_I2C_STATE_READY;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2c);
 
 
    return HAL_ERROR;
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief  Handles I2Cx communication when starting transfer or during transfer (TC or TCR flag are set).
 
  * @param  hi2c: I2C handle.
 
  * @param  DevAddress: specifies the slave address to be programmed.
 
  * @param  Size: specifies the number of bytes to be programmed.
 
  *   This parameter must be a value between 0 and 255.
 
  * @param  Mode: new state of the I2C START condition generation.
 
  *   This parameter can be one of the following values:
 
  *     @arg I2C_RELOAD_MODE: Enable Reload mode .
 
  *     @arg I2C_AUTOEND_MODE: Enable Automatic end mode.
 
  *     @arg I2C_SOFTEND_MODE: Enable Software end mode.
 
  * @param  Request: new state of the I2C START condition generation.
 
  *   This parameter can be one of the following values:
 
  *     @arg I2C_NO_STARTSTOP: Don't Generate stop and start condition.
 
  *     @arg I2C_GENERATE_STOP: Generate stop condition (Size should be set to 0).
 
  *     @arg I2C_GENERATE_START_READ: Generate Restart for read request.
 
  *     @arg I2C_GENERATE_START_WRITE: Generate Restart for write request.
 
  * @retval None
 
  */
 
static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c,  uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request)
 
{
 
  uint32_t tmpreg = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  assert_param(IS_TRANSFER_MODE(Mode));
 
  assert_param(IS_TRANSFER_REQUEST(Request));
 
    
 
  /* Get the CR2 register value */
 
  tmpreg = hi2c->Instance->CR2;
 
  
 
  /* clear tmpreg specific bits */
 
  tmpreg &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | I2C_CR2_RD_WRN | I2C_CR2_START | I2C_CR2_STOP));
 
  
 
  /* update tmpreg */
 
  tmpreg |= (uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | (((uint32_t)Size << 16 ) & I2C_CR2_NBYTES) | \
 
            (uint32_t)Mode | (uint32_t)Request);
 
  
 
  /* update CR2 register */
 
  hi2c->Instance->CR2 = tmpreg;  
 
}  
 
 
/**
 
  * @}
 
  */  
 
 
#endif /* HAL_I2C_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_i2c_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   I2C Extension HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of I2C extension peripheral:
 
  *           + Extension features functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
               ##### I2C peripheral extension features  #####
 
  ==============================================================================
 
           
 
  [..] Comparing to other previous devices, the I2C interface for STM32F0XX
 
       devices contains the following additional features
 
       
 
       (+) Possibility to disable or enable Analog Noise Filter
 
       (+) Use of a configured Digital Noise Filter
 
       (+) Disable or enable wakeup from Stop mode
 
   
 
                     ##### How to use this driver #####
 
  ==============================================================================
 
  [..] This driver provides functions to configure Noise Filter
 
    (#) Configure I2C Analog noise filter using the function HAL_I2CEx_AnalogFilter_Config()
 
    (#) Configure I2C Digital noise filter using the function HAL_I2CEx_DigitalFilter_Config()
 
    (#) Configure the enabling or disabling of I2C Wake Up Mode using the functions :
 
          (++) HAL_I2CEx_EnableWakeUp()
 
          (++) HAL_I2CEx_DisableWakeUp()
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup I2CEx I2CEx Extended HAL module driver
 
  * @brief I2C Extended HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_I2C_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup I2CEx_Exported_Functions I2CEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup I2CEx_Exported_Functions_Group1 Extended features functions
 
  * @brief    Extended features functions
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Extension features functions #####
 
 ===============================================================================  
 
    [..] This section provides functions allowing to:
 
      (+) Configure Noise Filters 
 
 
@endverbatim
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Configures I2C Analog noise filter. 
 
  * @param  hi2c : pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2Cx peripheral.
 
  * @param  AnalogFilter : new state of the Analog filter.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2CEx_AnalogFilter_Config(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter));
 
  
 
  if((hi2c->State == HAL_I2C_STATE_BUSY) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_RX)
 
     || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_RX))
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c);
 
 
  hi2c->State = HAL_I2C_STATE_BUSY;
 
  
 
  /* Disable the selected I2C peripheral */
 
  __HAL_I2C_DISABLE(hi2c);    
 
  
 
  /* Reset I2Cx ANOFF bit */
 
  hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF);    
 
  
 
  /* Set analog filter bit*/
 
  hi2c->Instance->CR1 |= AnalogFilter;
 
  
 
  __HAL_I2C_ENABLE(hi2c); 
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief  Configures I2C Digital noise filter. 
 
  * @param  hi2c : pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2Cx peripheral.
 
  * @param  DigitalFilter : Coefficient of digital noise filter between 0x00 and 0x0F.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2CEx_DigitalFilter_Config(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter)
 
{
 
  uint32_t tmpreg = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter));
 
  
 
  if((hi2c->State == HAL_I2C_STATE_BUSY) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_RX)
 
     || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_RX))
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c);
 
 
  hi2c->State = HAL_I2C_STATE_BUSY;
 
  
 
  /* Disable the selected I2C peripheral */
 
  __HAL_I2C_DISABLE(hi2c);  
 
  
 
  /* Get the old register value */
 
  tmpreg = hi2c->Instance->CR1;
 
  
 
  /* Reset I2Cx DNF bits [11:8] */
 
  tmpreg &= ~(I2C_CR1_DFN);
 
  
 
  /* Set I2Cx DNF coefficient */
 
  tmpreg |= DigitalFilter << 8;
 
  
 
  /* Store the new register value */
 
  hi2c->Instance->CR1 = tmpreg;
 
  
 
  __HAL_I2C_ENABLE(hi2c); 
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
 
  return HAL_OK; 
 
}  
 
 
/**
 
  * @brief  Enables I2C wakeup from stop mode.
 
  * @param  hi2c : pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2Cx peripheral.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp (I2C_HandleTypeDef *hi2c)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  
 
  if((hi2c->State == HAL_I2C_STATE_BUSY) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_RX)
 
     || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_RX))
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c);
 
 
  hi2c->State = HAL_I2C_STATE_BUSY;
 
  
 
  /* Disable the selected I2C peripheral */
 
  __HAL_I2C_DISABLE(hi2c);  
 
  
 
  /* Enable wakeup from stop mode */
 
  hi2c->Instance->CR1 |= I2C_CR1_WUPEN;   
 
  
 
  __HAL_I2C_ENABLE(hi2c); 
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
 
  return HAL_OK; 
 
}  
 
 
 
/**
 
  * @brief  Disables I2C wakeup from stop mode.
 
  * @param  hi2c : pointer to a I2C_HandleTypeDef structure that contains
 
  *                the configuration information for the specified I2Cx peripheral.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp (I2C_HandleTypeDef *hi2c)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
 
  
 
  if((hi2c->State == HAL_I2C_STATE_BUSY) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_MASTER_BUSY_RX)
 
     || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_TX) || (hi2c->State == HAL_I2C_STATE_SLAVE_BUSY_RX))
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2c);
 
 
  hi2c->State = HAL_I2C_STATE_BUSY;
 
  
 
  /* Disable the selected I2C peripheral */
 
  __HAL_I2C_DISABLE(hi2c);  
 
  
 
  /* Enable wakeup from stop mode */
 
  hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN);   
 
  
 
  __HAL_I2C_ENABLE(hi2c); 
 
  
 
  hi2c->State = HAL_I2C_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2c);
 
 
  return HAL_OK; 
 
}  
 
 
/**
 
  * @}
 
  */  
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_I2C_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2s.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_i2s.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   I2S HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Integrated Interchip Sound (I2S) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral State and Errors functions
 
  @verbatim
 
 ===============================================================================
 
                  ##### How to use this driver #####
 
 ===============================================================================
 
 [..]
 
    The I2S HAL driver can be used as follow:
 
    
 
    (#) Declare a I2S_HandleTypeDef handle structure.
 
    (#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API:
 
        (##) Enable the SPIx interface clock.                      
 
        (##) I2S pins configuration:
 
            (+++) Enable the clock for the I2S GPIOs.
 
            (+++) Configure these I2S pins as alternate function pull-up.
 
        (##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT()
 
             and HAL_I2S_Receive_IT() APIs).
 
            (+++) Configure the I2Sx interrupt priority.
 
            (+++) Enable the NVIC I2S IRQ handle.
 
        (##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA()
 
             and HAL_I2S_Receive_DMA() APIs:
 
            (+++) Declare a DMA handle structure for the Tx/Rx Channel.
 
            (+++) Enable the DMAx interface clock.
 
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.                
 
            (+++) Configure the DMA Tx/Rx Channel.
 
            (+++) Associate the initilalized DMA handle to the I2S DMA Tx/Rx handle.
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the 
 
                  DMA Tx/Rx Channel.
 
 
   (#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity
 
       using HAL_I2S_Init() function.
 
 
   -@- The specific I2S interrupts (Transmission complete interrupt, 
 
       RXNE interrupt and Error Interrupts) will be managed using the macros
 
       __HAL_I2S_ENABLE_IT() and __HAL_I2S_DISABLE_IT() inside the transmit and receive process.
 
   -@- Make sure that either:
 
       (+@) External clock source is configured after setting correctly 
 
            the define constant EXTERNAL_CLOCK_VALUE in the stm32f0xx_hal_conf.h file. 
 
 
    (#) Three mode of operations are available within this driver :     
 
 
   *** Polling mode IO operation ***
 
   =================================
 
   [..]    
 
     (+) Send an amount of data in blocking mode using HAL_I2S_Transmit() 
 
     (+) Receive an amount of data in blocking mode using HAL_I2S_Receive()
 
   
 
   *** Interrupt mode IO operation ***
 
   ===================================
 
   [..]    
 
     (+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT() 
 
     (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback 
 
     (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_TxCpltCallback
 
     (+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT() 
 
     (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback 
 
     (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_RxCpltCallback
 
     (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_ErrorCallback
 
 
   *** DMA mode IO operation ***
 
   ==============================
 
   [..] 
 
     (+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA() 
 
     (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback 
 
     (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_TxCpltCallback
 
     (+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA() 
 
     (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback 
 
     (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_RxCpltCallback
 
     (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can 
 
         add his own code by customization of function pointer HAL_I2S_ErrorCallback
 
     (+) Pause the DMA Transfer using HAL_I2S_DMAPause()
 
     (+) Resume the DMA Transfer using HAL_I2S_DMAResume()
 
     (+) Stop the DMA Transfer using HAL_I2S_DMAStop()
 
 
   *** I2S HAL driver macros list ***
 
   =============================================
 
   [..]
 
     Below the list of most used macros in USART HAL driver.
 
       
 
      (+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode) 
 
      (+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode)
 
      (+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts
 
      (+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts
 
      (+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not
 
 
    [..]
 
      (@) You can refer to the I2S HAL driver header file for more useful macros
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup I2S I2S HAL module driver
 
  * @brief I2S HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_I2S_MODULE_ENABLED
 
 
#if defined(STM32F031x6) || defined(STM32F038xx) || \
 
    defined(STM32F051x8) || defined(STM32F058xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
static void               I2S_DMATxCplt(DMA_HandleTypeDef *hdma);
 
static void               I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma); 
 
static void               I2S_DMARxCplt(DMA_HandleTypeDef *hdma);
 
static void               I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
 
static void               I2S_DMAError(DMA_HandleTypeDef *hdma);
 
static void               I2S_Transmit_IT(I2S_HandleTypeDef *hi2s);
 
static void               I2S_Receive_IT(I2S_HandleTypeDef *hi2s);
 
static HAL_StatusTypeDef  I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t State, uint32_t Timeout);
 
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup I2S_Exported_Functions I2S Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup  I2S_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  *  @brief    Initialization and Configuration functions 
 
  *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
    [..]  This subsection provides a set of functions allowing to initialize and 
 
          de-initialiaze the I2Sx peripheral in simplex mode:
 
 
      (+) User must Implement HAL_I2S_MspInit() function in which he configures 
 
          all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
 
 
      (+) Call the function HAL_I2S_Init() to configure the selected device with 
 
          the selected configuration:
 
        (++) Mode
 
        (++) Standard 
 
        (++) Data Format
 
        (++) MCLK Output
 
        (++) Audio frequency
 
        (++) Polarity
 
 
     (+) Call the function HAL_I2S_DeInit() to restore the default configuration 
 
         of the selected I2Sx periperal. 
 
  @endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Initializes the I2S according to the specified parameters 
 
  *         in the I2S_InitTypeDef and create the associated handle.
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
 
{
 
  uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
 
  uint32_t tmp = 0, i2sclk = 0;
 
  
 
  /* Check the I2S handle allocation */
 
  if(hi2s == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the I2S parameters */
 
  assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance));
 
  assert_param(IS_I2S_MODE(hi2s->Init.Mode));
 
  assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
 
  assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
 
  assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
 
  assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
 
  assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));
 
  
 
  if(hi2s->State == HAL_I2S_STATE_RESET)
 
  {
 
    /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
 
    HAL_I2S_MspInit(hi2s);
 
  }
 
  
 
  hi2s->State = HAL_I2S_STATE_BUSY;
 
  
 
  /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/
 
  /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
 
  hi2s->Instance->I2SCFGR &= (uint16_t)(~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
 
                                          SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
 
                                          SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD)); 
 
  hi2s->Instance->I2SPR = 0x0002;
 
  
 
  /* Get the I2SCFGR register value */
 
  tmpreg = hi2s->Instance->I2SCFGR;
 
  
 
  /* If the default value has to be written, reinitialize i2sdiv and i2sodd*/
 
  if(hi2s->Init.AudioFreq == I2S_AUDIOFREQ_DEFAULT)
 
  {
 
    i2sodd = (uint16_t)0;
 
    i2sdiv = (uint16_t)2;   
 
  }
 
  /* If the requested audio frequency is not the default, compute the prescaler */
 
  else
 
  {
 
    /* Check the frame length (For the Prescaler computing) *******************/
 
    if(hi2s->Init.DataFormat == I2S_DATAFORMAT_16B)
 
    {
 
      /* Packet length is 16 bits */
 
      packetlength = 1;
 
    }
 
    else
 
    {
 
      /* Packet length is 32 bits */
 
      packetlength = 2;
 
    }
 
 
    /* Get I2S source Clock frequency  ****************************************/
 
    i2sclk = HAL_RCC_GetSysClockFreq();
 
    
 
    /* Compute the Real divider depending on the MCLK output state, with a floating point */
 
    if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
 
    {
 
      /* MCLK output is enabled */
 
      tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5);
 
    }
 
    else
 
    {
 
      /* MCLK output is disabled */
 
      tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5);
 
    }
 
 
    /* Remove the flatting point */
 
    tmp = tmp / 10;  
 
 
    /* Check the parity of the divider */
 
    i2sodd = (uint32_t)(tmp & (uint32_t)1);
 
 
    /* Compute the i2sdiv prescaler */
 
    i2sdiv = (uint32_t)((tmp - i2sodd) / 2);
 
 
    /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
 
    i2sodd = (uint32_t) (i2sodd << 8);
 
  }
 
 
  /* Test if the divider is 1 or 0 or greater than 0xFF */
 
  if((i2sdiv < 2) || (i2sdiv > 0xFF))
 
  {
 
    /* Set the default values */
 
    i2sdiv = 2;
 
    i2sodd = 0;
 
  }
 
  
 
  /* Write to SPIx I2SPR register the computed value */
 
  hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput));
 
  
 
  /* Configure the I2S with the I2S_InitStruct values */
 
  tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);
 
  
 
  /* Write to SPIx I2SCFGR */  
 
  hi2s->Instance->I2SCFGR = tmpreg;
 
  
 
  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
  hi2s->State= HAL_I2S_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief DeInitializes the I2S peripheral 
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s)
 
{
 
  /* Check the I2S handle allocation */
 
  if(hi2s == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance));
 
 
  hi2s->State = HAL_I2S_STATE_BUSY;
 
  
 
  /* Disable the I2S Peripheral Clock */
 
  __HAL_I2S_DISABLE(hi2s);
 
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
 
  HAL_I2S_MspDeInit(hi2s);
 
  
 
  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
  hi2s->State = HAL_I2S_STATE_RESET;
 
 
  /* Release Lock */
 
  __HAL_UNLOCK(hi2s);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief I2S MSP Init
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
 __weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_MspInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief I2S MSP DeInit
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
 __weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_MspDeInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2S_Exported_Functions_Group2 IO operation functions 
 
  *  @brief Data transfers functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================
 
    [..]
 
    This subsection provides a set of functions allowing to manage the I2S data 
 
    transfers.
 
 
    (#) There are two modes of transfer:
 
       (++) Blocking mode : The communication is performed in the polling mode. 
 
            The status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) No-Blocking mode : The communication is performed using Interrupts 
 
            or DMA. These functions return the status of the transfer startup.
 
            The end of the data processing will be indicated through the 
 
            dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when 
 
            using DMA mode.
 
 
    (#) Blocking mode functions are :
 
        (++) HAL_I2S_Transmit()
 
        (++) HAL_I2S_Receive()
 
        
 
    (#) No-Blocking mode functions with Interrupt are :
 
        (++) HAL_I2S_Transmit_IT()
 
        (++) HAL_I2S_Receive_IT()
 
 
    (#) No-Blocking mode functions with DMA are :
 
        (++) HAL_I2S_Transmit_DMA()
 
        (++) HAL_I2S_Receive_DMA()
 
 
    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
 
        (++) HAL_I2S_TxCpltCallback()
 
        (++) HAL_I2S_RxCpltCallback()
 
        (++) HAL_I2S_ErrorCallback()
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Transmit an amount of data in blocking mode
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param pData: a 16-bit pointer to data buffer.
 
  * @param Size: number of data sample to be sent:
 
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
 
  *       configuration phase, the Size parameter means the number of 16-bit data length 
 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
 
  *       the Size parameter means the number of 16-bit data length. 
 
  * @param  Timeout: Timeout duration
 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
 
  *       between Master and Slave(example: audio streaming).
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  if((pData == NULL ) || (Size == 0)) 
 
  {
 
    return  HAL_ERROR;                                    
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
 
  if(hi2s->State == HAL_I2S_STATE_READY)
 
  { 
 
    if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\
 
      ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B))
 
    {
 
      hi2s->TxXferSize = (Size << 1);
 
      hi2s->TxXferCount = (Size << 1);
 
    }
 
    else
 
    {
 
      hi2s->TxXferSize = Size;
 
      hi2s->TxXferCount = Size;
 
    }
 
     
 
    /* Set state and reset error code */
 
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
    hi2s->State = HAL_I2S_STATE_BUSY_TX;
 
    hi2s->pTxBuffPtr = pData;
 
      
 
    /* Check if the I2S is already enabled */ 
 
    if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
 
    {
 
      /* Enable I2S peripheral */
 
      __HAL_I2S_ENABLE(hi2s);
 
    }
 
    
 
    while(hi2s->TxXferCount > 0)
 
    {
 
      /* Wait until TXE flag is set */
 
      if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
      hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
 
      hi2s->TxXferCount--;   
 
    } 
 
 
    /* Wait until TXE flag is set, to confirm the end of the transcation */
 
    if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK)
 
    {
 
      return HAL_TIMEOUT;
 
    } 
 
    /* Wait until Busy flag is reset */
 
    if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_BSY, SET, Timeout) != HAL_OK)
 
    {
 
      return HAL_TIMEOUT;
 
    }
 
 
    hi2s->State = HAL_I2S_STATE_READY; 
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in blocking mode 
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param pData: a 16-bit pointer to data buffer.
 
  * @param Size: number of data sample to be sent:
 
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
 
  *       configuration phase, the Size parameter means the number of 16-bit data length 
 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
 
  *       the Size parameter means the number of 16-bit data length. 
 
  * @param Timeout: Timeout duration
 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
 
  *       between Master and Slave(example: audio streaming).
 
  * @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate
 
  *       in continouse way and as the I2S is not disabled at the end of the I2S transaction.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  if((pData == NULL ) || (Size == 0)) 
 
  {
 
    return  HAL_ERROR;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
  
 
  if(hi2s->State == HAL_I2S_STATE_READY)
 
  { 
 
    if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\
 
      ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B))
 
    {
 
      hi2s->RxXferSize = (Size << 1);
 
      hi2s->RxXferCount = (Size << 1);
 
    }
 
    else
 
    {
 
      hi2s->RxXferSize = Size;
 
      hi2s->RxXferCount = Size;
 
    }
 
        
 
    /* Set state and reset error code */
 
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
    hi2s->State = HAL_I2S_STATE_BUSY_RX;
 
    hi2s->pRxBuffPtr = pData;
 
    
 
    /* Check if the I2S is already enabled */ 
 
    if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
 
    {
 
      /* Enable I2S peripheral */
 
      __HAL_I2S_ENABLE(hi2s);
 
    }
 
     
 
    /* Receive data */
 
    while(hi2s->RxXferCount > 0)
 
    {
 
      /* Wait until RXNE flag is set */
 
      if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
      
 
      (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
 
      hi2s->RxXferCount--;
 
    }
 
    
 
    hi2s->State = HAL_I2S_STATE_READY; 
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief Transmit an amount of data in non-blocking mode with Interrupt
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param pData: a 16-bit pointer to data buffer.
 
  * @param Size: number of data sample to be sent:
 
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
 
  *       configuration phase, the Size parameter means the number of 16-bit data length 
 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
 
  *       the Size parameter means the number of 16-bit data length. 
 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
 
  *       between Master and Slave(example: audio streaming).
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
 
{
 
  if((pData == NULL) || (Size == 0)) 
 
  {
 
    return  HAL_ERROR;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
    
 
  if(hi2s->State == HAL_I2S_STATE_READY)
 
  {
 
    hi2s->pTxBuffPtr = pData;
 
    hi2s->State = HAL_I2S_STATE_BUSY_TX;
 
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
 
    if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\
 
      ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B))
 
    {
 
      hi2s->TxXferSize = (Size << 1);
 
      hi2s->TxXferCount = (Size << 1);
 
    }
 
    else
 
    {
 
      hi2s->TxXferSize = Size;
 
      hi2s->TxXferCount = Size;
 
    }
 
 
    /* Enable TXE and ERR interrupt */
 
    __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
 
 
    /* Check if the I2S is already enabled */ 
 
    if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
 
    {
 
      /* Enable I2S peripheral */
 
      __HAL_I2S_ENABLE(hi2s);
 
    }
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in non-blocking mode with Interrupt
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param pData: a 16-bit pointer to the Receive data buffer.
 
  * @param Size: number of data sample to be sent:
 
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
 
  *       configuration phase, the Size parameter means the number of 16-bit data length 
 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
 
  *       the Size parameter means the number of 16-bit data length. 
 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
 
  *       between Master and Slave(example: audio streaming).
 
  * @note It is recommended to use DMA for the I2S receiver to avoid de-synchronisation 
 
  * between Master and Slave otherwise the I2S interrupt should be optimized. 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
 
{
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;
 
    }
 
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
 
  if(hi2s->State == HAL_I2S_STATE_READY)
 
  {
 
    hi2s->pRxBuffPtr = pData;
 
    hi2s->State = HAL_I2S_STATE_BUSY_RX;
 
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
 
    if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\
 
      ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B))
 
    {
 
      hi2s->RxXferSize = (Size << 1);
 
      hi2s->RxXferCount = (Size << 1);
 
    }  
 
    else
 
    {
 
      hi2s->RxXferSize = Size;
 
      hi2s->RxXferCount = Size;
 
    }
 
    
 
    /* Enable TXE and ERR interrupt */
 
    __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
 
    
 
    /* Check if the I2S is already enabled */ 
 
    if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
 
    {
 
      /* Enable I2S peripheral */
 
      __HAL_I2S_ENABLE(hi2s);
 
    }
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief Transmit an amount of data in non-blocking mode with DMA
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param pData: a 16-bit pointer to the Transmit data buffer.
 
  * @param Size: number of data sample to be sent:
 
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
 
  *       configuration phase, the Size parameter means the number of 16-bit data length 
 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
 
  *       the Size parameter means the number of 16-bit data length. 
 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
 
  *       between Master and Slave(example: audio streaming).
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
 
{
 
  if((pData == NULL) || (Size == 0)) 
 
  {
 
    return  HAL_ERROR;
 
  }
 
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
 
  if(hi2s->State == HAL_I2S_STATE_READY)
 
  {  
 
    hi2s->pTxBuffPtr = pData;
 
    hi2s->State = HAL_I2S_STATE_BUSY_TX;
 
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
 
    if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\
 
      ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B))
 
    {
 
      hi2s->TxXferSize = (Size << 1);
 
      hi2s->TxXferCount = (Size << 1);
 
    }
 
    else
 
    {
 
      hi2s->TxXferSize = Size;
 
      hi2s->TxXferCount = Size;
 
    }
 
 
    /* Set the I2S Tx DMA Half transfert complete callback */
 
    hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt;
 
 
    /* Set the I2S Tx DMA transfert complete callback */
 
    hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt;
 
 
    /* Set the DMA error callback */
 
    hi2s->hdmatx->XferErrorCallback = I2S_DMAError;
 
 
    /* Enable the Tx DMA Channel */
 
    HAL_DMA_Start_IT(hi2s->hdmatx, (uint32_t)hi2s->pTxBuffPtr, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);
 
 
    /* Check if the I2S is already enabled */ 
 
    if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
 
    {
 
      /* Enable I2S peripheral */
 
      __HAL_I2S_ENABLE(hi2s);
 
    }
 
 
    /* Check if the I2S Tx request is already enabled */ 
 
    if((hi2s->Instance->CR2 & SPI_CR2_TXDMAEN) != SPI_CR2_TXDMAEN)
 
    {
 
      /* Enable Tx DMA Request */  
 
      hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
 
    }
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in non-blocking mode with DMA 
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param pData: a 16-bit pointer to the Receive data buffer.
 
  * @param Size: number of data sample to be sent:
 
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
 
  *       configuration phase, the Size parameter means the number of 16-bit data length 
 
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected 
 
  *       the Size parameter means the number of 16-bit data length. 
 
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization 
 
  *       between Master and Slave(example: audio streaming).
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
 
{
 
  if((pData == NULL) || (Size == 0))
 
  {
 
    return  HAL_ERROR;
 
  }
 
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
 
  if(hi2s->State == HAL_I2S_STATE_READY)
 
  {
 
    hi2s->pRxBuffPtr = pData;
 
    hi2s->State = HAL_I2S_STATE_BUSY_RX;
 
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
 
 
    if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\
 
      ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B))
 
    {
 
      hi2s->RxXferSize = (Size << 1);
 
      hi2s->RxXferCount = (Size << 1);
 
    }
 
    else
 
    {
 
      hi2s->RxXferSize = Size;
 
      hi2s->RxXferCount = Size;
 
    }
 
    
 
    
 
    /* Set the I2S Rx DMA Half transfert complete callback */
 
    hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;
 
    
 
    /* Set the I2S Rx DMA transfert complete callback */
 
    hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt;
 
    
 
    /* Set the DMA error callback */
 
    hi2s->hdmarx->XferErrorCallback = I2S_DMAError;
 
    
 
    /* Check if Master Receiver mode is selected */
 
    if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
 
    {
 
      /* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read
 
      access to the SPI_SR register. */ 
 
      __HAL_I2S_CLEAR_OVRFLAG(hi2s);
 
    }
 
    
 
    /* Enable the Rx DMA Channel */
 
    HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, (uint32_t)hi2s->pRxBuffPtr, hi2s->RxXferSize);
 
    
 
    /* Check if the I2S is already enabled */ 
 
    if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
 
    {
 
      /* Enable I2S peripheral */
 
      __HAL_I2S_ENABLE(hi2s);
 
    }
 
 
     /* Check if the I2S Rx request is already enabled */ 
 
    if((hi2s->Instance->CR2 &SPI_CR2_RXDMAEN) != SPI_CR2_RXDMAEN)
 
    {
 
      /* Enable Rx DMA Request */  
 
      hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
 
    }
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hi2s);
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief Pauses the audio stream playing from the Media.
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
  
 
  if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
 
  {
 
    /* Disable the I2S DMA Tx request */
 
    hi2s->Instance->CR2 &= (uint16_t)(~SPI_CR2_TXDMAEN);
 
  }
 
  else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
 
  {
 
    /* Disable the I2S DMA Rx request */
 
    hi2s->Instance->CR2 &= (uint16_t)(~SPI_CR2_RXDMAEN);
 
  }
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2s);
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief Resumes the audio stream playing from the Media.
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
  
 
  if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
 
  {
 
    /* Enable the I2S DMA Tx request */
 
    hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
 
  }
 
  else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
 
  {
 
    /* Enable the I2S DMA Rx request */
 
    hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
 
  }
 
  
 
  /* If the I2S peripheral is still not enabled, enable it */
 
  if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0)
 
  {
 
    /* Enable I2S peripheral */    
 
    __HAL_I2S_ENABLE(hi2s);
 
  }
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2s);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief Resumes the audio stream playing from the Media.
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hi2s);
 
  
 
  /* Disable the I2S Tx/Rx DMA requests */
 
  hi2s->Instance->CR2 &= (uint16_t)(~SPI_CR2_TXDMAEN);
 
  hi2s->Instance->CR2 &= (uint16_t)(~SPI_CR2_RXDMAEN);
 
  
 
  /* Disable the I2S DMA channel */
 
  __HAL_DMA_DISABLE(hi2s->hdmatx);
 
  __HAL_DMA_DISABLE(hi2s->hdmarx);
 
  
 
  /* Abort the I2S DMA tx channel */
 
  if(hi2s->hdmatx != NULL)
 
  {
 
    HAL_DMA_Abort(hi2s->hdmatx);
 
  }
 
  /* Abort the I2S DMA rx channel */
 
  if(hi2s->hdmarx != NULL)
 
  {
 
    HAL_DMA_Abort(hi2s->hdmarx);
 
  }
 
 
  /* Disable I2S peripheral */
 
  __HAL_I2S_DISABLE(hi2s);
 
  
 
  hi2s->State = HAL_I2S_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hi2s);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles I2S interrupt request.
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s)
 
{  
 
  uint32_t i2ssr = hi2s->Instance->SR;
 
  
 
  /* I2S in mode Receiver ------------------------------------------------*/
 
  if(((i2ssr & I2S_FLAG_OVR) != I2S_FLAG_OVR) &&
 
     ((i2ssr & I2S_FLAG_RXNE) == I2S_FLAG_RXNE) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE) != RESET))
 
  {
 
    I2S_Receive_IT(hi2s);
 
    return;
 
  }
 
  
 
  /* I2S in mode Tramitter -----------------------------------------------*/
 
  if(((i2ssr & I2S_FLAG_TXE) == I2S_FLAG_TXE) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE) != RESET))
 
  {     
 
    I2S_Transmit_IT(hi2s);
 
    return;
 
  } 
 
  
 
  /* I2S Overrun error interrupt occured ---------------------------------*/
 
  if(((i2ssr & I2S_FLAG_OVR) == I2S_FLAG_OVR) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR) != RESET))
 
  {
 
    /* Disable RXNE and ERR interrupt */
 
    __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
 
    
 
    /* Set the I2S State ready */
 
    hi2s->State = HAL_I2S_STATE_READY; 
 
    
 
    /* Set the error code and execute error callback*/
 
    hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
 
    HAL_I2S_ErrorCallback(hi2s);
 
  } 
 
  
 
  /* I2S Underrun error interrupt occured --------------------------------*/
 
  if(((i2ssr & I2S_FLAG_UDR) == I2S_FLAG_UDR) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR) != RESET))
 
  {
 
    /* Disable TXE and ERR interrupt */
 
    __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
 
    
 
    /* Set the I2S State ready */
 
    hi2s->State = HAL_I2S_STATE_READY; 
 
    
 
    /* Set the error code and execute error callback*/
 
    hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
 
    HAL_I2S_ErrorCallback(hi2s);
 
  }
 
}
 
 
/**
 
  * @brief Tx Transfer Half completed callbacks
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
 __weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_TxHalfCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Tx Transfer completed callbacks
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
 __weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_TxCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Rx Transfer half completed callbacks
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
__weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_RxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief Rx Transfer completed callbacks
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
__weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_RxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief I2S error callbacks
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
 __weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_I2S_ErrorCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup I2S_Exported_Functions_Group3 Peripheral State and Errors functions 
 
  *  @brief   Peripheral State functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral State and Errors functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permits to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the I2S state
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval HAL state
 
  */
 
HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s)
 
{
 
  return hi2s->State;
 
}
 
 
/**
 
  * @brief  Return the I2S error code
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval I2S Error Code
 
  */
 
HAL_I2S_ErrorTypeDef HAL_I2S_GetError(I2S_HandleTypeDef *hi2s)
 
{
 
  return hi2s->ErrorCode;
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup I2S_Private_Functions I2S Private Functions
 
  * @{
 
  */
 
/**
 
  * @brief DMA I2S transmit process complete callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
 
{
 
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
  
 
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
 
  {
 
    /* Disable Tx DMA Request */
 
    hi2s->Instance->CR2 &= (uint16_t)(~SPI_CR2_TXDMAEN);
 
 
    hi2s->TxXferCount = 0;
 
    hi2s->State = HAL_I2S_STATE_READY;
 
  }
 
  HAL_I2S_TxCpltCallback(hi2s);
 
}
 
 
/**
 
  * @brief DMA I2S transmit process half complete callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
 
{
 
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
 
  HAL_I2S_TxHalfCpltCallback(hi2s);
 
}
 
 
/**
 
  * @brief DMA I2S receive process complete callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
 
{
 
  I2S_HandleTypeDef* hi2s = ( I2S_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
 
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0)
 
  {
 
    /* Disable Rx DMA Request */
 
    hi2s->Instance->CR2 &= (uint16_t)(~SPI_CR2_RXDMAEN);
 
    hi2s->RxXferCount = 0;
 
    hi2s->State = HAL_I2S_STATE_READY;
 
  }
 
  HAL_I2S_RxCpltCallback(hi2s); 
 
}
 
 
/**
 
  * @brief DMA I2S receive process half complete callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
 
{
 
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
 
  HAL_I2S_RxHalfCpltCallback(hi2s); 
 
}
 
 
/**
 
  * @brief DMA I2S communication error callback 
 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void I2S_DMAError(DMA_HandleTypeDef *hdma)
 
{
 
  I2S_HandleTypeDef* hi2s = ( I2S_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* Disable Rx and Tx DMA Request */
 
  hi2s->Instance->CR2 &= (uint16_t)(~(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN));
 
  hi2s->TxXferCount = 0;
 
  hi2s->RxXferCount = 0;
 
  
 
  hi2s->State= HAL_I2S_STATE_READY;
 
  
 
  /* Set the error code and execute error callback*/
 
  hi2s->ErrorCode |= HAL_I2S_ERROR_DMA;
 
  HAL_I2S_ErrorCallback(hi2s);
 
}
 
 
/**
 
  * @brief Transmit an amount of data in non-blocking mode with Interrupt
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @retval None
 
  */
 
static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s)
 
{
 
  /* Transmit data */
 
  hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
 
  hi2s->TxXferCount--;
 
    
 
  if(hi2s->TxXferCount == 0)
 
  {
 
    /* Disable TXE and ERR interrupt */
 
    __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
 
 
    hi2s->State = HAL_I2S_STATE_READY;
 
    HAL_I2S_TxCpltCallback(hi2s);
 
  }
 
}
 
 
/**
 
* @brief Receive an amount of data in non-blocking mode with Interrupt
 
* @param hi2s: I2S handle
 
  * @retval None
 
*/
 
static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s)
 
{
 
  /* Receive data */    
 
  (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
 
  hi2s->RxXferCount--;
 
  
 
  if(hi2s->RxXferCount == 0)
 
  {
 
    /* Disable RXNE and ERR interrupt */
 
    __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
 
 
    hi2s->State = HAL_I2S_STATE_READY;     
 
    HAL_I2S_RxCpltCallback(hi2s); 
 
  }
 
}
 
 
 
/**
 
  * @brief This function handles I2S Communication Timeout.
 
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
 
  *         the configuration information for I2S module
 
  * @param Flag: Flag checked
 
  * @param State: Value of the flag expected
 
  * @param Timeout: Duration of the timeout
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t State, uint32_t Timeout)
 
{
 
  uint32_t tickstart = HAL_GetTick();
 
  
 
  /* Wait until flag is set */
 
  if(State == RESET)
 
  {
 
    while(__HAL_I2S_GET_FLAG(hi2s, Flag) == RESET)
 
    {
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Set the I2S State ready */
 
          hi2s->State= HAL_I2S_STATE_READY;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hi2s);
 
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_I2S_GET_FLAG(hi2s, Flag) != RESET)
 
    {
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Set the I2S State ready */
 
          hi2s->State= HAL_I2S_STATE_READY;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hi2s);
 
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* defined(STM32F031x6) || defined(STM32F038xx) || */
 
       /* defined(STM32F051x8) || defined(STM32F058xx) || */
 
       /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || */
 
       /* defined(STM32F042x6) || defined(STM32F048xx) || */
 
       /* defined(STM32F091xC) || defined(STM32F098xx) */
 
 
#endif /* HAL_I2S_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_irda.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   IRDA HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the IrDA (Infrared Data Association) Peripheral 
 
  *          (IRDA)
 
  *           + Initialization and de-initialization function
 
  *           + IO operation function
 
  *           + Peripheral Control function
 
  *
 
  *           
 
  @verbatim       
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    The IRDA HAL driver can be used as follows:
 
    
 
    (#) Declare a IRDA_HandleTypeDef handle structure.
 
    (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API:
 
        (##) Enable the USARTx interface clock.
 
        (##) IRDA pins configuration:
 
            (+++) Enable the clock for the IRDA GPIOs.
 
            (+++) Configure these IRDA pins as alternate function pull-up.
 
        (##) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
 
             and HAL_IRDA_Receive_IT() APIs):
 
            (+++) Configure the USARTx interrupt priority.
 
            (+++) Enable the NVIC USART IRQ handle.
 
        (##) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
 
             and HAL_IRDA_Receive_DMA() APIs):
 
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
 
            (+++) Enable the DMAx interface clock.
 
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.                
 
            (+++) Configure the DMA Tx/Rx channel.
 
            (+++) Associate the initilalized DMA handle to the IRDA DMA Tx/Rx handle.
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
 
 
    (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter),
 
        the normal or low power mode and the clock prescaler in the hirda Init structure.
 
 
    (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
 
        (++) This API configures also the low level Hardware (GPIO, CLOCK, CORTEX...etc)
 
              by calling the customed HAL_IRDA_MspInit() API.
 
 
        -@@- The specific IRDA interrupts (Transmission complete interrupt, 
 
             RXNE interrupt and Error Interrupts) will be managed using the macros
 
             __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
 
 
    (#) Three operation modes are available within this driver :
 
 
 
     *** Polling mode IO operation ***
 
     =================================
 
     [..]    
 
       (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() 
 
       (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
 
       
 
     *** Interrupt mode IO operation ***    
 
     ===================================
 
     [..]    
 
       (+) Send an amount of data in non blocking mode using HAL_IRDA_Transmit_IT() 
 
       (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_IRDA_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode using HAL_IRDA_Receive_IT() 
 
       (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_IRDA_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_IRDA_ErrorCallback
 
 
     *** DMA mode IO operation ***    
 
     ==============================
 
     [..] 
 
       (+) Send an amount of data in non blocking mode (DMA) using HAL_IRDA_Transmit_DMA() 
 
       (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_IRDA_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_IRDA_Receive_DMA() 
 
       (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_IRDA_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_IRDA_ErrorCallback
 
 
     *** IRDA HAL driver macros list ***
 
     ====================================
 
     [..]
 
       Below the list of most used macros in IRDA HAL driver.
 
       
 
       (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral 
 
       (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral     
 
       (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
 
       (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
 
       (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
 
       (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
 
      
 
     [..] 
 
       (@) You can refer to the IRDA HAL driver header file for more useful macros
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup IRDA IRDA HAL module driver
 
  * @brief HAL IRDA module driver
 
  * @{
 
  */
 
#ifdef HAL_IRDA_MODULE_ENABLED
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
    
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup IRDA_Private_Constants   IRDA Private Constants
 
  * @{
 
  */
 
#define TEACK_REACK_TIMEOUT       1000
 
#define IRDA_TXDMA_TIMEOUTVALUE        22000
 
#define IRDA_TIMEOUT_VALUE             22000
 
#define IRDA_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
 
                                   | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE))
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup IRDA_Private_Functions IRDA Private Functions
 
  * @{
 
  */
 
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
 
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void IRDA_DMAError(DMA_HandleTypeDef *hdma); 
 
static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda);
 
static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
 
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
 
static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
 
static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
 
static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
 
/**
 
  * @}
 
  */
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup IRDA_Exported_Functions IRDA Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  *  @brief    Initialization and Configuration functions 
 
  *
 
@verbatim    
 
  ==============================================================================
 
            ##### Initialization and Configuration functions #####
 
  ==============================================================================
 
    [..]
 
    This subsection provides a set of functions allowing to initialize the USARTx 
 
    in IRDA mode.
 
      (+) For the asynchronous mode only these parameters can be configured: 
 
        (++) Baud Rate
 
        (++) Word Length 
 
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
 
             in the data register is transmitted but is changed by the parity bit.
 
             Depending on the frame length defined by the M bit (8-bits or 9-bits)
 
             or by the M1 and M0 bits (7-bit, 8-bit or 9-bit),
 
             the possible IRDA frame formats are as listed in the following table:
 
   +---------------------------------------------------------------+     
 
   |    M bit  |  PCE bit  |            IRDA frame                 |
 
   |-----------|-----------|---------------------------------------|             
 
   |     0     |     0     |    | SB | 8-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     0     |     1     |    | SB | 7-bit data | PB | STB |     |
 
   |-----------|-----------|---------------------------------------|  
 
   |     1     |     0     |    | SB | 9-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     1     |     1     |    | SB | 8-bit data | PB | STB |     |
 
   +---------------------------------------------------------------+     
 
   | M1M0 bits |  PCE bit  |            IRDA frame                 |
 
   |-----------------------|---------------------------------------|             
 
   |     10    |     0     |    | SB | 7-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     10    |     1     |    | SB | 6-bit data | PB | STB |     |   
 
   +---------------------------------------------------------------+                   
 
          
 
        (++) Power mode
 
        (++) Prescaler setting       
 
        (++) Receiver/transmitter modes
 
 
    [..]
 
    The HAL_IRDA_Init() function follows IRDA configuration procedures 
 
    (details for the procedures are available in reference manual).
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Initializes the IRDA mode according to the specified
 
  *         parameters in the IRDA_InitTypeDef and creates the associated handle .
 
  * @param hirda: IRDA handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
 
{
 
  /* Check the IRDA handle allocation */
 
  if(hirda == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the USART/UART associated to the IRDA handle */
 
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));
 
  
 
  if(hirda->State == HAL_IRDA_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_IRDA_MspInit(hirda);
 
  }
 
  
 
  hirda->State = HAL_IRDA_STATE_BUSY;
 
  
 
  /* Disable the Peripheral to update the configuration registers */
 
  __HAL_IRDA_DISABLE(hirda);
 
  
 
  /* Set the IRDA Communication parameters */
 
  if (IRDA_SetConfig(hirda) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  }  
 
  
 
  /* In IRDA mode, the following bits must be kept cleared: 
 
  - LINEN, STOP and CLKEN bits in the USART_CR2 register,
 
  - SCEN and HDSEL bits in the USART_CR3 register.*/
 
  hirda->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP); 
 
  hirda->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL); 
 
   
 
  /* set the UART/USART in IRDA mode */
 
  hirda->Instance->CR3 |= USART_CR3_IREN; 
 
    
 
  /* Enable the Peripheral */
 
  __HAL_IRDA_ENABLE(hirda);
 
  
 
  /* TEACK and/or REACK to check before moving hirda->State to Ready */
 
  return (IRDA_CheckIdleState(hirda));
 
}
 
 
/**
 
  * @brief DeInitializes the IRDA peripheral 
 
  * @param hirda: IRDA handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
 
{
 
  /* Check the IRDA handle allocation */
 
  if(hirda == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the USART/UART associated to the IRDA handle */
 
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));
 
 
  hirda->State = HAL_IRDA_STATE_BUSY;
 
  
 
  /* DeInit the low level hardware */
 
  HAL_IRDA_MspDeInit(hirda);
 
  /* Disable the Peripheral */
 
  __HAL_IRDA_DISABLE(hirda);
 
  
 
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
  hirda->State = HAL_IRDA_STATE_RESET;
 
  
 
  /* Process Unlock */
 
  __HAL_UNLOCK(hirda);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief IRDA MSP Init
 
  * @param hirda: IRDA handle
 
  * @retval None
 
  */
 
 __weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_IRDA_MspInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief IRDA MSP DeInit
 
  * @param hirda: IRDA handle
 
  * @retval None
 
  */
 
 __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_IRDA_MspDeInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions 
 
  *  @brief   IRDA Transmit and Receive functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
  [..]
 
    This subsection provides a set of functions allowing to manage the IRDA data transfers.
 
 
  [..]
 
    IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
 
    on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver 
 
    is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
 
    While receiving data, transmission should be avoided as the data to be transmitted
 
    could be corrupted.
 
 
    (#) There are two modes of transfer:
 
       (++) Blocking mode: The communication is performed in polling mode. 
 
            The HAL status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) Non Blocking mode: The communication is performed using Interrupts 
 
           or DMA, these API s return the HAL status.
 
           The end of the data processing will be indicated through the 
 
           dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when 
 
           using DMA mode.
 
           The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks 
 
           will be executed respectivelly at the end of the Transmit or Receive process
 
           The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected
 
 
    (#) Blocking mode API s are :
 
        (++) HAL_IRDA_Transmit()
 
        (++) HAL_IRDA_Receive() 
 
        
 
    (#) Non Blocking mode API s with Interrupt are :
 
        (++) HAL_IRDA_Transmit_IT()
 
        (++) HAL_IRDA_Receive_IT()
 
        (++) HAL_IRDA_IRQHandler()
 
        (++) IRDA_Transmit_IT()
 
        (++) IRDA_Receive_IT()
 
 
    (#) Non Blocking mode functions with DMA are :
 
        (++) HAL_IRDA_Transmit_DMA()
 
        (++) HAL_IRDA_Receive_DMA()
 
 
    (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
 
        (++) HAL_IRDA_TxCpltCallback()
 
        (++) HAL_IRDA_RxCpltCallback()
 
        (++) HAL_IRDA_ErrorCallback()
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Send an amount of data in blocking mode 
 
  * @param hirda: IRDA handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @param Timeout: Duration of the timeout
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
   uint16_t* tmp;
 
   
 
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_RX)) 
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hirda);
 
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_RX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
 
    }    
 
    
 
    hirda->TxXferSize = Size;
 
    hirda->TxXferCount = Size;
 
    while(hirda->TxXferCount > 0)
 
    {
 
      hirda->TxXferCount--;
 
 
      if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, Timeout) != HAL_OK)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pData;
 
        hirda->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
 
        pData += 2;
 
      }
 
      else
 
      {
 
        hirda->Instance->TDR = (*pData++ & (uint8_t)0xFF); 
 
      }
 
    }
 
 
    if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, Timeout) != HAL_OK)
 
    { 
 
      return HAL_TIMEOUT;
 
    } 
 
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_READY;
 
    }    
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hirda);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in blocking mode 
 
  * @param hirda: IRDA handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @param Timeout: Duration of the timeout
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{ 
 
  uint16_t* tmp;
 
  uint16_t uhMask;
 
  
 
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_TX))
 
  { 
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hirda);
 
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
 
    }    
 
    
 
    hirda->RxXferSize = Size; 
 
    hirda->RxXferCount = Size;
 
 
    /* Computation of the mask to apply to the RDR register 
 
       of the UART associated to the IRDA */
 
    __HAL_IRDA_MASK_COMPUTATION(hirda);
 
    uhMask = hirda->Mask;
 
 
    /* Check data remaining to be received */
 
    while(hirda->RxXferCount > 0)
 
    {
 
      hirda->RxXferCount--;
 
 
      if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, Timeout) != HAL_OK)
 
      { 
 
        return HAL_TIMEOUT;
 
      }
 
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pData ;
 
        *tmp = (uint16_t)(hirda->Instance->RDR & uhMask);
 
        pData +=2;
 
      }
 
      else
 
      {
 
        *pData++ = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); 
 
      }
 
    }
 
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_READY;
 
    }
 
     
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hirda);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in interrupt mode 
 
  * @param hirda: IRDA handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
 
{
 
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hirda);
 
    
 
    hirda->pTxBuffPtr = pData;
 
    hirda->TxXferSize = Size;
 
    hirda->TxXferCount = Size;
 
 
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_RX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
 
    }
 
 
    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hirda);    
 
    
 
    /* Enable the IRDA Transmit Data Register Empty Interrupt */
 
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TXE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in interrupt mode 
 
  * @param hirda: IRDA handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
 
{  
 
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_TX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
  __HAL_LOCK(hirda);
 
  
 
    hirda->pRxBuffPtr = pData;
 
    hirda->RxXferSize = Size;
 
    hirda->RxXferCount = Size;
 
 
    /* Computation of the mask to apply to the RDR register 
 
       of the UART associated to the IRDA */
 
    __HAL_IRDA_MASK_COMPUTATION(hirda); 
 
  
 
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;  
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
 
    }
 
    
 
    /* Enable the IRDA Parity Error Interrupt */
 
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_PE);
 
    
 
    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hirda);
 
    
 
    /* Enable the IRDA Data Register not empty Interrupt */
 
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_RXNE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in DMA mode 
 
  * @param hirda: IRDA handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
 
{
 
  uint32_t *tmp;
 
  
 
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hirda);
 
    
 
    hirda->pTxBuffPtr = pData;
 
    hirda->TxXferSize = Size;
 
    hirda->TxXferCount = Size; 
 
    
 
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
    
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_RX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX;
 
    }
 
    
 
    /* Set the IRDA DMA transfer complete callback */
 
    hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;
 
    
 
    /* Set the DMA error callback */
 
    hirda->hdmatx->XferErrorCallback = IRDA_DMAError;
 
 
    /* Enable the IRDA transmit DMA channel */
 
    tmp = (uint32_t*)&pData;
 
    HAL_DMA_Start_IT(hirda->hdmatx, *(uint32_t*)tmp, (uint32_t)&hirda->Instance->TDR, Size);
 
    
 
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
 
       in the IRDA CR3 register */
 
    hirda->Instance->CR3 |= USART_CR3_DMAT;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hirda);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in DMA mode 
 
  * @param hirda: IRDA handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @note   When the IRDA parity is enabled (PCE = 1), the received data contain 
 
  *         the parity bit (MSB position)  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
 
{
 
  uint32_t *tmp;
 
  
 
  if ((hirda->State == HAL_IRDA_STATE_READY) || (hirda->State == HAL_IRDA_STATE_BUSY_TX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hirda);
 
    
 
    hirda->pRxBuffPtr = pData;
 
    hirda->RxXferSize = Size;
 
 
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
    if(hirda->State == HAL_IRDA_STATE_BUSY_TX) 
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hirda->State = HAL_IRDA_STATE_BUSY_RX;
 
    }
 
    
 
    /* Set the IRDA DMA transfer complete callback */
 
    hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;
 
    
 
    /* Set the DMA error callback */
 
    hirda->hdmarx->XferErrorCallback = IRDA_DMAError;
 
 
    /* Enable the DMA channel */
 
    tmp = (uint32_t*)&pData;
 
    HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, *(uint32_t*)tmp, Size);
 
 
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
 
       in the IRDA CR3 register */
 
     hirda->Instance->CR3 |= USART_CR3_DMAR;
 
    
 
     /* Process Unlocked */
 
     __HAL_UNLOCK(hirda);
 
     
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
    
 
/**
 
  * @brief This function handles IRDA interrupt request.
 
  * @param hirda: IRDA handle
 
  * @retval None
 
  */
 
void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
 
{
 
  /* IRDA parity error interrupt occurred -------------------------------------*/
 
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_PE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_PE) != RESET))
 
  { 
 
    __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF);
 
 
    hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
 
    /* Set the IRDA state ready to be able to start again the process */
 
    hirda->State = HAL_IRDA_STATE_READY;
 
  }
 
  
 
  /* IRDA frame error interrupt occured --------------------------------------*/
 
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_FE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR) != RESET))
 
  { 
 
    __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF);
 
 
    hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
 
    /* Set the IRDA state ready to be able to start again the process */
 
    hirda->State = HAL_IRDA_STATE_READY;
 
  }
 
  
 
  /* IRDA noise error interrupt occured --------------------------------------*/
 
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_NE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR) != RESET))
 
  { 
 
    __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF);
 
 
    hirda->ErrorCode |= HAL_IRDA_ERROR_NE; 
 
    /* Set the IRDA state ready to be able to start again the process */
 
    hirda->State = HAL_IRDA_STATE_READY;
 
  }
 
  
 
  /* IRDA Over-Run interrupt occured -----------------------------------------*/
 
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_ORE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR) != RESET))
 
  { 
 
    __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);
 
 
    hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; 
 
    /* Set the IRDA state ready to be able to start again the process */
 
    hirda->State = HAL_IRDA_STATE_READY;
 
  }
 
  
 
  /* Call IRDA Error Call back function if need be --------------------------*/
 
  if(hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
 
  {
 
    HAL_IRDA_ErrorCallback(hirda);
 
  } 
 
 
  /* IRDA in mode Receiver ---------------------------------------------------*/
 
  if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_RXNE) != RESET) && (__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_RXNE) != RESET))
 
  { 
 
    IRDA_Receive_IT(hirda);
 
    /* Clear RXNE interrupt flag */
 
    __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
 
  }
 
  
 
 
  /* IRDA in mode Transmitter ------------------------------------------------*/
 
 if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_TXE) != RESET) &&(__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_TXE) != RESET))
 
  {
 
    IRDA_Transmit_IT(hirda);
 
  } 
 
  
 
  /* IRDA in mode Transmitter (transmission end) -----------------------------*/
 
 if((__HAL_IRDA_GET_IT(hirda, IRDA_IT_TC) != RESET) &&(__HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_TC) != RESET))
 
  {
 
    IRDA_EndTransmit_IT(hirda);
 
  }   
 
  
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup IRDA_Private_Functions IRDA Private Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief DMA IRDA Tx transfer completed callback 
 
  * @param hdma: DMA handle
 
  * @retval None
 
  */
 
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)     
 
{
 
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hirda->TxXferCount = 0;
 
  
 
  /* Disable the DMA transfer for transmit request by resetting the DMAT bit
 
  in the IRDA CR3 register */
 
  hirda->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAT);
 
  
 
  /* Enable the IRDA Transmit Complete Interrupt */    
 
  __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC);
 
}
 
 
/**
 
  * @brief DMA IRDA Rx Transfer completed callback 
 
  * @param hdma: DMA handle
 
  * @retval None
 
  */
 
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)  
 
{
 
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hirda->RxXferCount = 0;
 
  
 
  /* Disable the DMA transfer for the receiver request by resetting the DMAR bit 
 
     in the IRDA CR3 register */
 
  hirda->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAR);
 
  
 
  if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
 
  {
 
    hirda->State = HAL_IRDA_STATE_BUSY_TX;
 
  }
 
  else
 
  {
 
  hirda->State = HAL_IRDA_STATE_READY;
 
  }
 
 
  HAL_IRDA_RxCpltCallback(hirda);
 
}
 
 
/**
 
  * @brief DMA IRDA communication error callback 
 
  * @param hdma: DMA handle
 
  * @retval None
 
  */
 
static void IRDA_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hirda->RxXferCount = 0;
 
  hirda->TxXferCount = 0;
 
  hirda->State= HAL_IRDA_STATE_READY;
 
  hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
 
  HAL_IRDA_ErrorCallback(hirda);
 
}
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup IRDA_Exported_Functions IRDA Exported Functions
 
  * @{
 
  */
 
  
 
/** @addtogroup IRDA_Exported_Functions_Group2 IO operation functions 
 
  * @{
 
  */
 
    
 
/**
 
  * @brief Tx Transfer completed callback
 
  * @param hirda: irda handle
 
  * @retval None
 
  */
 
 __weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_IRDA_TxCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Rx Transfer completed callback
 
  * @param hirda: irda handle
 
  * @retval None
 
  */
 
__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_IRDA_TxCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief IRDA error callback
 
  * @param hirda: IRDA handle
 
  * @retval None
 
  */
 
 __weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_IRDA_ErrorCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
  
 
/** @addtogroup IRDA_Private_Functions IRDA Private Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief Receive an amount of data in non blocking mode. 
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_IRDA_Transmit_IT()      
 
  * @param hirda: IRDA handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
 
{
 
  uint16_t* tmp;
 
    
 
  if((hirda->State == HAL_IRDA_STATE_BUSY_TX) || (hirda->State == HAL_IRDA_STATE_BUSY_TX_RX))
 
  {
 
 
 
    if(hirda->TxXferCount == 0)
 
    {
 
      /* Disable the IRDA Transmit Data Register Empty Interrupt */
 
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE);
 
     
 
      /* Enable the IRDA Transmit Complete Interrupt */    
 
      __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC);
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {
 
      if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) hirda->pTxBuffPtr;
 
        hirda->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
 
        hirda->pTxBuffPtr += 2;
 
      }
 
      else
 
      { 
 
        hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr++ & (uint8_t)0xFF); 
 
      }  
 
      hirda->TxXferCount--;
 
  
 
      return HAL_OK;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief  Wraps up transmission in non blocking mode.
 
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
 
  *                the configuration information for the specified IRDA module.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
 
{
 
  /* Disable the IRDA Transmit Complete Interrupt */    
 
  __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TC);
 
  
 
  /* Check if a receive process is ongoing or not */
 
  if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
 
  {
 
    hirda->State = HAL_IRDA_STATE_BUSY_RX;
 
  }
 
  else
 
  {
 
    /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
 
    
 
    hirda->State = HAL_IRDA_STATE_READY;
 
  }
 
  
 
  HAL_IRDA_TxCpltCallback(hirda);
 
  
 
  return HAL_OK;
 
}
 
 
 
/**
 
  * @brief Receive an amount of data in non blocking mode. 
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_IRDA_Receive_IT()      
 
  * @param hirda: IRDA handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
 
{
 
  uint16_t* tmp;
 
  uint16_t uhMask = hirda->Mask;
 
  
 
  if ((hirda->State == HAL_IRDA_STATE_BUSY_RX) || (hirda->State == HAL_IRDA_STATE_BUSY_TX_RX))
 
  {
 
    
 
    if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
 
    {      
 
      tmp = (uint16_t*) hirda->pRxBuffPtr  ;
 
      *tmp = (uint16_t)(hirda->Instance->RDR & uhMask);
 
      hirda->pRxBuffPtr  +=2;
 
    }
 
    else
 
    {
 
      *hirda->pRxBuffPtr++ = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); 
 
    }
 
    
 
    if(--hirda->RxXferCount == 0)
 
    {
 
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);
 
 
      if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) 
 
      {
 
        hirda->State = HAL_IRDA_STATE_BUSY_TX;
 
      }
 
      else
 
      {      
 
        /* Disable the IRDA Parity Error Interrupt */
 
        __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
 
      
 
        /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
 
        __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
 
      
 
        hirda->State = HAL_IRDA_STATE_READY;
 
      }
 
      
 
      HAL_IRDA_RxCpltCallback(hirda);
 
      
 
      return HAL_OK;
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup IRDA_Exported_Functions IRDA Exported Functions
 
  * @{
 
  */
 
  
 
/** @defgroup IRDA_Exported_Functions_Group3 Peripheral State and Errors functions 
 
  *  @brief   IRDA control functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the IRDA.
 
     (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state of the IRDA peripheral. 
 
     (+) IRDA_SetConfig() API is used to configure the IRDA communications parameters.
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief return the IRDA state
 
  * @param hirda: irda handle
 
  * @retval HAL state
 
  */
 
HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda)
 
{
 
  return hirda->State;
 
}
 
 
/**
 
* @brief  Return the IRDA error code
 
* @param  hirda : pointer to a IRDA_HandleTypeDef structure that contains
 
  *              the configuration information for the specified IRDA.
 
* @retval IRDA Error Code
 
*/
 
uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda)
 
{
 
  return hirda->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup IRDA_Private_Functions IRDA Private Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief Configure the IRDA peripheral 
 
  * @param hirda: irda handle
 
  * @retval None
 
  */
 
static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
 
{
 
  uint32_t tmpreg                     = 0x00000000;
 
  IRDA_ClockSourceTypeDef clocksource = IRDA_CLOCKSOURCE_UNDEFINED;
 
  HAL_StatusTypeDef ret               = HAL_OK;  
 
  
 
  /* Check the communication parameters */ 
 
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));  
 
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
 
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
 
  assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
 
  assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler)); 
 
  assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode)); 
 
 
  /*-------------------------- USART CR1 Configuration -----------------------*/        
 
  /* Configure the IRDA Word Length, Parity and transfer Mode: 
 
     Set the M bits according to hirda->Init.WordLength value 
 
     Set PCE and PS bits according to hirda->Init.Parity value
 
     Set TE and RE bits according to hirda->Init.Mode value */
 
  tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
 
  
 
  MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
 
  
 
  /*-------------------------- USART CR3 Configuration -----------------------*/
 
  MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
 
    
 
  /*-------------------------- USART GTPR Configuration ----------------------*/  
 
  MODIFY_REG(hirda->Instance->GTPR, USART_GTPR_PSC, hirda->Init.Prescaler);
 
  
 
  /*-------------------------- USART BRR Configuration -----------------------*/ 
 
  __HAL_IRDA_GETCLOCKSOURCE(hirda, clocksource);
 
  switch (clocksource)
 
  {
 
    case IRDA_CLOCKSOURCE_PCLK1: 
 
      hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK1Freq() / hirda->Init.BaudRate);
 
      break;
 
    case IRDA_CLOCKSOURCE_HSI: 
 
      hirda->Instance->BRR = (uint16_t)(HSI_VALUE / hirda->Init.BaudRate); 
 
      break; 
 
    case IRDA_CLOCKSOURCE_SYSCLK:  
 
      hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetSysClockFreq() / hirda->Init.BaudRate);
 
      break;  
 
    case IRDA_CLOCKSOURCE_LSE:                
 
      hirda->Instance->BRR = (uint16_t)(LSE_VALUE / hirda->Init.BaudRate); 
 
      break;
 
    case IRDA_CLOCKSOURCE_UNDEFINED:                
 
    default:                
 
      ret = HAL_ERROR; 
 
      break;              
 
  }
 
  
 
  return ret;  
 
}
 
 
/**
 
  * @brief Check the IRDA Idle State
 
  * @param hirda: IRDA handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
 
{
 
 
  /* Initialize the IRDA ErrorCode */
 
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
 
 
  /* Check if the Transmitter is enabled */
 
  if((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
 
  {
 
    /* Wait until TEACK flag is set */
 
    if(IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)
 
    { 
 
      /* Timeout Occured */ 
 
      return HAL_TIMEOUT;
 
    }     
 
  }
 
  /* Check if the Receiver is enabled */
 
  if((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
 
  {
 
    if(IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)
 
    { 
 
      /* Timeout Occured */ 
 
      return HAL_TIMEOUT;
 
    }       
 
  }
 
        
 
  /* Initialize the IRDA state*/
 
  hirda->State= HAL_IRDA_STATE_READY;  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hirda);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Handle IRDA Communication Timeout.
 
  * @param  hirda: IRDA handle
 
  * @param  Flag: specifies the IRDA flag to check.
 
  * @param  Status: the flag status (SET or RESET). The function is locked in a while loop as long as the flag remains set to Status.
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
 
{
 
  uint32_t tickstart = HAL_GetTick();
 
  
 
  /* Wait until flag is set */
 
  if(Status == RESET)
 
  {    
 
    while(__HAL_IRDA_GET_FLAG(hirda, Flag) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE);
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
 
          
 
          hirda->State= HAL_IRDA_STATE_TIMEOUT;
 
          
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hirda);
 
          
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_IRDA_GET_FLAG(hirda, Flag) != RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {    
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE);
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
 
          __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
 
  
 
          hirda->State= HAL_IRDA_STATE_TIMEOUT;
 
          
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hirda);
 
          
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */  
 
 
#endif /* HAL_IRDA_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_iwdg.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_iwdg.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   IWDG HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the IWDG peripheral:
 
  *           + Initialization and Configuration functions
 
  *           + IO operation functions
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
 ===============================================================================
 
                        ##### IWDG Specific features #####
 
 ===============================================================================
 
    [..]
 
      (+) The IWDG can be started by either software or hardware (configurable
 
          through option byte).
 
      (+) The IWDG is clocked by its own dedicated Low-Speed clock (LSI) and
 
          thus stays active even if the main clock fails.
 
      (+) Once the IWDG is started, the LSI is forced ON and cannot be disabled
 
          (LSI cannot be disabled too), and the counter starts counting down from 
 
          the reset value of 0xFFF. When it reaches the end of count value (0x000)
 
          a system reset is generated.
 
      (+) The IWDG counter should be refreshed at regular intervals, otherwise the
 
          watchdog generates an MCU reset when the counter reaches 0.          
 
      (+) The IWDG is implemented in the VDD voltage domain that is still functional
 
          in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY).
 
      (+) IWDGRST flag in RCC_CSR register can be used to inform when an IWDG
 
          reset occurs.
 
      (+) Min-max timeout value @41KHz (LSI): ~0.1ms / ~25.5s
 
          The IWDG timeout may vary due to LSI frequency dispersion. STM32F0x
 
          devices provide the capability to measure the LSI frequency (LSI clock
 
          connected internally to TIM16 CH1 input capture). The measured value
 
          can be used to have an IWDG timeout with an acceptable accuracy.
 
          For more information, please refer to the STM32F0x Reference manual.
 
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    (#) if Window option is disabled
 
      (++) Use IWDG using HAL_IWDG_Init() function to :
 
         (+++) Enable write access to IWDG_PR, IWDG_RLR.   
 
         (+++) Configure the IWDG prescaler, counter reload value.
 
              This reload value will be loaded in the IWDG counter each time the counter
 
              is reloaded, then the IWDG will start counting down from this value.
 
      (++) Use IWDG using HAL_IWDG_Start() function to :
 
         (+++) Reload IWDG counter with value defined in the IWDG_RLR register.
 
         (+++) Start the IWDG, when the IWDG is used in software mode (no need 
 
              to enable the LSI, it will be enabled by hardware).
 
      (++) Then the application program must refresh the IWDG counter at regular
 
          intervals during normal operation to prevent an MCU reset, using
 
          HAL_IWDG_Refresh() function.    
 
    (#) if Window option is enabled:
 
      (++) Use IWDG using HAL_IWDG_Start() function to enable IWDG downcounter 
 
      (++) Use IWDG using HAL_IWDG_Init() function to :
 
         (+++) Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers.   
 
         (+++) Configure the IWDG prescaler, reload value and window value.
 
      (++) Then the application program must refresh the IWDG counter at regular
 
          intervals during normal operation to prevent an MCU reset, using
 
          HAL_IWDG_Refresh() function.          
 
 
     *** IWDG HAL driver macros list ***
 
     ====================================
 
     [..]
 
       Below the list of most used macros in IWDG HAL driver.
 
       
 
      (+) __HAL_IWDG_START: Enable the IWDG peripheral
 
      (+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in the reload register    
 
      (+) __HAL_IWDG_ENABLE_WRITE_ACCESS : Enable write access to IWDG_PR and IWDG_RLR registers
 
      (+) __HAL_IWDG_DISABLE_WRITE_ACCESS : Disable write access to IWDG_PR and IWDG_RLR registers
 
      (+) __HAL_IWDG_GET_FLAG: Get the selected IWDG's flag status
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup IWDG IWDG HAL module driver
 
  * @brief IWDG HAL module driver.
 
  * @{
 
  */
 
 
#ifdef HAL_IWDG_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
 
/** @defgroup IWDG_Private_Defines IWDG Private Defines
 
  * @{
 
  */
 
 
#define HAL_IWDG_DEFAULT_TIMEOUT (uint32_t)1000
 
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup IWDG_Exported_Functions IWDG Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup IWDG_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions. 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize the IWDG according to the specified parameters 
 
          in the IWDG_InitTypeDef and create the associated handle
 
      (+) Manage Window option
 
      (+) Initialize the IWDG MSP
 
      (+) DeInitialize IWDG MSP 
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the IWDG according to the specified
 
  *         parameters in the IWDG_InitTypeDef and creates the associated handle.
 
  * @param  hiwdg: pointer to a IWDG_HandleTypeDef structure that contains
 
  *                the configuration information for the specified IWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg)
 
{ 
 
  uint32_t tickstart = 0;
 
 
  /* Check the IWDG handle allocation */
 
  if(hiwdg == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance));
 
  assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler));
 
  assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload));
 
  assert_param(IS_IWDG_WINDOW(hiwdg->Init.Window));
 
 
  /* Check pending flag, if previous update not done, return error */
 
  if((__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_PVU) != RESET)
 
     &&(__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_RVU) != RESET)
 
     &&(__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_WVU) != RESET))
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  if(hiwdg->State == HAL_IWDG_STATE_RESET)
 
  { 
 
  /* Init the low level hardware */
 
  HAL_IWDG_MspInit(hiwdg);
 
  }
 
 
  /* Change IWDG peripheral state */
 
  hiwdg->State = HAL_IWDG_STATE_BUSY;
 
 
  /* Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers */  
 
  /* by writing 0x5555 in KR */  
 
  __HAL_IWDG_ENABLE_WRITE_ACCESS(hiwdg);
 
  
 
  /* Write to IWDG registers the IWDG_Prescaler & IWDG_Reload values to work with */
 
  MODIFY_REG(hiwdg->Instance->PR, IWDG_PR_PR, hiwdg->Init.Prescaler);
 
  MODIFY_REG(hiwdg->Instance->RLR, IWDG_RLR_RL, hiwdg->Init.Reload);
 
 
 
  /* check if window option is enabled */
 
  if (((hiwdg->Init.Window) != IWDG_WINDOW_DISABLE) || ((hiwdg->Instance->WINR) != IWDG_WINDOW_DISABLE))
 
  {
 
    tickstart = HAL_GetTick();
 
 
     /* Wait for register to be updated */
 
    while((uint32_t)(hiwdg->Instance->SR) != RESET)
 
    {
 
      if((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT)
 
      { 
 
        /* Set IWDG state */
 
        hiwdg->State = HAL_IWDG_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      } 
 
    }
 
 
    /* Write to IWDG WINR the IWDG_Window value to compare with */
 
    MODIFY_REG(hiwdg->Instance->WINR, IWDG_WINR_WIN, hiwdg->Init.Window);
 
 
  } 
 
  /* Change IWDG peripheral state */
 
  hiwdg->State = HAL_IWDG_STATE_READY;
 
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the IWDG MSP.
 
  * @param  hiwdg: pointer to a IWDG_HandleTypeDef structure that contains
 
  *                the configuration information for the specified IWDG module.
 
  * @retval None
 
  */
 
__weak void HAL_IWDG_MspInit(IWDG_HandleTypeDef *hiwdg)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_IWDG_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IWDG_Exported_Functions_Group2 IO operation functions  
 
 *  @brief   IO operation functions  
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Start the IWDG.
 
      (+) Refresh the IWDG.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Starts the IWDG.
 
  * @param  hiwdg: pointer to a IWDG_HandleTypeDef structure that contains
 
  *                the configuration information for the specified IWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IWDG_Start(IWDG_HandleTypeDef *hiwdg)
 
{ 
 
  uint32_t tickstart = 0;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hiwdg); 
 
                  
 
    /* Change IWDG peripheral state */  
 
  hiwdg->State = HAL_IWDG_STATE_BUSY;
 
                   
 
  /* Reload IWDG counter with value defined in the RLR register */
 
  if ((hiwdg->Init.Window) == IWDG_WINDOW_DISABLE)
 
  {
 
  __HAL_IWDG_RELOAD_COUNTER(hiwdg);
 
  }
 
 
  /* Enable the IWDG peripheral */
 
  __HAL_IWDG_START(hiwdg);
 
 
  tickstart = HAL_GetTick();
 
 
  /* Wait until PVU, RVU, WVU flag are RESET */
 
  while( (__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_PVU) != RESET)
 
        &&(__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_RVU) != RESET)
 
        &&(__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_WVU) != RESET) )
 
  {
 
    if((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT)
 
    { 
 
      /* Set IWDG state */
 
      hiwdg->State = HAL_IWDG_STATE_TIMEOUT;
 
 
 
       /* Process unlocked */
 
      __HAL_UNLOCK(hiwdg);
 
 
      return HAL_TIMEOUT;
 
    } 
 
  }
 
 
  /* Change IWDG peripheral state */    
 
  hiwdg->State = HAL_IWDG_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hiwdg);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Refreshes the IWDG.
 
  * @param  hiwdg: pointer to a IWDG_HandleTypeDef structure that contains
 
  *                the configuration information for the specified IWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg)
 
  {
 
  uint32_t tickstart = 0;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hiwdg); 
 
                  
 
    /* Change IWDG peripheral state */  
 
  hiwdg->State = HAL_IWDG_STATE_BUSY;
 
  
 
  tickstart = HAL_GetTick();
 
 
  /* Wait until RVU flag is RESET */
 
  while(__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_RVU) != RESET)
 
  {
 
    if((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT)
 
    { 
 
      /* Set IWDG state */
 
      hiwdg->State = HAL_IWDG_STATE_TIMEOUT;
 
 
       /* Process unlocked */
 
      __HAL_UNLOCK(hiwdg);
 
 
      return HAL_TIMEOUT;
 
    } 
 
  }
 
 
  /* Reload IWDG counter with value defined in the reload register */
 
  __HAL_IWDG_RELOAD_COUNTER(hiwdg);
 
  
 
  /* Change IWDG peripheral state */    
 
  hiwdg->State = HAL_IWDG_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hiwdg);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup IWDG_Exported_Functions_Group3 Peripheral State functions 
 
 *  @brief    Peripheral State functions. 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permits to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Returns the IWDG state.
 
  * @param  hiwdg: pointer to a IWDG_HandleTypeDef structure that contains
 
  *                the configuration information for the specified IWDG module.
 
  * @retval HAL state
 
  */
 
HAL_IWDG_StateTypeDef HAL_IWDG_GetState(IWDG_HandleTypeDef *hiwdg)
 
{
 
  return hiwdg->State;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_IWDG_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_msp_template.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_msp_template.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   HAL MSP module.
 
  *          This file template is located in the HAL folder and should be copied 
 
  *          to the user folder.
 
  *         
 
  @verbatim
 
 ===============================================================================
 
                     ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    This file is generated automatically by MicroXplorer and eventually modified 
 
    by the user
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup HAL_MSP HAL MSP module driver
 
  * @brief HAL MSP module.
 
  * @{
 
  */
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup HAL_MSP_Private_Functions HAL MSP Private Functions
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the Global MSP.
 
  * @retval None
 
  */
 
void HAL_MspInit(void)
 
{
 
  /* NOTE : This function is generated automatically by MicroXplorer and eventually  
 
            modified by the user
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the Global MSP. 
 
  * @retval None
 
  */
 
void HAL_MspDeInit(void)
 
{
 
  /* NOTE : This function is generated automatically by MicroXplorer and eventually  
 
            modified by the user
 
   */
 
}
 
 
/**
 
  * @brief  Initializes the PPP MSP.
 
  * @retval None
 
  */
 
void HAL_PPP_MspInit(void)
 
{
 
  /* NOTE : This function is generated automatically by MicroXplorer and eventually  
 
            modified by the user
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the PPP MSP. 
 
  * @retval None
 
  */
 
void HAL_PPP_MspDeInit(void)
 
{
 
  /* NOTE : This function is generated automatically by MicroXplorer and eventually  
 
            modified by the user
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pcd.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   PCD HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the USB Peripheral Controller:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral Control functions 
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                    ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
      The PCD HAL driver can be used as follows:
 
 
     (#) Declare a PCD_HandleTypeDef handle structure, for example:
 
         PCD_HandleTypeDef  hpcd;
 
        
 
     (#) Fill parameters of Init structure in HCD handle
 
  
 
     (#) Call HAL_PCD_Init() API to initialize the HCD peripheral (Core, Device core, ...) 
 
 
     (#) Initialize the PCD low level resources through the HAL_PCD_MspInit() API:
 
         (##) Enable the PCD/USB Low Level interface clock using 
 
              (+++) __USB_CLK_ENABLE);
 
           
 
         (##) Initialize the related GPIO clocks
 
         (##) Configure PCD pin-out
 
         (##) Configure PCD NVIC interrupt
 
    
 
     (#)Associate the Upper USB device stack to the HAL PCD Driver:
 
         (##) hpcd.pData = pdev;
 
 
     (#)Enable HCD transmission and reception:
 
         (##) HAL_PCD_Start();
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
#ifdef HAL_PCD_MODULE_ENABLED
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup PCD PCD HAL module driver
 
  * @brief PCD HAL module driver
 
  * @{
 
  */
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
 
/** @defgroup PCD_Private_Define PCD Private Define
 
  * @{
 
  */
 
#define BTABLE_ADDRESS                  (0x000)  
 
/**
 
  * @}
 
  */ 
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup PCD_Private_Functions PCD Private Functions
 
  * @{
 
  */
 
static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd);
 
void PCD_WritePMA(USB_TypeDef  *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes);
 
void PCD_ReadPMA(USB_TypeDef  *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes);
 
/**
 
  * @}
 
  */ 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup PCD_Exported_Functions PCD Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim
 
 ===============================================================================
 
            ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the PCD according to the specified
 
  *         parameters in the PCD_InitTypeDef and create the associated handle.
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd)
 
{ 
 
  uint32_t i = 0;
 
 
  uint32_t wInterrupt_Mask = 0;
 
  
 
  /* Check the PCD handle allocation */
 
  if(hpcd == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_PCD_ALL_INSTANCE(hpcd->Instance));
 
 
  hpcd->State = PCD_BUSY;
 
  
 
  /* Init the low level hardware : GPIO, CLOCK, NVIC... */
 
  HAL_PCD_MspInit(hpcd);
 
 
 /* Init endpoints structures */
 
 for (i = 0; i < hpcd->Init.dev_endpoints ; i++)
 
 {
 
   /* Init ep structure */
 
   hpcd->IN_ep[i].is_in = 1;
 
   hpcd->IN_ep[i].num = i;
 
   /* Control until ep is actvated */
 
   hpcd->IN_ep[i].type = PCD_EP_TYPE_CTRL;
 
   hpcd->IN_ep[i].maxpacket =  0;
 
   hpcd->IN_ep[i].xfer_buff = 0;
 
   hpcd->IN_ep[i].xfer_len = 0;
 
 }
 
 
 
 for (i = 0; i < hpcd->Init.dev_endpoints ; i++)
 
 {
 
   hpcd->OUT_ep[i].is_in = 0;
 
   hpcd->OUT_ep[i].num = i;
 
   /* Control until ep is activated */
 
   hpcd->OUT_ep[i].type = PCD_EP_TYPE_CTRL;
 
   hpcd->OUT_ep[i].maxpacket = 0;
 
   hpcd->OUT_ep[i].xfer_buff = 0;
 
   hpcd->OUT_ep[i].xfer_len = 0;
 
 }
 
  
 
 /* Init Device */
 
 /*CNTR_FRES = 1*/
 
 hpcd->Instance->CNTR = USB_CNTR_FRES;
 
 
 
 /*CNTR_FRES = 0*/
 
 hpcd->Instance->CNTR = 0;
 
 
 
 /*Clear pending interrupts*/
 
 hpcd->Instance->ISTR = 0;
 
 
 
  /*Set Btable Adress*/
 
 hpcd->Instance->BTABLE = BTABLE_ADDRESS;
 
  
 
  /*set wInterrupt_Mask global variable*/
 
  wInterrupt_Mask = USB_CNTR_CTRM  | USB_CNTR_WKUPM | USB_CNTR_SUSPM | USB_CNTR_ERRM \
 
    | USB_CNTR_ESOFM | USB_CNTR_RESETM;
 
  
 
  /*Set interrupt mask*/
 
  hpcd->Instance->CNTR = wInterrupt_Mask;
 
  
 
  hpcd->USB_Address = 0;
 
  hpcd->State= PCD_READY;
 
 
 return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the PCD peripheral 
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd)
 
{
 
  /* Check the PCD handle allocation */
 
  if(hpcd == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  hpcd->State = PCD_BUSY;
 
  
 
  /* Stop Device */
 
  HAL_PCD_Stop(hpcd);
 
    
 
  /* DeInit the low level hardware */
 
  HAL_PCD_MspDeInit(hpcd);
 
  
 
  hpcd->State = PCD_READY; 
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the PCD MSP.
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
__weak void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes PCD MSP.
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
__weak void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PCD_Exported_Functions_Group2 IO operation functions 
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to manage the PCD data 
 
    transfers.
 
 
@endverbatim
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Start The USB OTG Device.
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd)
 
{ 
 
  /* Enabling DP Pull-Down bit to Connect internal pull-up on USB DP line */
 
  hpcd->Instance->BCDR |= USB_BCDR_DPPU;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stop The USB OTG Device.
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd)
 
{ 
 
  __HAL_LOCK(hpcd); 
 
  
 
    /* disable all interrupts and force USB reset */
 
  hpcd->Instance->CNTR = USB_CNTR_FRES;
 
  
 
  /* clear interrupt status register */
 
  hpcd->Instance->ISTR = 0;
 
  
 
  /* switch-off device */
 
  hpcd->Instance->CNTR = (USB_CNTR_FRES | USB_CNTR_PDWN);
 
  
 
  __HAL_UNLOCK(hpcd); 
 
  return HAL_OK;
 
}
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup PCD_Private_Functions PCD Private Functions
 
  * @{
 
  */
 
/**
 
  * @brief  This function handles PCD Endpoint interrupt request.
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd)
 
{
 
  PCD_EPTypeDef *ep;
 
  uint16_t count=0;
 
  uint8_t EPindex;
 
  __IO uint16_t wIstr;  
 
  __IO uint16_t wEPVal = 0;
 
  
 
  /* stay in loop while pending interrupts */
 
  while (((wIstr = hpcd->Instance->ISTR) & USB_ISTR_CTR) != 0)
 
  {
 
    /* extract highest priority endpoint number */
 
    EPindex = (uint8_t)(wIstr & USB_ISTR_EP_ID);
 
    
 
    if (EPindex == 0)
 
    {
 
      /* Decode and service control endpoint interrupt */
 
      
 
      /* DIR bit = origin of the interrupt */   
 
      if ((wIstr & USB_ISTR_DIR) == 0)
 
      {
 
        /* DIR = 0 */
 
        
 
        /* DIR = 0      => IN  int */
 
        /* DIR = 0 implies that (EP_CTR_TX = 1) always  */
 
        PCD_CLEAR_TX_EP_CTR(hpcd->Instance, PCD_ENDP0);
 
        ep = &hpcd->IN_ep[0];
 
        
 
        ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num);
 
        ep->xfer_buff += ep->xfer_count;
 
 
 
        /* TX COMPLETE */
 
        HAL_PCD_DataInStageCallback(hpcd, 0);
 
        
 
        
 
        if((hpcd->USB_Address > 0)&& ( ep->xfer_len == 0))
 
        {
 
          hpcd->Instance->DADDR = (hpcd->USB_Address | USB_DADDR_EF);
 
          hpcd->USB_Address = 0;
 
        }
 
        
 
      }
 
      else
 
      {
 
        /* DIR = 1 */
 
        
 
        /* DIR = 1 & CTR_RX       => SETUP or OUT int */
 
        /* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */
 
        ep = &hpcd->OUT_ep[0];
 
        wEPVal = PCD_GET_ENDPOINT(hpcd->Instance, PCD_ENDP0);
 
        
 
        if ((wEPVal & USB_EP_SETUP) != 0)
 
        {
 
          /* Get SETUP Packet*/
 
          ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num);
 
          PCD_ReadPMA(hpcd->Instance, (uint8_t*)hpcd->Setup ,ep->pmaadress , ep->xfer_count);       
 
          /* SETUP bit kept frozen while CTR_RX = 1*/ 
 
          PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0); 
 
          
 
          /* Process SETUP Packet*/
 
          HAL_PCD_SetupStageCallback(hpcd);
 
        }
 
        
 
        else if ((wEPVal & USB_EP_CTR_RX) != 0)
 
        {
 
          PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0);
 
          /* Get Control Data OUT Packet*/
 
          ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num);
 
          
 
          if (ep->xfer_count != 0)
 
          {
 
            PCD_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, ep->xfer_count);
 
            ep->xfer_buff+=ep->xfer_count;
 
          }
 
          
 
          /* Process Control Data OUT Packet*/
 
           HAL_PCD_DataOutStageCallback(hpcd, 0);
 
          
 
          PCD_SET_EP_RX_CNT(hpcd->Instance, PCD_ENDP0, ep->maxpacket);
 
          PCD_SET_EP_RX_STATUS(hpcd->Instance, PCD_ENDP0, USB_EP_RX_VALID);
 
        }
 
      }
 
    }
 
    else
 
    {
 
      
 
      /* Decode and service non control endpoints interrupt  */
 
      
 
      /* process related endpoint register */
 
      wEPVal = PCD_GET_ENDPOINT(hpcd->Instance, EPindex);
 
      if ((wEPVal & USB_EP_CTR_RX) != 0)
 
      {  
 
        /* clear int flag */
 
        PCD_CLEAR_RX_EP_CTR(hpcd->Instance, EPindex);
 
        ep = &hpcd->OUT_ep[EPindex];
 
        
 
        /* OUT double Buffering*/
 
        if (ep->doublebuffer == 0)
 
        {
 
          count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num);
 
          if (count != 0)
 
          {
 
            PCD_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, count);
 
          }
 
        }
 
        else
 
        {
 
          if (PCD_GET_ENDPOINT(hpcd->Instance, ep->num) & USB_EP_DTOG_RX)
 
          {
 
            /*read from endpoint BUF0Addr buffer*/
 
            count = PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num);
 
            if (count != 0)
 
            {
 
              PCD_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, count);
 
            }
 
          }
 
          else
 
          {
 
            /*read from endpoint BUF1Addr buffer*/
 
            count = PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num);
 
            if (count != 0)
 
            {
 
              PCD_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, count);
 
            }
 
          }
 
          PCD_FreeUserBuffer(hpcd->Instance, ep->num, PCD_EP_DBUF_OUT);  
 
        }
 
        /*multi-packet on the NON control OUT endpoint*/
 
        ep->xfer_count+=count;
 
        ep->xfer_buff+=count;
 
       
 
        if ((ep->xfer_len == 0) || (count < ep->maxpacket))
 
        {
 
          /* RX COMPLETE */
 
          HAL_PCD_DataOutStageCallback(hpcd, ep->num);
 
        }
 
        else
 
        {
 
          HAL_PCD_EP_Receive(hpcd, ep->num, ep->xfer_buff, ep->xfer_len);
 
        }
 
        
 
      } /* if((wEPVal & EP_CTR_RX) */
 
      
 
      if ((wEPVal & USB_EP_CTR_TX) != 0)
 
      {
 
        ep = &hpcd->IN_ep[EPindex];
 
        
 
        /* clear int flag */
 
        PCD_CLEAR_TX_EP_CTR(hpcd->Instance, EPindex);
 
        
 
        /* IN double Buffering*/
 
        if (ep->doublebuffer == 0)
 
        {
 
          ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num);
 
          if (ep->xfer_count != 0)
 
          {
 
            PCD_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, ep->xfer_count);
 
          }
 
        }
 
        else
 
        {
 
          if (PCD_GET_ENDPOINT(hpcd->Instance, ep->num) & USB_EP_DTOG_TX)
 
          {
 
            /*read from endpoint BUF0Addr buffer*/
 
            ep->xfer_count = PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num);
 
            if (ep->xfer_count != 0)
 
            {
 
              PCD_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, ep->xfer_count);
 
            }
 
          }
 
          else
 
          {
 
            /*read from endpoint BUF1Addr buffer*/
 
            ep->xfer_count = PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num);
 
            if (ep->xfer_count != 0)
 
            {
 
              PCD_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, ep->xfer_count);
 
            }
 
          }
 
          PCD_FreeUserBuffer(hpcd->Instance, ep->num, PCD_EP_DBUF_IN);  
 
        }
 
        /*multi-packet on the NON control IN endpoint*/
 
        ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num);
 
        ep->xfer_buff+=ep->xfer_count;
 
       
 
        /* Zero Length Packet? */
 
        if (ep->xfer_len == 0)
 
        {
 
          /* TX COMPLETE */
 
          HAL_PCD_DataInStageCallback(hpcd, ep->num);
 
        }
 
        else
 
        {
 
          HAL_PCD_EP_Transmit(hpcd, ep->num, ep->xfer_buff, ep->xfer_len);
 
        }
 
      } 
 
    }
 
  }
 
  return HAL_OK;
 
}
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PCD_Exported_Functions
 
  * @{
 
  */
 
 
/** @defgroup PCD_Exported_Functions_Group2 IO operation functions 
 
 * @{
 
 */    
 
 
 
/**
 
  * @brief  This function handles PCD interrupt request.
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd)
 
{
 
  uint32_t wInterrupt_Mask = 0;
 
  
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_CTR))
 
  {
 
    /* servicing of the endpoint correct transfer interrupt */
 
    /* clear of the CTR flag into the sub */
 
    PCD_EP_ISR_Handler(hpcd);
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_RESET))
 
  {
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_RESET);
 
    HAL_PCD_ResetCallback(hpcd);
 
    HAL_PCD_SetAddress(hpcd, 0);
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_PMAOVR))
 
  {
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_PMAOVR);    
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_ERR))
 
  {
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ERR); 
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_WKUP))
 
  {
 
    
 
    hpcd->Instance->CNTR &= ~(USB_CNTR_LPMODE);
 
 
    /*set wInterrupt_Mask global variable*/
 
    wInterrupt_Mask = USB_CNTR_CTRM  | USB_CNTR_WKUPM | USB_CNTR_SUSPM | USB_CNTR_ERRM \
 
      | USB_CNTR_ESOFM | USB_CNTR_RESETM;
 
    
 
    /*Set interrupt mask*/
 
    hpcd->Instance->CNTR = wInterrupt_Mask;
 
    
 
    HAL_PCD_ResumeCallback(hpcd);
 
    
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_WKUP);     
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_SUSP))
 
  {    
 
    /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SUSP);  
 
    
 
    /* Force low-power mode in the macrocell */
 
    hpcd->Instance->CNTR |= USB_CNTR_FSUSP;
 
    hpcd->Instance->CNTR |= USB_CNTR_LPMODE;
 
 
    if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_WKUP) == 0)
 
    {
 
      HAL_PCD_SuspendCallback(hpcd);
 
    }
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_SOF))
 
  {
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SOF); 
 
    HAL_PCD_SOFCallback(hpcd);
 
  }
 
 
  if (__HAL_PCD_GET_FLAG (hpcd, USB_ISTR_ESOF))
 
  {
 
    /* clear ESOF flag in ISTR */
 
    __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ESOF); 
 
  }
 
}
 
 
/**
 
  * @brief  Data out stage callbacks
 
  * @param  hpcd: PCD handle
 
  * @param  epnum: endpoint number
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_DataOutStageCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Data IN stage callbacks
 
  * @param  hpcd: PCD handle
 
  * @param  epnum: endpoint number
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_DataInStageCallback could be implemented in the user file
 
   */ 
 
}
 
/**
 
  * @brief  Setup stage callback
 
  * @param  hpcd: ppp handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_SetupStageCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  USB Start Of Frame callbacks
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_SOFCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  USB Reset callbacks
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_ResetCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Suspend event callbacks
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_SuspendCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Resume event callbacks
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_ResumeCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Incomplete ISO OUT callbacks
 
  * @param  hpcd: PCD handle
 
  * @param  epnum: endpoint number
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_ISOOUTIncompleteCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Incomplete ISO IN  callbacks
 
  * @param  hpcd: PCD handle
 
  * @param  epnum: endpoint number
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_ISOINIncompleteCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Connection event callbacks
 
  * @param  hpcd: PCD handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_ConnectCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Disconnection event callbacks
 
  * @param  hpcd: ppp handle
 
  * @retval None
 
  */
 
 __weak void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PCD_DisconnectCallback could be implemented in the user file
 
   */ 
 
}
 
/**
 
  * @}
 
  */
 
    
 
/** @defgroup PCD_Exported_Functions_Group3 Peripheral Control functions 
 
 *  @brief   management functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the PCD data 
 
    transfers.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Send an amount of data in blocking mode 
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd)
 
{
 
  __HAL_LOCK(hpcd); 
 
  
 
  /* Enabling DP Pull-Down bit to Connect internal pull-up on USB DP line */
 
  hpcd->Instance->BCDR |= USB_BCDR_DPPU;
 
  
 
  __HAL_UNLOCK(hpcd); 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Send an amount of data in blocking mode 
 
  * @param  hpcd: PCD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd)
 
{
 
  __HAL_LOCK(hpcd); 
 
  
 
  /* Disable DP Pull-Down bit*/
 
   hpcd->Instance->BCDR &= ~(USB_BCDR_DPPU);
 
  
 
  __HAL_UNLOCK(hpcd); 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Set the USB Device address 
 
  * @param  hpcd: PCD handle
 
  * @param  address: new device address
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address)
 
{
 
   __HAL_LOCK(hpcd); 
 
 
   if(address == 0) 
 
   {
 
     /* set device address and enable function */
 
     hpcd->Instance->DADDR = USB_DADDR_EF;
 
   }
 
   else /* USB Address will be applied later */
 
   {
 
     hpcd->USB_Address = address;
 
   }
 
 
  __HAL_UNLOCK(hpcd);   
 
  return HAL_OK;
 
}
 
/**
 
  * @brief  Open and configure an endpoint
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @param  ep_mps: endpoint max packert size
 
  * @param  ep_type: endpoint type   
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type)
 
{
 
  HAL_StatusTypeDef  ret = HAL_OK;
 
  PCD_EPTypeDef *ep;
 
  
 
  if ((ep_addr & 0x80) == 0x80)
 
  {
 
    ep = &hpcd->IN_ep[ep_addr & 0x7F];
 
  }
 
  else
 
  {
 
    ep = &hpcd->OUT_ep[ep_addr & 0x7F];
 
  }
 
  ep->num   = ep_addr & 0x7F;
 
  
 
  ep->is_in = (0x80 & ep_addr) != 0;
 
  ep->maxpacket = ep_mps;
 
  ep->type = ep_type;
 
  
 
  __HAL_LOCK(hpcd); 
 
 
/* initialize Endpoint */
 
  switch (ep->type)
 
  {
 
  case PCD_EP_TYPE_CTRL:
 
    PCD_SET_EPTYPE(hpcd->Instance, ep->num, USB_EP_CONTROL);
 
    break;
 
  case PCD_EP_TYPE_BULK:
 
    PCD_SET_EPTYPE(hpcd->Instance, ep->num, USB_EP_BULK);
 
    break;
 
  case PCD_EP_TYPE_INTR:
 
    PCD_SET_EPTYPE(hpcd->Instance, ep->num, USB_EP_INTERRUPT);
 
    break;
 
  case PCD_EP_TYPE_ISOC:
 
    PCD_SET_EPTYPE(hpcd->Instance, ep->num, USB_EP_ISOCHRONOUS);
 
    break;
 
  } 
 
  
 
  PCD_SET_EP_ADDRESS(hpcd->Instance, ep->num, ep->num);
 
  
 
  if (ep->doublebuffer == 0) 
 
  {
 
    if (ep->is_in)
 
    {
 
      /*Set the endpoint Transmit buffer address */
 
      PCD_SET_EP_TX_ADDRESS(hpcd->Instance, ep->num, ep->pmaadress);
 
      PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
      /* Configure NAK status for the Endpoint*/
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_NAK); 
 
    }
 
    else
 
    {
 
      /*Set the endpoint Receive buffer address */
 
      PCD_SET_EP_RX_ADDRESS(hpcd->Instance, ep->num, ep->pmaadress);
 
      /*Set the endpoint Receive buffer counter*/
 
      PCD_SET_EP_RX_CNT(hpcd->Instance, ep->num, ep->maxpacket);
 
      PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
      /* Configure VALID status for the Endpoint*/
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_VALID);
 
    }
 
  }
 
  /*Double Buffer*/
 
  else
 
  {
 
    /*Set the endpoint as double buffered*/
 
    PCD_SET_EP_DBUF(hpcd->Instance, ep->num);
 
    /*Set buffer address for double buffered mode*/
 
    PCD_SET_EP_DBUF_ADDR(hpcd->Instance, ep->num,ep->pmaaddr0, ep->pmaaddr1);
 
    
 
    if (ep->is_in==0)
 
    {
 
      /* Clear the data toggle bits for the endpoint IN/OUT*/
 
      PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
      PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
      
 
      /* Reset value of the data toggle bits for the endpoint out*/
 
      PCD_TX_DTOG(hpcd->Instance, ep->num);
 
      
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_VALID);
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_DIS);
 
    }
 
    else
 
    {
 
      /* Clear the data toggle bits for the endpoint IN/OUT*/
 
      PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
      PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
      PCD_RX_DTOG(hpcd->Instance, ep->num);
 
      /* Configure DISABLE status for the Endpoint*/
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_DIS);
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_DIS);
 
    }
 
  } 
 
  
 
  __HAL_UNLOCK(hpcd);   
 
  return ret;
 
}
 
 
 
/**
 
  * @brief  Deactivate an endpoint
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
 
{  
 
  PCD_EPTypeDef *ep;
 
  
 
  if ((ep_addr & 0x80) == 0x80)
 
  {
 
    ep = &hpcd->IN_ep[ep_addr & 0x7F];
 
  }
 
  else
 
  {
 
    ep = &hpcd->OUT_ep[ep_addr & 0x7F];
 
  }
 
  ep->num   = ep_addr & 0x7F;
 
  
 
  ep->is_in = (0x80 & ep_addr) != 0;
 
  
 
  __HAL_LOCK(hpcd); 
 
 
  if (ep->doublebuffer == 0) 
 
  {
 
    if (ep->is_in)
 
    {
 
      PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
      /* Configure DISABLE status for the Endpoint*/
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_DIS); 
 
    }
 
    else
 
    {
 
      PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
      /* Configure DISABLE status for the Endpoint*/
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_DIS);
 
    }
 
  }
 
  /*Double Buffer*/
 
  else
 
  { 
 
    if (ep->is_in==0)
 
    {
 
      /* Clear the data toggle bits for the endpoint IN/OUT*/
 
      PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
      PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
      
 
      /* Reset value of the data toggle bits for the endpoint out*/
 
      PCD_TX_DTOG(hpcd->Instance, ep->num);
 
      
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_DIS);
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_DIS);
 
    }
 
    else
 
    {
 
      /* Clear the data toggle bits for the endpoint IN/OUT*/
 
      PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
      PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
      PCD_RX_DTOG(hpcd->Instance, ep->num);
 
      /* Configure DISABLE status for the Endpoint*/
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_DIS);
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_DIS);
 
    }
 
  } 
 
  
 
  __HAL_UNLOCK(hpcd);   
 
  return HAL_OK;
 
}
 
 
 
/**
 
  * @brief  Receive an amount of data  
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @param  pBuf: pointer to the reception buffer   
 
  * @param  len: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len)
 
{
 
  
 
 PCD_EPTypeDef *ep;
 
  
 
  ep = &hpcd->OUT_ep[ep_addr & 0x7F];
 
  
 
  /*setup and start the Xfer */
 
  ep->xfer_buff = pBuf;  
 
  ep->xfer_len = len;
 
  ep->xfer_count = 0;
 
  ep->is_in = 0;
 
  ep->num = ep_addr & 0x7F;
 
   
 
  __HAL_LOCK(hpcd); 
 
   
 
  /* Multi packet transfer*/
 
  if (ep->xfer_len > ep->maxpacket)
 
  {
 
    len=ep->maxpacket;
 
    ep->xfer_len-=len; 
 
  }
 
  else
 
  {
 
    len=ep->xfer_len;
 
    ep->xfer_len =0;
 
  }
 
  
 
  /* configure and validate Rx endpoint */
 
  if (ep->doublebuffer == 0) 
 
  {
 
    /*Set RX buffer count*/
 
    PCD_SET_EP_RX_CNT(hpcd->Instance, ep->num, len);
 
  }
 
  else
 
  {
 
    /*Set the Double buffer counter*/
 
    PCD_SET_EP_DBUF1_CNT(hpcd->Instance, ep->num, ep->is_in, len);
 
  } 
 
  
 
  PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_VALID);
 
  
 
  __HAL_UNLOCK(hpcd); 
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Get Received Data Size
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @retval Data Size
 
  */
 
uint16_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
 
{
 
  return hpcd->OUT_ep[ep_addr & 0x7F].xfer_count;
 
}
 
/**
 
  * @brief  Send an amount of data  
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @param  pBuf: pointer to the transmission buffer   
 
  * @param  len: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len)
 
{
 
  PCD_EPTypeDef *ep;
 
  uint16_t pmabuffer = 0;
 
    
 
  ep = &hpcd->IN_ep[ep_addr & 0x7F];
 
  
 
  /*setup and start the Xfer */
 
  ep->xfer_buff = pBuf;  
 
  ep->xfer_len = len;
 
  ep->xfer_count = 0;
 
  ep->is_in = 1;
 
  ep->num = ep_addr & 0x7F;
 
  
 
  __HAL_LOCK(hpcd); 
 
  
 
  /*Multi packet transfer*/
 
  if (ep->xfer_len > ep->maxpacket)
 
  {
 
    len=ep->maxpacket;
 
    ep->xfer_len-=len; 
 
  }
 
  else
 
  {  
 
    len=ep->xfer_len;
 
    ep->xfer_len =0;
 
  }
 
  
 
  /* configure and validate Tx endpoint */
 
  if (ep->doublebuffer == 0) 
 
  {
 
    PCD_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, len);
 
    PCD_SET_EP_TX_CNT(hpcd->Instance, ep->num, len);
 
  }
 
  else
 
  {
 
    /*Set the Double buffer counter*/
 
    PCD_SET_EP_DBUF1_CNT(hpcd->Instance, ep->num, ep->is_in, len);
 
    
 
    /*Write the data to the USB endpoint*/
 
    if (PCD_GET_ENDPOINT(hpcd->Instance, ep->num)& USB_EP_DTOG_TX)
 
    {
 
      pmabuffer = ep->pmaaddr1;
 
    }
 
    else
 
    {
 
      pmabuffer = ep->pmaaddr0;
 
    }
 
    PCD_WritePMA(hpcd->Instance, ep->xfer_buff, pmabuffer, len);
 
    PCD_FreeUserBuffer(hpcd->Instance, ep->num, ep->is_in);
 
  }
 
 
  PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_VALID);
 
  
 
  __HAL_UNLOCK(hpcd);
 
     
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Set a STALL condition over an endpoint
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
 
{
 
  PCD_EPTypeDef *ep;
 
   
 
  __HAL_LOCK(hpcd); 
 
   
 
  if ((0x80 & ep_addr) == 0x80)
 
  {
 
    ep = &hpcd->IN_ep[ep_addr & 0x7F];
 
  }
 
  else
 
  {
 
    ep = &hpcd->OUT_ep[ep_addr];
 
  }
 
  
 
  ep->is_stall = 1;
 
  ep->num   = ep_addr & 0x7F;
 
  ep->is_in = ((ep_addr & 0x80) == 0x80);
 
  
 
  if (ep->num == 0)
 
  {
 
    /* This macro sets STALL status for RX & TX*/ 
 
    PCD_SET_EP_TXRX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_STALL, USB_EP_TX_STALL); 
 
  }
 
  else
 
  {
 
    if (ep->is_in)
 
    {
 
      PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num , USB_EP_TX_STALL); 
 
    }
 
    else
 
    {
 
      PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num , USB_EP_RX_STALL);
 
    }
 
  }
 
  __HAL_UNLOCK(hpcd); 
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Clear a STALL condition over in an endpoint
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
 
{
 
  PCD_EPTypeDef *ep;
 
  
 
  if ((0x80 & ep_addr) == 0x80)
 
  {
 
    ep = &hpcd->IN_ep[ep_addr & 0x7F];
 
  }
 
  else
 
  {
 
    ep = &hpcd->OUT_ep[ep_addr];
 
  }
 
  
 
  ep->is_stall = 0;
 
  ep->num   = ep_addr & 0x7F;
 
  ep->is_in = ((ep_addr & 0x80) == 0x80);
 
  
 
  __HAL_LOCK(hpcd); 
 
  
 
  if (ep->is_in)
 
  {
 
    PCD_CLEAR_TX_DTOG(hpcd->Instance, ep->num);
 
    PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_VALID);
 
  }
 
  else
 
  {
 
    PCD_CLEAR_RX_DTOG(hpcd->Instance, ep->num);
 
    PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_VALID);
 
  }
 
  __HAL_UNLOCK(hpcd); 
 
    
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Flush an endpoint
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
 
{ 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  HAL_PCD_ActiveRemoteWakeup : active remote wakeup signalling
 
  * @param  hpcd: PCD handle
 
  * @retval status
 
  */
 
HAL_StatusTypeDef HAL_PCD_ActiveRemoteWakeup(PCD_HandleTypeDef *hpcd)
 
{
 
  hpcd->Instance->CNTR |= USB_CNTR_RESUME;
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  HAL_PCD_DeActiveRemoteWakeup : de-active remote wakeup signalling
 
  * @param  hpcd: PCD handle
 
  * @retval status
 
  */
 
HAL_StatusTypeDef HAL_PCD_DeActiveRemoteWakeup(PCD_HandleTypeDef *hpcd)
 
{
 
  hpcd->Instance->CNTR &= ~(USB_CNTR_RESUME);
 
  return HAL_OK;  
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup PCD_Private_Functions
 
  * @{
 
  */
 
/**
 
  * @brief Copy a buffer from user memory area to packet memory area (PMA)
 
  * @param   USBx: USB peripheral instance register address.
 
  * @param   pbUsrBuf: pointer to user memory area.
 
  * @param   wPMABufAddr: address into PMA.
 
  * @param   wNBytes: no. of bytes to be copied.
 
  * @retval None
 
  */
 
void PCD_WritePMA(USB_TypeDef  *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
 
{
 
  uint32_t n = (wNBytes + 1) >> 1; 
 
  uint32_t i;
 
  uint16_t temp1, temp2;
 
  uint16_t *pdwVal;
 
  pdwVal = (uint16_t *)(wPMABufAddr + (uint32_t)USBx + 0x400);
 
  
 
  for (i = n; i != 0; i--)
 
  {
 
    temp1 = (uint16_t) * pbUsrBuf;
 
    pbUsrBuf++;
 
    temp2 = temp1 | (uint16_t) * pbUsrBuf << 8;
 
    *pdwVal++ = temp2;
 
    pbUsrBuf++;
 
  }
 
}
 
 
/**
 
  * @brief Copy a buffer from user memory area to packet memory area (PMA)
 
  * @param   USBx: USB peripheral instance register address.
 
  * @param   pbUsrBuf    = pointer to user memory area.
 
  * @param   wPMABufAddr: address into PMA.
 
  * @param   wNBytes: no. of bytes to be copied.
 
  * @retval None
 
  */
 
void PCD_ReadPMA(USB_TypeDef  *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
 
{
 
  uint32_t n = (wNBytes + 1) >> 1;
 
  uint32_t i;
 
  uint16_t *pdwVal;
 
  pdwVal = (uint16_t *)(wPMABufAddr + (uint32_t)USBx + 0x400);
 
  for (i = n; i != 0; i--)
 
  {
 
    *(uint16_t*)pbUsrBuf++ = *pdwVal++;
 
    pbUsrBuf++;
 
  }
 
}
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup PCD_Exported_Functions
 
  * @{
 
  */
 
  
 
/** @defgroup PCD_Exported_Functions_Group4 Peripheral State functions 
 
 *  @brief   Peripheral State functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the PCD state
 
  * @param  hpcd : PCD handle
 
  * @retval HAL state
 
  */
 
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd)
 
{
 
  return hpcd->State;
 
}
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
#endif /* STM32F042x6 || STM32F072xB || STM32F078xx */
 
 
#endif /* HAL_PCD_MODULE_ENABLED */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pcd_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended PCD HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the USB Peripheral Controller:
 
  *           + Configuration of the PMA for EP
 
  *         
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
#ifdef HAL_PCD_MODULE_ENABLED
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup PCDEx PCDEx Extended HAL module driver
 
  * @brief PCDEx PCDEx Extended HAL module driver
 
  * @{
 
  */
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup PCDEx_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim
 
 ===============================================================================
 
                 ##### Peripheral extended features methods #####
 
 ===============================================================================
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Configure PMA for EP
 
  * @param  hpcd: PCD handle
 
  * @param  ep_addr: endpoint address
 
  * @param  ep_kind: endpoint Kind
 
  *                @arg USB_SNG_BUF: Single Buffer used
 
  *                @arg USB_DBL_BUF: Double Buffer used
 
  * @param  pmaadress: EP address in The PMA: In case of single buffer endpoint
 
  *                   this parameter is 16-bit value providing the address
 
  *                   in PMA allocated to endpoint.
 
  *                   In case of double buffer endpoint this parameter
 
  *                   is a 32-bit value providing the endpoint buffer 0 address
 
  *                   in the LSB part of 32-bit value and endpoint buffer 1 address
 
  *                   in the MSB part of 32-bit value.
 
  * @retval : status
 
  */
 
 
HAL_StatusTypeDef  HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, 
 
                        uint16_t ep_addr,
 
                        uint16_t ep_kind,
 
                        uint32_t pmaadress)
 
 
{
 
  PCD_EPTypeDef *ep;
 
  
 
  /* initialize ep structure*/
 
  if ((0x80 & ep_addr) == 0x80)
 
  {
 
    ep = &hpcd->IN_ep[ep_addr & 0x7F];
 
  }
 
  else
 
  {
 
    ep = &hpcd->OUT_ep[ep_addr];
 
  }
 
  
 
  /* Here we check if the endpoint is single or double Buffer*/
 
  if (ep_kind == PCD_SNG_BUF)
 
  {
 
    /*Single Buffer*/
 
    ep->doublebuffer = 0;
 
    /*Configure te PMA*/
 
    ep->pmaadress = (uint16_t)pmaadress;
 
  }
 
  else /*USB_DBL_BUF*/
 
  {
 
    /*Double Buffer Endpoint*/
 
    ep->doublebuffer = 1;
 
    /*Configure the PMA*/
 
    ep->pmaaddr0 =  pmaadress & 0xFFFF;
 
    ep->pmaaddr1 =  (pmaadress & 0xFFFF0000) >> 16;
 
  }
 
  
 
  return HAL_OK;
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* STM32F042x6 || STM32F072xB || STM32F078xx */
 
 
#endif /* HAL_PCD_MODULE_ENABLED */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_ppp.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_ppp.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   PPP HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the PPP peripheral:
 
  *           + Initialization/de-initialization functions
 
  *           + I/O operation functions
 
  *           + Peripheral Control functions 
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
================================================================================
 
          ##### Product specific features integration #####
 
================================================================================
 
           
 
  [..]  This section can contain: 
 
       (#) Description of the product specific implementation; all features
 
           that is specific to this IP: separate clock for RTC/LCD/IWDG/ADC,
 
           power domain (backup domain for the RTC)...   
 
       (#) IP main features, only when needed and not mandatory for all IPs,
 
           ex. for xWDG, GPIO, COMP...
 
 
  [..]  You can add as much sections as needed.
 
 
  [..]  You can add as much sections as needed.
 
 
            ##### How to use this driver #####
 
================================================================================
 
           [..]
 
            (#) Add here ALL NEEDED STEPS (i.e. list of functions and parameters) 
 
                TO INITIALIZE AND USE THE PERIPHERAL. Following the listed steps, 
 
                user should be able to make the peripheral working without any
 
                additional information from other resources (ex. product Reference 
 
                Manual, HAL User Manual...).   
 
 
 
                Basically, it should be the same as we provide in the examples.
 
 
 
            (#) Exception can be made for system IPs (there is no standard order
 
                of API usage) for which the description of API usage will be made
 
                in each function group. These IPs are: PWR, RCC and FLASH
 
                In this case, this section should contain the following note:
 
                "Refer to the description within the different function groups below"
 
  
 
            (+) 
 
  
 
            (+) 
 
  
 
            (+) 
 
  
 
            (+) 
 
  
 
            (+) 
 
  
 
            (+) 
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup PPP PPP HAL module driver
 
  * @brief PPP HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_PPP_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
/** @defgroup PPP_Exported_Functions PPP Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup PPP_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and Configuration functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the PPP according to the specified
 
  *         parameters in the PPP_InitTypeDef and create the associated handle.
 
  * @param  hppp: PPP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Init(PPP_HandleTypeDef *hppp)
 
{ 
 
 
  /* Check the parameters */
 
  assert_param(IS_PPP_CONFIGx(hppp->Config.Config1)); 
 
 
  /* Check the PPP handle allocation */
 
  if(hppp == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
 
  /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
  HAL_PPP_MspInit(hppp);
 
  
 
  /* Set PPP parameters */
 
  
 
  /* Enable the Peripharal */
 
  
 
  /* Initialize the PPP state*/
 
  hppp->State = HAL_PPP_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the PPP peripheral 
 
  * @param  hppp: PPP handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_DeInit(PPP_HandleTypeDef *hppp)
 
{
 
  /* Check the PPP peripheral state */
 
  if(hppp->State == HAL_PPP_STATE_BUSY)
 
  {
 
     return HAL_ERROR;
 
  }
 
 
  hppp->State = HAL_PPP_STATE_BUSY;
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
 
  HAL_PPP_MspDeInit(hppp);
 
    
 
  hppp->State = HAL_PPP_STATE_DISABLED; 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the PPP MSP.
 
  * @param  hppp: PPP handle
 
  * @retval None
 
  */
 
__weak void HAL_PPP_MspInit(PPP_HandleTypeDef *hppp)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PPP_MspInit could be implenetd in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes PPP MSP.
 
  * @param  hppp: PPP handle
 
  * @retval None
 
  */
 
__weak void HAL_PPP_MspDeInit(PPP_HandleTypeDef *hppp)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PPP_MspDeInit could be implenetd in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PPP_Exported_Functions_Group2 I/O operation functions 
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to manage the PPP data 
 
    transfers.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Send an amount of data in blocking mode 
 
  * @param  hppp: PPP handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Transmit(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hppp);
 
  
 
  hppp->State = HAL_PPP_STATE_BUSY;  
 
  /* PPP processing... */ 
 
  hppp->State = HAL_PPP_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hppp);      
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Receive an amount of data in blocking mode 
 
  * @param  hppp: PPP handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Receive(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size)
 
{ 
 
  /* Process Locked */
 
  __HAL_LOCK(hppp);
 
  
 
  hppp->State = HAL_PPP_STATE_BUSY;  
 
  /* PPP processing... */ 
 
  hppp->State = HAL_PPP_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hppp);      
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Send an amount of data in non blocking mode 
 
  * @param  hppp: PPP handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Transmit_IT(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hppp);
 
  
 
  hppp->State = HAL_PPP_STATE_BUSY;  
 
  /* PPP processing... */ 
 
  hppp->State = HAL_PPP_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hppp);      
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Receive an amount of data in non blocking mode 
 
  * @param  hppp: PPP handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Receive_IT(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hppp);
 
  
 
  hppp->State = HAL_PPP_STATE_BUSY;  
 
  /* PPP processing... */ 
 
  hppp->State = HAL_PPP_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hppp);      
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles PPP interrupt request.
 
  * @param  hppp: PPP handle
 
  * @retval HAL status
 
  */
 
void HAL_PPP_IRQHandler(PPP_HandleTypeDef *hppp)
 
{
 
  /* PPP in mode Tramitter ---------------------------------------------------*/
 
  if (__HAL_PPP_GET_IT(hppp, PPP_IT_TC) != RESET)
 
  { 
 
    __HAL_PPP_CLEAR_IT(hppp, PPP_IT_TC);
 
    HAL_PPP_Transmit_IT(hppp, NULL, 0);
 
  }
 
  
 
  /* PPP in mode Receiver ----------------------------------------------------*/
 
  if (__HAL_PPP_GET_IT(hppp, PPP_IT_RXNE) != RESET)
 
  {
 
    __HAL_PPP_CLEAR_IT(hppp, PPP_IT_RXNE);
 
    HAL_PPP_Receive_IT(hppp, NULL, 0);
 
  } 
 
}
 
 
/**
 
  * @brief  Tx Transfer completed callbacks
 
  * @param  hppp: ppp handle
 
  * @retval None
 
  */
 
 __weak void HAL_PPP_TxCpltCallback(PPP_HandleTypeDef *hppp)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PPP_TxCpltCallback could be implenetd in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Rx Transfer completed callbacks
 
  * @param  hppp: PPP handle
 
  * @retval None
 
  */
 
__weak void HAL_PPP_RxCpltCallback(PPP_HandleTypeDef *hppp)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PPP_TxCpltCallback could be implenetd in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Send an amount of data in non blocking mode 
 
  * @param  hppp: ppp handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Transmit_DMA(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size)
 
{
 
  /* Check the PPP peripheral state */
 
  if(hppp->State == HAL_PPP_STATE_BUSY)
 
  {
 
     return HAL_BUSY;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hppp);
 
  
 
  hppp->State = HAL_PPP_STATE_BUSY;  
 
  /* PPP processing... */ 
 
  hppp->State = HAL_PPP_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hppp);      
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Receive an amount of data in non blocking mode 
 
  * @param  hppp: PPP handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Receive_DMA(PPP_HandleTypeDef *hppp, uint8_t *pData, uint16_t Size)
 
{
 
  /* Check the PPP peripheral state */
 
  if(hppp->State == HAL_PPP_STATE_BUSY)
 
  {
 
     return HAL_BUSY;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hppp);
 
  
 
  hppp->State = HAL_PPP_STATE_BUSY;  
 
  /* PPP processing... */ 
 
  hppp->State = HAL_PPP_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hppp);      
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PPP_Exported_Functions_Group3 Peripheral Control functions 
 
 *  @brief   management functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the PPP data 
 
    transfers.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Configures PPP features and fonctionality. 
 
  * @param  hppp: PPP handle
 
  * @param  control: Specifies which PPP_InitTypeDef structure’s field will be affected
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_PPP_Ctl(PPP_HandleTypeDef *hppp, PPP_ControlTypeDef  control, uint16_t *args)
 
{
 
  if(hppp->State == HAL_PPP_STATE_BUSY)
 
  {
 
     return HAL_BUSY;
 
  }
 
 
  hppp->State = HAL_PPP_STATE_BUSY;
 
 
  /* Update the PPP features and fonctionality */
 
  /* ... */
 
  
 
  hppp->State = HAL_PPP_STATE_READY;
 
  
 
  return HAL_OK; 
 
}
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PPP_Exported_Functions_Group4 Peripheral State functions
 
 *  @brief   Peripheral State functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the PPP state
 
  * @param  hppp : PPP handle
 
  * @retval HAL state
 
  */
 
HAL_PPP_StateTypeDef HAL_PPP_GetState(PPP_HandleTypeDef *hppp)
 
{
 
  return hppp->State;
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_PPP_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pwr.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   PWR HAL module driver.
 
  *          This file provides firmware functions to manage the following
 
  *          functionalities of the Power Controller (PWR) peripheral:
 
  *           + Initialization/de-initialization function
 
  *           + Peripheral Control function
 
  *
 
  @verbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup PWR PWR HAL module Driver 
 
  * @brief PWR HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_PWR_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup PWR_Exported_Functions PWR Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  *  @brief    Initialization and de-initialization functions
 
  *
 
@verbatim
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
    [..]
 
      After reset, the backup domain (RTC registers, RTC backup data
 
      registers) is protected against possible unwanted
 
      write accesses.
 
      To enable access to the RTC Domain and RTC registers, proceed as follows:
 
        (+) Enable the Power Controller (PWR) APB1 interface clock using the
 
            __PWR_CLK_ENABLE() macro.
 
        (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Deinitializes the PWR peripheral registers to their default reset values.
 
  * @retval None
 
  */
 
void HAL_PWR_DeInit(void)
 
{
 
  __PWR_FORCE_RESET();
 
  __PWR_RELEASE_RESET();
 
}
 
 
/**
 
  * @brief Enables access to the backup domain (RTC registers, RTC
 
  *         backup data registers).
 
  * @note  If the HSE divided by 32 is used as the RTC clock, the
 
  *         Backup Domain Access should be kept enabled.
 
  * @retval None
 
  */
 
void HAL_PWR_EnableBkUpAccess(void)
 
{
 
  PWR->CR |= (uint32_t)PWR_CR_DBP;
 
}
 
 
/**
 
  * @brief Disables access to the backup domain (RTC registers, RTC
 
  *         backup data registers).
 
  * @note  If the HSE divided by 32 is used as the RTC clock, the
 
  *         Backup Domain Access should be kept enabled.
 
  * @retval None
 
  */
 
void HAL_PWR_DisableBkUpAccess(void)
 
{
 
  PWR->CR &= ~((uint32_t)PWR_CR_DBP);
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions 
 
  *  @brief Low Power modes configuration functions
 
  *
 
@verbatim
 
 
 ===============================================================================
 
                 ##### Peripheral Control functions #####
 
 ===============================================================================
 
    
 
    *** WakeUp pin configuration ***
 
    ================================
 
    [..]
 
      (+) WakeUp pin is used to wakeup the system from Standby mode. This pin is
 
          forced in input pull down configuration and is active on rising edges.
 
      (+) There are two WakeUp pins, and up to eight Wakeup pins on STM32F07x & STM32F09x devices.
 
         (++)WakeUp Pin 1 on PA.00.
 
         (++)WakeUp Pin 2 on PC.13.
 
         (++)WakeUp Pin 3 on PE.06.(STM32F07x/STM32F09x)
 
         (++)WakeUp Pin 4 on PA.02.(STM32F07x/STM32F09x)
 
         (++)WakeUp Pin 5 on PC.05.(STM32F07x/STM32F09x)
 
         (++)WakeUp Pin 6 on PB.05.(STM32F07x/STM32F09x)
 
         (++)WakeUp Pin 7 on PB.15.(STM32F07x/STM32F09x)
 
         (++)WakeUp Pin 8 on PF.02.(STM32F07x/STM32F09x)
 
 
    *** Low Power modes configuration ***
 
    =====================================
 
    [..]
 
      The devices feature 3 low-power modes:
 
      (+) Sleep mode: Cortex-M0 core stopped, peripherals kept running.
 
      (+) Stop mode: all clocks are stopped, regulator running, regulator
 
          in low power mode
 
      (+) Standby mode: 1.2V domain powered off (mode not available on STM32F0x8 devices).
 
 
   *** Sleep mode ***
 
   ==================
 
    [..]
 
      (+) Entry:
 
          The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
 
              functions with
 
          (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
 
          (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
 
     
 
      (+) Exit:
 
        (++) Any peripheral interrupt acknowledged by the nested vectored interrupt
 
              controller (NVIC) can wake up the device from Sleep mode.
 
 
   *** Stop mode ***
 
   =================
 
    [..]
 
      In Stop mode, all clocks in the 1.8V domain are stopped, the PLL, the HSI,
 
      and the HSE RC oscillators are disabled. Internal SRAM and register contents
 
      are preserved.
 
      The voltage regulator can be configured either in normal or low-power mode.
 
      To minimize the consumption.
 
 
      (+) Entry:
 
          The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI )
 
             function with:
 
          (++) Main regulator ON.
 
          (++) Low Power regulator ON.
 
          (++) PWR_STOPENTRY_WFI: enter STOP mode with WFI instruction
 
          (++) PWR_STOPENTRY_WFE: enter STOP mode with WFE instruction
 
      (+) Exit:
 
          (++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
 
          (++) Some specific communication peripherals (CEC, USART, I2C) interrupts, 
 
               when programmed in wakeup mode (the peripheral must be 
 
               programmed in wakeup mode and the corresponding interrupt vector 
 
               must be enabled in the NVIC)
 
 
   *** Standby mode ***
 
   ====================
 
     [..]
 
      The Standby mode allows to achieve the lowest power consumption. It is based
 
      on the Cortex-M0 deep sleep mode, with the voltage regulator disabled.
 
      The 1.8V domain is consequently powered off. The PLL, the HSI oscillator and
 
      the HSE oscillator are also switched off. SRAM and register contents are lost
 
      except for the RTC registers, RTC backup registers and Standby circuitry.
 
      The voltage regulator is OFF.
 
 
      (+) Entry:
 
          (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
 
      (+) Exit:
 
          (++) WKUP pin rising edge, RTC alarm (Alarm A), RTC wakeup,
 
               tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
 
 
   *** Auto-wakeup (AWU) from low-power mode ***
 
   =============================================
 
    [..]
 
      The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
 
      Wakeup event, a tamper event, a time-stamp event, or a comparator event, 
 
      without depending on an external interrupt (Auto-wakeup mode).
 
 
    (+) RTC auto-wakeup (AWU) from the Stop and Standby modes
 
 
      (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
 
            configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
 
 
      (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
 
           is necessary to configure the RTC to detect the tamper or time stamp event using the
 
           HAL_RTC_SetTimeStamp_IT() or HAL_RTC_SetTamper_IT() functions.
 
 
      (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to
 
           configure the RTC to generate the RTC WakeUp event using the HAL_RTC_SetWakeUpTimer_IT() function.
 
 
    (+) Comparator auto-wakeup (AWU) from the Stop mode
 
 
      (++) To wake up from the Stop mode with a comparator wakeup event, it is necessary to:
 
           (+++) Configure the EXTI Line associated with the comparator (example EXTI Line 22 for comparator 2) 
 
                 to be sensitive to to the selected edges (falling, rising or falling 
 
                 and rising) (Interrupt or Event modes) using the EXTI_Init() function.
 
           (+++) Configure the comparator to generate the event.      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Enables the WakeUp PINx functionality.
 
  * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
 
  *         This parameter can be value of :
 
  *           @ref PWREx_WakeUp_Pins
 
  * @retval None
 
  */
 
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
 
  PWR->CSR |= (PWR_CSR_EWUP1 << (uint8_t)WakeUpPinx);
 
}
 
 
/**
 
  * @brief Disables the WakeUp PINx functionality.
 
  * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
 
  *         This parameter can be values of :
 
  *           @ref PWREx_WakeUp_Pins
 
  * @retval None
 
  */
 
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
 
  PWR->CSR &= ~(PWR_CSR_EWUP1 << (uint8_t)WakeUpPinx);
 
}
 
 
/**
 
  * @brief Enters Sleep mode.
 
  * @note  In Sleep mode, all I/O pins keep the same state as in Run mode.
 
  * @param Regulator: Specifies the regulator state in SLEEP mode.
 
  *          This parameter can be one of the following values:
 
  *            @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON
 
  *            @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON
 
  * @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
 
  *           When WFI entry is used, tick interrupt have to be disabled if not desired as 
 
  *           the interrupt wake up source.
 
  *           This parameter can be one of the following values:
 
  *            @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
 
  *            @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
 
  * @retval None
 
  */
 
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
 
{
 
   uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_PWR_REGULATOR(Regulator));
 
  assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
 
 
  /* Select the regulator state in SLEEP mode ---------------------------------*/
 
  tmpreg = PWR->CR;
 
 
  /* Clear PDDS and LPDS bits */
 
  tmpreg &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS);
 
 
  /* Set LPDS bit according to Regulator value */
 
  tmpreg |= Regulator;
 
 
  /* Store the new value */
 
  PWR->CR = tmpreg;
 
 
  /* Clear SLEEPDEEP bit of Cortex System Control Register */
 
  SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
 
 
  /* Select SLEEP mode entry -------------------------------------------------*/
 
  if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
 
  {
 
    /* Request Wait For Interrupt */
 
    __WFI();
 
  }
 
  else
 
  {
 
    /* Request Wait For Event */
 
    __SEV();
 
    __WFE();
 
    __WFE();
 
  }
 
}
 
 
/**
 
  * @brief Enters STOP mode.
 
  * @note  In Stop mode, all I/O pins keep the same state as in Run mode.
 
  * @note  When exiting Stop mode by issuing an interrupt or a wakeup event,
 
  *         the HSI RC oscillator is selected as system clock.
 
  * @note  When the voltage regulator operates in low power mode, an additional
 
  *         startup delay is incurred when waking up from Stop mode.
 
  *         By keeping the internal regulator ON during Stop mode, the consumption
 
  *         is higher although the startup time is reduced.
 
  * @param Regulator: Specifies the regulator state in STOP mode.
 
  *          This parameter can be one of the following values:
 
  *            @arg PWR_MAINREGULATOR_ON: STOP mode with regulator ON
 
  *            @arg PWR_LOWPOWERREGULATOR_ON: STOP mode with low power regulator ON
 
  * @param STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
 
  *          This parameter can be one of the following values:
 
  *            @arg PWR_STOPENTRY_WFI:Enter STOP mode with WFI instruction
 
  *            @arg PWR_STOPENTRY_WFE: Enter STOP mode with WFE instruction
 
  * @retval None
 
  */
 
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_PWR_REGULATOR(Regulator));
 
  assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
 
 
  /* Select the regulator state in STOP mode ---------------------------------*/
 
  tmpreg = PWR->CR;
 
  
 
  /* Clear PDDS and LPDS bits */
 
  tmpreg &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS);
 
 
  /* Set LPDS bit according to Regulator value */
 
  tmpreg |= Regulator;
 
 
  /* Store the new value */
 
  PWR->CR = tmpreg;
 
 
  /* Set SLEEPDEEP bit of Cortex System Control Register */
 
  SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
 
 
  /* Select STOP mode entry --------------------------------------------------*/
 
  if(STOPEntry == PWR_STOPENTRY_WFI)
 
  {
 
    /* Request Wait For Interrupt */
 
    __WFI();
 
  }
 
  else
 
  {
 
    /* Request Wait For Event */
 
    __SEV();
 
    __WFE();
 
    __WFE();
 
  }
 
 
  /* Reset SLEEPDEEP bit of Cortex System Control Register */
 
  SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
 
}
 
 
/**
 
  * @brief Enters STANDBY mode.
 
  * @note  In Standby mode, all I/O pins are high impedance except for:
 
  *          - Reset pad (still available)
 
  *          - RTC alternate function pins if configured for tamper, time-stamp, RTC
 
  *            Alarm out, or RTC clock calibration out.
 
  *          - WKUP pins if enabled.
 
  *            STM32F0x8 devices, the Stop mode is available, but it is 
 
  *            aningless to distinguish between voltage regulator in Low power 
 
  *            mode and voltage regulator in Run mode because the regulator 
 
  *            not used and the core is supplied directly from an external source.
 
  *            Consequently, the Standby mode is not available on those devices.
 
  * @retval None
 
  */
 
void HAL_PWR_EnterSTANDBYMode(void)
 
{
 
  /* Select STANDBY mode */
 
  PWR->CR |= (uint32_t)PWR_CR_PDDS;
 
 
  /* Set SLEEPDEEP bit of Cortex System Control Register */
 
  SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
 
 
  /* This option is used to ensure that store operations are completed */
 
#if defined ( __CC_ARM)
 
  __force_stores();
 
#endif
 
  /* Request Wait For Interrupt */
 
  __WFI();
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_PWR_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_pwr_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended PWR HAL module driver.
 
  *          This file provides firmware functions to manage the following
 
  *          functionalities of the Power Controller (PWR) peripheral:
 
  *           + Extended Initialization and de-initialization functions
 
  *           + Extended Peripheral Control functions
 
  *         
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup PWREx PWREx Extended HAL module driver
 
  * @brief    PWREx HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_PWR_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup PWREx_Private_Constants PWREx Private Constants
 
  * @{
 
  */
 
#define PVD_MODE_IT               ((uint32_t)0x00010000)
 
#define PVD_MODE_EVT              ((uint32_t)0x00020000)
 
#define PVD_RISING_EDGE           ((uint32_t)0x00000001)
 
#define PVD_FALLING_EDGE          ((uint32_t)0x00000002)
 
/**
 
  * @}
 
  */
 
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup PWREx_Exported_Functions PWREx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended Control Functions
 
  *  @brief   Extended Peripheral Control functions
 
  *
 
@verbatim
 
 
 ===============================================================================
 
                 ##### Peripheral extended control functions #####
 
 ===============================================================================
 
    
 
    *** PVD configuration ***
 
    =========================
 
    [..]
 
      (+) The PVD is used to monitor the VDD power supply by comparing it to a
 
          threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
 
      (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
 
          than the PVD threshold. This event is internally connected to the EXTI
 
          line16 and can generate an interrupt if enabled. This is done through
 
          HAL_PWR_PVDConfig(), HAL_PWR_EnablePVD() functions.
 
      (+) The PVD is stopped in Standby mode.
 
      -@- PVD is not available on STM32F030x4/x6/x8
 
 
    *** VDDIO2 Monitor Configuration ***
 
    ====================================
 
    [..]
 
      (+) VDDIO2 monitor is used to monitor the VDDIO2 power supply by comparing it 
 
          to VREFInt Voltage
 
      (+) This monitor is internally connected to the EXTI line31
 
          and can generate an interrupt if enabled. This is done through
 
          HAL_PWR_EnableVddio2Monitor() function.
 
      -@- VDDIO2 is available on STM32F07x/09x/04x
 
                    
 
@endverbatim
 
  * @{
 
  */
 
 
#if defined (STM32F031x6) || defined (STM32F051x8) || \
 
    defined (STM32F071xB) || defined (STM32F091xC) || \
 
    defined (STM32F042x6) || defined (STM32F072xB)
 
/**
 
  * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
 
  * @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration
 
  *        information for the PVD.
 
  * @note Refer to the electrical characteristics of your device datasheet for
 
  *         more details about the voltage threshold corresponding to each
 
  *         detection level.
 
  * @retval None
 
  */
 
void HAL_PWR_PVDConfig(PWR_PVDTypeDef *sConfigPVD)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
 
  assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
 
 
  /* Set PLS[7:5] bits according to PVDLevel value */
 
  MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
 
  
 
  /* Clear any previous config. Keep it clear if no event or IT mode is selected */
 
  __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
 
  __HAL_PWR_PVD_EXTI_DISABLE_IT();
 
  __HAL_PWR_PVD_EXTI_CLEAR_EGDE_TRIGGER();
 
 
  /* Configure interrupt mode */
 
  if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
 
  {
 
    __HAL_PWR_PVD_EXTI_ENABLE_IT();
 
  }
 
  
 
  /* Configure event mode */
 
  if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
 
  {
 
    __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
 
  }
 
  
 
  /* Configure the edge */
 
  if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
 
  {
 
    __HAL_PWR_PVD_EXTI_SET_RISING_EDGE_TRIGGER();
 
  }
 
  
 
  if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
 
  {
 
    __HAL_PWR_PVD_EXTI_SET_FALLING_EGDE_TRIGGER();
 
  }
 
}
 
 
/**
 
  * @brief Enables the Power Voltage Detector(PVD).
 
  * @retval None
 
  */
 
void HAL_PWR_EnablePVD(void)
 
{
 
  PWR->CR |= (uint32_t)PWR_CR_PVDE;
 
}
 
 
/**
 
  * @brief Disables the Power Voltage Detector(PVD).
 
  * @retval None
 
  */
 
void HAL_PWR_DisablePVD(void)
 
{
 
  PWR->CR &= ~((uint32_t)PWR_CR_PVDE);
 
}
 
 
/**
 
  * @brief This function handles the PWR PVD interrupt request.
 
  * @note This API should be called under the  PVD_IRQHandler() or PVD_VDDIO2_IRQHandler().
 
  * @retval None
 
  */
 
void HAL_PWR_PVD_IRQHandler(void)
 
{
 
  /* Check PWR exti flag */
 
  if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
 
  {
 
    /* PWR PVD interrupt user callback */
 
    HAL_PWR_PVDCallback();
 
 
    /* Clear PWR Exti pending bit */
 
    __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
 
  }
 
}
 
 
/**
 
  * @brief PWR PVD interrupt callback
 
  * @retval None
 
  */
 
__weak void HAL_PWR_PVDCallback(void)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PWR_PVDCallback could be implemented in the user file
 
   */
 
}
 
 
#endif /* defined (STM32F031x6) || defined (STM32F051x8) || */
 
       /* defined (STM32F071xB) || defined (STM32F091xC) || */
 
       /* defined (STM32F042x6) || defined (STM32F072xB)    */
 
 
#if defined (STM32F042x6) || defined (STM32F048xx) || \
 
    defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
    defined (STM32F091xC) || defined (STM32F098xx)
 
/**
 
  * @brief Enable VDDIO2 monitor: enable Exti 31 and falling edge detection.
 
  * @param None
 
  * @note If Exti 31 is enable correlty and VDDIO2 voltage goes below Vrefint,
 
          an interrupt is generated Irq line 1.
 
          NVIS has to be enable by user.
 
  * @retval None
 
  */
 
void HAL_PWR_EnableVddio2Monitor(void)
 
{
 
  __HAL_PWR_VDDIO2_EXTI_ENABLE_IT();
 
  __HAL_PWR_VDDIO2_EXTI_SET_FALLING_EGDE_TRIGGER();
 
}
 
 
/**
 
  * @brief Disable the Vddio2 Monitor.
 
  * @retval None
 
  */
 
void HAL_PWR_DisableVddio2Monitor(void)
 
{
 
  __HAL_PWR_VDDIO2_EXTI_DISABLE_IT();
 
  __HAL_PWR_VDDIO2_EXTI_CLEAR_EGDE_TRIGGER();
 
 
}
 
 
/**
 
  * @brief This function handles the PWR Vddio2 monitor interrupt request.
 
  * @note This API should be called under the VDDIO2_IRQHandler() PVD_VDDIO2_IRQHandler().
 
  * @retval None
 
  */
 
void HAL_PWR_Vddio2Monitor_IRQHandler(void)
 
{
 
  /* Check PWR exti flag */
 
  if(__HAL_PWR_VDDIO2_EXTI_GET_FLAG() != RESET)
 
  {
 
    /* PWR Vddio2 monitor interrupt user callback */
 
    HAL_PWR_Vddio2MonitorCallback();
 
 
    /* Clear PWR Exti pending bit */
 
    __HAL_PWR_VDDIO2_EXTI_CLEAR_FLAG();
 
  }
 
}
 
 
/**
 
  * @brief PWR Vddio2 Monitor interrupt callback
 
  * @retval None
 
  */
 
__weak void HAL_PWR_Vddio2MonitorCallback(void)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_PWR_Vddio2MonitorCallback could be implemented in the user file
 
   */
 
}
 
 
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
 
          defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
 
          defined (STM32F091xC) || defined (STM32F098xx) */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_PWR_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rcc.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   RCC HAL module driver.
 
  *          This file provides firmware functions to manage the following
 
  *          functionalities of the Reset and Clock Control (RCC) peripheral:
 
  *           + Initialization/de-initialization function
 
  *           + Peripheral Control function
 
  *
 
  @verbatim
 
  ==============================================================================
 
                      ##### RCC specific features #####
 
  ==============================================================================
 
    [..]
 
      After reset the device is running from Internal High Speed oscillator
 
      (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is disabled,
 
      and all peripherals are off except internal SRAM, Flash and JTAG.
 
      (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
 
          all peripherals mapped on these busses are running at HSI speed.
 
      (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
 
      (+) All GPIOs are in input floating state, except the JTAG pins which
 
          are assigned to be used for debug purpose.
 
 
    [..]
 
      Once the device started from reset, the user application has to:
 
      (+) Configure the clock source to be used to drive the System clock
 
          (if the application needs higher frequency/performance)
 
      (+) Configure the System clock frequency and Flash settings
 
      (+) Configure the AHB and APB busses prescalers
 
      (+) Enable the clock for the peripheral(s) to be used
 
      (+) Configure the clock source(s) for peripherals which clocks are not
 
          derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..)
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup RCC RCC HAL module driver
 
  * @brief RCC HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_RCC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup RCC_Private_Define RCC Private Define
 
  * @{
 
  */
 
#define RCC_CFGR_HPRE_BITNUMBER    4
 
#define RCC_CFGR_PPRE_BITNUMBER    8
 
/**
 
  * @}
 
  */
 
    
 
/* Private macro -------------------------------------------------------------*/
 
/** @defgroup RCC_Private_Macros RCC Private Macros
 
  * @{
 
  */
 
#define __MCO_CLK_ENABLE()   __GPIOA_CLK_ENABLE()
 
#define MCO_GPIO_PORT        GPIOA
 
#define MCO_PIN              GPIO_PIN_8
 
/**
 
  * @}
 
  */
 
 
/* Private variables ---------------------------------------------------------*/
 
/** @defgroup RCC_Private_Variables RCC Private Variables
 
  * @{
 
  */
 
const uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
 
/**
 
  * @}
 
  */
 
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup RCC_Exported_Functions RCC Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup RCC_Exported_Functions_Group1 Initialization/de-initialization function
 
 *  @brief    Initialization and Configuration functions
 
 *
 
@verbatim
 
 ===============================================================================
 
           ##### Initialization and de-initialization function #####
 
 ===============================================================================
 
    [..]
 
      This section provide functions allowing to configure the internal/external oscillators
 
      (HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, 
 
      AHB and APB1).
 
 
    [..] Internal/external clock and PLL configuration
 
         (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
 
             the PLL as System clock source.
 
             The HSI clock can be used also to clock the USART and I2C peripherals.
 
 
         (#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock 
 
             the ADC peripheral.
 
 
         (#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
 
             clock source.
 
 
         (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
 
             through the PLL as System clock source. Can be used also as RTC clock source.
 
 
         (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
 
 
         (#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks:
 
           (++) The first output is used to generate the high speed system clock (up to 48 MHz)
 
           (++) The second output is used to generate the clock for the USB FS (48 MHz)
 
           (++) The third output may be used to generate the clock for the TIM, I2C and USART 
 
                peripherals (up to 48 MHz)
 
 
         (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
 
             and if a HSE clock failure occurs(HSE used directly or through PLL as System
 
             clock source), the System clockis automatically switched to HSI and an interrupt
 
             is generated if enabled. The interrupt is linked to the Cortex-M0 NMI
 
             (Non-Maskable Interrupt) exception vector.
 
 
         (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL
 
             clock (divided by 2) output on pin (such as PA8 pin).
 
 
    [..] System, AHB and APB busses clocks configuration
 
         (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
 
             HSE and PLL.
 
             The AHB clock (HCLK) is derived from System clock through configurable
 
             prescaler and used to clock the CPU, memory and peripherals mapped
 
             on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived
 
             from AHB clock through configurable prescalers and used to clock
 
             the peripherals mapped on these busses. You can use
 
             "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
 
 
         (#) All the peripheral clocks are derived from the System clock (SYSCLK) except:
 
           (++) The FLASH program/erase clock  which is always HSI 8MHz clock.
 
           (++) The USB 48 MHz clock which is derived from the PLL VCO clock.
 
           (++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
 
           (++) The I2C clock which can be derived as well from HSI 8MHz clock.
 
           (++) The ADC clock which is derived from PLL output.
 
           (++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
 
                (HSE divided by a programmable prescaler). The System clock (SYSCLK)
 
                frequency must be higher or equal to the RTC clock frequency.
 
           (++) IWDG clock which is always the LSI clock.
 
 
         (#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz,
 
             Depending on the SYSCLK frequency, the flash latency should be adapted accordingly:
 
        +-----------------------------------------------+
 
        | Latency       | SYSCLK clock frequency (MHz)  |
 
        |---------------|-------------------------------|
 
        |0WS(1CPU cycle)|       0 < SYSCLK <= 24        |
 
        |---------------|-------------------------------|
 
        |1WS(2CPU cycle)|      24 < SYSCLK <= 48        |
 
        +-----------------------------------------------+
 
 
         (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
 
             prefetch is disabled.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Resets the RCC clock configuration to the default reset state.
 
  * @note   The default reset state of the clock configuration is given below:
 
  *            - HSI ON and used as system clock source
 
  *            - HSE and PLL OFF
 
  *            - AHB, APB1 prescaler set to 1.
 
  *            - CSS, MCO OFF
 
  *            - All interrupts disabled
 
  * @note   This function doesn't modify the configuration of the
 
  *            - Peripheral clocks
 
  *            - LSI, LSE and RTC clocks
 
  * @retval None
 
  */
 
void HAL_RCC_DeInit(void)
 
{
 
  /* Set HSION bit, HSITRIM[4:0] bits to the reset value*/
 
  SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4); 
 
 
  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
 
  CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO);
 
  
 
  /* Reset HSEON, CSSON, PLLON bits */
 
  CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON);
 
  
 
  /* Reset HSEBYP bit */
 
  CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
 
  
 
  /* Reset CFGR register */
 
  CLEAR_REG(RCC->CFGR);
 
  
 
  /* Reset CFGR2 register */
 
  CLEAR_REG(RCC->CFGR2);
 
  
 
  /* Reset CFGR3 register */
 
  CLEAR_REG(RCC->CFGR3);
 
  
 
  /* Disable all interrupts */
 
  CLEAR_REG(RCC->CIR); 
 
}
 
 
/**
 
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
 
  *         RCC_OscInitTypeDef.
 
  * @param  RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
 
  *         contains the configuration information for the RCC Oscillators.
 
  * @note   The PLL is not disabled when used as system clock.
 
  * @retval HAL status
 
  */
 
__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
 
{
 
  /* Note : This function is defined into this file for library reference.  */
 
  /*        Function content is located into file stm32f0xx_hal_rcc_ex.c to */
 
  /*        handle the possible oscillators present in STM32F0xx devices    */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @brief  Initializes the CPU, AHB and APB busses clocks according to the specified
 
  *         parameters in the RCC_ClkInitStruct.
 
  * @param  RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
 
  *         contains the configuration information for the RCC peripheral.
 
  * @param  FLatency: FLASH Latency
 
  *          This parameter can be one of the following values:
 
  *            @arg FLASH_LATENCY_0:  FLASH 0 Latency cycle
 
  *            @arg FLASH_LATENCY_1:  FLASH 1 Latency cycle
 
  *
 
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
 
  *         and updated by HAL_RCC_GetHCLKFreq() function called within this function
 
  *
 
  * @note   The HSI is used (enabled by hardware) as system clock source after
 
  *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
 
  *         of failure of the HSE used directly or indirectly as system clock
 
  *         (if the Clock Security System CSS is enabled).
 
  *
 
  * @note   A switch from one clock source to another occurs only if the target
 
  *         clock source is ready (clock stable after startup delay or PLL locked).
 
  *         If a clock source which is not yet ready is selected, the switch will
 
  *         occur when the clock source will be ready.
 
  * @retval HAL status
 
  */
 
__weak HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
 
{
 
  /* Note : This function is defined into this file for library reference.  */
 
  /*        Function content is located into file stm32f0xx_hal_rcc_ex.c to */
 
  /*        handle the possible oscillators present in STM32F0xx devices    */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control function
 
 *  @brief   RCC clocks control functions
 
 *
 
@verbatim
 
 ===============================================================================
 
                      ##### Peripheral Control function #####
 
 ===============================================================================
 
    [..]
 
    This subsection provides a set of functions allowing to control the RCC Clocks
 
    frequencies.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Selects the clock source to output on MCO pin(such as PA8).
 
  * @note   MCO pin (such as PA8) should be configured in alternate function mode.
 
  * @param  RCC_MCOx: specifies the output direction for the clock source.
 
  *          This parameter can be one of the following values:
 
  *            @arg RCC_MCO: Clock source to output on MCO pin(such as PA8).
 
  * @param  RCC_MCOSource: specifies the clock source to output.
 
  *          This parameter can be one of the following values:
 
  *            @arg RCC_MCOSOURCE_LSI: LSI clock selected as MCO source
 
  *            @arg RCC_MCOSOURCE_HSI: HSI clock selected as MCO source
 
  *            @arg RCC_MCOSOURCE_LSE: LSE clock selected as MCO source
 
  *            @arg RCC_MCOSOURCE_HSE: HSE clock selected as MCO source
 
  *            @arg RCC_MCOSOURCE_PLLCLK_NODIV: main PLL clock not divided selected as MCO source (not applicable to STM32F05x devices)
 
  *            @arg RCC_MCOSOURCE_PLLCLK_DIV2: main PLL clock divided by 2 selected as MCO source
 
  *            @arg RCC_MCOSOURCE_SYSCLK: System clock (SYSCLK) selected as MCO source
 
  * @param  RCC_MCODiv: specifies the MCOx prescaler.
 
  *          This parameter can be one of the following values:
 
  *            @arg RCC_MCO_NODIV: no division applied to MCO clock
 
  * @retval None
 
  */
 
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
 
{
 
  GPIO_InitTypeDef gpio;
 
  /* Check the parameters */
 
  assert_param(IS_RCC_MCO(RCC_MCOx));
 
  assert_param(IS_RCC_MCODIV(RCC_MCODiv));
 
  /* RCC_MCO */
 
  assert_param(IS_RCC_MCOSOURCE(RCC_MCOSource));
 
 
  /* MCO Clock Enable */
 
  __MCO_CLK_ENABLE();
 
 
  /* Configue the MCO pin in alternate function mode */
 
  gpio.Pin = MCO_PIN;
 
  gpio.Mode = GPIO_MODE_AF_PP;
 
  gpio.Speed = GPIO_SPEED_HIGH;
 
  gpio.Pull = GPIO_NOPULL;
 
  gpio.Alternate = GPIO_AF0_MCO;
 
  HAL_GPIO_Init(MCO_GPIO_PORT, &gpio);
 
 
  /* Configure the MCO clock source */
 
  __HAL_RCC_MCO_CONFIG(RCC_MCOSource, RCC_MCODiv);
 
}
 
 
/**
 
  * @brief  Enables the Clock Security System.
 
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
 
  *         is automatically disabled and an interrupt is generated to inform the
 
  *         software about the failure (Clock Security System Interrupt, CSSI),
 
  *         allowing the MCU to perform rescue operations. The CSSI is linked to
 
  *         the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
 
  * @retval None
 
  */
 
void HAL_RCC_EnableCSS(void)
 
{
 
  SET_BIT(RCC->CR, RCC_CR_CSSON);
 
}
 
 
/**
 
  * @brief  Disables the Clock Security System.
 
  * @retval None
 
  */
 
void HAL_RCC_DisableCSS(void)
 
{
 
  CLEAR_BIT(RCC->CR, RCC_CR_CSSON);
 
}
 
 
/**
 
  * @brief  Returns the SYSCLK frequency
 
  * @note   The system frequency computed by this function is not the real
 
  *         frequency in the chip. It is calculated based on the predefined
 
  *         constant and the selected clock source:
 
  * @note     If SYSCLK source is HSI, function returns a value based on HSI_VALUE(*)
 
  * @note     If SYSCLK source is HSI48, function returns a value based on HSI48_VALUE(*)
 
  * @note     If SYSCLK source is HSE, function returns a value based on HSE_VALUE
 
  *           divided by PREDIV factor(**)
 
  * @note     If SYSCLK source is PLL, function returns a value based on HSE_VALUE
 
  *           divided by PREDIV factor(**) or depending on STM32F0xx devices either a value based 
 
  *           on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the 
 
  *           PLL factor .
 
  * @note     (*) HSI_VALUE & HSI48_VALUE are constants defined in stm32f0xx_hal_conf.h file 
 
  *               (default values 8 MHz and 48MHz).
 
  * @note     (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
 
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
 
  *                frequency of the crystal used. Otherwise, this function may
 
  *                have wrong result.
 
  *
 
  * @note   The result of this function could be not correct when using fractional
 
  *         value for HSE crystal.
 
  *
 
  * @note   This function can be used by the user application to compute the
 
  *         baudrate for the communication peripherals or configure other parameters.
 
  *
 
  * @note   Each time SYSCLK changes, this function must be called to update the
 
  *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
 
  *
 
  * @retval SYSCLK frequency
 
  */
 
__weak uint32_t HAL_RCC_GetSysClockFreq(void)
 
{
 
  /* Note : This function is defined into this file for library reference.  */
 
  /*        Function content is located into file stm32f0xx_hal_rcc_ex.c to */
 
  /*        handle the possible oscillators present in STM32F0xx devices    */
 
  
 
  /* Return error status as not implemented here */
 
  return HAL_ERROR;
 
}
 
 
/**
 
  * @brief  Returns the HCLK frequency
 
  * @note   Each time HCLK changes, this function must be called to update the
 
  *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
 
  * 
 
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
 
  *         and updated within this function
 
  *                       
 
  * @retval HCLK frequency
 
  */
 
uint32_t HAL_RCC_GetHCLKFreq(void)
 
{
 
  SystemCoreClock = HAL_RCC_GetSysClockFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
 
  return SystemCoreClock;
 
}
 
 
/**
 
  * @brief  Returns the PCLK1 frequency
 
  * @note   Each time PCLK1 changes, this function must be called to update the
 
  *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
 
  * @retval PCLK1 frequency
 
  */
 
uint32_t HAL_RCC_GetPCLK1Freq(void)
 
{
 
  /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
 
  return (HAL_RCC_GetHCLKFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE)>> RCC_CFGR_PPRE_BITNUMBER]);
 
}
 
 
/**
 
  * @brief  Configures the RCC_OscInitStruct according to the internal
 
  * RCC configuration registers.
 
  * @param  RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
 
  * will be configured.
 
  * @retval None
 
  */
 
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
 
{
 
  /* Set all possible values for the Oscillator type parameter ---------------*/
 
  RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
 
 
  /* Get the HSE configuration -----------------------------------------------*/
 
  if((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
 
  {
 
    RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
 
  }
 
  else if((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
 
  {
 
    RCC_OscInitStruct->HSEState = RCC_HSE_ON;
 
  }
 
  else
 
  {
 
    RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
 
  }
 
 
  /* Get the HSI configuration -----------------------------------------------*/
 
  if((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
 
  {
 
    RCC_OscInitStruct->HSIState = RCC_HSI_ON;
 
  }
 
  else
 
  {
 
    RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
 
  }
 
 
  RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber);
 
 
  /* Get the LSE configuration -----------------------------------------------*/
 
  if((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
 
  {
 
    RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
 
  }
 
  else if((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
 
  {
 
    RCC_OscInitStruct->LSEState = RCC_LSE_ON;
 
  }
 
  else
 
  {
 
    RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
 
  }
 
 
  /* Get the LSI configuration -----------------------------------------------*/
 
  if((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
 
  {
 
    RCC_OscInitStruct->LSIState = RCC_LSI_ON;
 
  }
 
  else
 
  {
 
    RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
 
  }
 
 
  /* Get the PLL configuration -----------------------------------------------*/
 
  if((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
 
  {
 
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
 
  }
 
  else
 
  {
 
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
 
  }
 
  RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
 
  RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
 
  RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV);
 
 
  /* Get the HSI14 configuration -----------------------------------------------*/
 
  if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON)
 
  {
 
    RCC_OscInitStruct->HSI14State = RCC_HSI_ON;
 
  }
 
  else
 
  {
 
    RCC_OscInitStruct->HSI14State = RCC_HSI_OFF;
 
  }
 
 
  RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_CR2_HSI14TRIM_BitNumber);
 
 
  /* Get the HSI48 configuration if any-----------------------------------------*/
 
  RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE();
 
}
 
 
/**
 
  * @brief  Get the RCC_ClkInitStruct according to the internal
 
  * RCC configuration registers.
 
  * @param  RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that
 
  * contains the current clock configuration.
 
  * @param  pFLatency: Pointer on the Flash Latency.
 
  * @retval None
 
  */
 
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
 
{
 
  /* Set all possible values for the Clock type parameter --------------------*/
 
  RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
 
 
  /* Get the SYSCLK configuration --------------------------------------------*/
 
  RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
 
 
  /* Get the HCLK configuration ----------------------------------------------*/
 
  RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
 
 
  /* Get the APB1 configuration ----------------------------------------------*/
 
  RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);
 
 
  /* Get the Flash Wait State (Latency) configuration ------------------------*/
 
  *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
 
}
 
 
/**
 
  * @brief This function handles the RCC CSS interrupt request.
 
  * @note This API should be called under the NMI_Handler().
 
  * @retval None
 
  */
 
void HAL_RCC_NMI_IRQHandler(void)
 
{
 
  /* Check RCC CSSF flag  */
 
  if(__HAL_RCC_GET_IT(RCC_IT_CSS))
 
  {
 
    /* RCC Clock Security System interrupt user callback */
 
    HAL_RCC_CCSCallback();
 
 
    /* Clear RCC CSS pending bit */
 
    __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
 
  }
 
}
 
 
/**
 
  * @brief  RCC Clock Security System interrupt callback
 
  * @retval none
 
  */
 
__weak void HAL_RCC_CCSCallback(void)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RCC_CCSCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_RCC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rcc_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended RCC HAL module driver
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities RCC extension peripheral:
 
  *           + Extended Clock Source configuration functions
 
  *  
 
  @verbatim
 
  ==============================================================================
 
                      ##### How to use this driver #####
 
  ==============================================================================
 
 
      For CRS, RCC Extention HAL driver can be used as follows:
 
 
      (#) In System clock config, HSI48 need to be enabled
 
 
      (#] Enable CRS clock in IP MSP init which will use CRS functions
 
 
      (#) Call CRS functions like this
 
          (##) Prepare synchronization configuration necessary for HSI48 calibration
 
              (+++) Default values can be set for frequency Error Measurement (reload and error limit)
 
                        and also HSI48 oscillator smooth trimming.
 
              (+++) Macro __HAL_RCC_CRS_CALCULATE_RELOADVALUE can be also used to calculate 
 
                        directly reload value with target and sychronization frequencies values
 
          (##) Call function HAL_RCCEx_CRSConfig which
 
              (+++) Reset CRS registers to their default values.
 
              (+++) Configure CRS registers with synchronization configuration 
 
              (+++) Enable automatic calibration and frequency error counter feature
 
 
          (##) A polling function is provided to wait for complete Synchronization
 
              (+++) Call function HAL_RCCEx_CRSWaitSynchronization()
 
              (+++) According to CRS status, user can decide to adjust again the calibration or continue
 
                        application if synchronization is OK
 
              
 
      (#) User can retrieve information related to synchronization in calling function
 
            HAL_RCCEx_CRSGetSynchronizationInfo()
 
 
      (#) Regarding synchronization status and synchronization information, user can try a new calibration
 
           in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
 
           Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), 
 
           it means that the actual frequency is lower than the target (and so, that the TRIM value should be 
 
           incremented), while when it is detected during the upcounting phase it means that the actual frequency 
 
           is higher (and that the TRIM value should be decremented).
 
 
      (#) To use IT mode, user needs to handle it in calling different macros available to do it
 
            (__HAL_RCC_CRS_XXX_IT). Interuptions will go through RCC Handler (RCC_IRQn/RCC_CRS_IRQHandler)
 
              (++) Call function HAL_RCCEx_CRSConfig()
 
              (++) Enable RCC_IRQn (thnaks to NVIC functions)
 
              (++) Enable CRS IT (__HAL_RCC_CRS_ENABLE_IT)
 
              (++) Implement CRS status management in RCC_CRS_IRQHandler
 
 
      (#) To force a SYNC EVENT, user can use function HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). Function can be 
 
            called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
 
            
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup RCCEx RCCEx Extended HAL module driver
 
  * @brief RCC Extension HAL module driver.
 
  * @{
 
  */
 
 
#ifdef HAL_RCC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup RCCEx_Private_Define RCCEx Private Define
 
  * @{
 
  */
 
#define HSI48_TIMEOUT_VALUE         ((uint32_t)100)  /* 100 ms */
 
 
/* Bit position in register */
 
#define CRS_CFGR_FELIM_BITNUMBER    16
 
#define CRS_CR_TRIM_BITNUMBER       8
 
#define CRS_ISR_FECAP_BITNUMBER     16
 
/**
 
  * @}
 
  */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/** @defgroup RCCEx_Private_Variables RCCEx Private Variables
 
  * @{
 
  */
 
const uint8_t PLLMULFactorTable[16] = { 2,  3,  4,  5,  6,  7,  8,  9,
 
                                       10, 11, 12, 13, 14, 15, 16, 16};
 
const uint8_t PredivFactorTable[16] = { 1, 2,  3,  4,  5,  6,  7,  8,
 
                                         9,10, 11, 12, 13, 14, 15, 16};
 
/**
 
  * @}
 
  */
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions 
 
 *  @brief  Extended RCC clocks control functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                ##### Extended Peripheral Control functions  #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the RCC Clocks 
 
    frequencies.
 
    [..] 
 
    (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
 
        select the RTC clock source; in this case the Backup domain will be reset in  
 
        order to modify the RTC Clock source, as consequence RTC registers (including 
 
        the backup registers) and RCC_BDCR register are set to their reset values.
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
 
  *         RCC_OscInitTypeDef.
 
  * @param  RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
 
  *         contains the configuration information for the RCC Oscillators.
 
  * @note   The PLL is not disabled when used as system clock.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
 
{
 
  uint32_t tickstart = 0; 
 
 
  /* Check the parameters */
 
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
 
  /*------------------------------- HSE Configuration ------------------------*/
 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
 
    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) ||
 
       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
 
    {
 
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState != RCC_HSE_ON))
 
      {
 
        return HAL_ERROR;
 
      }
 
    }
 
    else
 
    {
 
      /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
 
      __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
 
      
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till HSE is ready */
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
 
      /* Set the new HSE configuration ---------------------------------------*/
 
      __HAL_RCC_HSE_CONFIG((uint8_t)RCC_OscInitStruct->HSEState);
 
 
      /* Check the HSE State */
 
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
 
      {
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till HSE is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
      else
 
      {
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till HSE is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }      
 
        }
 
      }
 
    }
 
  }
 
  /*----------------------------- HSI Configuration --------------------------*/
 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
 
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
 
 
    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */    
 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) ||
 
       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
 
    {
 
      /* When the HSI is used as system clock it is not allowed to be disabled */
 
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
 
      {
 
        return HAL_ERROR;
 
      }
 
      /* Otherwise, just the calibration is allowed */
 
      else
 
      {
 
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
 
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
 
      }
 
    }
 
    else
 
    {
 
      /* Check the HSI State */
 
      if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
 
      {
 
        /* Enable the Internal High Speed oscillator (HSI). */
 
        __HAL_RCC_HSI_ENABLE();
 
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till HSI is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }      
 
        } 
 
 
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value. */
 
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
 
      }
 
      else
 
      {
 
        /* Disable the Internal High Speed oscillator (HSI). */
 
        __HAL_RCC_HSI_DISABLE();
 
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till HSI is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
    }
 
  }
 
  /*------------------------------ LSI Configuration -------------------------*/
 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
 
 
    /* Check the LSI State */
 
    if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
 
    {
 
      /* Enable the Internal Low Speed oscillator (LSI). */
 
      __HAL_RCC_LSI_ENABLE();
 
      
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till LSI is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
    else
 
    {
 
      /* Disable the Internal Low Speed oscillator (LSI). */
 
      __HAL_RCC_LSI_DISABLE();
 
      
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till LSI is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  /*------------------------------ LSE Configuration -------------------------*/
 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
 
 
    /* Enable Power Clock */
 
    __PWR_CLK_ENABLE();
 
 
    /* Enable write access to Backup domain */
 
    SET_BIT(PWR->CR, PWR_CR_DBP);
 
 
    /* Wait for Backup domain Write protection disable */
 
    tickstart = HAL_GetTick();
 
      
 
    while((PWR->CR & PWR_CR_DBP) == RESET)
 
    {
 
      if((HAL_GetTick() - tickstart) > DBP_TIMEOUT_VALUE)
 
      {
 
        return HAL_TIMEOUT;
 
      }      
 
    }
 
 
    /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
 
    __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
 
    
 
    /* Get timeout */
 
    tickstart = HAL_GetTick();
 
      
 
    /* Wait till LSE is ready */  
 
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
 
    {
 
      if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Set the new LSE configuration -----------------------------------------*/
 
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
 
    /* Check the LSE State */
 
    if(RCC_OscInitStruct->LSEState == RCC_LSE_ON)
 
    {
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till LSE is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
    else
 
    {
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till LSE is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  
 
  /*----------------------------- HSI14 Configuration --------------------------*/
 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State));
 
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue));
 
 
    /* Check the HSI14 State */
 
    if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON)
 
    {
 
      /* Disable ADC control of the Internal High Speed oscillator HSI14 */
 
      __HAL_RCC_HSI14ADC_DISABLE();
 
 
      /* Enable the Internal High Speed oscillator (HSI). */
 
      __HAL_RCC_HSI14_ENABLE();
 
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till HSI is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }      
 
      } 
 
 
      /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
 
      __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
 
    }
 
    else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL)
 
    {
 
      /* Enable ADC control of the Internal High Speed oscillator HSI14 */
 
      __HAL_RCC_HSI14ADC_ENABLE();
 
 
      /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
 
      __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
 
    }
 
    else
 
    {
 
      /* Disable ADC control of the Internal High Speed oscillator HSI14 */
 
      __HAL_RCC_HSI14ADC_DISABLE();
 
 
      /* Disable the Internal High Speed oscillator (HSI). */
 
      __HAL_RCC_HSI14_DISABLE();
 
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till HSI is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  /*----------------------------- HSI48 Configuration --------------------------*/
 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
 
 
    /* When the HSI48 is used as system clock it is not allowed to be disabled */
 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) ||
 
       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48)))
 
    {
 
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON))
 
      {
 
        return HAL_ERROR;
 
      }
 
    }
 
    else
 
    {
 
      /* Check the HSI State */
 
      if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
 
      {
 
        /* Enable the Internal High Speed oscillator (HSI48). */
 
        __HAL_RCC_HSI48_ENABLE();
 
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till HSI is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        } 
 
      }
 
      else
 
      {
 
        /* Disable the Internal High Speed oscillator (HSI48). */
 
        __HAL_RCC_HSI48_DISABLE();
 
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till HSI is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
    }
 
  }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
  /*-------------------------------- PLL Configuration -----------------------*/
 
  /* Check the parameters */
 
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
 
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
 
  {
 
    /* Check if the PLL is used as system clock or not */
 
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
 
    {
 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
 
      {
 
        /* Check the parameters */
 
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
 
        assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV));
 
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
 
 
        /* Disable the main PLL. */
 
        __HAL_RCC_PLL_DISABLE();
 
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till PLL is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
 
        /* Configure the main PLL clock source, predivider and multiplication factor. */
 
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
 
                             RCC_OscInitStruct->PLL.PREDIV,
 
                             RCC_OscInitStruct->PLL.PLLMUL);
 
        
 
        /* Enable the main PLL. */
 
        __HAL_RCC_PLL_ENABLE();
 
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till PLL is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
      else
 
      {
 
        /* Disable the main PLL. */
 
        __HAL_RCC_PLL_DISABLE();
 
        /* Get timeout */
 
        tickstart = HAL_GetTick();
 
      
 
        /* Wait till PLL is ready */  
 
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
 
        {
 
          if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
    }
 
    else
 
    {
 
      return HAL_ERROR;
 
    }
 
  }
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the CPU, AHB and APB busses clocks according to the specified
 
  *         parameters in the RCC_ClkInitStruct.
 
  * @param  RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
 
  *         contains the configuration information for the RCC peripheral.
 
  * @param  FLatency: FLASH Latency
 
  *          This parameter can be one of the following values:
 
  *            @arg FLASH_LATENCY_0:  FLASH 0 Latency cycle
 
  *            @arg FLASH_LATENCY_1:  FLASH 1 Latency cycle
 
  *
 
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
 
  *         and updated by HAL_RCC_GetHCLKFreq() function called within this function
 
  *
 
  * @note   The HSI is used (enabled by hardware) as system clock source after
 
  *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
 
  *         of failure of the HSE used directly or indirectly as system clock
 
  *         (if the Clock Security System CSS is enabled).
 
  *
 
  * @note   A switch from one clock source to another occurs only if the target
 
  *         clock source is ready (clock stable after startup delay or PLL locked).
 
  *         If a clock source which is not yet ready is selected, the switch will
 
  *         occur when the clock source will be ready.
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
 
  assert_param(IS_FLASH_LATENCY(FLatency));
 
 
  /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
 
    must be correctly programmed according to the frequency of the CPU clock
 
    (HCLK) of the device. */
 
 
  /* Increasing the CPU frequency */
 
  if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
 
  {
 
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
 
    __HAL_FLASH_SET_LATENCY(FLatency);
 
 
    /* Check that the new number of wait states is taken into account to access the Flash
 
    memory by reading the FLASH_ACR register */
 
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
 
    {
 
      return HAL_ERROR;
 
    }
 
 
    /*-------------------------- HCLK Configuration --------------------------*/
 
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
 
    {
 
      assert_param(IS_RCC_SYSCLK_DIV(RCC_ClkInitStruct->AHBCLKDivider));
 
      MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
 
    }
 
 
    /*------------------------- SYSCLK Configuration ---------------------------*/
 
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
 
    {
 
      assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
 
 
      /* HSE is selected as System Clock Source */
 
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
 
      {
 
        /* Check the HSE ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
      /* PLL is selected as System Clock Source */
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
 
      {
 
        /* Check the PLL ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      /* HSI48 is selected as System Clock Source */
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
 
      {
 
        /* Check the HSI48 ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
      /* HSI is selected as System Clock Source */
 
      else
 
      {
 
        /* Check the HSI ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
      MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
 
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
 
      {
 
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
 
      {
 
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
 
      {
 
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
      else
 
      {
 
        while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
    }
 
  }
 
  /* Decreasing the CPU frequency */
 
  else
 
  {
 
    /*-------------------------- HCLK Configuration --------------------------*/
 
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
 
    {
 
      assert_param(IS_RCC_SYSCLK_DIV(RCC_ClkInitStruct->AHBCLKDivider));
 
      MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
 
    }
 
 
    /*------------------------- SYSCLK Configuration ---------------------------*/
 
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
 
    {
 
      assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
 
 
      /* HSE is selected as System Clock Source */
 
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
 
      {
 
        /* Check the HSE ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
      /* PLL is selected as System Clock Source */
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
 
      {
 
        /* Check the PLL ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      /* HSI48 is selected as System Clock Source */
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
 
      {
 
        /* Check the HSI48 ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
      /* HSI is selected as System Clock Source */
 
      else
 
      {
 
        /* Check the HSI ready flag */
 
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
 
        {
 
          return HAL_ERROR;
 
        }
 
      }
 
      MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
 
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
 
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
 
      {
 
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
 
      {
 
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
 
      {
 
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
      else
 
      {
 
        while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
 
        {
 
          if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
 
          {
 
            return HAL_TIMEOUT;
 
          }
 
        }
 
      }
 
    }
 
 
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
 
    __HAL_FLASH_SET_LATENCY(FLatency);
 
 
    /* Check that the new number of wait states is taken into account to access the Flash
 
    memory by reading the FLASH_ACR register */
 
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
 
    {
 
      return HAL_ERROR;
 
    }
 
  }
 
 
  /*-------------------------- PCLK1 Configuration ---------------------------*/
 
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
 
  {
 
    assert_param(IS_RCC_HCLK_DIV(RCC_ClkInitStruct->APB1CLKDivider));
 
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
 
  }
 
 
  /* Configure the source of time base considering new system clocks settings*/
 
  HAL_InitTick (TICK_INT_PRIORITY);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Returns the SYSCLK frequency
 
  * @note   The system frequency computed by this function is not the real
 
  *         frequency in the chip. It is calculated based on the predefined
 
  *         constant and the selected clock source:
 
  * @note     If SYSCLK source is HSI, function returns a value based on HSI_VALUE(*)
 
  * @note     If SYSCLK source is HSI48, function returns a value based on HSI48_VALUE(*)
 
  * @note     If SYSCLK source is HSE, function returns a value based on HSE_VALUE
 
  *           divided by PREDIV factor(**)
 
  * @note     If SYSCLK source is PLL, function returns a value based on HSE_VALUE
 
  *           divided by PREDIV factor(**) or depending on STM32F0xx devices either a value based 
 
  *           on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the 
 
  *           PLL factor .
 
  * @note     (*) HSI_VALUE & HSI48_VALUE are constants defined in stm32f0xx_hal_conf.h file 
 
  *               (default values 8 MHz and 48MHz).
 
  * @note     (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
 
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
 
  *                frequency of the crystal used. Otherwise, this function may
 
  *                have wrong result.
 
  *
 
  * @note   The result of this function could be not correct when using fractional
 
  *         value for HSE crystal.
 
  *
 
  * @note   This function can be used by the user application to compute the
 
  *         baudrate for the communication peripherals or configure other parameters.
 
  *
 
  * @note   Each time SYSCLK changes, this function must be called to update the
 
  *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
 
  *
 
  * @retval SYSCLK frequency
 
  */
 
uint32_t HAL_RCC_GetSysClockFreq(void)
 
{
 
  uint32_t tmpreg = 0, prediv = 0, pllmul = 0, pllclk = 0;
 
  uint32_t sysclockfreq = 0;
 
 
  tmpreg = RCC->CFGR;
 
 
  /* Get SYSCLK source -------------------------------------------------------*/
 
  switch (tmpreg & RCC_CFGR_SWS)
 
  {
 
  case RCC_SYSCLKSOURCE_STATUS_HSE:    /* HSE used as system clock  source */
 
    sysclockfreq = HSE_VALUE;
 
    break;
 
 
  case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock  source */
 
    pllmul = PLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER];
 
    prediv = PredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER];
 
    if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
 
    {
 
      /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */
 
      pllclk = (HSE_VALUE/prediv) * pllmul;
 
    }
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
    else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48)
 
    {
 
      /* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */
 
      pllclk = (HSI48_VALUE/prediv) * pllmul;
 
    }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
    else
 
    {
 
#if defined(STM32F042x6) || defined(STM32F048xx) || \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
      /* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */
 
      pllclk = (HSI_VALUE/prediv) * pllmul;
 
#else
 
      /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
 
      pllclk = (HSI_VALUE >> 1) * pllmul;
 
#endif /* STM32F042x6 || STM32F048xx || STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
    }
 
    sysclockfreq = pllclk;
 
    break;
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  case RCC_SYSCLKSOURCE_STATUS_HSI48:    /* HSI48 used as system clock source */
 
    sysclockfreq = HSI48_VALUE;
 
    break;
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
  case RCC_SYSCLKSOURCE_STATUS_HSI:    /* HSI used as system clock source */
 
  default:
 
    sysclockfreq = HSI_VALUE;
 
    break;
 
  }
 
  return sysclockfreq;
 
}
 
 
/**
 
  * @brief  Initializes the RCC extended peripherals clocks according to the specified
 
  *         parameters in the RCC_PeriphCLKInitTypeDef.
 
  * @param  PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
 
  *         contains the configuration information for the Extended Peripherals clocks
 
  *         (USART, RTC, I2C, CEC and USB).
 
  *
 
  * @note   Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select 
 
  *         the RTC clock source; in this case the Backup domain will be reset in  
 
  *         order to modify the RTC Clock source, as consequence RTC registers (including 
 
  *         the backup registers) and RCC_BDCR register are set to their reset values.
 
  *
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
 
{
 
  uint32_t tickstart = 0;
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RCC_PERIPHCLK(PeriphClkInit->PeriphClockSelection));
 
  
 
  /*---------------------------- RTC configuration -------------------------------*/
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
 
  {
 
    /* Enable Power Clock*/
 
    __PWR_CLK_ENABLE();
 
    
 
    /* Enable write access to Backup domain */
 
    SET_BIT(PWR->CR, PWR_CR_DBP);
 
    
 
    /* Wait for Backup domain Write protection disable */
 
    tickstart = HAL_GetTick();
 
    
 
    while((PWR->CR & PWR_CR_DBP) == RESET)
 
    {
 
      if((HAL_GetTick() - tickstart) > DBP_TIMEOUT_VALUE)
 
      {
 
        return HAL_TIMEOUT;
 
      }      
 
    }
 
    
 
    /* Reset the Backup domain only if the RTC Clock source selction is modified */ 
 
    if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))
 
    {
 
      /* Store the content of BDCR register before the reset of Backup Domain */
 
      tmpreg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
 
      /* RTC Clock selection can be changed only if the Backup Domain is reset */
 
      __HAL_RCC_BACKUPRESET_FORCE();
 
      __HAL_RCC_BACKUPRESET_RELEASE();
 
      /* Restore the Content of BDCR register */
 
      RCC->BDCR = tmpreg;
 
    }
 
    
 
    /* If LSE is selected as RTC clock source, wait for LSE reactivation */
 
    if(PeriphClkInit->RTCClockSelection == RCC_RTCCLKSOURCE_LSE)
 
    {
 
      /* Get timeout */
 
      tickstart = HAL_GetTick();
 
      
 
      /* Wait till LSE is ready */  
 
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
 
      {
 
        if((HAL_GetTick() - tickstart) > LSE_TIMEOUT_VALUE)
 
        {
 
          return HAL_TIMEOUT;
 
        }      
 
      }  
 
    }
 
    __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); 
 
  }
 
  
 
  /*------------------------------- USART1 Configuration ------------------------*/ 
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
 
    
 
    /* Configure the USART1 clock source */
 
    __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
 
  }
 
  
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  /*----------------------------- USART2 Configuration --------------------------*/ 
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
 
    
 
    /* Configure the USART2 clock source */
 
    __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
 
  }
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
  /*----------------------------- USART3 Configuration --------------------------*/ 
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
 
    
 
    /* Configure the USART3 clock source */
 
    __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
 
  }
 
#endif /* STM32F091xC || STM32F098xx */  
 
 
  /*------------------------------ I2C1 Configuration ------------------------*/ 
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
 
    
 
    /* Configure the I2C1 clock source */
 
    __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
 
  }
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
  /*------------------------------ USB Configuration ------------------------*/ 
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
 
    
 
    /* Configure the USB clock source */
 
    __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
 
  }
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  /*------------------------------ CEC clock Configuration -------------------*/ 
 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
 
    
 
    /* Configure the CEC clock source */
 
    __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
 
  }
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Get the RCC_ClkInitStruct according to the internal
 
  * RCC configuration registers.
 
  * @param  PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
 
  *         returns the configuration information for the Extended Peripherals clocks
 
  *         (USART, RTC, I2C, CEC and USB).
 
  * @retval None
 
  */
 
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
 
{
 
  /* Set all possible values for the extended clock type parameter------------*/
 
  /* Common part first */
 
  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_RTC;  
 
  /* Get the RTC configuration --------------------------------------------*/
 
  PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
 
  /* Get the USART1 configuration --------------------------------------------*/
 
  PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
 
  /* Get the I2C1 clock source -----------------------------------------------*/
 
  PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2;
 
  /* Get the USART2 clock source ---------------------------------------------*/
 
  PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
 
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F091xC) || defined(STM32F098xx)
 
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3;
 
  /* Get the USART3 clock source ---------------------------------------------*/
 
  PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
 
#endif /* STM32F091xC || STM32F098xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx)
 
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
 
  /* Get the USB clock source ---------------------------------------------*/
 
  PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
 
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx */
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F051x8) || defined(STM32F058xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC;
 
  /* Get the CEC clock source ------------------------------------------------*/
 
  PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F051x8 || STM32F058xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
}
 
 
#if defined(STM32F042x6) || defined(STM32F048xx) ||                         \
 
    defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \
 
    defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Start automatic synchronization using polling mode
 
  * @param  pInit Pointer on RCC_CRSInitTypeDef structure
 
  * @retval None
 
  */
 
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
 
  assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
 
  assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
 
  assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
 
  assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
 
  assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
 
 
 
  /* CONFIGURATION */
 
 
  /* Before configuration, reset CRS registers to their default values*/
 
  __CRS_FORCE_RESET();
 
  __CRS_RELEASE_RESET();
 
 
  /* Configure Synchronization input */
 
  /* Clear SYNCDIV[2:0], SYNCSRC[1:0] & SYNCSPOL bits */
 
  CRS->CFGR &= ~(CRS_CFGR_SYNCDIV | CRS_CFGR_SYNCSRC | CRS_CFGR_SYNCPOL);
 
 
  /* Set the CRS_CFGR_SYNCDIV[2:0] bits according to Prescaler value */
 
  CRS->CFGR |= pInit->Prescaler;
 
 
  /* Set the SYNCSRC[1:0] bits according to Source value */
 
  CRS->CFGR |= pInit->Source;
 
 
  /* Set the SYNCSPOL bits according to Polarity value */
 
  CRS->CFGR |= pInit->Polarity;
 
 
  /* Configure Frequency Error Measurement */
 
  /* Clear RELOAD[15:0] & FELIM[7:0] bits*/
 
  CRS->CFGR &= ~(CRS_CFGR_RELOAD | CRS_CFGR_FELIM);
 
 
  /* Set the RELOAD[15:0] bits according to ReloadValue value */
 
  CRS->CFGR |= pInit->ReloadValue;
 
 
  /* Set the FELIM[7:0] bits according to ErrorLimitValue value */
 
  CRS->CFGR |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER);
 
 
  /* Adjust HSI48 oscillator smooth trimming */
 
  /* Clear TRIM[5:0] bits */
 
  CRS->CR &= ~CRS_CR_TRIM;
 
 
  /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
 
  CRS->CR |= (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER);
 
 
 
  /* START AUTOMATIC SYNCHRONIZATION*/
 
  
 
  /* Enable Automatic trimming */
 
  __HAL_RCC_CRS_ENABLE_AUTOMATIC_CALIB();
 
 
  /* Enable Frequency error counter */
 
  __HAL_RCC_CRS_ENABLE_FREQ_ERROR_COUNTER();
 
 
}
 
 
/**
 
  * @brief  Generate the software synchronization event
 
  * @retval None
 
  */
 
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
 
{
 
  CRS->CR |= CRS_CR_SWSYNC;
 
}
 
 
 
/**
 
  * @brief  Function to return synchronization info 
 
  * @param  pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
 
  * @retval None
 
  */
 
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
 
{
 
  /* Check the parameter */
 
  assert_param(pSynchroInfo != NULL);
 
  
 
  /* Get the reload value */
 
  pSynchroInfo->ReloadValue = (uint32_t)(CRS->CFGR & CRS_CFGR_RELOAD);
 
  
 
  /* Get HSI48 oscillator smooth trimming */
 
  pSynchroInfo->HSI48CalibrationValue = (uint32_t)((CRS->CR & CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER);
 
 
  /* Get Frequency error capture */
 
  pSynchroInfo->FreqErrorCapture = (uint32_t)((CRS->ISR & CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER);
 
 
  /* Get FFrequency error direction */
 
  pSynchroInfo->FreqErrorDirection = (uint32_t)(CRS->ISR & CRS_ISR_FEDIR);
 
  
 
  
 
}
 
 
/**
 
* @brief This function handles CRS Synchronization Timeout.
 
* @param Timeout: Duration of the timeout
 
* @note  Timeout is based on the maximum time to receive a SYNC event based on synchronization
 
*        frequency.
 
* @note    If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
 
* @retval Combination of Synchronization status
 
*          This parameter can be a combination of the following values:
 
*            @arg RCC_CRS_TIMEOUT
 
*            @arg RCC_CRS_SYNCOK
 
*            @arg RCC_CRS_SYNCWARM
 
*            @arg RCC_CRS_SYNCERR
 
*            @arg RCC_CRS_SYNCMISS
 
*            @arg RCC_CRS_TRIMOV
 
*/
 
RCC_CRSStatusTypeDef HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
 
{
 
  RCC_CRSStatusTypeDef crsstatus = RCC_CRS_NONE;
 
  uint32_t tickstart = 0;
 
  
 
  /* Get timeout */
 
  tickstart = HAL_GetTick();
 
  
 
  /* Check that if one of CRS flags have been set */
 
  while(RCC_CRS_NONE == crsstatus)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        crsstatus = RCC_CRS_TIMEOUT;
 
      }
 
    }
 
    /* Check CRS SYNCOK flag  */
 
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
 
    {
 
      /* CRS SYNC event OK */
 
      crsstatus |= RCC_CRS_SYNCOK;
 
    
 
      /* Clear CRS SYNC event OK bit */
 
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
 
    }
 
    
 
    /* Check CRS SYNCWARN flag  */
 
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
 
    {
 
      /* CRS SYNC warning */
 
      crsstatus |= RCC_CRS_SYNCWARM;
 
    
 
      /* Clear CRS SYNCWARN bit */
 
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
 
    }
 
    
 
    /* Check CRS TRIM overflow flag  */
 
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
 
    {
 
      /* CRS SYNC Error */
 
      crsstatus |= RCC_CRS_TRIMOV;
 
    
 
      /* Clear CRS Error bit */
 
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
 
    }
 
    
 
    /* Check CRS Error flag  */
 
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
 
    {
 
      /* CRS SYNC Error */
 
      crsstatus |= RCC_CRS_SYNCERR;
 
    
 
      /* Clear CRS Error bit */
 
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
 
    }
 
    
 
    /* Check CRS SYNC Missed flag  */
 
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
 
    {
 
      /* CRS SYNC Missed */
 
      crsstatus |= RCC_CRS_SYNCMISS;
 
    
 
      /* Clear CRS SYNC Missed bit */
 
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
 
    }
 
    
 
    /* Check CRS Expected SYNC flag  */
 
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
 
    {
 
      /* frequency error counter reached a zero value */
 
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
 
    }
 
  }
 
  
 
  return crsstatus;
 
}
 
          
 
#endif /* STM32F042x6 || STM32F048xx ||                */
 
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
 
       /* STM32F091xC || STM32F098xx */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_RCC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rtc.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   RTC HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Real-Time Clock (RTC) peripheral:
 
  *           + Initialization
 
  *           + Calendar (Time and Date) configuration
 
  *           + Alarm A configuration
 
  *           + Backup Data Registers configuration  
 
  *           + Interrupts and flags management
 
  *
 
  @verbatim
 
 
 ===============================================================================     
 
                          ##### RTC Operating Condition #####
 
 ===============================================================================
 
    [..] The real-time clock (RTC) and the RTC backup registers can be powered
 
         from the VBAT voltage when the main VDD supply is powered off.
 
         To retain the content of the RTC backup registers and supply the RTC 
 
         when VDD is turned off, VBAT pin can be connected to an optional
 
         standby voltage supplied by a battery or by another source.
 
  
 
    [..] To allow the RTC to operate even when the main digital supply (VDD) 
 
         is turned off, the VBAT pin powers the following blocks:
 
           (#) The RTC
 
           (#) The LSE oscillator
 
           (#) PC13 to PC15 I/Os (when available)
 
  
 
    [..] When the backup domain is supplied by VDD (analog switch connected 
 
         to VDD), the following functions are available:
 
           (#) PC14 and PC15 can be used as either GPIO or LSE pins
 
           (#) PC13 can be used as a GPIO or as the RTC_OUT pin
 
  
 
    [..] When the backup domain is supplied by VBAT (analog switch connected 
 
         to VBAT because VDD is not present), the following functions are available:
 
           (#) PC14 and PC15 can be used as LSE pins only
 
           (#) PC13 can be used as the RTC_OUT pin 
 
             
 
                        ##### Backup Domain Reset #####
 
 ===============================================================================
 
    [..] The backup domain reset sets all RTC registers and the RCC_BDCR 
 
         register to their reset values. 
 
         A backup domain reset is generated when one of the following events
 
         occurs:
 
           (#) Software reset, triggered by setting the BDRST bit in the 
 
               RCC Backup domain control register (RCC_BDCR).
 
           (#) VDD or VBAT power on, if both supplies have previously been
 
               powered off.
 
 
                   ##### Backup Domain Access #####
 
 ===================================================================
 
    [..] After reset, the backup domain (RTC registers, RTC backup data 
 
         registers and backup SRAM) is protected against possible unwanted write 
 
         accesses.
 
 
    [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
 
           (#) Enable the Power Controller (PWR) APB1 interface clock using the
 
               __PWR_CLK_ENABLE() function.
 
           (#) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
 
           (#) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
 
           (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
 
  
 
  
 
                  ##### How to use RTC Driver #####
 
 ===================================================================
 
    [..] 
 
        (+) Enable the RTC domain access (see description in the section above).
 
        (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour 
 
            format using the HAL_RTC_Init() function.
 
  
 
    *** Time and Date configuration ***
 
    ===================================
 
    [..] 
 
        (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() 
 
            and HAL_RTC_SetDate() functions.
 
        (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions. 
 
  
 
    *** Alarm configuration ***
 
    ===========================
 
    [..]
 
        (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. 
 
            You can also configure the RTC Alarm with interrupt mode using the 
 
            HAL_RTC_SetAlarm_IT() function.
 
        (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
 
 
 
                  ##### RTC and low power modes #####
 
 ===================================================================
 
    [..] The MCU can be woken up from a low power mode by an RTC alternate 
 
         function.
 
    [..] The RTC alternate functions are the RTC alarm (Alarm A), 
 
         RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
 
         These RTC alternate functions can wake up the system from the Stop and 
 
         Standby low power modes.
 
    [..] The system can also wake up from low power modes without depending 
 
         on an external interrupt (Auto-wakeup mode), by using the RTC alarm 
 
         or the RTC wakeup events.
 
    [..] The RTC provides a programmable time base for waking up from the 
 
         Stop or Standby mode at regular intervals.
 
         Wakeup from STOP and Standby modes is possible only when the RTC clock source
 
         is LSE or LSI.
 
     
 
  @endverbatim
 
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup RTC RTC HAL module driver
 
  * @brief RTC HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_RTC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup RTC_Exported_Functions RTC Exported Functions
 
  * @{
 
  */
 
  
 
/** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
   [..] This section provide functions allowing to initialize and configure the 
 
         RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable 
 
         RTC registers Write protection, enter and exit the RTC initialization mode, 
 
         RTC registers synchronization check and reference clock detection enable.
 
         (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. 
 
             It is split into 2 programmable prescalers to minimize power consumption.
 
             (++) A 7-bit asynchronous prescaler and A 15-bit synchronous prescaler.
 
             (++) When both prescalers are used, it is recommended to configure the 
 
                 asynchronous prescaler to a high value to minimize consumption.
 
         (#) All RTC registers are Write protected. Writing to the RTC registers
 
             is enabled by writing a key into the Write Protection register, RTC_WPR.
 
         (#) To Configure the RTC Calendar, user application should enter 
 
             initialization mode. In this mode, the calendar counter is stopped 
 
             and its value can be updated. When the initialization sequence is 
 
             complete, the calendar restarts counting after 4 RTCCLK cycles.
 
         (#) To read the calendar through the shadow registers after Calendar 
 
             initialization, calendar update or after wakeup from low power modes 
 
             the software must first clear the RSF flag. The software must then 
 
             wait until it is set again before reading the calendar, which means 
 
             that the calendar registers have been correctly copied into the 
 
             RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function 
 
             implements the above software sequence (RSF clear and RSF check).
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the RTC peripheral 
 
  * @param  hrtc: RTC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
 
{
 
  /* Check the RTC peripheral state */
 
  if(hrtc == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
 
  assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
 
  assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
 
  assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
 
  assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
 
  assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
 
  assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
 
    
 
  if(hrtc->State == HAL_RTC_STATE_RESET)
 
  {
 
    /* Initialize RTC MSP */
 
    HAL_RTC_MspInit(hrtc);
 
  }
 
  
 
  /* Set RTC state */  
 
  hrtc->State = HAL_RTC_STATE_BUSY;  
 
       
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Set Initialization mode */
 
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
 
  {
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); 
 
    
 
    /* Set RTC state */
 
    hrtc->State = HAL_RTC_STATE_ERROR;
 
    
 
    return HAL_ERROR;
 
  } 
 
  else
 
  { 
 
    /* Clear RTC_CR FMT, OSEL and POL Bits */
 
    hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
 
    /* Set RTC_CR register */
 
    hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
 
    
 
    /* Configure the RTC PRER */
 
    hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
 
    hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);
 
    
 
    /* Exit Initialization mode */
 
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; 
 
    
 
    hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
 
    hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType); 
 
    
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); 
 
    
 
    /* Set RTC state */
 
    hrtc->State = HAL_RTC_STATE_READY;
 
    
 
    return HAL_OK;
 
  }
 
}
 
 
/**
 
  * @brief  DeInitializes the RTC peripheral 
 
  * @param  hrtc: RTC handle
 
  * @note   This function doesn't reset the RTC Backup Data registers.   
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
 
 
  /* Set RTC state */
 
  hrtc->State = HAL_RTC_STATE_BUSY; 
 
  
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
  
 
  /* Set Initialization mode */
 
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
 
  {
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); 
 
    
 
    /* Set RTC state */
 
    hrtc->State = HAL_RTC_STATE_ERROR;
 
    
 
    return HAL_ERROR;
 
  }  
 
  else
 
  {
 
    /* Reset TR, DR and CR registers */
 
    hrtc->Instance->TR = (uint32_t)0x00000000;
 
    hrtc->Instance->DR = (uint32_t)0x00002101;
 
    /* Reset all RTC CR register bits */
 
    hrtc->Instance->CR &= (uint32_t)0x00000000;
 
    hrtc->Instance->PRER = (uint32_t)0x007F00FF;
 
    hrtc->Instance->ALRMAR = (uint32_t)0x00000000;        
 
    hrtc->Instance->SHIFTR = (uint32_t)0x00000000;
 
    hrtc->Instance->CALR = (uint32_t)0x00000000;
 
    hrtc->Instance->ALRMASSR = (uint32_t)0x00000000;
 
    
 
    /* Reset ISR register and exit initialization mode */
 
    hrtc->Instance->ISR = (uint32_t)0x00000000;
 
    
 
    /* Reset Tamper and alternate functions configuration register */
 
    hrtc->Instance->TAFCR = 0x00000000;
 
    
 
    /* If  RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
 
    if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
 
    {
 
      if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
 
      {
 
        /* Enable the write protection for RTC registers */
 
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);  
 
        
 
        hrtc->State = HAL_RTC_STATE_ERROR;
 
        
 
        return HAL_ERROR;
 
      }
 
    }    
 
  }
 
  
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);  
 
  
 
  /* De-Initialize RTC MSP */
 
  HAL_RTC_MspDeInit(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the RTC MSP.
 
  * @param  hrtc: RTC handle  
 
  * @retval None
 
  */
 
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTC_MspInit could be implenetd in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the RTC MSP.
 
  * @param  hrtc: RTC handle 
 
  * @retval None
 
  */
 
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTC_MspDeInit could be implenetd in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions
 
 *  @brief   RTC Time and Date functions
 
 *
 
@verbatim   
 
 ===============================================================================
 
                 ##### RTC Time and Date functions #####
 
 ===============================================================================  
 
 
 
 [..] This section provide functions allowing to configure Time and Date features
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Sets RTC current time.
 
  * @param  hrtc: RTC handle
 
  * @param  sTime: Pointer to Time structure
 
  * @param  Format: Specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *            @arg Format_BIN: Binary data format 
 
  *            @arg Format_BCD: BCD data format
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
 
{
 
  uint32_t tmpreg = 0;
 
  
 
 /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
  assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
 
  assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
 
  
 
  /* Process Locked */ 
 
  __HAL_LOCK(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
  
 
  if(Format == FORMAT_BIN)
 
  {
 
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
 
    {
 
      assert_param(IS_RTC_HOUR12(sTime->Hours));
 
      assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
 
    } 
 
    else
 
    {
 
      sTime->TimeFormat = 0x00;
 
      assert_param(IS_RTC_HOUR24(sTime->Hours));
 
    }
 
    assert_param(IS_RTC_MINUTES(sTime->Minutes));
 
    assert_param(IS_RTC_SECONDS(sTime->Seconds));
 
    
 
    tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16) | \
 
                        ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8) | \
 
                        ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
 
                        (((uint32_t)sTime->TimeFormat) << 16));  
 
  }
 
  else
 
  {
 
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sTime->Hours);
 
      assert_param(IS_RTC_HOUR12(tmpreg));
 
      assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); 
 
    } 
 
    else
 
    {
 
      sTime->TimeFormat = 0x00;
 
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
 
    }
 
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
 
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
 
    tmpreg = (((uint32_t)(sTime->Hours) << 16) | \
 
              ((uint32_t)(sTime->Minutes) << 8) | \
 
              ((uint32_t)sTime->Seconds) | \
 
              ((uint32_t)(sTime->TimeFormat) << 16));   
 
  }
 
  
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
  
 
  /* Set Initialization mode */
 
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
 
  {
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); 
 
    
 
    /* Set RTC state */
 
    hrtc->State = HAL_RTC_STATE_ERROR;
 
    
 
    /* Process Unlocked */ 
 
    __HAL_UNLOCK(hrtc);
 
    
 
    return HAL_ERROR;
 
  } 
 
  else
 
  {
 
    /* Set the RTC_TR register */
 
    hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
 
     
 
    /* Clear the bits to be configured */
 
    hrtc->Instance->CR &= (uint32_t)~RTC_CR_BCK;
 
    
 
    /* Configure the RTC_CR register */
 
    hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
 
    
 
    /* Exit Initialization mode */
 
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;  
 
    
 
    /* If  CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
 
    if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
 
    {
 
      if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
 
      {        
 
        /* Enable the write protection for RTC registers */
 
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);  
 
        
 
        hrtc->State = HAL_RTC_STATE_ERROR;
 
        
 
        /* Process Unlocked */ 
 
        __HAL_UNLOCK(hrtc);
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
    
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
    
 
   hrtc->State = HAL_RTC_STATE_READY;
 
  
 
   __HAL_UNLOCK(hrtc); 
 
     
 
   return HAL_OK;
 
  }
 
}
 
 
/**
 
  * @brief  Gets RTC current time.
 
  * @param  hrtc: RTC handle
 
  * @param  sTime: Pointer to Time structure
 
  * @param  Format: Specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *            @arg Format_BIN: Binary data format 
 
  *            @arg Format_BCD: BCD data format
 
  * @note   Call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values 
 
  *         in the higher-order calendar shadow registers.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
  
 
  /* Get subseconds values from the correspondent registers*/
 
  sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
 
 
  /* Get the TR register */
 
  tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK); 
 
  
 
  /* Fill the structure fields with the read parameters */
 
  sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16);
 
  sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8);
 
  sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
 
  sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); 
 
  
 
  /* Check the input parameters format */
 
  if(Format == FORMAT_BIN)
 
  {
 
    /* Convert the time structure parameters to Binary format */
 
    sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
 
    sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
 
    sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);  
 
  }
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Sets RTC current date.
 
  * @param  hrtc: RTC handle
 
  * @param  sDate: Pointer to date structure
 
  * @param  Format: specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *            @arg Format_BIN: Binary data format 
 
  *            @arg Format_BCD: BCD data format
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
 
{
 
  uint32_t datetmpreg = 0;
 
  
 
 /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
  
 
 /* Process Locked */ 
 
 __HAL_LOCK(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_BUSY; 
 
  
 
  if((Format == FORMAT_BIN) && ((sDate->Month & 0x10) == 0x10))
 
  {
 
    sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10)) + (uint8_t)0x0A);
 
  }
 
  
 
  assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
 
  
 
  if(Format == FORMAT_BIN)
 
  {   
 
    assert_param(IS_RTC_YEAR(sDate->Year));
 
    assert_param(IS_RTC_MONTH(sDate->Month));
 
    assert_param(IS_RTC_DATE(sDate->Date)); 
 
    
 
   datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16) | \
 
                 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8) | \
 
                 ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
 
                 ((uint32_t)sDate->WeekDay << 13));   
 
  }
 
  else
 
  {   
 
    assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
 
    datetmpreg = RTC_Bcd2ToByte(sDate->Month);
 
    assert_param(IS_RTC_MONTH(datetmpreg));
 
    datetmpreg = RTC_Bcd2ToByte(sDate->Date);
 
    assert_param(IS_RTC_DATE(datetmpreg));
 
    
 
    datetmpreg = ((((uint32_t)sDate->Year) << 16) | \
 
                  (((uint32_t)sDate->Month) << 8) | \
 
                  ((uint32_t)sDate->Date) | \
 
                  (((uint32_t)sDate->WeekDay) << 13));  
 
  }
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
  
 
  /* Set Initialization mode */
 
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
 
  {
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); 
 
    
 
    /* Set RTC state*/
 
    hrtc->State = HAL_RTC_STATE_ERROR;
 
    
 
    /* Process Unlocked */ 
 
    __HAL_UNLOCK(hrtc);
 
    
 
    return HAL_ERROR;
 
  } 
 
  else
 
  {
 
    /* Set the RTC_DR register */
 
    hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
 
    
 
    /* Exit Initialization mode */
 
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;  
 
    
 
    /* If  CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
 
    if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
 
    {
 
      if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
 
      { 
 
        /* Enable the write protection for RTC registers */
 
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);  
 
        
 
        hrtc->State = HAL_RTC_STATE_ERROR;
 
        
 
        /* Process Unlocked */ 
 
        __HAL_UNLOCK(hrtc);
 
        
 
        return HAL_ERROR;
 
      }
 
    }
 
    
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);  
 
    
 
    hrtc->State = HAL_RTC_STATE_READY ;
 
    
 
    /* Process Unlocked */ 
 
    __HAL_UNLOCK(hrtc);
 
    
 
    return HAL_OK;    
 
  }
 
}
 
 
/**
 
  * @brief  Gets RTC current date.
 
  * @param  hrtc: RTC handle
 
  * @param  sDate: Pointer to Date structure
 
  * @param  Format: Specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *            @arg Format_BIN :  Binary data format 
 
  *            @arg Format_BCD :  BCD data format
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
 
{
 
  uint32_t datetmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
          
 
  /* Get the DR register */
 
  datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK); 
 
 
  /* Fill the structure fields with the read parameters */
 
  sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16);
 
  sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8);
 
  sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU));
 
  sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); 
 
 
  /* Check the input parameters format */
 
  if(Format == FORMAT_BIN)
 
  {    
 
    /* Convert the date structure parameters to Binary format */
 
    sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
 
    sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
 
    sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);  
 
  }
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions
 
 *  @brief   RTC Alarm functions
 
 *
 
@verbatim   
 
 ===============================================================================
 
                 ##### RTC Alarm functions #####
 
 ===============================================================================  
 
 
 
 [..] This section provide functions allowing to configure Alarm feature
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Sets the specified RTC Alarm.
 
  * @param  hrtc: RTC handle
 
  * @param  sAlarm: Pointer to Alarm structure
 
  * @param  Format: Specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *             @arg Format_BIN: Binary data format 
 
  *             @arg Format_BCD: BCD data format
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
 
{
 
  uint32_t tickstart = 0;
 
  uint32_t tmpreg = 0, subsecondtmpreg = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
  assert_param(IS_ALARM(sAlarm->Alarm));
 
  assert_param(IS_ALARM_MASK(sAlarm->AlarmMask));
 
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
 
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
 
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
 
  
 
  /* Process Locked */ 
 
  __HAL_LOCK(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
  
 
  if(Format == FORMAT_BIN)
 
  {
 
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
 
    {
 
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
 
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
 
    } 
 
    else
 
    {
 
      sAlarm->AlarmTime.TimeFormat = 0x00;
 
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
 
    }
 
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
 
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
 
    
 
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
 
    {
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
 
    }
 
    else
 
    {
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
 
    }
 
    
 
    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
 
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
 
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
 
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
 
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
 
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
 
              ((uint32_t)sAlarm->AlarmMask)); 
 
  }
 
  else
 
  {
 
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
 
      assert_param(IS_RTC_HOUR12(tmpreg));
 
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
 
    } 
 
    else
 
    {
 
      sAlarm->AlarmTime.TimeFormat = 0x00;
 
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
 
    }
 
    
 
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
 
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
 
    
 
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));    
 
    }
 
    else
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));      
 
    }  
 
    
 
    tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
 
              ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
 
              ((uint32_t) sAlarm->AlarmTime.Seconds) | \
 
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
 
              ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
 
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
 
              ((uint32_t)sAlarm->AlarmMask));   
 
  }
 
  
 
  /* Configure the Alarm A Sub Second registers */
 
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
 
  
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Disable the Alarm A interrupt */
 
  __HAL_RTC_ALARMA_DISABLE(hrtc);
 
 
  /* In case of interrupt mode is used, the interrupt source must disabled */ 
 
  __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
 
         
 
  tickstart = HAL_GetTick();
 
  
 
  /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
 
  while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    {
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
      hrtc->State = HAL_RTC_STATE_TIMEOUT; 
 
 
      /* Process Unlocked */ 
 
      __HAL_UNLOCK(hrtc);
 
        
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
    
 
  hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
 
  /* Configure the Alarm A Sub Second register */
 
  hrtc->Instance->ALRMASSR = subsecondtmpreg;
 
  /* Configure the Alarm state: Enable Alarm */
 
  __HAL_RTC_ALARMA_ENABLE(hrtc);
 
  
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);   
 
  
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY; 
 
  
 
  /* Process Unlocked */ 
 
  __HAL_UNLOCK(hrtc);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Sets the specified RTC Alarm with Interrupt 
 
  * @param  hrtc: RTC handle
 
  * @param  sAlarm: Pointer to Alarm structure
 
  * @param  Format: Specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *             @arg Format_BIN: Binary data format 
 
  *             @arg Format_BCD: BCD data format
 
  * @note   The Alarm register can only be written when the corresponding Alarm
 
  *         is disabled (Use the HAL_RTC_DeactivateAlarm()).   
 
  * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.   
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
 
{
 
  uint32_t tickstart = 0;
 
  uint32_t tmpreg = 0, subsecondtmpreg = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
  assert_param(IS_ALARM(sAlarm->Alarm));
 
  assert_param(IS_ALARM_MASK(sAlarm->AlarmMask));
 
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
 
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
 
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
 
      
 
  /* Process Locked */ 
 
  __HAL_LOCK(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
  
 
  if(Format == FORMAT_BIN)
 
  {
 
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
 
    {
 
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
 
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
 
    } 
 
    else
 
    {
 
      sAlarm->AlarmTime.TimeFormat = 0x00;
 
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
 
    }
 
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
 
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
 
    
 
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
 
    {
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
 
    }
 
    else
 
    {
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
 
    }
 
    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
 
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
 
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
 
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
 
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
 
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
 
              ((uint32_t)sAlarm->AlarmMask)); 
 
  }
 
  else
 
  {
 
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
 
      assert_param(IS_RTC_HOUR12(tmpreg));
 
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
 
    } 
 
    else
 
    {
 
      sAlarm->AlarmTime.TimeFormat = 0x00;
 
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
 
    }
 
    
 
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
 
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
 
    
 
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));    
 
    }
 
    else
 
    {
 
      tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
 
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));      
 
    }
 
    tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
 
              ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
 
              ((uint32_t) sAlarm->AlarmTime.Seconds) | \
 
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
 
              ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
 
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
 
              ((uint32_t)sAlarm->AlarmMask));     
 
  }
 
  /* Configure the Alarm A Sub Second registers */
 
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
 
  
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
  
 
  /* Disable the Alarm A interrupt */
 
  __HAL_RTC_ALARMA_DISABLE(hrtc);
 
 
  /* Clear flag alarm A */
 
  __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
 
 
  tickstart = HAL_GetTick();
 
  
 
  /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
 
  while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    {
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
        
 
      hrtc->State = HAL_RTC_STATE_TIMEOUT; 
 
        
 
      /* Process Unlocked */ 
 
      __HAL_UNLOCK(hrtc);
 
        
 
      return HAL_TIMEOUT;
 
    }  
 
  }
 
    
 
  hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
 
  /* Configure the Alarm A Sub Second register */
 
  hrtc->Instance->ALRMASSR = subsecondtmpreg;
 
  /* Configure the Alarm state: Enable Alarm */
 
  __HAL_RTC_ALARMA_ENABLE(hrtc);
 
  /* Configure the Alarm interrupt */
 
  __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
 
 
  /* RTC Alarm Interrupt Configuration: EXTI configuration */
 
  __HAL_RTC_EXTI_ENABLE_IT(RTC_EXTI_LINE_ALARM_EVENT);
 
  
 
  EXTI->RTSR |= RTC_EXTI_LINE_ALARM_EVENT;
 
  
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);  
 
  
 
  hrtc->State = HAL_RTC_STATE_READY; 
 
  
 
  /* Process Unlocked */ 
 
  __HAL_UNLOCK(hrtc);  
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deactive the specified RTC Alarm 
 
  * @param  hrtc: RTC handle
 
  * @param  Alarm: Specifies the Alarm.
 
  *          This parameter can be one of the following values:
 
  *            @arg ALARM_A :  AlarmA
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
 
{
 
  uint32_t tickstart = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_ALARM(Alarm));
 
  
 
  /* Process Locked */ 
 
  __HAL_LOCK(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
  
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
  
 
  __HAL_RTC_ALARMA_DISABLE(hrtc);
 
    
 
  /* In case of interrupt mode is used, the interrupt source must disabled */ 
 
  __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
 
    
 
  tickstart = HAL_GetTick();
 
    
 
  /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
 
  while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    { 
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
        
 
      hrtc->State = HAL_RTC_STATE_TIMEOUT; 
 
        
 
      /* Process Unlocked */ 
 
      __HAL_UNLOCK(hrtc);
 
        
 
      return HAL_TIMEOUT;
 
    }      
 
  }
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
  
 
  hrtc->State = HAL_RTC_STATE_READY; 
 
  
 
  /* Process Unlocked */ 
 
  __HAL_UNLOCK(hrtc);  
 
  
 
  return HAL_OK; 
 
}
 
           
 
/**
 
  * @brief  Gets the RTC Alarm value and masks.
 
  * @param  hrtc: RTC handle
 
  * @param  sAlarm: Pointer to Date structure
 
  * @param  Alarm: Specifies the Alarm
 
  *          This parameter can be one of the following values:
 
  *             @arg ALARM_A: AlarmA
 
  * @param  Format: Specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *             @arg Format_BIN: Binary data format 
 
  *             @arg Format_BCD: BCD data format
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
 
{
 
  uint32_t tmpreg = 0, subsecondtmpreg = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
  assert_param(IS_ALARM(Alarm));
 
  
 
  sAlarm->Alarm = RTC_ALARM_A;
 
    
 
  tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
 
  subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS);
 
    
 
  /* Fill the structure with the read parameters */
 
  sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16);
 
  sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8);
 
  sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
 
  sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16);
 
  sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
 
  sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24);
 
  sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
 
  sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
 
    
 
  if(Format == FORMAT_BIN)
 
  {
 
    sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
 
    sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
 
    sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
 
    sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
 
  }  
 
    
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles Alarm interrupt request.
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc)
 
{  
 
  if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRA))
 
  {
 
    /* Get the status of the Interrupt */
 
    if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRA) != (uint32_t)RESET)
 
    {
 
      /* AlarmA callback */ 
 
      HAL_RTC_AlarmAEventCallback(hrtc);
 
      
 
      /* Clear the Alarm interrupt pending bit */
 
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF);
 
    }
 
  }
 
  
 
  /* Clear the EXTI's line Flag for RTC Alarm */
 
  __HAL_RTC_EXTI_CLEAR_FLAG(RTC_EXTI_LINE_ALARM_EVENT);
 
  
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY; 
 
}
 
 
/**
 
  * @brief  Alarm A callback.
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTC_AlarmAEventCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  This function handles AlarmA Polling request.
 
  * @param  hrtc: RTC handle
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0; 
 
 
  /* Get Timeout value */
 
  tickstart = HAL_GetTick();   
 
  
 
  while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
  
 
  /* Clear the Alarm interrupt pending bit */
 
  __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
 
  
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY; 
 
  
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions 
 
 *  @brief   Peripheral Control functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                     ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides functions allowing to
 
      (+) Wait for RTC Time and Date Synchronization
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are 
 
  *         synchronized with RTC APB clock.
 
  * @note   The RTC Resynchronization mode is write protected, use the 
 
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. 
 
  * @note   To read the calendar through the shadow registers after Calendar 
 
  *         initialization, calendar update or after wakeup from low power modes 
 
  *         the software must first clear the RSF flag. 
 
  *         The software must then wait until it is set again before reading 
 
  *         the calendar, which means that the calendar registers have been 
 
  *         correctly copied into the RTC_TR and RTC_DR shadow registers.   
 
  * @param  hrtc: RTC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Clear RSF flag */
 
  hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;
 
  
 
  tickstart = HAL_GetTick();
 
 
  /* Wait the registers to be synchronised */
 
  while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    {       
 
      return HAL_TIMEOUT;
 
    } 
 
  }
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions
 
 *  @brief   Peripheral State functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                     ##### Peripheral State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides functions allowing to
 
      (+) Get RTC state
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Returns the Alarm state.
 
  * @param  hrtc: RTC handle
 
  * @retval HAL state
 
  */
 
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc)
 
{
 
  return hrtc->State;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup RTC_Private_Functions RTC Private Functions
 
  * @{
 
  */
 
    
 
/**
 
  * @brief  Enters the RTC Initialization mode.
 
  * @note   The RTC Initialization mode is write protected, use the
 
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
 
  * @param  hrtc: RTC handle
 
  * @retval An ErrorStatus enumeration value:
 
  *          - HAL_OK : RTC is in Init mode
 
  *          - HAL_TIMEOUT : RTC is not in Init mode and in Timeout 
 
  */
 
HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc)
 
{
 
  uint32_t tickstart = 0;
 
  
 
  /* Check if the Initialization mode is set */
 
  if((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
 
  {
 
    /* Set the Initialization mode */
 
    hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
 
    
 
    tickstart = HAL_GetTick();
 
    
 
    /* Wait till RTC is in INIT state and if Time out is reached exit */
 
    while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
 
    {
 
      if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
      {       
 
        return HAL_TIMEOUT;
 
      } 
 
    }
 
  }
 
  
 
  return HAL_OK;  
 
}
 
 
 
/**
 
  * @brief  Converts a 2 digit decimal to BCD format.
 
  * @param  Value: Byte to be converted
 
  * @retval Converted byte
 
  */
 
uint8_t RTC_ByteToBcd2(uint8_t Value)
 
{
 
  uint32_t bcdhigh = 0;
 
  
 
  while(Value >= 10)
 
  {
 
    bcdhigh++;
 
    Value -= 10;
 
  }
 
  
 
  return  ((uint8_t)(bcdhigh << 4) | Value);
 
}
 
 
/**
 
  * @brief  Converts from 2 digit BCD to Binary.
 
  * @param  Value: BCD value to be converted
 
  * @retval Converted word
 
  */
 
uint8_t RTC_Bcd2ToByte(uint8_t Value)
 
{
 
  uint32_t tmp = 0;
 
  tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10;
 
  return (tmp + (Value & (uint8_t)0x0F));
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_RTC_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_rtc_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended RTC HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Real Time Clock (RTC) Extension peripheral:
 
  *           + TimeStamp configuration
 
  *           + Tampers configuration
 
  *           + WakeUp Timer configuration
 
  *           + RTC Tamper and TimeStamp Pins Selection 
 
  *           + Extension Control functions
 
  *           + Extension RTC features functions    
 
  *
 
  @verbatim
 
  ==============================================================================
 
                  ##### How to use this driver #####
 
  ==============================================================================
 
  [..] 
 
        (+) Enable the RTC domain access (see description in the section above).
 
        (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour 
 
            format using the HAL_RTC_Init() function.
 
 
    *** RTC Wakeup configuration ***
 
    ================================
 
    [..] 
 
        (+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTCEx_SetWakeUpTimer()
 
            function. You can also configure the RTC Wakeup timer with interrupt mode 
 
            using the HAL_RTCEx_SetWakeUpTimer_IT() function.
 
        (+) To read the RTC WakeUp Counter register, use the HAL_RTCEx_GetWakeUpTimer() 
 
            function.
 
  
 
    *** TimeStamp configuration ***
 
    ===============================
 
    [..]
 
        (+) Configure the RTC_AF trigger and enables the RTC TimeStamp using the 
 
            HAL_RTCEx_SetTimeStamp() function. You can also configure the RTC TimeStamp with 
 
            interrupt mode using the HAL_RTCEx_SetTimeStamp_IT() function.
 
        (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTCEx_GetTimeStamp()
 
            function.
 
  
 
    *** Tamper configuration ***
 
    ============================
 
    [..]
 
        (+) Enable the RTC Tamper and Configure the Tamper filter count, trigger Edge 
 
            or Level according to the Tamper filter (if equal to 0 Edge else Level) 
 
            value, sampling frequency, precharge or discharge and Pull-UP using the 
 
            HAL_RTCEx_SetTamper() function. You can configure RTC Tamper with interrupt 
 
            mode using HAL_RTCEx_SetTamper_IT() function.
 
  
 
    *** Backup Data Registers configuration ***
 
    ===========================================
 
    [..]
 
        (+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite()
 
            function.  
 
        (+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead()
 
            function.
 
   
 
     
 
   @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup RTCEx RTCEx Extended HAL module driver
 
  * @brief RTCEx Extended HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_RTC_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup RTCEx_Exported_Functions RTCEx Exported Functions
 
  * @{
 
  */
 
  
 
 
/** @defgroup RTCEx_Exported_Functions_Group1 RTC TimeStamp and Tamper functions
 
 *  @brief   RTC TimeStamp and Tamper functions
 
 *
 
@verbatim   
 
 ===============================================================================
 
                 ##### RTC TimeStamp and Tamper functions #####
 
 ===============================================================================  
 
 
 
 [..] This section provide functions allowing to configure TimeStamp feature
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Sets TimeStamp.
 
  * @note   This API must be called before enabling the TimeStamp feature. 
 
  * @param  hrtc: RTC handle
 
  * @param  TimeStampEdge: Specifies the pin edge on which the TimeStamp is 
 
  *         activated.
 
  *          This parameter can be one of the following:
 
  *             @arg TimeStampEdge_Rising: the Time stamp event occurs on the  
 
  *                                        rising edge of the related pin.
 
  *             @arg TimeStampEdge_Falling: the Time stamp event occurs on the 
 
  *                                         falling edge of the related pin.
 
  * @param  RTC_TimeStampPin: specifies the RTC TimeStamp Pin.
 
  *          This parameter can be one of the following values:
 
  *             @arg RTC_TIMESTAMPPIN_PC13: PC13 is selected as RTC TimeStamp Pin.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge));
 
  assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Get the RTC_CR register and clear the bits to be configured */
 
  tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
 
 
  tmpreg|= TimeStampEdge;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Configure the Time Stamp TSEDGE and Enable bits */
 
  hrtc->Instance->CR = (uint32_t)tmpreg;
 
 
  __HAL_RTC_TIMESTAMP_ENABLE(hrtc);
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Sets TimeStamp with Interrupt. 
 
  * @param  hrtc: RTC handle
 
  * @note   This API must be called before enabling the TimeStamp feature.
 
  * @param  TimeStampEdge: Specifies the pin edge on which the TimeStamp is 
 
  *         activated.
 
  *          This parameter can be one of the following:
 
  *             @arg TimeStampEdge_Rising: the Time stamp event occurs on the  
 
  *                                        rising edge of the related pin.
 
  *             @arg TimeStampEdge_Falling: the Time stamp event occurs on the 
 
  *                                         falling edge of the related pin.
 
  * @param  RTC_TimeStampPin: Specifies the RTC TimeStamp Pin.
 
  *          This parameter can be one of the following values:
 
  *             @arg RTC_TIMESTAMPPIN_PC13: PC13 is selected as RTC TimeStamp Pin.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge));
 
  assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin));
 
 
  /* Process Locked */ 
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Get the RTC_CR register and clear the bits to be configured */
 
  tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
 
 
  tmpreg |= TimeStampEdge;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Configure the Time Stamp TSEDGE and Enable bits */
 
  hrtc->Instance->CR = (uint32_t)tmpreg;
 
 
  __HAL_RTC_TIMESTAMP_ENABLE(hrtc);
 
 
  /* Enable IT timestamp */
 
  __HAL_RTC_TIMESTAMP_ENABLE_IT(hrtc,RTC_IT_TS);
 
 
  /* RTC timestamp Interrupt Configuration: EXTI configuration */
 
  __HAL_RTC_EXTI_ENABLE_IT(RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT);
 
 
  EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT;
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deactivates TimeStamp. 
 
  * @param  hrtc: RTC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* In case of interrupt mode is used, the interrupt source must disabled */
 
  __HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS);
 
 
  /* Get the RTC_CR register and clear the bits to be configured */
 
  tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
 
 
  /* Configure the Time Stamp TSEDGE and Enable bits */
 
  hrtc->Instance->CR = (uint32_t)tmpreg;
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Gets the RTC TimeStamp value.
 
  * @param  hrtc: RTC handle
 
  * @param  sTimeStamp: Pointer to Time structure
 
  * @param  sTimeStampDate: Pointer to Date structure  
 
  * @param  Format: specifies the format of the entered parameters.
 
  *          This parameter can be one of the following values:
 
  *             @arg Format_BIN: Binary data format 
 
  *             @arg Format_BCD: BCD data format
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef* sTimeStamp, RTC_DateTypeDef* sTimeStampDate, uint32_t Format)
 
{
 
  uint32_t tmptime = 0, tmpdate = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_FORMAT(Format));
 
 
  /* Get the TimeStamp time and date registers values */
 
  tmptime = (uint32_t)(hrtc->Instance->TSTR & RTC_TR_RESERVED_MASK);
 
  tmpdate = (uint32_t)(hrtc->Instance->TSDR & RTC_DR_RESERVED_MASK);
 
 
  /* Fill the Time structure fields with the read parameters */
 
  sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TR_HT | RTC_TR_HU)) >> 16);
 
  sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TR_MNT | RTC_TR_MNU)) >> 8);
 
  sTimeStamp->Seconds = (uint8_t)(tmptime & (RTC_TR_ST | RTC_TR_SU));
 
  sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TR_PM)) >> 16);
 
  sTimeStamp->SubSeconds = (uint32_t) hrtc->Instance->TSSSR;
 
 
  /* Fill the Date structure fields with the read parameters */
 
  sTimeStampDate->Year = 0;
 
  sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_DR_MT | RTC_DR_MU)) >> 8);
 
  sTimeStampDate->Date = (uint8_t)(tmpdate & (RTC_DR_DT | RTC_DR_DU));
 
  sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_DR_WDU)) >> 13);
 
 
  /* Check the input parameters format */
 
  if(Format == FORMAT_BIN)
 
  {
 
    /* Convert the TimeStamp structure parameters to Binary format */
 
    sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours);
 
    sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes);
 
    sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds);
 
 
    /* Convert the DateTimeStamp structure parameters to Binary format */
 
    sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month);
 
    sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date);
 
    sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay);
 
  }
 
 
  /* Clear the TIMESTAMP Flag */
 
  __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Sets Tamper
 
  * @note   By calling this API we disable the tamper interrupt for all tampers. 
 
  * @param  hrtc: RTC handle
 
  * @param  sTamper: Pointer to Tamper Structure.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TAMPER(sTamper->Tamper));
 
  assert_param(IS_TAMPER_TRIGGER(sTamper->Trigger));
 
  assert_param(IS_TAMPER_FILTER(sTamper->Filter));
 
  assert_param(IS_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency));
 
  assert_param(IS_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration));
 
  assert_param(IS_TAMPER_PULLUP_STATE(sTamper->TamperPullUp));
 
  assert_param(IS_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  if(sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE)
 
  {
 
    sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1);
 
  }
 
 
  tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->Filter |\
 
            (uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration |\
 
            (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection);
 
 
  hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAFCR_TAMPTS |\
 
                                       (uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH |\
 
                                       (uint32_t)RTC_TAFCR_TAMPPUDIS | (uint32_t)RTC_TAFCR_TAMPIE);
 
 
  hrtc->Instance->TAFCR |= tmpreg;
 
  
 
  hrtc->State = HAL_RTC_STATE_READY; 
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Sets Tamper with interrupt.
 
  * @note   By calling this API we force the tamper interrupt for all tampers.
 
  * @param  hrtc: RTC handle
 
  * @param  sTamper: Pointer to RTC Tamper.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper)
 
{
 
  uint32_t tmpreg = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TAMPER(sTamper->Tamper)); 
 
  assert_param(IS_TAMPER_TRIGGER(sTamper->Trigger));
 
  assert_param(IS_TAMPER_FILTER(sTamper->Filter));
 
  assert_param(IS_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency));
 
  assert_param(IS_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration));
 
  assert_param(IS_TAMPER_PULLUP_STATE(sTamper->TamperPullUp));
 
  assert_param(IS_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Configure the tamper trigger */
 
  if(sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE)
 
  {
 
    sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1);
 
  }
 
 
  tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->Filter |\
 
            (uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration |\
 
            (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection);
 
 
  hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAFCR_TAMPTS |\
 
                                       (uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH |\
 
                                       (uint32_t)RTC_TAFCR_TAMPPUDIS);
 
 
  hrtc->Instance->TAFCR |= tmpreg;
 
 
  /* Configure the Tamper Interrupt in the RTC_TAFCR */
 
  hrtc->Instance->TAFCR |= (uint32_t)RTC_TAFCR_TAMPIE;
 
 
  /* RTC Tamper Interrupt Configuration: EXTI configuration */
 
  __HAL_RTC_EXTI_ENABLE_IT(RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT);
 
 
  EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT;
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deactivates Tamper.
 
  * @param  hrtc: RTC handle
 
  * @param  Tamper: Selected tamper pin.
 
  *          This parameter can be any combination of RTC_TAMPER_1, RTC_TAMPER_2 and RTC_TAMPER_3.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper)
 
{
 
  assert_param(IS_TAMPER(Tamper));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the selected Tamper pin */
 
  hrtc->Instance->TAFCR &= (uint32_t)~Tamper;
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles TimeStamp interrupt request.
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc)
 
{  
 
  if(__HAL_RTC_TIMESTAMP_GET_IT(hrtc, RTC_IT_TS))
 
  {
 
    /* Get the status of the Interrupt */
 
    if((uint32_t)(hrtc->Instance->CR & RTC_IT_TS) != (uint32_t)RESET)
 
    {
 
      /* TIMESTAMP callback */ 
 
      HAL_RTCEx_TimeStampEventCallback(hrtc);
 
  
 
      /* Clear the TIMESTAMP interrupt pending bit */
 
      __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc,RTC_FLAG_TSF);
 
    }
 
  }
 
 
  /* Get the status of the Interrupt */
 
  if(__HAL_RTC_TAMPER_GET_IT(hrtc,RTC_IT_TAMP1))
 
  {
 
    /* Get the TAMPER Interrupt enable bit and pending bit */
 
    if(((hrtc->Instance->TAFCR & (RTC_TAFCR_TAMPIE))) != (uint32_t)RESET)
 
    {
 
      /* Tamper callback */ 
 
      HAL_RTCEx_Tamper1EventCallback(hrtc);
 
  
 
      /* Clear the Tamper interrupt pending bit */
 
      __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F);
 
    }
 
  }
 
 
  /* Get the status of the Interrupt */
 
  if(__HAL_RTC_TAMPER_GET_IT(hrtc, RTC_IT_TAMP2))
 
  {
 
    /* Get the TAMPER Interrupt enable bit and pending bit */
 
    if(((hrtc->Instance->TAFCR & RTC_TAFCR_TAMPIE)) != (uint32_t)RESET)
 
    {
 
      /* Tamper callback */ 
 
      HAL_RTCEx_Tamper2EventCallback(hrtc);
 
  
 
      /* Clear the Tamper interrupt pending bit */
 
      __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F);
 
    }
 
  }
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
  /* Get the status of the Interrupt */
 
  if(__HAL_RTC_TAMPER_GET_IT(hrtc, RTC_IT_TAMP3))
 
  {
 
    /* Get the TAMPER Interrupt enable bit and pending bit */
 
    if(((hrtc->Instance->TAFCR & RTC_TAFCR_TAMPIE)) != (uint32_t)RESET)
 
    {
 
      /* Tamper callback */
 
      HAL_RTCEx_Tamper3EventCallback(hrtc);
 
 
      /* Clear the Tamper interrupt pending bit */
 
      __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F);
 
    }
 
  }
 
#endif
 
 
  /* Clear the EXTI's Flag for RTC TimeStamp and Tamper */
 
  __HAL_RTC_EXTI_CLEAR_FLAG(RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
}
 
 
/**
 
  * @brief  TimeStamp callback. 
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTCEx_TimeStampEventCallback could be implemented in the user file
 
  */
 
}
 
 
/**
 
  * @brief  Tamper 1 callback. 
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTCEx_Tamper1EventCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Tamper 2 callback. 
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTCEx_Tamper2EventCallback could be implemented in the user file
 
   */
 
}
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  Tamper 3 callback. 
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
__weak void HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTCEx_Tamper3EventCallback could be implemented in the user file
 
   */
 
}
 
#endif
 
 
/**
 
  * @brief  This function handles TimeStamp polling request.
 
  * @param  hrtc: RTC handle
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Get Timeout value */
 
  tickstart = HAL_GetTick();
 
 
  while(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) == RESET)
 
  {
 
    if(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSOVF) != RESET)
 
    {
 
      /* Clear the TIMESTAMP OverRun Flag */
 
      __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF);
 
 
      /* Change TIMESTAMP state */
 
      hrtc->State = HAL_RTC_STATE_ERROR;
 
 
      return HAL_ERROR;
 
    }
 
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles Tamper1 Polling.
 
  * @param  hrtc: RTC handle
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0; 
 
 
  /* Get Timeout value */
 
  tickstart = HAL_GetTick();
 
 
  /* Get the status of the Interrupt */
 
  while(__HAL_RTC_TAMPER_GET_FLAG(hrtc,RTC_FLAG_TAMP1F)== RESET)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  /* Clear the Tamper Flag */
 
  __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles Tamper2 Polling.
 
  * @param  hrtc: RTC handle
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0; 
 
 
  /* Get Timeout value */
 
  tickstart = HAL_GetTick();
 
 
  /* Get the status of the Interrupt */
 
  while(__HAL_RTC_TAMPER_GET_FLAG(hrtc,RTC_FLAG_TAMP2F) == RESET)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  /* Clear the Tamper Flag */
 
  __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP2F);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  return HAL_OK;
 
}
 
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/**
 
  * @brief  This function handles Tamper3 Polling.
 
  * @param  hrtc: RTC handle
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_PollForTamper3Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0; 
 
 
  /* Get Timeout value */
 
  tickstart = HAL_GetTick();
 
 
  /* Get the status of the Interrupt */
 
  while(__HAL_RTC_TAMPER_GET_FLAG(hrtc,RTC_FLAG_TAMP3F) == RESET)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  /* Clear the Tamper Flag */
 
  __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP3F);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  return HAL_OK;
 
}
 
#endif
 
 
/**
 
  * @}
 
  */
 
  
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
 
/** @defgroup RTCEx_Exported_Functions_Group2 RTC Wake-up functions
 
 *  @brief   RTC Wake-up functions
 
 *
 
@verbatim   
 
 ===============================================================================
 
                        ##### RTC Wake-up functions #####
 
 ===============================================================================  
 
 
 
 [..] This section provide functions allowing to configure Wake-up feature
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Sets wake up timer. 
 
  * @param  hrtc: RTC handle
 
  * @param  WakeUpCounter: Wake up counter
 
  * @param  WakeUpClock: Wake up clock  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_WAKEUP_CLOCK(WakeUpClock));
 
  assert_param(IS_WAKEUP_COUNTER(WakeUpCounter));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
 
     
 
  tickstart = HAL_GetTick();
 
 
  /* Wait till RTC WUTWF flag is set and if Time out is reached exit */
 
  while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    {
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
      hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hrtc);
 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
 
  /* Clear the Wakeup Timer clock source bits in CR register */
 
  hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL;
 
 
  /* Configure the clock source */
 
  hrtc->Instance->CR |= (uint32_t)WakeUpClock;
 
 
  /* Configure the Wakeup Timer counter */
 
  hrtc->Instance->WUTR = (uint32_t)WakeUpCounter;
 
 
   /* Enable the Wakeup Timer */
 
  __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc);
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Sets wake up timer with interrupt
 
  * @param  hrtc: RTC handle
 
  * @param  WakeUpCounter: wake up counter
 
  * @param  WakeUpClock: wake up clock  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_WAKEUP_CLOCK(WakeUpClock));
 
  assert_param(IS_WAKEUP_COUNTER(WakeUpCounter));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
 
 
  tickstart = HAL_GetTick();
 
 
  /* Wait till RTC WUTWF flag is set and if Time out is reached exit */
 
  while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    {
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
      hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hrtc);
 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
 
  /* Configure the Wakeup Timer counter */
 
  hrtc->Instance->WUTR = (uint32_t)WakeUpCounter;
 
 
  /* Clear the Wakeup Timer clock source bits in CR register */
 
  hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL;
 
 
  /* Configure the clock source */
 
  hrtc->Instance->CR |= (uint32_t)WakeUpClock;
 
 
  /* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */
 
  __HAL_RTC_EXTI_ENABLE_IT(RTC_EXTI_LINE_WAKEUPTIMER_EVENT);
 
 
  EXTI->RTSR |= RTC_EXTI_LINE_WAKEUPTIMER_EVENT;
 
 
  /* Configure the Interrupt in the RTC_CR register */
 
  __HAL_RTC_WAKEUPTIMER_ENABLE_IT(hrtc,RTC_IT_WUT);
 
 
  /* Enable the Wakeup Timer */
 
  __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc);
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deactivates wake up timer counter.
 
  * @param  hrtc: RTC handle 
 
  * @retval HAL status
 
  */
 
uint32_t HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Disable the Wakeup Timer */
 
  __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
 
 
  /* In case of interrupt mode is used, the interrupt source must disabled */
 
  __HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc,RTC_IT_WUT);
 
 
  tickstart = HAL_GetTick();
 
  
 
  /* Wait till RTC WUTWF flag is set and if Time out is reached exit */
 
  while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET)
 
  {
 
    if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
    {
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
      hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hrtc);
 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Gets wake up timer counter.
 
  * @param  hrtc: RTC handle 
 
  * @retval Counter value
 
  */
 
uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc)
 
{
 
  /* Get the counter value */
 
  return ((uint32_t)(hrtc->Instance->WUTR & RTC_WUTR_WUT));
 
}
 
 
/**
 
  * @brief  This function handles Wake Up Timer interrupt request.
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc)
 
{
 
  if(__HAL_RTC_WAKEUPTIMER_GET_IT(hrtc, RTC_IT_WUT))
 
  {
 
    /* Get the status of the Interrupt */
 
    if((uint32_t)(hrtc->Instance->CR & RTC_IT_WUT) != (uint32_t)RESET)
 
    {
 
      /* WAKEUPTIMER callback */
 
      HAL_RTCEx_WakeUpTimerEventCallback(hrtc);
 
 
      /* Clear the WAKEUPTIMER interrupt pending bit */
 
      __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF);
 
    }
 
  }
 
 
  /* Clear the EXTI's line Flag for RTC WakeUpTimer */
 
  __HAL_RTC_EXTI_CLEAR_FLAG(RTC_EXTI_LINE_WAKEUPTIMER_EVENT);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
}
 
 
/**
 
  * @brief  Wake Up Timer callback.
 
  * @param  hrtc: RTC handle
 
  * @retval None
 
  */
 
__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_RTCEx_WakeUpTimerEventCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  This function handles Wake Up Timer Polling.
 
  * @param  hrtc: RTC handle
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Get Timeout value */
 
  tickstart = HAL_GetTick();
 
 
  while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) == RESET)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
      
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  /* Clear the WAKEUPTIMER Flag */
 
  __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
#endif /* defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) */
 
 
/** @defgroup RTCEx_Exported_Functions_Group3 Extension Peripheral Control functions 
 
 *  @brief   Extension Peripheral Control functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
              ##### Extension Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides functions allowing to
 
      (+) Writes a data in a specified RTC Backup data register
 
      (+) Read a data in a specified RTC Backup data register
 
      (+) Sets the Coarse calibration parameters.
 
      (+) Deactivates the Coarse calibration parameters
 
      (+) Sets the Smooth calibration parameters.
 
      (+) Configures the Synchronization Shift Control Settings.
 
      (+) Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
 
      (+) Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
 
      (+) Enables the RTC reference clock detection.
 
      (+) Disable the RTC reference clock detection.
 
      (+) Enables the Bypass Shadow feature.
 
      (+) Disables the Bypass Shadow feature.
 
 
@endverbatim
 
  * @{
 
  */
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)
 
/**
 
  * @brief  Writes a data in a specified RTC Backup data register.
 
  * @param  hrtc: RTC handle 
 
  * @param  BackupRegister: RTC Backup data Register number.
 
  *          This parameter can be: RTC_BKP_DRx where x can be from 0 to 4 to 
 
  *                                 specify the register.
 
  * @param  Data: Data to be written in the specified RTC Backup data register.                     
 
  * @retval None
 
  */
 
void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data)
 
{
 
  uint32_t tmp = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_BKP(BackupRegister));
 
  
 
  tmp = (uint32_t)&(hrtc->Instance->BKP0R);
 
  tmp += (BackupRegister * 4);
 
 
  /* Write the specified register */
 
  *(__IO uint32_t *)tmp = (uint32_t)Data;
 
}
 
 
/**
 
  * @brief  Reads data from the specified RTC Backup data Register.
 
  * @param  hrtc: RTC handle 
 
  * @param  BackupRegister: RTC Backup data Register number.
 
  *          This parameter can be: RTC_BKP_DRx where x can be from 0 to 4 to 
 
  *                                 specify the register.                   
 
  * @retval Read value
 
  */
 
uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister)
 
{
 
  uint32_t tmp = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_BKP(BackupRegister));
 
 
  tmp = (uint32_t)&(hrtc->Instance->BKP0R);
 
  tmp += (BackupRegister * 4);
 
 
  /* Read the specified register */
 
  return (*(__IO uint32_t *)tmp);
 
}
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
 
/**
 
  * @brief  Sets the Smooth calibration parameters.
 
  * @param  hrtc: RTC handle  
 
  * @param  SmoothCalibPeriod: Select the Smooth Calibration Period.
 
  *          This parameter can be can be one of the following values :
 
  *             @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration periode is 32s.
 
  *             @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration periode is 16s.
 
  *             @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibartion periode is 8s.
 
  * @param  SmoothCalibPlusPulses: Select to Set or reset the CALP bit.
 
  *          This parameter can be one of the following values:
 
  *             @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK puls every 2*11 pulses.
 
  *             @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added.
 
  * @param  SmouthCalibMinusPulsesValue: Select the value of CALM[8:0] bits.
 
  *          This parameter can be one any value from 0 to 0x000001FF.
 
  * @note   To deactivate the smooth calibration, the field SmoothCalibPlusPulses 
 
  *         must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field 
 
  *         SmouthCalibMinusPulsesValue mut be equal to 0.  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef* hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod));
 
  assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses));
 
  assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmouthCalibMinusPulsesValue));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* check if a calibration is pending*/
 
  if((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET)
 
  {
 
    tickstart = HAL_GetTick();
 
 
    /* check if a calibration is pending*/
 
    while((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET)
 
    {
 
      if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
      {
 
        /* Enable the write protection for RTC registers */
 
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
        /* Change RTC state */
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hrtc);
 
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
 
  /* Configure the Smooth calibration settings */
 
  hrtc->Instance->CALR = (uint32_t)((uint32_t)SmoothCalibPeriod | (uint32_t)SmoothCalibPlusPulses | (uint32_t)SmouthCalibMinusPulsesValue);
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configures the Synchronization Shift Control Settings.
 
  * @note   When REFCKON is set, firmware must not write to Shift control register. 
 
  * @param  hrtc: RTC handle    
 
  * @param  ShiftAdd1S: Select to add or not 1 second to the time calendar.
 
  *          This parameter can be one of the following values :
 
  *             @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar. 
 
  *             @arg RTC_SHIFTADD1S_RESET: No effect.
 
  * @param  ShiftSubFS: Select the number of Second Fractions to substitute.
 
  *          This parameter can be one any value from 0 to 0x7FFF.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef* hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS)
 
{
 
  uint32_t tickstart = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S));
 
  assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
    tickstart = HAL_GetTick();
 
 
    /* Wait until the shift is completed*/
 
    while((hrtc->Instance->ISR & RTC_ISR_SHPF) != RESET)
 
    {
 
      if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
 
      {
 
        /* Enable the write protection for RTC registers */
 
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
 
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hrtc);
 
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
 
    /* Check if the reference clock detection is disabled */
 
    if((hrtc->Instance->CR & RTC_CR_REFCKON) == RESET)
 
    {
 
      /* Configure the Shift settings */
 
      hrtc->Instance->SHIFTR = (uint32_t)(uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S);
 
 
      /* If  RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
 
      if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
 
      {
 
        if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
 
        {
 
          /* Enable the write protection for RTC registers */
 
          __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
          hrtc->State = HAL_RTC_STATE_ERROR;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hrtc);
 
 
          return HAL_ERROR;
 
        }
 
      }
 
    }
 
    else
 
    {
 
      /* Enable the write protection for RTC registers */
 
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
      /* Change RTC state */
 
      hrtc->State = HAL_RTC_STATE_ERROR;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hrtc);
 
 
      return HAL_ERROR;
 
    }
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
 
  * @param  hrtc: RTC handle
 
  * @param  CalibOutput : Select the Calibration output Selection .
 
  *          This parameter can be one of the following values:
 
  *             @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz. 
 
  *             @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef* hrtc, uint32_t CalibOutput)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput));
 
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Clear flags before config */
 
  hrtc->Instance->CR &= (uint32_t)~RTC_CR_COSEL;
 
 
  /* Configure the RTC_CR register */
 
  hrtc->Instance->CR |= (uint32_t)CalibOutput;
 
 
  __HAL_RTC_CALIBRATION_OUTPUT_ENABLE(hrtc);
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
 
  * @param  hrtc: RTC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef* hrtc)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  __HAL_RTC_CALIBRATION_OUTPUT_DISABLE(hrtc);
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables the RTC reference clock detection.
 
  * @param  hrtc: RTC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef* hrtc)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Set Initialization mode */
 
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
 
  {
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
    /* Set RTC state*/
 
    hrtc->State = HAL_RTC_STATE_ERROR;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hrtc);
 
 
    return HAL_ERROR;
 
  }
 
  else
 
  {
 
    __HAL_RTC_CLOCKREF_DETECTION_ENABLE(hrtc);
 
 
    /* Exit Initialization mode */
 
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
 
  }
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
   /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Disable the RTC reference clock detection.
 
  * @param  hrtc: RTC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef* hrtc)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Set Initialization mode */
 
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
 
  {
 
    /* Enable the write protection for RTC registers */
 
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
    /* Set RTC state*/
 
    hrtc->State = HAL_RTC_STATE_ERROR;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hrtc);
 
 
    return HAL_ERROR;
 
  }
 
  else
 
  {
 
    __HAL_RTC_CLOCKREF_DETECTION_DISABLE(hrtc);
 
 
    /* Exit Initialization mode */
 
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
 
  }
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables the Bypass Shadow feature.
 
  * @param  hrtc: RTC handle
 
  * @note   When the Bypass Shadow is enabled the calendar value are taken 
 
  *         directly from the Calendar counter.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef* hrtc)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Set the BYPSHAD bit */
 
  hrtc->Instance->CR |= (uint8_t)RTC_CR_BYPSHAD;
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Disables the Bypass Shadow feature.
 
  * @param  hrtc: RTC handle
 
  * @note   When the Bypass Shadow is enabled the calendar value are taken
 
  *         directly from the Calendar counter.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef* hrtc)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hrtc);
 
 
  hrtc->State = HAL_RTC_STATE_BUSY;
 
 
  /* Disable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 
 
  /* Reset the BYPSHAD bit */
 
  hrtc->Instance->CR &= (uint8_t)~RTC_CR_BYPSHAD;
 
 
  /* Enable the write protection for RTC registers */
 
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
 
 
  /* Change RTC state */
 
  hrtc->State = HAL_RTC_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hrtc);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_RTC_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_smartcard.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   SMARTCARD HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the SMARTCARD peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral State and Errors functions
 
  *           + Peripheral Control functions
 
  *
 
  @verbatim       
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    The SMARTCARD HAL driver can be used as follows:
 
    
 
    (#) Declare a SMARTCARD_HandleTypeDef handle structure.
 
    (#) Initialize the SMARTCARD low level resources by implementing the HAL_SMARTCARD_MspInit ()API:
 
        (++) Enable the USARTx interface clock.
 
        (++) SMARTCARD pins configuration:
 
            (+++) Enable the clock for the SMARTCARD GPIOs.
 
            (+++) Configure these SMARTCARD pins as alternate function pull-up.
 
        (++) NVIC configuration if you need to use interrupt process (HAL_SMARTCARD_Transmit_IT()
 
             and HAL_SMARTCARD_Receive_IT() APIs):
 
            (+++) Configure the USARTx interrupt priority.
 
            (+++) Enable the NVIC USART IRQ handle.
 
        (++) DMA Configuration if you need to use DMA process (HAL_SMARTCARD_Transmit_DMA()
 
             and HAL_SMARTCARD_Receive_DMA() APIs):
 
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
 
            (+++) Enable the DMAx interface clock.
 
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.                
 
            (+++) Configure the DMA Tx/Rx channel.
 
            (+++) Associate the initialized DMA handle to the SMARTCARD DMA Tx/Rx handle.
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
 
 
    (#) Program the Baud Rate, Parity, Mode(Receiver/Transmitter), clock enabling/disabling and accordingly,
 
        the clock parameters (parity, phase, last bit), prescaler value, guard time and NACK on transmission
 
        error enabling or disabling in the hsmartcard Init structure.
 
        
 
    (#) If required, program SMARTCARD advanced features (TX/RX pins swap, TimeOut, auto-retry counter,...)
 
        in the hsmartcard AdvancedInit structure.
 
 
    (#) Initialize the SMARTCARD associated USART registers by calling the HAL_SMARTCARD_Init() API:                                 
 
        (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) by 
 
             calling the customed HAL_SMARTCARD_MspInit() API.
 
    
 
        -@@- The specific SMARTCARD interrupts (Transmission complete interrupt, 
 
             RXNE interrupt and Error Interrupts) will be managed using the macros
 
             __HAL_SMARTCARD_ENABLE_IT() and __HAL_SMARTCARD_DISABLE_IT() inside the transmit and receive process.
 
 
    (#) Three operation modes are available within this driver :
 
 
 
     *** Polling mode IO operation ***
 
     =================================
 
     [..]    
 
       (+) Send an amount of data in blocking mode using HAL_SMARTCARD_Transmit() 
 
       (+) Receive an amount of data in blocking mode using HAL_SMARTCARD_Receive()
 
       
 
     *** Interrupt mode IO operation ***    
 
     ===================================
 
     [..]    
 
       (+) Send an amount of data in non blocking mode using HAL_SMARTCARD_Transmit_IT() 
 
       (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode using HAL_SMARTCARD_Receive_IT() 
 
       (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback
 
 
     *** DMA mode IO operation ***    
 
     ==============================
 
     [..] 
 
       (+) Send an amount of data in non blocking mode (DMA) using HAL_SMARTCARD_Transmit_DMA() 
 
       (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_SMARTCARD_Receive_DMA() 
 
       (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback
 
 
     *** SMARTCARD HAL driver macros list ***
 
     ========================================
 
     [..]
 
       Below the list of most used macros in SMARTCARD HAL driver.
 
       
 
       (+) __HAL_SMARTCARD_ENABLE: Enable the SMARTCARD peripheral 
 
       (+) __HAL_SMARTCARD_DISABLE: Disable the SMARTCARD peripheral     
 
       (+) __HAL_SMARTCARD_GET_FLAG : Check whether the specified SMARTCARD flag is set or not
 
       (+) __HAL_SMARTCARD_CLEAR_FLAG : Clear the specified SMARTCARD pending flag
 
       (+) __HAL_SMARTCARD_ENABLE_IT: Enable the specified SMARTCARD interrupt
 
       (+) __HAL_SMARTCARD_DISABLE_IT: Disable the specified SMARTCARD interrupt
 
      
 
     [..] 
 
       (@) You can refer to the SMARTCARD HAL driver header file for more useful macros
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup SMARTCARD SMARTCARD HAL module driver
 
  * @brief HAL SMARTCARD module driver
 
  * @{
 
  */
 
#ifdef HAL_SMARTCARD_MODULE_ENABLED
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
    
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup SMARTCARD_Private_Constants   SMARTCARD Private Constants
 
  * @{
 
  */
 
#define TEACK_REACK_TIMEOUT       1000
 
#define SMARTCARD_TXDMA_TIMEOUTVALUE      22000
 
#define SMARTCARD_TIMEOUT_VALUE           22000
 
#define USART_CR1_FIELDS      ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \
 
                                     USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8))
 
#define USART_CR2_CLK_FIELDS  ((uint32_t)(USART_CR2_CLKEN|USART_CR2_CPOL|USART_CR2_CPHA|USART_CR2_LBCL))   
 
#define USART_CR2_FIELDS      ((uint32_t)(USART_CR2_RTOEN|USART_CR2_CLK_FIELDS|USART_CR2_STOP))
 
#define USART_CR3_FIELDS      ((uint32_t)(USART_CR3_ONEBIT|USART_CR3_NACK|USART_CR3_SCARCNT))  
 
/**
 
  * @}
 
  */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @addtogroup SMARTCARD_Private_Functions   SMARTCARD Private Functions
 
  * @{
 
  */
 
static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma);
 
static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma); 
 
static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard);
 
static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
 
static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsmartcard);
 
static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsmartcard);
 
static HAL_StatusTypeDef SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard);
 
static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsmartcard);
 
static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsmartcard);
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup SMARTCARD_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  *  @brief    Initialization and Configuration functions 
 
  *
 
@verbatim    
 
===============================================================================
 
            ##### Initialization and Configuration functions #####
 
 ===============================================================================  
 
    [..]
 
  This subsection provides a set of functions allowing to initialize the USART 
 
  in Smartcard mode.
 
  [..]
 
  The Smartcard interface is designed to support asynchronous protocol Smartcards as
 
  defined in the ISO 7816-3 standard.
 
  [..]
 
  The USART can provide a clock to the smartcard through the SCLK output.
 
  In smartcard mode, SCLK is not associated to the communication but is simply derived 
 
  from the internal peripheral input clock through a 5-bit prescaler.
 
  [..]
 
  (+) For the Smartcard mode only these parameters can be configured: 
 
        (++) Baud Rate
 
        (++) Parity: parity should be enabled,
 
             Frame Length is fixed to 8 bits plus parity:
 
             the USART frame format is given in the following table:
 
   +---------------------------------------------------------------+     
 
   |    M bit  |  PCE bit  |            USART frame                |
 
   |---------------------|-----------------------------------------| 
 
   |     1     |    1      |    | SB | 8 bit data | PB | STB |     |
 
   +---------------------------------------------------------------+ 
 
   or
 
   +---------------------------------------------------------------+ 
 
   | M1M0 bits |  PCE bit  |            USART frame                |
 
   |-----------------------|---------------------------------------|
 
   |     01    |    1      |    | SB | 8 bit data | PB | STB |     |
 
   +---------------------------------------------------------------+                    
 
 
        (++) Receiver/transmitter modes
 
        (++) Synchronous mode (and if enabled, phase, polarity and last bit parameters)
 
        (++) Prescaler value
 
        (++) Guard bit time 
 
        (++) NACK enabling or disabling on transmission error               
 
 
      (+) The following advanced features can be configured as well:
 
        (++) TX and/or RX pin level inversion
 
        (++) data logical level inversion
 
        (++) RX and TX pins swap
 
        (++) RX overrun detection disabling
 
        (++) DMA disabling on RX error
 
        (++) MSB first on communication line
 
        (++) Time out enabling (and if activated, timeout value)
 
        (++) Block length
 
        (++) Auto-retry counter       
 
        
 
    [..]                                                  
 
    The HAL_SMARTCARD_Init() API follow respectively the USART (a)synchronous configuration procedures 
 
    (details for the procedures are available in reference manual).
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Initializes the SMARTCARD mode according to the specified
 
  *         parameters in the SMARTCARD_InitTypeDef and creates the associated handle .
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* Check the SMARTCARD handle allocation */
 
  if(hsmartcard == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the USART associated to the SmartCard */
 
  assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance));
 
  
 
  if(hsmartcard->State == HAL_SMARTCARD_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_SMARTCARD_MspInit(hsmartcard);
 
  }
 
  
 
  hsmartcard->State = HAL_SMARTCARD_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_SMARTCARD_DISABLE(hsmartcard);
 
  
 
  /* Set the SMARTCARD Communication parameters */
 
  if (SMARTCARD_SetConfig(hsmartcard) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  }  
 
  
 
  if (hsmartcard->AdvancedInit.AdvFeatureInit != SMARTCARD_ADVFEATURE_NO_INIT)
 
  {
 
    SMARTCARD_AdvFeatureConfig(hsmartcard);
 
  }
 
  
 
  /* In SmartCard mode, the following bits must be kept cleared: 
 
  - LINEN in the USART_CR2 register,
 
  - HDSEL and IREN  bits in the USART_CR3 register.*/
 
  hsmartcard->Instance->CR2 &= ~(USART_CR2_LINEN); 
 
  hsmartcard->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN); 
 
  
 
  /* set the USART in SMARTCARD mode */ 
 
  hsmartcard->Instance->CR3 |= USART_CR3_SCEN; 
 
      
 
  /* Enable the Peripheral */
 
  __HAL_SMARTCARD_ENABLE(hsmartcard);
 
  
 
  /* TEACK and/or REACK to check before moving hsmartcard->State to Ready */
 
  return (SMARTCARD_CheckIdleState(hsmartcard));
 
}
 
 
 
/**
 
  * @brief DeInitializes the SMARTCARD peripheral 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* Check the SMARTCARD handle allocation */
 
  if(hsmartcard == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance));
 
 
  hsmartcard->State = HAL_SMARTCARD_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_SMARTCARD_DISABLE(hsmartcard);
 
  
 
  hsmartcard->Instance->CR1 = 0x0;
 
  hsmartcard->Instance->CR2 = 0x0;
 
  hsmartcard->Instance->CR3 = 0x0;
 
  hsmartcard->Instance->RTOR = 0x0;
 
  hsmartcard->Instance->GTPR = 0x0;
 
  
 
  /* DeInit the low level hardware */
 
  HAL_SMARTCARD_MspDeInit(hsmartcard);
 
 
  hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
 
  hsmartcard->State = HAL_SMARTCARD_STATE_RESET;
 
  
 
  /* Process Unlock */
 
  __HAL_UNLOCK(hsmartcard);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief SMARTCARD MSP Init
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
 __weak void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_SMARTCARD_MspInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief SMARTCARD MSP DeInit
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
 __weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_SMARTCARD_MspDeInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMARTCARD_Exported_Functions_Group2 IO operation functions 
 
  *  @brief   SMARTCARD Transmit and Receive functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
  [..]
 
    This subsection provides a set of functions allowing to manage the SMARTCARD data transfers.
 
 
  [..]
 
    Smartcard is a single wire half duplex communication protocol. 
 
    The Smartcard interface is designed to support asynchronous protocol Smartcards as
 
    defined in the ISO 7816-3 standard. The USART should be configured as:
 
    - 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register
 
    - 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register.
 
 
    (#) There are two modes of transfer:
 
       (++) Blocking mode: The communication is performed in polling mode. 
 
            The HAL status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) No-Blocking mode: The communication is performed using Interrupts 
 
           or DMA, These API s return the HAL status.
 
           The end of the data processing will be indicated through the 
 
           dedicated SMARTCARD IRQ when using Interrupt mode or the DMA IRQ when 
 
           using DMA mode.
 
           The HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback() user callbacks 
 
           will be executed respectivelly at the end of the transmit or Receive process
 
           The HAL_SMARTCARD_ErrorCallback()user callback will be executed when a communication error is detected
 
 
    (#) Blocking mode API s are :
 
        (++) HAL_SMARTCARD_Transmit()
 
        (++) HAL_SMARTCARD_Receive() 
 
        
 
    (#) Non Blocking mode API s with Interrupt are :
 
        (++) HAL_SMARTCARD_Transmit_IT()
 
        (++) HAL_SMARTCARD_Receive_IT()
 
        (++) HAL_SMARTCARD_IRQHandler()
 
 
    (#) Non Blocking mode functions with DMA are :
 
        (++) HAL_SMARTCARD_Transmit_DMA()
 
        (++) HAL_SMARTCARD_Receive_DMA()
 
 
    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
 
        (++) HAL_SMARTCARD_TxCpltCallback()
 
        (++) HAL_SMARTCARD_RxCpltCallback()
 
        (++) HAL_SMARTCARD_ErrorCallback()
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Send an amount of data in blocking mode 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_READY) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hsmartcard);
 
    hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;    
 
    /* Check if a non-blocking receive process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX;
 
    }
 
    
 
    hsmartcard->TxXferSize = Size;
 
    hsmartcard->TxXferCount = Size;
 
    while(hsmartcard->TxXferCount > 0)
 
    {
 
      hsmartcard->TxXferCount--;      
 
      if(SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_TXE, RESET, Timeout) != HAL_OK)  
 
      { 
 
        return HAL_TIMEOUT;
 
      }        
 
      hsmartcard->Instance->TDR = (*pData++ & (uint8_t)0xFF);     
 
    }
 
    if(SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_TC, RESET, Timeout) != HAL_OK)  
 
    { 
 
      return HAL_TIMEOUT;
 
    }
 
    /* Check if a non-blocking receive Process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
    }
 
          
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmartcard);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in blocking mode 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{ 
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_READY) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX))
 
  { 
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hsmartcard);
 
    
 
    hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
 
    /* Check if a non-blocking transmit process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX;
 
    }    
 
    
 
    hsmartcard->RxXferSize = Size; 
 
    hsmartcard->RxXferCount = Size;
 
    /* Check the remain data to be received */
 
    while(hsmartcard->RxXferCount > 0)
 
    {
 
      hsmartcard->RxXferCount--;    
 
      if(SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_RXNE, RESET, Timeout) != HAL_OK)  
 
      { 
 
        return HAL_TIMEOUT;
 
      }          
 
      *pData++ = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0x00FF);              
 
    }
 
    
 
    /* Check if a non-blocking transmit Process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
    }    
 
   
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmartcard);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in interrupt mode 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size)
 
{
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_READY) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hsmartcard);
 
    
 
    hsmartcard->pTxBuffPtr = pData;
 
    hsmartcard->TxXferSize = Size;
 
    hsmartcard->TxXferCount = Size;
 
    
 
    hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
 
    /* Check if a receive process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX;
 
    }    
 
    
 
    /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmartcard);    
 
    
 
    /* Enable the SMARTCARD Transmit Data Register Empty Interrupt */
 
    __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_TXE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in interrupt mode 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size)
 
{
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_READY) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
  __HAL_LOCK(hsmartcard);
 
  
 
    hsmartcard->pRxBuffPtr = pData;
 
    hsmartcard->RxXferSize = Size;
 
    hsmartcard->RxXferCount = Size;
 
    
 
    hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; 
 
    /* Check if a transmit process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX;
 
    }    
 
    
 
    /* Enable the SMARTCARD Parity Error Interrupt */
 
    __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_PE);
 
    
 
    /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmartcard);
 
    
 
    /* Enable the SMARTCARD Data Register not empty Interrupt */
 
    __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_RXNE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in DMA mode 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size)
 
{
 
  uint32_t *tmp;
 
  
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_READY) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hsmartcard);
 
    
 
    hsmartcard->pTxBuffPtr = pData;
 
    hsmartcard->TxXferSize = Size;
 
    hsmartcard->TxXferCount = Size; 
 
  
 
    hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;  
 
    /* Check if a receive process is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX;
 
    }
 
    
 
    /* Set the SMARTCARD DMA transfer complete callback */
 
    hsmartcard->hdmatx->XferCpltCallback = SMARTCARD_DMATransmitCplt;
 
    
 
    /* Set the SMARTCARD error callback */
 
    hsmartcard->hdmatx->XferErrorCallback = SMARTCARD_DMAError;
 
 
    /* Enable the SMARTCARD transmit DMA channel */
 
    tmp = (uint32_t*)&pData;
 
    HAL_DMA_Start_IT(hsmartcard->hdmatx, *(uint32_t*)tmp, (uint32_t)&hsmartcard->Instance->TDR, Size);
 
    
 
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
 
       in the SMARTCARD associated USART CR3 register */
 
    hsmartcard->Instance->CR3 |= USART_CR3_DMAT;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmartcard);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in DMA mode 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @note   The SMARTCARD-associated USART parity is enabled (PCE = 1), 
 
  *         the received data contain the parity bit (MSB position)   
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size)
 
{
 
  uint32_t *tmp;
 
  
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_READY) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX))
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hsmartcard);
 
    
 
    hsmartcard->pRxBuffPtr = pData;
 
    hsmartcard->RxXferSize = Size;
 
 
    hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
 
    /* Check if a transmit rocess is ongoing or not */
 
    if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX) 
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX;
 
    }    
 
    
 
    /* Set the SMARTCARD DMA transfer complete callback */
 
    hsmartcard->hdmarx->XferCpltCallback = SMARTCARD_DMAReceiveCplt;
 
    
 
    /* Set the SMARTCARD DMA error callback */
 
    hsmartcard->hdmarx->XferErrorCallback = SMARTCARD_DMAError;
 
 
    /* Enable the DMA channel */
 
    tmp = (uint32_t*)&pData;
 
    HAL_DMA_Start_IT(hsmartcard->hdmarx, (uint32_t)&hsmartcard->Instance->RDR, *(uint32_t*)tmp, Size);
 
 
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
 
       in the SMARTCARD associated USART CR3 register */
 
     hsmartcard->Instance->CR3 |= USART_CR3_DMAR;
 
    
 
     /* Process Unlocked */
 
     __HAL_UNLOCK(hsmartcard);
 
     
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
    
 
/**
 
  * @brief SMARTCARD interrupt requests handling.
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* SMARTCARD parity error interrupt occurred -------------------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_PE) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_PE) != RESET))
 
  { 
 
    __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_PEF);
 
    hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_PE;
 
    /* Set the SMARTCARD state ready to be able to start again the process */
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
  
 
  /* SMARTCARD frame error interrupt occured --------------------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_FE) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_ERR) != RESET))
 
  { 
 
    __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_FEF);
 
    hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_FE;
 
    /* Set the SMARTCARD state ready to be able to start again the process */
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
  
 
  /* SMARTCARD noise error interrupt occured --------------------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_NE) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_ERR) != RESET))
 
  { 
 
    __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_NEF);
 
    hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_NE; 
 
    /* Set the SMARTCARD state ready to be able to start again the process */
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
  
 
  /* SMARTCARD Over-Run interrupt occured -----------------------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_ORE) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_ERR) != RESET))
 
  { 
 
    __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_OREF);
 
    hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_ORE; 
 
    /* Set the SMARTCARD state ready to be able to start again the process */
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
  
 
  /* SMARTCARD receiver timeout interrupt occured -----------------------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_RTO) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_RTO) != RESET))
 
  { 
 
    __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_RTOF);
 
    hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_RTO; 
 
    /* Set the SMARTCARD state ready to be able to start again the process */
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
 
  /* Call SMARTCARD Error Call back function if need be --------------------------*/
 
  if(hsmartcard->ErrorCode != HAL_SMARTCARD_ERROR_NONE)
 
  {
 
    HAL_SMARTCARD_ErrorCallback(hsmartcard);
 
  } 
 
  
 
  /* SMARTCARD in mode Receiver ---------------------------------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_RXNE) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_RXNE) != RESET))
 
  { 
 
    SMARTCARD_Receive_IT(hsmartcard);
 
    /* Clear RXNE interrupt flag */
 
    __HAL_SMARTCARD_SEND_REQ(hsmartcard, SMARTCARD_RXDATA_FLUSH_REQUEST);
 
  }
 
  
 
  /* SMARTCARD in mode Receiver, end of block interruption ------------------------*/
 
  if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_EOB) != RESET) && (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_EOB) != RESET))
 
  { 
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
    __HAL_UNLOCK(hsmartcard);   
 
    HAL_SMARTCARD_RxCpltCallback(hsmartcard);
 
    /* Clear EOBF interrupt after HAL_SMARTCARD_RxCpltCallback() call for the End of Block information
 
     * to be available during HAL_SMARTCARD_RxCpltCallback() processing */
 
    __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_EOBF);
 
  }  
 
 
  /* SMARTCARD in mode Transmitter ------------------------------------------------*/
 
 if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_TXE) != RESET) &&(__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_TXE) != RESET))
 
  {
 
    SMARTCARD_Transmit_IT(hsmartcard);
 
  } 
 
  
 
  /* SMARTCARD in mode Transmitter (transmission end) ------------------------*/
 
 if((__HAL_SMARTCARD_GET_IT(hsmartcard, SMARTCARD_IT_TC) != RESET) &&(__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, SMARTCARD_IT_TC) != RESET))
 
  {
 
    SMARTCARD_EndTransmit_IT(hsmartcard);
 
  } 
 
} 
 
 
/**
 
  * @brief Tx Transfer completed callbacks
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
 __weak void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_SMARTCARD_TxCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Rx Transfer completed callbacks
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
__weak void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_SMARTCARD_TxCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief SMARTCARD error callbacks
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
 __weak void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_SMARTCARD_ErrorCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
 
/** @defgroup SMARTCARD_Exported_Functions_Group3 Peripheral State and Errors functions 
 
  *  @brief   SMARTCARD State and Errors functions 
 
  *
 
@verbatim   
 
  ==============================================================================
 
                  ##### Peripheral State and Errors functions #####
 
  ==============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to return the State of SmartCard
 
    communication process and also return Peripheral Errors occurred during communication process
 
     (+) HAL_SMARTCARD_GetState() API can be helpful to check in run-time the state of the SMARTCARD peripheral 
 
     (+) HAL_SMARTCARD_GetError() check in run-time errors that could be occurred during 
 
         communication.     
 
     
 
     (+) SMARTCARD_SetConfig() API configures the SMARTCARD peripheral 
 
     (+) SMARTCARD_AdvFeatureConfig() API optionally configures the SMARTCARD advanced features          
 
     (+) SMARTCARD_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization                                
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief return the SMARTCARD state
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval HAL state
 
  */
 
HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  return hsmartcard->State;
 
}
 
 
/**
 
* @brief  Return the SMARTCARD error code
 
* @param  hsmartcard : pointer to a SMARTCARD_HandleTypeDef structure that contains
 
  *              the configuration information for the specified SMARTCARD.
 
* @retval SMARTCARD Error Code
 
*/
 
uint32_t HAL_SMARTCARD_GetError(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  return hsmartcard->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup SMARTCARD_Private_Functions   SMARTCARD Private Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  This function handles SMARTCARD Communication Timeout.
 
  * @param  hsmartcard: SMARTCARD handle
 
  * @param  Flag: specifies the SMARTCARD flag to check.
 
  * @param  Status: The new Flag status (SET or RESET).
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
 
{
 
  uint32_t tickstart = HAL_GetTick();
 
  
 
  /* Wait until flag is set */
 
  if(Status == RESET)
 
  {    
 
    while(__HAL_SMARTCARD_GET_FLAG(hsmartcard, Flag) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {    
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_TXE);
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_RXNE);
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_PE);
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_ERR);
 
          
 
          hsmartcard->State= HAL_SMARTCARD_STATE_TIMEOUT;
 
          
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmartcard);
 
          
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_SMARTCARD_GET_FLAG(hsmartcard, Flag) != RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {    
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_TXE);
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_RXNE);
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_PE);
 
          __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_ERR);
 
  
 
          hsmartcard->State= HAL_SMARTCARD_STATE_TIMEOUT;
 
          
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmartcard);
 
          
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief  DMA SMARTCARD transmit process complete callback. 
 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma)     
 
{
 
  SMARTCARD_HandleTypeDef* hsmartcard = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hsmartcard->TxXferCount = 0;
 
  
 
  /* Disable the DMA transfer for transmit request by resetting the DMAT bit
 
  in the SMARTCARD associated USART CR3 register */
 
  hsmartcard->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAT);
 
  
 
  /* Enable the SMARTCARD Transmit Complete Interrupt */    
 
  __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_TC);
 
}
 
 
/**
 
  * @brief  DMA SMARTCARD receive process complete callback. 
 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma)  
 
{
 
  SMARTCARD_HandleTypeDef* hsmartcard = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hsmartcard->RxXferCount = 0;
 
  
 
  /* Disable the DMA transfer for the receiver request by resetting the DMAR bit 
 
     in the SMARTCARD associated USART CR3 register */
 
  hsmartcard->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAR);
 
  
 
  /* Check if a transmit Process is ongoing or not */
 
  if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) 
 
  {
 
    hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX;
 
  }
 
  else
 
  {
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
  
 
  HAL_SMARTCARD_RxCpltCallback(hsmartcard);
 
}
 
 
/**
 
  * @brief  DMA SMARTCARD communication error callback. 
 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
 
  *               the configuration information for the specified DMA module.
 
  * @retval None
 
  */
 
static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  SMARTCARD_HandleTypeDef* hsmartcard = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hsmartcard->RxXferCount = 0;
 
  hsmartcard->TxXferCount = 0;
 
  hsmartcard->State= HAL_SMARTCARD_STATE_READY;
 
  hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_DMA;
 
  HAL_SMARTCARD_ErrorCallback(hsmartcard);
 
}
 
 
/**
 
  * @brief Send an amount of data in non blocking mode 
 
  * @param hsmartcard: SMARTCARD handle.
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_SMARTCARD_Transmit_IT()      
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX)) 
 
  {
 
 
 
    if(hsmartcard->TxXferCount == 0)
 
    {
 
      /* Disable the SMARTCARD Transmit Data Register Empty Interrupt */
 
      __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_TXE);
 
 
      /* Enable the SMARTCARD Transmit Complete Interrupt */    
 
      __HAL_SMARTCARD_ENABLE_IT(hsmartcard, SMARTCARD_IT_TC);
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {    
 
      hsmartcard->Instance->TDR = (*hsmartcard->pTxBuffPtr++ & (uint8_t)0xFF);     
 
      hsmartcard->TxXferCount--;
 
  
 
      return HAL_OK;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
 
/**
 
  * @brief  Wraps up transmission in non blocking mode.
 
  * @param  hsmartcard: pointer to a SMARTCARD_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMARTCARD module.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  /* Disable the SMARTCARD Transmit Complete Interrupt */    
 
  __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_TC);
 
  
 
  /* Check if a receive process is ongoing or not */
 
  if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) 
 
  {
 
    hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX;
 
  }
 
  else
 
  {
 
    /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_ERR);
 
    
 
    hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  }
 
  
 
  HAL_SMARTCARD_TxCpltCallback(hsmartcard);
 
  
 
  return HAL_OK;
 
}
 
 
 
/**
 
  * @brief Receive an amount of data in non blocking mode 
 
  * @param hsmartcard: SMARTCARD handle.
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_SMARTCARD_Receive_IT()      
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  if ((hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_RX) || (hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX))
 
  {
 
       
 
    *hsmartcard->pRxBuffPtr++ = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0xFF);  
 
    
 
    if(--hsmartcard->RxXferCount == 0)
 
    {
 
      __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_RXNE);
 
      
 
      /* Check if a transmit Process is ongoing or not */
 
      if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) 
 
      {
 
        hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_TX;
 
      }
 
      else
 
      {
 
        /* Disable the SMARTCARD Parity Error Interrupt */
 
        __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_PE);
 
         
 
        /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */
 
        __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_ERR);
 
        
 
        hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
      }
 
      
 
      HAL_SMARTCARD_RxCpltCallback(hsmartcard);
 
      
 
      return HAL_OK;
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}  
 
   
 
/**
 
  * @brief Configure the SMARTCARD associated USART peripheral 
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval None
 
  */
 
static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  uint32_t tmpreg                          = 0x00000000;
 
  SMARTCARD_ClockSourceTypeDef clocksource = SMARTCARD_CLOCKSOURCE_UNDEFINED;
 
  HAL_StatusTypeDef ret                    = HAL_OK;    
 
  
 
  /* Check the parameters */ 
 
  assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance));
 
  assert_param(IS_SMARTCARD_BAUDRATE(hsmartcard->Init.BaudRate)); 
 
  assert_param(IS_SMARTCARD_WORD_LENGTH(hsmartcard->Init.WordLength));  
 
  assert_param(IS_SMARTCARD_STOPBITS(hsmartcard->Init.StopBits));   
 
  assert_param(IS_SMARTCARD_PARITY(hsmartcard->Init.Parity));
 
  assert_param(IS_SMARTCARD_MODE(hsmartcard->Init.Mode));
 
  assert_param(IS_SMARTCARD_POLARITY(hsmartcard->Init.CLKPolarity));
 
  assert_param(IS_SMARTCARD_PHASE(hsmartcard->Init.CLKPhase));
 
  assert_param(IS_SMARTCARD_LASTBIT(hsmartcard->Init.CLKLastBit));    
 
  assert_param(IS_SMARTCARD_ONEBIT_SAMPLING(hsmartcard->Init.OneBitSampling));
 
  assert_param(IS_SMARTCARD_NACK(hsmartcard->Init.NACKEnable));
 
  assert_param(IS_SMARTCARD_TIMEOUT(hsmartcard->Init.TimeOutEnable));
 
  assert_param(IS_SMARTCARD_AUTORETRY_COUNT(hsmartcard->Init.AutoRetryCount)); 
 
 
  /*-------------------------- USART CR1 Configuration -----------------------*/
 
  /* In SmartCard mode, M and PCE are forced to 1 (8 bits + parity).
 
   * Oversampling is forced to 16 (OVER8 = 0).
 
   * Configure the Parity and Mode: 
 
   *  set PS bit according to hsmartcard->Init.Parity value
 
   *  set TE and RE bits according to hsmartcard->Init.Mode value */
 
  tmpreg = (uint32_t) hsmartcard->Init.Parity | hsmartcard->Init.Mode;
 
  /* in case of TX-only mode, if NACK is enabled, the USART must be able to monitor 
 
     the bidirectional line to detect a NACK signal in case of parity error. 
 
     Therefore, the receiver block must be enabled as well (RE bit must be set). */
 
  if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX)
 
   && (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLED))
 
  {
 
    tmpreg |= USART_CR1_RE;   
 
  }
 
  tmpreg |= (uint32_t) hsmartcard->Init.WordLength;
 
  MODIFY_REG(hsmartcard->Instance->CR1, USART_CR1_FIELDS, tmpreg);
 
 
  /*-------------------------- USART CR2 Configuration -----------------------*/
 
  /* Stop bits are forced to 1.5 (STOP = 11) */
 
  tmpreg = hsmartcard->Init.StopBits;
 
  /* Synchronous mode is activated by default */
 
  tmpreg |= (uint32_t) USART_CR2_CLKEN | hsmartcard->Init.CLKPolarity; 
 
  tmpreg |= (uint32_t) hsmartcard->Init.CLKPhase | hsmartcard->Init.CLKLastBit;
 
  tmpreg |= (uint32_t) hsmartcard->Init.TimeOutEnable;
 
  MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_FIELDS, tmpreg); 
 
    
 
  /*-------------------------- USART CR3 Configuration -----------------------*/    
 
  /* Configure 
 
   * - one-bit sampling method versus three samples' majority rule 
 
   *   according to hsmartcard->Init.OneBitSampling 
 
   * - NACK transmission in case of parity error according 
 
   *   to hsmartcard->Init.NACKEnable   
 
   * - autoretry counter according to hsmartcard->Init.AutoRetryCount     */
 
  tmpreg =  (uint32_t) hsmartcard->Init.OneBitSampling | hsmartcard->Init.NACKEnable;
 
  tmpreg |= ((uint32_t)hsmartcard->Init.AutoRetryCount << SMARTCARD_CR3_SCARCNT_LSB_POS);
 
  MODIFY_REG(hsmartcard->Instance-> CR3,USART_CR3_FIELDS, tmpreg);
 
  
 
  /*-------------------------- USART GTPR Configuration ----------------------*/
 
  tmpreg = (hsmartcard->Init.Prescaler | ((uint32_t)hsmartcard->Init.GuardTime << SMARTCARD_GTPR_GT_LSB_POS));
 
  MODIFY_REG(hsmartcard->Instance->GTPR, (USART_GTPR_GT|USART_GTPR_PSC), tmpreg); 
 
  
 
  /*-------------------------- USART RTOR Configuration ----------------------*/ 
 
  tmpreg = ((uint32_t)hsmartcard->Init.BlockLength << SMARTCARD_RTOR_BLEN_LSB_POS);
 
  if (hsmartcard->Init.TimeOutEnable == SMARTCARD_TIMEOUT_ENABLED)
 
  {
 
    assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue));
 
    tmpreg |=  (uint32_t) hsmartcard->Init.TimeOutValue;
 
  }
 
  MODIFY_REG(hsmartcard->Instance->RTOR, (USART_RTOR_RTO|USART_RTOR_BLEN), tmpreg);
 
  
 
  /*-------------------------- USART BRR Configuration -----------------------*/  
 
  __HAL_SMARTCARD_GETCLOCKSOURCE(hsmartcard, clocksource);
 
  switch (clocksource)
 
  {
 
    case SMARTCARD_CLOCKSOURCE_PCLK1: 
 
      hsmartcard->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK1Freq() / hsmartcard->Init.BaudRate);
 
      break;
 
    case SMARTCARD_CLOCKSOURCE_HSI: 
 
      hsmartcard->Instance->BRR = (uint16_t)(HSI_VALUE / hsmartcard->Init.BaudRate); 
 
      break; 
 
    case SMARTCARD_CLOCKSOURCE_SYSCLK:  
 
      hsmartcard->Instance->BRR = (uint16_t)(HAL_RCC_GetSysClockFreq() / hsmartcard->Init.BaudRate);
 
      break;  
 
    case SMARTCARD_CLOCKSOURCE_LSE:                
 
      hsmartcard->Instance->BRR = (uint16_t)(LSE_VALUE / hsmartcard->Init.BaudRate); 
 
      break;
 
    case SMARTCARD_CLOCKSOURCE_UNDEFINED: 
 
    default:               
 
      ret = HAL_ERROR; 
 
      break;             
 
  }
 
  
 
  return ret;  
 
}
 
  
 
/**
 
  * @brief Check the SMARTCARD Idle State
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
  
 
  /* Initialize the SMARTCARD ErrorCode */
 
  hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE;
 
 
  /* Check if the Transmitter is enabled */
 
  if((hsmartcard->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
 
  {
 
    /* Wait until TEACK flag is set */
 
    if(SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, USART_ISR_TEACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)  
 
    { 
 
      return HAL_TIMEOUT;
 
    } 
 
  }
 
  /* Check if the Receiver is enabled */
 
  if((hsmartcard->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
 
  {
 
    /* Wait until REACK flag is set */
 
    if(SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, USART_ISR_REACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)  
 
    { 
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  
 
  /* Initialize the SMARTCARD state*/
 
  hsmartcard->State= HAL_SMARTCARD_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hsmartcard);
 
  
 
  return HAL_OK;
 
}
 
    
 
/**
 
  * @brief Configure the SMARTCARD associated USART peripheral advanced feautures 
 
  * @param hsmartcard: SMARTCARD handle  
 
  * @retval None
 
  */
 
static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsmartcard)
 
{  
 
  /* Check whether the set of advanced features to configure is properly set */ 
 
  assert_param(IS_SMARTCARD_ADVFEATURE_INIT(hsmartcard->AdvancedInit.AdvFeatureInit));
 
  
 
  /* if required, configure TX pin active level inversion */
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_TXINVERT_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_ADVFEATURE_TXINV(hsmartcard->AdvancedInit.TxPinLevelInvert));
 
    MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_TXINV, hsmartcard->AdvancedInit.TxPinLevelInvert);
 
  }
 
  
 
  /* if required, configure RX pin active level inversion */
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXINVERT_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_ADVFEATURE_RXINV(hsmartcard->AdvancedInit.RxPinLevelInvert));
 
    MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_RXINV, hsmartcard->AdvancedInit.RxPinLevelInvert);
 
  }
 
  
 
  /* if required, configure data inversion */
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DATAINVERT_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_ADVFEATURE_DATAINV(hsmartcard->AdvancedInit.DataInvert));
 
    MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_DATAINV, hsmartcard->AdvancedInit.DataInvert);
 
  }
 
  
 
  /* if required, configure RX/TX pins swap */
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_SWAP_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_ADVFEATURE_SWAP(hsmartcard->AdvancedInit.Swap));
 
    MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_SWAP, hsmartcard->AdvancedInit.Swap);
 
  }
 
  
 
  /* if required, configure RX overrun detection disabling */
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXOVERRUNDISABLE_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_OVERRUN(hsmartcard->AdvancedInit.OverrunDisable));  
 
    MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_OVRDIS, hsmartcard->AdvancedInit.OverrunDisable);
 
  }
 
  
 
  /* if required, configure DMA disabling on reception error */
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DMADISABLEONERROR_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_ADVFEATURE_DMAONRXERROR(hsmartcard->AdvancedInit.DMADisableonRxError));   
 
    MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_DDRE, hsmartcard->AdvancedInit.DMADisableonRxError);
 
  }
 
  
 
  /* if required, configure MSB first on communication line */  
 
  if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_MSBFIRST_INIT))
 
  {
 
    assert_param(IS_SMARTCARD_ADVFEATURE_MSBFIRST(hsmartcard->AdvancedInit.MSBFirst));   
 
    MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_MSBFIRST, hsmartcard->AdvancedInit.MSBFirst);
 
  } 
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */    
 
 
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_smartcard_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   SMARTCARD HAL module driver.
 
  *
 
  *          This file provides extended firmware functions to manage the following 
 
  *          functionalities of the SmartCard.
 
  *           + Initialization and de-initialization function
 
  *           + Peripheral Control function
 
  *
 
  *           
 
  @verbatim       
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    The Extended SMARTCARD HAL driver can be used as follows:
 
 
 
    (#) After having configured the SMARTCARD basic features with HAL_SMARTCARD_Init(), 
 
        then if required, program SMARTCARD advanced features (TX/RX pins swap, TimeOut, 
 
        auto-retry counter,...) in the hsmartcard AdvancedInit structure.
 
 
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup SMARTCARDEx SMARTCARD Extended HAL module driver
 
  * @brief SMARTCARD Extended HAL module driver
 
  * @{
 
  */
 
#ifdef HAL_SMARTCARD_MODULE_ENABLED
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
    
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup SMARTCARDEx_Exported_Functions SMARTCARDEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup SMARTCARDEx_Exported_Functions_Group1 Extended Peripheral Control functions
 
  * @brief    Extended control functions
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to initialize the SMARTCARD.
 
     (+) HAL_SMARTCARDEx_BlockLength_Config() API allows to configure the Block Length on the fly 
 
     (+) HAL_SMARTCARDEx_TimeOut_Config() API allows to configure the receiver timeout value on the fly  
 
     (+) HAL_SMARTCARDEx_EnableReceiverTimeOut() API enables the receiver timeout feature
 
     (+) HAL_SMARTCARDEx_DisableReceiverTimeOut() API disables the receiver timeout feature                      
 
               
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Update on the fly the SMARTCARD block length in RTOR register
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param BlockLength: SMARTCARD block length (8-bit long at most)  
 
  * @retval None
 
  */
 
void HAL_SMARTCARDEx_BlockLength_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t BlockLength)
 
{
 
  MODIFY_REG(hsmartcard->Instance->RTOR, USART_RTOR_BLEN, ((uint32_t)BlockLength << SMARTCARD_RTOR_BLEN_LSB_POS));
 
}
 
 
/**
 
  * @brief Update on the fly the receiver timeout value in RTOR register
 
  * @param hsmartcard: SMARTCARD handle
 
  * @param TimeOutValue: receiver timeout value in number of baud blocks. The timeout
 
  *                     value must be less or equal to 0x0FFFFFFFF. 
 
  * @retval None
 
  */
 
void HAL_SMARTCARDEx_TimeOut_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t TimeOutValue)
 
{
 
  assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue));
 
  MODIFY_REG(hsmartcard->Instance->RTOR, USART_RTOR_RTO, TimeOutValue); 
 
}
 
 
/**
 
  * @brief Enable the SMARTCARD receiver timeout feature
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARDEx_EnableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
 
 
  /* Process Locked */
 
  __HAL_LOCK(hsmartcard);
 
  
 
  hsmartcard->State = HAL_SMARTCARD_STATE_BUSY;
 
  
 
  /* Set the USART RTOEN bit */
 
  hsmartcard->Instance->CR2 |= USART_CR2_RTOEN;
 
  
 
  hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hsmartcard);
 
  
 
  return HAL_OK;   
 
}
 
 
/**
 
  * @brief Disable the SMARTCARD receiver timeout feature
 
  * @param hsmartcard: SMARTCARD handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMARTCARDEx_DisableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard)
 
{
 
 
 
  /* Process Locked */
 
  __HAL_LOCK(hsmartcard);
 
  
 
  hsmartcard->State = HAL_SMARTCARD_STATE_BUSY;
 
  
 
  /* Clear the USART RTOEN bit */
 
  hsmartcard->Instance->CR2 &= ~(USART_CR2_RTOEN);
 
  
 
  hsmartcard->State = HAL_SMARTCARD_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hsmartcard);
 
  
 
  return HAL_OK;   
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */  
 
 
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smbus.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_smbus.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   SMBUS HAL module driver.
 
  *    
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the System Management Bus (SMBus) peripheral,
 
  *          based on I2C principales of operation :
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral State and Errors functions
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                        ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
    The SMBUS HAL driver can be used as follows:
 
    
 
    (#) Declare a SMBUS_HandleTypeDef handle structure, for example:
 
        SMBUS_HandleTypeDef  hsmbus; 
 
 
    (#)Initialize the SMBUS low level resources by implement the HAL_SMBUS_MspInit ()API:
 
        (##) Enable the SMBUSx interface clock
 
        (##) SMBUS pins configuration
 
            (+++) Enable the clock for the SMBUS GPIOs
 
            (+++) Configure SMBUS pins as alternate function open-drain
 
        (##) NVIC configuration if you need to use interrupt process
 
            (+++) Configure the SMBUSx interrupt priority 
 
            (+++) Enable the NVIC SMBUS IRQ Channel
 
 
    (#) Configure the Communication Clock Timing, Bus Timeout, Own Address1, Master Adressing Mode,
 
        Dual Addressing mode, Own Address2, Own Address2 Mask, General call, Nostretch mode,
 
        Peripheral mode and Packet Error Check mode in the hsmbus Init structure.
 
 
    (#) Initialize the SMBUS registers by calling the HAL_SMBUS_Init() API:
 
        (++) These API s configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
 
            by calling the customed HAL_SMBUS_MspInit(&hsmbus) API.
 
 
    (#) To check if target device is ready for communication, use the function HAL_SMBUS_IsDeviceReady()
 
 
    (#) For SMBUS IO operations, only one mode of operations is available within this driver :
 
            
 
    *** Interrupt mode IO operation ***
 
    ===================================
 
    [..]
 
      (+) Transmit in master/host SMBUS mode an amount of data in non blocking mode using HAL_SMBUS_Master_Transmit_IT()
 
      (++) At transmission end of transfer HAL_SMBUS_MasterTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_MasterTxCpltCallback
 
      (+) Receive in master/host SMBUS mode an amount of data in non blocking mode using HAL_SMBUS_Master_Receive_IT()
 
      (++) At reception end of transfer HAL_SMBUS_MasterRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_MasterRxCpltCallback
 
      (+) Abort a master/host SMBUS process commnunication with Interrupt using HAL_SMBUS_Master_Abort_IT()
 
      (++) The associated previous transfer callback is called at the end of abort process
 
      (++) mean HAL_SMBUS_MasterTxCpltCallback in case of previous state was master transmit
 
      (++) mean HAL_SMBUS_MasterRxCpltCallback in case of previous state was master receive
 
      (+) Enable/disable the Address listen mode in slave/device or host/slave SMBUS mode
 
           using HAL_SMBUS_Slave_Listen_IT() HAL_SMBUS_DisableListen_IT()
 
      (++) When address slave/device SMBUS match, HAL_SMBUS_SlaveAddrCallback is executed and user can
 
           add his own code to check the Address Match Code and the transmission direction request by master/host (Write/Read).
 
      (++) At Listen mode end HAL_SMBUS_SlaveListenCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_SlaveListenCpltCallback
 
      (+) Transmit in slave/device SMBUS mode an amount of data in non blocking mode using HAL_SMBUS_Slave_Transmit_IT()
 
      (++) At transmission end of transfer HAL_SMBUS_SlaveTxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_SlaveTxCpltCallback
 
      (+) Receive in slave/device SMBUS mode an amount of data in non blocking mode using HAL_SMBUS_Slave_Receive_IT()
 
      (++) At reception end of transfer HAL_SMBUS_SlaveRxCpltCallback is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_SlaveRxCpltCallback
 
      (+) Enable/Disable the SMBUS alert mode using HAL_SMBUS_EnableAlert_IT() HAL_SMBUS_DisableAlert_IT()
 
      (++) When SMBUS Alert is generated HAL_SMBUS_ErrorCallback() is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_ErrorCallback
 
           to check the Alert Error Code using function HAL_SMBUS_GetError()
 
      (+) Get HAL state machine or error values using HAL_SMBUS_GetState() or HAL_SMBUS_GetError()
 
      (+) In case of transfer Error, HAL_SMBUS_ErrorCallback() function is executed and user can
 
           add his own code by customization of function pointer HAL_SMBUS_ErrorCallback
 
           to check the Error Code using function HAL_SMBUS_GetError()
 
 
     *** SMBUS HAL driver macros list ***
 
     ==================================
 
     [..]
 
       Below the list of most used macros in SMBUS HAL driver.
 
 
      (+) __HAL_SMBUS_ENABLE: Enable the SMBUS peripheral
 
      (+) __HAL_SMBUS_DISABLE: Disable the SMBUS peripheral
 
      (+) __HAL_SMBUS_GET_FLAG : Checks whether the specified SMBUS flag is set or not
 
      (+) __HAL_SMBUS_CLEAR_FLAG : Clears the specified SMBUS pending flag
 
      (+) __HAL_SMBUS_ENABLE_IT: Enables the specified SMBUS interrupt
 
      (+) __HAL_SMBUS_DISABLE_IT: Disables the specified SMBUS interrupt
 
 
     [..]
 
       (@) You can refer to the SMBUS HAL driver header file for more useful macros
 
 
            
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup SMBUS SMBUS HAL module driver
 
  * @brief SMBUS HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_SMBUS_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup SMBUS_Private_Define SMBUS Private Define
 
  * @{
 
  */
 
#define TIMING_CLEAR_MASK   ((uint32_t)0xF0FFFFFF)      /*<! SMBUS TIMING clear register Mask */
 
#define HAL_TIMEOUT_ADDR    ((uint32_t)10000)           /* 10 s  */
 
#define HAL_TIMEOUT_BUSY    ((uint32_t)25)              /* 25 ms */
 
#define HAL_TIMEOUT_DIR     ((uint32_t)25)              /* 25 ms */
 
#define HAL_TIMEOUT_RXNE    ((uint32_t)25)              /* 25 ms */
 
#define HAL_TIMEOUT_STOPF   ((uint32_t)25)              /* 25 ms */
 
#define HAL_TIMEOUT_TC      ((uint32_t)25)              /* 25 ms */
 
#define HAL_TIMEOUT_TCR     ((uint32_t)25)              /* 25 ms */
 
#define HAL_TIMEOUT_TXIS    ((uint32_t)25)              /* 25 ms */
 
#define MAX_NBYTE_SIZE      255
 
/**
 
  * @}
 
  */
 
  
 
/* Private macro -------------------------------------------------------------*/
 
/** @defgroup SMBUS_Private_Macros SMBUS Private Macros
 
  * @{
 
  */
 
#define __SMBUS_GET_ISR_REG(__HANDLE__) ((__HANDLE__)->Instance->ISR)
 
#define __SMBUS_CHECK_FLAG(__ISR__, __FLAG__) ((((__ISR__) & ((__FLAG__) & SMBUS_FLAG_MASK)) == ((__FLAG__) & SMBUS_FLAG_MASK)))
 
/**
 
  * @}
 
  */
 
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup SMBUS_Private_Functions SMBUS Private Functions
 
  * @{
 
  */
 
static HAL_StatusTypeDef SMBUS_WaitOnFlagUntilTimeout(SMBUS_HandleTypeDef *hsmbus, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
 
 
static HAL_StatusTypeDef SMBUS_Enable_IRQ(SMBUS_HandleTypeDef *hsmbus, uint16_t InterruptRequest);
 
static HAL_StatusTypeDef SMBUS_Disable_IRQ(SMBUS_HandleTypeDef *hsmbus, uint16_t InterruptRequest);
 
static HAL_StatusTypeDef SMBUS_Master_ISR(SMBUS_HandleTypeDef *hsmbus);
 
static HAL_StatusTypeDef SMBUS_Slave_ISR(SMBUS_HandleTypeDef *hsmbus);
 
 
static void SMBUS_TransferConfig(SMBUS_HandleTypeDef *hsmbus,  uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request);
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup SMBUS_Exported_Functions SMBUS Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup SMBUS_Exported_Functions_Group1 Initialization and de-initialization functions
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
    [..]  This subsection provides a set of functions allowing to initialize and 
 
          de-initialiaze the SMBUSx peripheral:
 
 
      (+) User must Implement HAL_SMBUS_MspInit() function in which he configures 
 
          all related peripherals resources (CLOCK, GPIO, IT and NVIC ).
 
 
      (+) Call the function HAL_SMBUS_Init() to configure the selected device with 
 
          the selected configuration:
 
        (++) Clock Timing
 
        (++) Bus Timeout
 
        (++) Analog Filer mode
 
        (++) Own Address 1
 
        (++) Addressing mode (Master, Slave)
 
        (++) Dual Addressing mode
 
        (++) Own Address 2
 
        (++) Own Address 2 Mask
 
        (++) General call mode
 
        (++) Nostretch mode
 
        (++) Packet Error Check mode
 
        (++) Peripheral mode
 
 
 
      (+) Call the function HAL_SMBUS_DeInit() to restore the default configuration 
 
          of the selected SMBUSx periperal.       
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the SMBUS according to the specified parameters 
 
  *         in the SMBUS_InitTypeDef and create the associated handle.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Init(SMBUS_HandleTypeDef *hsmbus)
 
{ 
 
  /* Check the SMBUS handle allocation */
 
  if(hsmbus == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance));
 
  assert_param(IS_SMBUS_ANALOG_FILTER(hsmbus->Init.AnalogFilter));
 
  assert_param(IS_SMBUS_OWN_ADDRESS1(hsmbus->Init.OwnAddress1));
 
  assert_param(IS_SMBUS_ADDRESSING_MODE(hsmbus->Init.AddressingMode));
 
  assert_param(IS_SMBUS_DUAL_ADDRESS(hsmbus->Init.DualAddressMode));
 
  assert_param(IS_SMBUS_OWN_ADDRESS2(hsmbus->Init.OwnAddress2));
 
  assert_param(IS_SMBUS_OWN_ADDRESS2_MASK(hsmbus->Init.OwnAddress2Masks));
 
  assert_param(IS_SMBUS_GENERAL_CALL(hsmbus->Init.GeneralCallMode));
 
  assert_param(IS_SMBUS_NO_STRETCH(hsmbus->Init.NoStretchMode));
 
  assert_param(IS_SMBUS_PEC(hsmbus->Init.PacketErrorCheckMode));
 
  assert_param(IS_SMBUS_PERIPHERAL_MODE(hsmbus->Init.PeripheralMode));
 
 
  if(hsmbus->State == HAL_SMBUS_STATE_RESET)
 
  {
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC */
 
    HAL_SMBUS_MspInit(hsmbus);
 
  }
 
  
 
  hsmbus->State = HAL_SMBUS_STATE_BUSY;
 
  
 
  /* Disable the selected SMBUS peripheral */
 
  __HAL_SMBUS_DISABLE(hsmbus);
 
  
 
  /*---------------------------- SMBUSx TIMINGR Configuration ------------------------*/  
 
  /* Configure SMBUSx: Frequency range */
 
  hsmbus->Instance->TIMINGR = hsmbus->Init.Timing & TIMING_CLEAR_MASK;
 
  
 
  /*---------------------------- SMBUSx TIMEOUTR Configuration ------------------------*/  
 
  /* Configure SMBUSx: Bus Timeout  */
 
  hsmbus->Instance->TIMEOUTR &= ~I2C_TIMEOUTR_TIMOUTEN;
 
  hsmbus->Instance->TIMEOUTR &= ~I2C_TIMEOUTR_TEXTEN;
 
  hsmbus->Instance->TIMEOUTR = hsmbus->Init.SMBusTimeout;
 
 
  /*---------------------------- SMBUSx OAR1 Configuration -----------------------*/
 
  /* Configure SMBUSx: Own Address1 and ack own address1 mode */
 
  hsmbus->Instance->OAR1 &= ~I2C_OAR1_OA1EN;
 
  
 
  if(hsmbus->Init.OwnAddress1 != 0)
 
  {
 
    if(hsmbus->Init.AddressingMode == SMBUS_ADDRESSINGMODE_7BIT)
 
    {
 
      hsmbus->Instance->OAR1 = (I2C_OAR1_OA1EN | hsmbus->Init.OwnAddress1);
 
    }
 
    else /* SMBUS_ADDRESSINGMODE_10BIT */
 
    {
 
      hsmbus->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hsmbus->Init.OwnAddress1);
 
    }
 
  }
 
 
  /*---------------------------- SMBUSx CR2 Configuration ------------------------*/
 
  /* Configure SMBUSx: Addressing Master mode */
 
  if(hsmbus->Init.AddressingMode == SMBUS_ADDRESSINGMODE_10BIT)
 
  {
 
    hsmbus->Instance->CR2 = (I2C_CR2_ADD10);
 
  }
 
  /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process) */
 
  /* AUTOEND and NACK bit will be manage during Transfer process */
 
  hsmbus->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK);
 
  
 
  /*---------------------------- SMBUSx OAR2 Configuration -----------------------*/  
 
  /* Configure SMBUSx: Dual mode and Own Address2 */
 
  hsmbus->Instance->OAR2 = (hsmbus->Init.DualAddressMode | hsmbus->Init.OwnAddress2 | (hsmbus->Init.OwnAddress2Masks << 8));
 
 
  /*---------------------------- SMBUSx CR1 Configuration ------------------------*/
 
  /* Configure SMBUSx: Generalcall and NoStretch mode */
 
  hsmbus->Instance->CR1 = (hsmbus->Init.GeneralCallMode | hsmbus->Init.NoStretchMode | hsmbus->Init.PacketErrorCheckMode | hsmbus->Init.PeripheralMode | hsmbus->Init.AnalogFilter);
 
  
 
  /* Enable Slave Byte Control only in case of Packet Error Check is enabled and SMBUS Peripheral is set in Slave mode */
 
  if( (hsmbus->Init.PacketErrorCheckMode == SMBUS_PEC_ENABLED)
 
     && ( (hsmbus->Init.PeripheralMode == SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE) || (hsmbus->Init.PeripheralMode == SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE_ARP) ) )
 
  {
 
    hsmbus->Instance->CR1 |= I2C_CR1_SBC;
 
  }
 
 
  /* Enable the selected SMBUS peripheral */
 
  __HAL_SMBUS_ENABLE(hsmbus);
 
  
 
  hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
  hsmbus->PreviousState = HAL_SMBUS_STATE_READY;
 
  hsmbus->State = HAL_SMBUS_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the SMBUS peripheral. 
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_DeInit(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* Check the SMBUS handle allocation */
 
  if(hsmbus == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance));
 
  
 
  hsmbus->State = HAL_SMBUS_STATE_BUSY;
 
  
 
  /* Disable the SMBUS Peripheral Clock */
 
  __HAL_SMBUS_DISABLE(hsmbus);
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
 
  HAL_SMBUS_MspDeInit(hsmbus);
 
  
 
  hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
  hsmbus->PreviousState =  HAL_SMBUS_STATE_RESET;
 
  hsmbus->State = HAL_SMBUS_STATE_RESET;
 
  
 
   /* Release Lock */
 
  __HAL_UNLOCK(hsmbus);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief SMBUS MSP Init.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
 __weak void HAL_SMBUS_MspInit(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_MspInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief SMBUS MSP DeInit
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
 __weak void HAL_SMBUS_MspDeInit(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_MspDeInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SMBUS_Exported_Functions_Group2 Input and Output operation functions
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to manage the SMBUS data 
 
    transfers.
 
 
    (#) Blocking mode function to check if device is ready for usage is :
 
        (++) HAL_SMBUS_IsDeviceReady()
 
 
    (#) There is only one mode of transfer:
 
       (++) No-Blocking mode : The communication is performed using Interrupts.
 
            These functions return the status of the transfer startup.
 
            The end of the data processing will be indicated through the 
 
            dedicated SMBUS IRQ when using Interrupt mode.
 
 
    (#) No-Blocking mode functions with Interrupt are :
 
        (++) HAL_SMBUS_Master_Transmit_IT()
 
        (++) HAL_SMBUS_Master_Receive_IT()
 
        (++) HAL_SMBUS_Slave_Transmit_IT()
 
        (++) HAL_SMBUS_Slave_Receive_IT()
 
        (++) HAL_SMBUS_Slave_Listen_IT() or alias HAL_SMBUS_EnableListen_IT()
 
        (++) HAL_SMBUS_DisableListen_IT()
 
        (++) HAL_SMBUS_EnableAlert_IT()
 
        (++) HAL_SMBUS_DisableAlert_IT()
 
 
    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
 
        (++) HAL_SMBUS_MasterTxCpltCallback()
 
        (++) HAL_SMBUS_MasterRxCpltCallback()
 
        (++) HAL_SMBUS_SlaveTxCpltCallback()
 
        (++) HAL_SMBUS_SlaveRxCpltCallback()
 
        (++) HAL_SMBUS_SlaveAddrCallback() or alias HAL_SMBUS_AddrCallback()
 
        (++) HAL_SMBUS_SlaveListenCpltCallback() or alias HAL_SMBUS_ListenCpltCallback()
 
        (++) HAL_SMBUS_ErrorCallback()
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Transmit in master/host SMBUS mode an amount of data in no-blocking mode with Interrupt
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  XferOptions: Options of Transfer, value of @ref SMBUS_XferOptions_definition
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
 
{   
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions));
 
 
  if(hsmbus->State == HAL_SMBUS_STATE_READY)
 
  {
 
    /* Process Locked */
 
    __HAL_LOCK(hsmbus);
 
    
 
    hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_TX;
 
    hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
    /* Prepare transfer parameters */
 
    hsmbus->pBuffPtr = pData;
 
    hsmbus->XferCount = Size;
 
    hsmbus->XferOptions = XferOptions;
 
 
    /* In case of Quick command, remove autoend mode */
 
    /* Manage the stop generation by software */
 
    if(hsmbus->pBuffPtr == NULL)
 
    {
 
      hsmbus->XferOptions &= ~SMBUS_AUTOEND_MODE;
 
    }
 
 
    if(Size > MAX_NBYTE_SIZE)
 
    {
 
      hsmbus->XferSize = MAX_NBYTE_SIZE;
 
    }
 
    else
 
    {
 
      hsmbus->XferSize = Size;
 
    }
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */
 
    if( (hsmbus->XferSize == MAX_NBYTE_SIZE) && (hsmbus->XferSize < hsmbus->XferCount) )
 
    {
 
      SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_GENERATE_START_WRITE);
 
    }
 
    else
 
    {
 
      /* If transfer direction not change, do not generate Restart Condition */
 
      /* Mean Previous state is same as current state */
 
      if(hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
      {
 
        SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
      }
 
      /* Else transfer direction change, so generate Restart with new transfer direction */
 
      else
 
      {
 
        SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_GENERATE_START_WRITE);
 
      }
 
 
      /* If PEC mode is enable, size to transmit manage by SW part should be Size-1 byte, corresponding to PEC byte */
 
      /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */
 
      if(__HAL_SMBUS_GET_PEC_MODE(hsmbus) != RESET)
 
      {
 
        hsmbus->XferSize--;
 
        hsmbus->XferCount--;
 
      }
 
    }
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus); 
 
 
    /* Note : The SMBUS interrupts must be enabled after unlocking current process 
 
              to avoid the risk of SMBUS interrupt handle execution before current
 
              process unlock */
 
    SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_TX);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  } 
 
}
 
 
/**
 
  * @brief  Receive in master/host SMBUS mode an amount of data in no-blocking mode with Interrupt
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  DevAddress: Target device address
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  XferOptions: Options of Transfer, value of @ref SMBUS_XferOptions_definition
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Master_Receive_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions));
 
 
  if(hsmbus->State == HAL_SMBUS_STATE_READY)
 
  {
 
    /* Process Locked */
 
    __HAL_LOCK(hsmbus);
 
    
 
    hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_RX;
 
    hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
    
 
    /* Prepare transfer parameters */
 
    hsmbus->pBuffPtr = pData;
 
    hsmbus->XferCount = Size;
 
    hsmbus->XferOptions = XferOptions;
 
    
 
    /* In case of Quick command, remove autoend mode */
 
    /* Manage the stop generation by software */
 
    if(hsmbus->pBuffPtr == NULL)
 
    {
 
      hsmbus->XferOptions &= ~SMBUS_AUTOEND_MODE;
 
    }
 
    
 
    if(Size > MAX_NBYTE_SIZE)
 
    {
 
      hsmbus->XferSize = MAX_NBYTE_SIZE;
 
    }
 
    else
 
    {
 
      hsmbus->XferSize = Size;
 
    }
 
    
 
    /* Send Slave Address */
 
    /* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */
 
    if( (hsmbus->XferSize == MAX_NBYTE_SIZE) && (hsmbus->XferSize < hsmbus->XferCount) )
 
    {
 
      SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, SMBUS_RELOAD_MODE  | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_GENERATE_START_READ);
 
    }
 
    else
 
    {
 
      /* If transfer direction not change, do not generate Restart Condition */
 
      /* Mean Previous state is same as current state */
 
      if(hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
      {
 
        SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
      }
 
      /* Else transfer direction change, so generate Restart with new transfer direction */
 
      else
 
      {
 
        SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_GENERATE_START_READ);
 
      }
 
    }
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus); 
 
 
    /* Note : The SMBUS interrupts must be enabled after unlocking current process 
 
              to avoid the risk of SMBUS interrupt handle execution before current
 
              process unlock */
 
    SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_RX);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief  Abort a master/host SMBUS process commnunication with Interrupt
 
  * @note : This abort can be called only if state is ready
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  DevAddress: Target device address
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Master_Abort_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress)
 
{
 
  if(hsmbus->State == HAL_SMBUS_STATE_READY)
 
  {
 
    /* Process Locked */
 
    __HAL_LOCK(hsmbus);
 
    
 
    /* Keep the same state as previous */
 
    /* to perform as well the call of the corresponding end of transfer callback */
 
    if(hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
    {
 
      hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_TX;
 
    }
 
    else if(hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
    {
 
      hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_RX;
 
    }
 
    else
 
    {
 
      /* Wrong usage of abort function */
 
      /* This function should be used only in case of abort monitored by master device */
 
      return HAL_ERROR;
 
    }
 
    hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
    
 
    /* Set NBYTES to 1 to generate a dummy read on SMBUS peripheral */
 
    /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */
 
    SMBUS_TransferConfig(hsmbus, DevAddress, 1, SMBUS_AUTOEND_MODE, SMBUS_NO_STARTSTOP);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus); 
 
 
    /* Note : The SMBUS interrupts must be enabled after unlocking current process 
 
              to avoid the risk of SMBUS interrupt handle execution before current
 
              process unlock */
 
    if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
    {
 
      SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_TX);
 
    }
 
    else if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
    {
 
      SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_RX);
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief  Transmit in slave/device SMBUS mode an amount of data in no-blocking mode with Interrupt 
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  XferOptions: Options of Transfer, value of @ref SMBUS_XferOptions_definition
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Slave_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions));
 
 
  if(hsmbus->State == HAL_SMBUS_STATE_LISTEN)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
 
    /* Disable Interrupts, to prevent preemption during treatment in case of multicall */
 
    SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR | SMBUS_IT_TX);
 
 
    /* Process Locked */
 
    __HAL_LOCK(hsmbus);
 
    
 
    hsmbus->State |= HAL_SMBUS_STATE_SLAVE_BUSY_TX;
 
    hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
    
 
    /* Set SBC bit to manage Acknowledge at each bit */
 
    hsmbus->Instance->CR1 |= I2C_CR1_SBC;
 
 
    /* Enable Address Acknowledge */
 
    hsmbus->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    /* Prepare transfer parameters */
 
    hsmbus->pBuffPtr = pData;
 
    hsmbus->XferSize = Size;
 
    hsmbus->XferCount = Size;
 
    hsmbus->XferOptions = XferOptions;
 
 
    if(Size > MAX_NBYTE_SIZE)
 
    {
 
      hsmbus->XferSize = MAX_NBYTE_SIZE;
 
    }
 
    else
 
    {
 
      hsmbus->XferSize = Size;
 
    }
 
 
    /* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */
 
    if( (hsmbus->XferSize == MAX_NBYTE_SIZE) && (hsmbus->XferSize < hsmbus->XferCount) )
 
    {
 
      SMBUS_TransferConfig(hsmbus,0,hsmbus->XferSize, SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_NO_STARTSTOP);
 
    }
 
    else
 
    {
 
      /* Set NBYTE to transmit */
 
      SMBUS_TransferConfig(hsmbus,0,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
 
      /* If PEC mode is enable, size to transmit should be Size-1 byte, corresponding to PEC byte */
 
      /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */
 
      if(__HAL_SMBUS_GET_PEC_MODE(hsmbus) != RESET)
 
      {
 
        hsmbus->XferSize--;
 
        hsmbus->XferCount--;
 
      }
 
    }
 
    
 
    /* Clear ADDR flag after prepare the transfer parameters */
 
    /* This action will generate an acknowledge to the HOST */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus,SMBUS_FLAG_ADDR);
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus); 
 
 
    /* Note : The SMBUS interrupts must be enabled after unlocking current process 
 
              to avoid the risk of SMBUS interrupt handle execution before current
 
              process unlock */
 
    /* REnable ADDR interrupt */
 
    SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_TX | SMBUS_IT_ADDR);
 
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_ERROR; 
 
  } 
 
}
 
 
/**
 
  * @brief  Receive in slave/device SMBUS mode an amount of data in no-blocking mode with Interrupt 
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  pData: Pointer to data buffer
 
  * @param  Size: Amount of data to be sent
 
  * @param  XferOptions: Options of Transfer, value of @ref SMBUS_XferOptions_definition
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Slave_Receive_IT(SMBUS_HandleTypeDef *hsmbus, uint8_t *pData, uint16_t Size, uint32_t XferOptions)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions));
 
 
  if(hsmbus->State == HAL_SMBUS_STATE_LISTEN)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Disable Interrupts, to prevent preemption during treatment in case of multicall */
 
    SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR | SMBUS_IT_RX);
 
 
    /* Process Locked */
 
    __HAL_LOCK(hsmbus);
 
    
 
    hsmbus->State |= HAL_SMBUS_STATE_SLAVE_BUSY_RX;
 
    hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
    
 
    /* Set SBC bit to manage Acknowledge at each bit */
 
    hsmbus->Instance->CR1 |= I2C_CR1_SBC;
 
 
    /* Enable Address Acknowledge */
 
    hsmbus->Instance->CR2 &= ~I2C_CR2_NACK;
 
 
    /* Prepare transfer parameters */
 
    hsmbus->pBuffPtr = pData;
 
    hsmbus->XferSize = Size;
 
    hsmbus->XferCount = Size;
 
    hsmbus->XferOptions = XferOptions;
 
    
 
    /* Set NBYTE to receive */
 
    /* If XferSize equal "1", or XferSize equal "2" with PEC requested (mean 1 data byte + 1 PEC byte */
 
    /* no need to set RELOAD bit mode, a ACK will be automatically generated in that case */
 
    /* else need to set RELOAD bit mode to generate an automatic ACK at each byte Received */
 
    /* This RELOAD bit will be reset for last BYTE to be receive in SMBUS_Slave_ISR */
 
    if((hsmbus->XferSize == 1) || ((hsmbus->XferSize == 2) && (__HAL_SMBUS_GET_PEC_MODE(hsmbus) != RESET)))
 
    {
 
      SMBUS_TransferConfig(hsmbus,0,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
    }
 
    else
 
    {
 
      SMBUS_TransferConfig(hsmbus,0, 1, hsmbus->XferOptions | SMBUS_RELOAD_MODE, SMBUS_NO_STARTSTOP);
 
    }
 
 
    /* Clear ADDR flag after prepare the transfer parameters */
 
    /* This action will generate an acknowledge to the HOST */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus,SMBUS_FLAG_ADDR);
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus); 
 
 
    /* Note : The SMBUS interrupts must be enabled after unlocking current process 
 
              to avoid the risk of SMBUS interrupt handle execution before current
 
              process unlock */
 
    /* REnable ADDR interrupt */
 
    SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_RX | SMBUS_IT_ADDR);
 
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_ERROR; 
 
  }
 
}
 
 
/**
 
  * @brief  This function enable the Address listen mode
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_Slave_Listen_IT(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  hsmbus->State = HAL_SMBUS_STATE_LISTEN;
 
  
 
  /* Enable the Address Match interrupt */
 
  SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_ADDR);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function disable the Address listen mode
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_DisableListen_IT(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* Disable Address listen mode only if a transfer is not ongoing */
 
  if(hsmbus->State == HAL_SMBUS_STATE_LISTEN)
 
  {
 
    hsmbus->State = HAL_SMBUS_STATE_READY;
 
  
 
    /* Disable the Address Match interrupt */
 
    SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR);
 
  
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  This function enable the SMBUS alert mode.
 
  * @param  hsmbus : pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUSx peripheral.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_EnableAlert_IT(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* Enable SMBus alert */
 
  hsmbus->Instance->CR1 |= I2C_CR1_ALERTEN;   
 
 
  /* Clear ALERT flag */
 
  __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ALERT);
 
 
  /* Enable Alert Interrupt */
 
  SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_ALERT);
 
 
  return HAL_OK; 
 
}
 
/**
 
  * @brief  This function disable the SMBUS alert mode.
 
  * @param  hsmbus : pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUSx peripheral.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_DisableAlert_IT(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* Enable SMBus alert */
 
  hsmbus->Instance->CR1 &= ~I2C_CR1_ALERTEN;   
 
  
 
  /* Disable Alert Interrupt */
 
  SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ALERT);
 
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief  Checks if target device is ready for communication. 
 
  * @note   This function is used with Memory devices
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  DevAddress: Target device address
 
  * @param  Trials: Number of trials
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SMBUS_IsDeviceReady(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout)
 
{  
 
  uint32_t tickstart = 0;
 
  
 
  __IO uint32_t SMBUS_Trials = 0;
 
 
 
  if(hsmbus->State == HAL_SMBUS_STATE_READY)
 
  {
 
    if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_BUSY) != RESET)
 
    {
 
      return HAL_BUSY;
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hsmbus);
 
    
 
    hsmbus->State = HAL_SMBUS_STATE_BUSY;
 
    hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE;
 
    
 
    do
 
    {
 
      /* Generate Start */
 
      hsmbus->Instance->CR2 = __HAL_SMBUS_GENERATE_START(hsmbus->Init.AddressingMode,DevAddress);
 
      
 
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
 
      /* Wait until STOPF flag is set or a NACK flag is set*/
 
      tickstart = HAL_GetTick();
 
      while((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_STOPF) == RESET) && (__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF) == RESET) && (hsmbus->State != HAL_SMBUS_STATE_TIMEOUT))
 
      {
 
        if(Timeout != HAL_MAX_DELAY)
 
        {    
 
          if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
          {
 
            /* Device is ready */
 
            hsmbus->State = HAL_SMBUS_STATE_READY;
 
        
 
            /* Process Unlocked */
 
            __HAL_UNLOCK(hsmbus);
 
            return HAL_TIMEOUT;
 
          }
 
        } 
 
      }
 
      
 
      /* Check if the NACKF flag has not been set */
 
      if (__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF) == RESET)
 
      {
 
        /* Wait until STOPF flag is reset */ 
 
        if(SMBUS_WaitOnFlagUntilTimeout(hsmbus, SMBUS_FLAG_STOPF, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        /* Clear STOP Flag */
 
        __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF);
 
 
        /* Device is ready */
 
        hsmbus->State = HAL_SMBUS_STATE_READY;
 
        
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hsmbus);
 
        
 
        return HAL_OK;
 
      }
 
      else
 
      {
 
        /* Wait until STOPF flag is reset */ 
 
        if(SMBUS_WaitOnFlagUntilTimeout(hsmbus, SMBUS_FLAG_STOPF, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
 
        /* Clear NACK Flag */
 
        __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF);
 
 
        /* Clear STOP Flag, auto generated with autoend*/
 
        __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF);
 
      }
 
      
 
      /* Check if the maximum allowed number of trials has been reached */
 
      if (SMBUS_Trials++ == Trials)
 
      {
 
        /* Generate Stop */
 
        hsmbus->Instance->CR2 |= I2C_CR2_STOP;
 
        
 
        /* Wait until STOPF flag is reset */ 
 
        if(SMBUS_WaitOnFlagUntilTimeout(hsmbus, SMBUS_FLAG_STOPF, RESET, Timeout) != HAL_OK)      
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        
 
        /* Clear STOP Flag */
 
        __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF);
 
      }      
 
    }while(SMBUS_Trials < Trials);
 
 
    hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus);
 
        
 
    return HAL_TIMEOUT;
 
  }      
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  This function handles SMBUS event interrupt request.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
void HAL_SMBUS_EV_IRQHandler(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  uint32_t tmpisrvalue = 0;
 
  
 
  /* Use a local variable to store the current ISR flags */
 
  /* This action will avoid a wrong treatment due to ISR flags change during interrupt handler */
 
  tmpisrvalue = __SMBUS_GET_ISR_REG(hsmbus);
 
    
 
  /* SMBUS in mode Transmitter ---------------------------------------------------*/
 
  if (((__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TXIS) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TCR) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TC) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_STOPF) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_AF) != RESET)) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, (SMBUS_IT_TCI| SMBUS_IT_STOPI| SMBUS_IT_NACKI | SMBUS_IT_TXI)) != RESET))
 
  {     
 
    /* Slave mode selected */
 
    if ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_TX) == HAL_SMBUS_STATE_SLAVE_BUSY_TX)
 
    {
 
      SMBUS_Slave_ISR(hsmbus);
 
    }
 
    /* Master mode selected */
 
    else if((hsmbus->State & HAL_SMBUS_STATE_MASTER_BUSY_TX) == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
    {
 
      SMBUS_Master_ISR(hsmbus);
 
    }
 
  }
 
    
 
  /* SMBUS in mode Receiver ----------------------------------------------------*/
 
  if (((__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_RXNE) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TCR) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TC) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_STOPF) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_AF) != RESET)) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, (SMBUS_IT_TCI| SMBUS_IT_STOPI| SMBUS_IT_NACKI | SMBUS_IT_RXI)) != RESET))
 
  {
 
    /* Slave mode selected */
 
    if ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_RX) == HAL_SMBUS_STATE_SLAVE_BUSY_RX)
 
    {
 
      SMBUS_Slave_ISR(hsmbus);
 
    }
 
    /* Master mode selected */
 
    else if((hsmbus->State & HAL_SMBUS_STATE_MASTER_BUSY_RX) == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
    {
 
      SMBUS_Master_ISR(hsmbus);
 
    }
 
  } 
 
      
 
   /* SMBUS in mode Listener Only --------------------------------------------------*/
 
  if (((__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_ADDR) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_STOPF) != RESET) || (__SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_AF) != RESET))
 
     && ((__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ADDRI) != RESET) || (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_STOPI) != RESET) || (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_NACKI) != RESET)))
 
  {
 
    if (hsmbus->State == HAL_SMBUS_STATE_LISTEN)
 
    {
 
      SMBUS_Slave_ISR(hsmbus);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  This function handles SMBUS error interrupt request.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
void HAL_SMBUS_ER_IRQHandler(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* SMBUS Bus error interrupt occurred ------------------------------------*/
 
  if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_BERR) != RESET) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ERRI) != RESET))
 
  { 
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_BERR;
 
   
 
    /* Clear BERR flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_BERR);
 
  }
 
  
 
  /* SMBUS Over-Run/Under-Run interrupt occurred ----------------------------------------*/
 
  if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_OVR) != RESET) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ERRI) != RESET))
 
  { 
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_OVR;
 
 
    /* Clear OVR flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_OVR);
 
  }
 
 
  /* SMBUS Arbitration Loss error interrupt occurred ------------------------------------*/
 
  if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_ARLO) != RESET) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ERRI) != RESET))
 
  { 
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ARLO;
 
 
    /* Clear ARLO flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ARLO);
 
  }
 
 
  /* SMBUS Timeout error interrupt occurred ---------------------------------------------*/
 
  if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_TIMEOUT) != RESET) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ERRI) != RESET))
 
  { 
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_BUSTIMEOUT;
 
 
    /* Clear TIMEOUT flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_TIMEOUT);
 
  }
 
 
  /* SMBUS Alert error interrupt occurred -----------------------------------------------*/
 
  if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_ALERT) != RESET) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ERRI) != RESET))
 
  { 
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ALERT;
 
 
    /* Clear ALERT flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ALERT);
 
  }
 
 
  /* SMBUS Packet Error Check error interrupt occurred ----------------------------------*/
 
  if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_PECERR) != RESET) && (__HAL_SMBUS_GET_IT_SOURCE(hsmbus, SMBUS_IT_ERRI) != RESET))
 
  { 
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_PECERR;
 
 
    /* Clear PEC error flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_PECERR);
 
  }
 
  
 
  /* Call the Error Callback in case of Error detected */
 
  if((hsmbus->ErrorCode != HAL_SMBUS_ERROR_NONE)&&(hsmbus->ErrorCode != HAL_SMBUS_ERROR_ACKF))
 
  {
 
    /* Do not Reset the the HAL state in case of ALERT error */
 
    if((hsmbus->ErrorCode & HAL_SMBUS_ERROR_ALERT) != HAL_SMBUS_ERROR_ALERT)
 
    {
 
      if(((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_TX) == HAL_SMBUS_STATE_SLAVE_BUSY_TX)
 
         || ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_RX) == HAL_SMBUS_STATE_SLAVE_BUSY_RX))
 
      {
 
        /* Reset only HAL_SMBUS_STATE_SLAVE_BUSY_XX */
 
        /* keep HAL_SMBUS_STATE_LISTEN if set */
 
        hsmbus->PreviousState = HAL_SMBUS_STATE_READY;
 
        hsmbus->State = HAL_SMBUS_STATE_LISTEN;
 
      }
 
    }
 
    
 
    /* Call the Error callback to prevent upper layer */
 
    HAL_SMBUS_ErrorCallback(hsmbus);
 
  }
 
}
 
 
/**
 
  * @brief  Master Tx Transfer completed callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
 __weak void HAL_SMBUS_MasterTxCpltCallback(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_TxCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Master Rx Transfer completed callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
__weak void HAL_SMBUS_MasterRxCpltCallback(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_TxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/** @brief  Slave Tx Transfer completed callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
 __weak void HAL_SMBUS_SlaveTxCpltCallback(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_TxCpltCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Slave Rx Transfer completed callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
__weak void HAL_SMBUS_SlaveRxCpltCallback(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_TxCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Slave Address Match callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  TransferDirection: Master request Transfer Direction (Write/Read)
 
  * @param  AddrMatchCode: Address Match Code
 
  * @retval None
 
  */
 
__weak void HAL_SMBUS_SlaveAddrCallback(SMBUS_HandleTypeDef *hsmbus, uint8_t TransferDirection, uint16_t AddrMatchCode)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_SlaveAddrCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Listen Complete callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
__weak void HAL_SMBUS_SlaveListenCpltCallback(SMBUS_HandleTypeDef *hsmbus)
 
{
 
    /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_SlaveListenCpltCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  SMBUS error callbacks.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval None
 
  */
 
 __weak void HAL_SMBUS_ErrorCallback(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SMBUS_ErrorCallback could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */  
 
 
/** @defgroup SMBUS_Exported_Functions_Group3 Peripheral State and Errors functions 
 
 *  @brief   Peripheral State and Errors functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
            ##### Peripheral State and Errors functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Returns the SMBUS state.
 
  * @param  hsmbus : SMBUS handle
 
  * @retval HAL state
 
  */
 
HAL_SMBUS_StateTypeDef HAL_SMBUS_GetState(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  return hsmbus->State;
 
}
 
 
/**
 
* @brief  Return the SMBUS error code
 
* @param  hsmbus : pointer to a SMBUS_HandleTypeDef structure that contains
 
  *              the configuration information for the specified SMBUS.
 
* @retval SMBUS Error Code
 
*/
 
uint32_t HAL_SMBUS_GetError(SMBUS_HandleTypeDef *hsmbus)
 
{
 
  return hsmbus->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */  
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup SMBUS_Private_Functions SMBUS Private Functions
 
 *  @brief   Data transfers Private functions 
 
  * @{
 
  */
 
 
/**
 
  * @brief  Interrupt Sub-Routine which handle the Interrupt Flags Master Mode
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMBUS_Master_ISR(SMBUS_HandleTypeDef *hsmbus) 
 
{
 
  uint16_t DevAddress;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hsmbus);
 
  
 
  if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF) != RESET)
 
  {
 
    /* Clear NACK Flag */
 
    __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF);
 
    
 
    /* Set corresponding Error Code */
 
    /* No need to generate STOP, it is automatically done */
 
    hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ACKF;
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus);
 
    
 
    /* Call the Error callback to prevent upper layer */
 
    HAL_SMBUS_ErrorCallback(hsmbus);
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_STOPF) != RESET)
 
  {
 
      
 
    /* Call the corresponding callback to inform upper layer of End of Transfer */
 
    if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
    {
 
      /* Disable Interrupt */
 
      SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX);
 
 
      /* Clear STOP Flag */
 
      __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF);
 
      
 
      /* Clear Configuration Register 2 */
 
      __HAL_SMBUS_RESET_CR2(hsmbus);
 
    
 
      /* Flush remaining data in Fifo register in case of error occurs before TXEmpty */
 
      /* Disable the selected SMBUS peripheral */
 
      __HAL_SMBUS_DISABLE(hsmbus);
 
 
      hsmbus->PreviousState = HAL_SMBUS_STATE_READY;
 
      hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hsmbus);
 
  
 
      /* REenable the selected SMBUS peripheral */
 
      __HAL_SMBUS_ENABLE(hsmbus);
 
 
      HAL_SMBUS_MasterTxCpltCallback(hsmbus);
 
    }
 
    else if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
    {
 
      /* Disable Interrupt */
 
      SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX);
 
 
      /* Clear STOP Flag */
 
      __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF);
 
      
 
      /* Clear Configuration Register 2 */
 
      __HAL_SMBUS_RESET_CR2(hsmbus);
 
    
 
      hsmbus->PreviousState = HAL_SMBUS_STATE_READY;
 
      hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hsmbus);
 
  
 
      HAL_SMBUS_MasterRxCpltCallback(hsmbus);
 
    }
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_RXNE) != RESET)
 
  {  
 
    /* Read data from RXDR */
 
    (*hsmbus->pBuffPtr++) = hsmbus->Instance->RXDR;
 
    hsmbus->XferSize--;
 
    hsmbus->XferCount--;
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_TXIS) != RESET)
 
  {
 
    /* Write data to TXDR */
 
    hsmbus->Instance->TXDR = (*hsmbus->pBuffPtr++);
 
    hsmbus->XferSize--;
 
    hsmbus->XferCount--;	
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_TCR) != RESET)
 
  {
 
    if((hsmbus->XferSize == 0)&&(hsmbus->XferCount!=0))
 
    {
 
      DevAddress = (hsmbus->Instance->CR2 & I2C_CR2_SADD);
 
      
 
      if(hsmbus->XferCount > MAX_NBYTE_SIZE)
 
      {    
 
        SMBUS_TransferConfig(hsmbus, DevAddress, MAX_NBYTE_SIZE, (SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE)), SMBUS_NO_STARTSTOP);
 
        hsmbus->XferSize = MAX_NBYTE_SIZE;
 
      }
 
      else
 
      {
 
        hsmbus->XferSize = hsmbus->XferCount;
 
        SMBUS_TransferConfig(hsmbus,DevAddress,hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
        /* If PEC mode is enable, size to transmit should be Size-1 byte, corresponding to PEC byte */
 
        /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */
 
        if(__HAL_SMBUS_GET_PEC_MODE(hsmbus) != RESET)
 
        {
 
          hsmbus->XferSize--;
 
          hsmbus->XferCount--;
 
        }
 
      }
 
    }
 
    else if((hsmbus->XferSize == 0)&&(hsmbus->XferCount==0))
 
    {
 
      /* Call TxCpltCallback if no stop mode is set */
 
      if(__HAL_SMBUS_GET_STOP_MODE(hsmbus) != SMBUS_AUTOEND_MODE)
 
      {
 
        /* Call the corresponding callback to inform upper layer of End of Transfer */
 
        if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
        {
 
          /* Disable Interrupt */
 
          SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX);
 
          hsmbus->PreviousState = hsmbus->State;
 
          hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmbus);
 
      
 
          HAL_SMBUS_MasterTxCpltCallback(hsmbus);
 
        }
 
        else if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
        {
 
          SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX);
 
          hsmbus->PreviousState = hsmbus->State;
 
          hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmbus);
 
      
 
          HAL_SMBUS_MasterRxCpltCallback(hsmbus);
 
        }
 
      }
 
    }
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_TC) != RESET)
 
  {
 
    if(hsmbus->XferCount == 0)
 
    {
 
      /* Specific use case for Quick command */
 
      if(hsmbus->pBuffPtr == NULL)
 
      {
 
        /* Generate a Stop command */
 
        hsmbus->Instance->CR2 |= I2C_CR2_STOP;
 
      }
 
      /* Call TxCpltCallback if no stop mode is set */
 
      else if(__HAL_SMBUS_GET_STOP_MODE(hsmbus) != SMBUS_AUTOEND_MODE)
 
      {
 
        /* No Generate Stop, to permit restart mode */
 
        /* The stop will be done at the end of transfer, when SMBUS_AUTOEND_MODE enable */
 
        
 
        /* Call the corresponding callback to inform upper layer of End of Transfer */
 
        if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX)
 
        {
 
          /* Disable Interrupt */
 
          SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX);
 
          hsmbus->PreviousState = hsmbus->State;
 
          hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmbus);
 
      
 
          HAL_SMBUS_MasterTxCpltCallback(hsmbus);
 
        }
 
        else if(hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX)
 
        {
 
          SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX);
 
          hsmbus->PreviousState = hsmbus->State;
 
          hsmbus->State = HAL_SMBUS_STATE_READY;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmbus);
 
      
 
          HAL_SMBUS_MasterRxCpltCallback(hsmbus);
 
        }
 
      }
 
    }
 
  }
 
    
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hsmbus); 
 
  
 
  return HAL_OK; 
 
}  
 
/**
 
  * @brief  Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMBUS_Slave_ISR(SMBUS_HandleTypeDef *hsmbus) 
 
{
 
  uint8_t TransferDirection = 0;
 
  uint16_t SlaveAddrCode = 0;
 
 
  /* Process Locked */
 
  __HAL_LOCK(hsmbus);
 
  
 
  if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF) != RESET)
 
  {
 
    /* Check that SMBUS transfer finished */
 
    /* if yes, normal usecase, a NACK is sent by the HOST when Transfer is finished */
 
    /* Mean XferCount == 0*/
 
    /* So clear Flag NACKF only */
 
    if(hsmbus->XferCount == 0)
 
    {
 
      /* Clear NACK Flag */
 
      __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF);
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hsmbus);
 
    }
 
    else
 
    {
 
      /* if no, error usecase, a Non-Acknowledge of last Data is generated by the HOST*/
 
      /* Clear NACK Flag */
 
      __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF);
 
 
      /* Set HAL State to "Idle" State, mean to LISTEN state */
 
      /* So reset Slave Busy state */
 
      hsmbus->PreviousState = hsmbus->State;
 
      hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_TX);
 
      hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_RX);
 
 
      /* Disable RX/TX Interrupts, keep only ADDR Interrupt */
 
      SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX | SMBUS_IT_TX);
 
      
 
      /* Set ErrorCode corresponding to a Non-Acknowledge */
 
      hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ACKF;
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hsmbus);
 
    
 
      /* Call the Error callback to prevent upper layer */
 
      HAL_SMBUS_ErrorCallback(hsmbus);
 
    }
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_ADDR) != RESET)
 
  {
 
    TransferDirection = __HAL_SMBUS_GET_DIR(hsmbus);
 
    SlaveAddrCode = __HAL_SMBUS_GET_ADDR_MATCH(hsmbus);
 
      
 
    /* Disable ADDR interrupt to prevent multiple ADDRInterrupt*/
 
    /* Other ADDRInterrupt will be treat in next Listen usecase */
 
    __HAL_SMBUS_DISABLE_IT(hsmbus, SMBUS_IT_ADDRI);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hsmbus);
 
 
    /* Call Slave Addr callback */
 
    HAL_SMBUS_SlaveAddrCallback(hsmbus, TransferDirection, SlaveAddrCode);
 
  }
 
  else if((__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_RXNE) != RESET) || (__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_TCR) != RESET))
 
  {
 
    if( (hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_RX) == HAL_SMBUS_STATE_SLAVE_BUSY_RX)
 
    {
 
      /* Read data from RXDR */
 
      (*hsmbus->pBuffPtr++) = hsmbus->Instance->RXDR;
 
      hsmbus->XferSize--;
 
      hsmbus->XferCount--;
 
 
      if(hsmbus->XferCount == 1)
 
      {
 
        /* Receive last Byte, can be PEC byte in case of PEC BYTE enabled */
 
        /* or only the last Byte of Transfer */
 
        /* So reset the RELOAD bit mode */
 
        hsmbus->XferOptions &= ~SMBUS_RELOAD_MODE;
 
        SMBUS_TransferConfig(hsmbus,0 ,1 , hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
      }
 
      else if(hsmbus->XferCount == 0)
 
      {
 
        /* Last Byte is received, disable Interrupt */
 
        SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX);
 
        
 
        /* Remove HAL_SMBUS_STATE_SLAVE_BUSY_RX, keep only HAL_SMBUS_STATE_LISTEN */
 
        hsmbus->PreviousState = hsmbus->State;
 
        hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_RX);
 
        
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hsmbus);
 
 
        /* Call the Rx complete callback to inform upper layer of the end of receive process */
 
        HAL_SMBUS_SlaveRxCpltCallback(hsmbus);
 
      }
 
      else
 
      {
 
        /* Set Reload for next Bytes */
 
        SMBUS_TransferConfig(hsmbus,0, 1, SMBUS_RELOAD_MODE  | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_NO_STARTSTOP);
 
 
        /* Ack last Byte Read */
 
        hsmbus->Instance->CR2 &= ~I2C_CR2_NACK;
 
      }
 
    }    
 
    else if( (hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_TX) == HAL_SMBUS_STATE_SLAVE_BUSY_TX)
 
    {
 
      if((hsmbus->XferSize == 0)&&(hsmbus->XferCount!=0))
 
      {
 
        if(hsmbus->XferCount > MAX_NBYTE_SIZE)
 
        {    
 
          SMBUS_TransferConfig(hsmbus, 0, MAX_NBYTE_SIZE, (SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE)), SMBUS_NO_STARTSTOP);
 
          hsmbus->XferSize = MAX_NBYTE_SIZE;
 
        }
 
        else
 
        {
 
          hsmbus->XferSize = hsmbus->XferCount;
 
          SMBUS_TransferConfig(hsmbus, 0, hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP);
 
          /* If PEC mode is enable, size to transmit should be Size-1 byte, corresponding to PEC byte */
 
          /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */
 
          if(__HAL_SMBUS_GET_PEC_MODE(hsmbus) != RESET)
 
          {
 
            hsmbus->XferSize--;
 
            hsmbus->XferCount--;
 
          }
 
        }
 
      }
 
    }
 
  }
 
  else if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_TXIS) != RESET)
 
  {
 
    /* Write data to TXDR only if XferCount not reach "0" */
 
    /* A TXIS flag can be set, during STOP treatment      */
 
    /* Check if all Datas have already been sent */
 
    /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */
 
    if(hsmbus->XferCount > 0)
 
    {
 
      /* Write data to TXDR */
 
      hsmbus->Instance->TXDR = (*hsmbus->pBuffPtr++);
 
      hsmbus->XferCount--;
 
      hsmbus->XferSize--;
 
    }
 
    
 
    if(hsmbus->XferCount == 0)
 
    {
 
      /* Last Byte is Transmitted */
 
      /* Remove HAL_SMBUS_STATE_SLAVE_BUSY_TX, keep only HAL_SMBUS_STATE_LISTEN */
 
      SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX);
 
      hsmbus->PreviousState = hsmbus->State;
 
      hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_TX);
 
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hsmbus);
 
 
      /* Call the Tx complete callback to inform upper layer of the end of transmit process */
 
      HAL_SMBUS_SlaveTxCpltCallback(hsmbus);
 
    }
 
  }
 
 
  /* Check if STOPF is set */
 
  if(__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_STOPF) != RESET)
 
  {
 
    if((hsmbus->State & HAL_SMBUS_STATE_LISTEN) == HAL_SMBUS_STATE_LISTEN)
 
    {
 
      /* Disable RX and TX Interrupts */
 
      SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX | SMBUS_IT_TX);
 
 
      /* Disable ADDR Interrupt */
 
      SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR);
 
 
      /* Disable Address Acknowledge */
 
      hsmbus->Instance->CR2 |= I2C_CR2_NACK;
 
 
      /* Clear Configuration Register 2 */
 
      __HAL_SMBUS_RESET_CR2(hsmbus);
 
    
 
      /* Clear STOP Flag */
 
      __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF);
 
 
     /* Clear ADDR flag */
 
     __HAL_SMBUS_CLEAR_FLAG(hsmbus,SMBUS_FLAG_ADDR);
 
 
      hsmbus->XferOptions = 0;
 
      hsmbus->PreviousState = hsmbus->State;
 
      hsmbus->State = HAL_SMBUS_STATE_READY;
 
    
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hsmbus);
 
 
      /* Call the Listen Complete callback, to prevent upper layer of the end of Listen usecase */
 
      HAL_SMBUS_SlaveListenCpltCallback(hsmbus);
 
    }
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hsmbus);
 
  
 
  return HAL_OK;     
 
}  
 
/**
 
  * @brief  Manage the enabling of Interrupts
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  InterruptRequest : Value of @ref SMBUS_Interrupt_configuration_definition.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMBUS_Enable_IRQ(SMBUS_HandleTypeDef *hsmbus, uint16_t InterruptRequest) 
 
{
 
  uint32_t tmpisr = 0;
 
 
  if((InterruptRequest & SMBUS_IT_ALERT) == SMBUS_IT_ALERT)
 
  {
 
    /* Enable ERR interrupt */
 
    tmpisr |= SMBUS_IT_ERRI;
 
  }
 
  
 
  if((InterruptRequest & SMBUS_IT_ADDR) == SMBUS_IT_ADDR)
 
  {
 
    /* Enable ADDR, STOP interrupt */
 
    tmpisr |= SMBUS_IT_ADDRI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_ERRI;
 
  }
 
  
 
  if((InterruptRequest & SMBUS_IT_TX) == SMBUS_IT_TX)
 
  {
 
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
 
    tmpisr |= SMBUS_IT_ERRI | SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_TXI;
 
  }
 
  
 
  if((InterruptRequest & SMBUS_IT_RX) == SMBUS_IT_RX)
 
  {
 
    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
 
    tmpisr |= SMBUS_IT_ERRI | SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_RXI;
 
  }
 
  
 
  /* Enable interrupts only at the end */
 
  /* to avoid the risk of SMBUS interrupt handle execution before */
 
  /* all interrupts requested done */
 
  __HAL_SMBUS_ENABLE_IT(hsmbus, tmpisr);
 
 
  return HAL_OK;     
 
}
 
/**
 
  * @brief  Manage the disabling of Interrupts
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  InterruptRequest : Value of @ref SMBUS_Interrupt_configuration_definition.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMBUS_Disable_IRQ(SMBUS_HandleTypeDef *hsmbus, uint16_t InterruptRequest) 
 
{
 
  uint32_t tmpisr = 0;
 
 
  if( ((InterruptRequest & SMBUS_IT_ALERT) == SMBUS_IT_ALERT) && (hsmbus->State == HAL_SMBUS_STATE_READY) )
 
  {
 
    /* Disable ERR interrupt */
 
    tmpisr |= SMBUS_IT_ERRI;
 
  }
 
  
 
  if((InterruptRequest & SMBUS_IT_TX) == SMBUS_IT_TX)
 
  {
 
    /* Disable TC, STOP, NACK, TXI interrupt */
 
    tmpisr |= SMBUS_IT_TCI | SMBUS_IT_TXI;
 
    
 
    if((__HAL_SMBUS_GET_ALERT_ENABLED(hsmbus) == RESET)
 
       && ((hsmbus->State & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN))
 
    {
 
      /* Disable ERR interrupt */
 
      tmpisr |= SMBUS_IT_ERRI;
 
    }
 
    
 
    if((hsmbus->State & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN)
 
    {
 
      /* Disable STOPI, NACKI */
 
      tmpisr |= SMBUS_IT_STOPI | SMBUS_IT_NACKI;
 
    }
 
  }
 
  
 
  if((InterruptRequest & SMBUS_IT_RX) == SMBUS_IT_RX)
 
  {
 
    /* Disable TC, STOP, NACK, RXI interrupt */
 
    tmpisr |= SMBUS_IT_TCI | SMBUS_IT_RXI;
 
    
 
    if((__HAL_SMBUS_GET_ALERT_ENABLED(hsmbus) == RESET)
 
       && ((hsmbus->State & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN))
 
    {
 
      /* Disable ERR interrupt */
 
      tmpisr |= SMBUS_IT_ERRI;
 
    }
 
 
    if((hsmbus->State & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN)
 
    {
 
      /* Disable STOPI, NACKI */
 
      tmpisr |= SMBUS_IT_STOPI | SMBUS_IT_NACKI;
 
    }
 
  }
 
  
 
  if((InterruptRequest & SMBUS_IT_ADDR) == SMBUS_IT_ADDR)
 
  {
 
    /* Enable ADDR, STOP interrupt */
 
    tmpisr |= SMBUS_IT_ADDRI | SMBUS_IT_STOPI | SMBUS_IT_NACKI;
 
 
    if(__HAL_SMBUS_GET_ALERT_ENABLED(hsmbus) == RESET) 
 
    {
 
      /* Disable ERR interrupt */
 
      tmpisr |= SMBUS_IT_ERRI;
 
    }
 
  }
 
 
  /* Disable interrupts only at the end */
 
  /* to avoid a breaking situation like at "t" time */
 
  /* all disable interrupts request are not done */
 
  __HAL_SMBUS_DISABLE_IT(hsmbus, tmpisr);
 
  
 
  return HAL_OK;
 
}
 
/**
 
  * @brief  This function handles SMBUS Communication Timeout.
 
  * @param  hsmbus : Pointer to a SMBUS_HandleTypeDef structure that contains
 
  *                the configuration information for the specified SMBUS.
 
  * @param  Flag: specifies the SMBUS flag to check.
 
  * @param  Status: The new Flag status (SET or RESET).
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SMBUS_WaitOnFlagUntilTimeout(SMBUS_HandleTypeDef *hsmbus, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
 
{  
 
  uint32_t tickstart = HAL_GetTick();
 
  
 
  /* Wait until flag is set */
 
  if(Status == RESET)
 
  {    
 
    while(__HAL_SMBUS_GET_FLAG(hsmbus, Flag) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hsmbus->PreviousState = hsmbus->State;
 
          hsmbus->State= HAL_SMBUS_STATE_READY;
 
        
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmbus);
 
        
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_SMBUS_GET_FLAG(hsmbus, Flag) != RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hsmbus->PreviousState = hsmbus->State;
 
          hsmbus->State= HAL_SMBUS_STATE_READY;
 
        
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(hsmbus);
 
        
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief  Handles SMBUSx communication when starting transfer or during transfer (TC or TCR flag are set).
 
  * @param  hsmbus: SMBUS handle.
 
  * @param  DevAddress: specifies the slave address to be programmed.
 
  * @param  Size: specifies the number of bytes to be programmed.
 
  *   This parameter must be a value between 0 and 255.
 
  * @param  Mode: new state of the SMBUS START condition generation.
 
  *   This parameter can be one or a combination  of the following values:
 
  *     @arg SMBUS_NO_MODE: No specific mode enabled.
 
  *     @arg SMBUS_RELOAD_MODE: Enable Reload mode.
 
  *     @arg SMBUS_AUTOEND_MODE: Enable Automatic end mode.
 
  *     @arg SMBUS_SOFTEND_MODE: Enable Software end mode and Reload mode.
 
  * @param  Request: new state of the SMBUS START condition generation.
 
  *   This parameter can be one of the following values:
 
  *     @arg SMBUS_NO_STARTSTOP: Don't Generate stop and start condition.
 
  *     @arg SMBUS_GENERATE_STOP: Generate stop condition (Size should be set to 0).
 
  *     @arg SMBUS_GENERATE_START_READ: Generate Restart for read request.
 
  *     @arg SMBUS_GENERATE_START_WRITE: Generate Restart for write request.
 
  * @retval None
 
  */
 
static void SMBUS_TransferConfig(SMBUS_HandleTypeDef *hsmbus,  uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request)
 
{
 
  uint32_t tmpreg = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance));
 
  assert_param(IS_SMBUS_TRANSFER_MODE(Mode));
 
  assert_param(IS_SMBUS_TRANSFER_REQUEST(Request));
 
    
 
  /* Get the CR2 register value */
 
  tmpreg = hsmbus->Instance->CR2;
 
  
 
  /* clear tmpreg specific bits */
 
  tmpreg &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | I2C_CR2_RD_WRN | I2C_CR2_START | I2C_CR2_STOP | I2C_CR2_PECBYTE));
 
  
 
  /* update tmpreg */
 
  tmpreg |= (uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | (((uint32_t)Size << 16 ) & I2C_CR2_NBYTES) | \
 
              (uint32_t)Mode | (uint32_t)Request);
 
    
 
  /* update CR2 register */
 
  hsmbus->Instance->CR2 = tmpreg;  
 
}  
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_SMBUS_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_spi.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   SPI HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the SPI peripheral:
 
  *           + Initialization/de-initialization functions
 
  *           + I/O operation functions
 
  *           + Peripheral Control functions 
 
  *           + Peripheral State functions
 
  *         
 
  @verbatim
 
===============================================================================
 
            ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    The SPI HAL driver can be used as follows:
 
  
 
    (#) Declare a SPI_HandleTypeDef handle structure, for example:
 
        SPI_HandleTypeDef  hspi; 
 
  
 
    (#)Initialize the SPI low level resources by implement the HAL_SPI_MspInit ()API:
 
        (##) Enable the SPIx interface clock 
 
        (##) SPI pins configuration
 
            (+++) Enable the clock for the SPI GPIOs 
 
            (+++) Configure these SPI pins as alternate function push-pull
 
        (##) NVIC configuration if you need to use interrupt process
 
            (+++) Configure the SPIx interrupt priority
 
            (+++) Enable the NVIC SPI IRQ handle
 
        (##) DMA Configuration if you need to use DMA process
 
            (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel
 
            (+++) Enable the DMAx interface clock using 
 
            (+++) Configure the DMA handle parameters 
 
            (+++) Configure the DMA Tx or Rx channel
 
            (+++) Associate the initilalized hdma_tx handle to the hspi DMA Tx or Rx handle
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx channel
 
  
 
    (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS 
 
        management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
 
  
 
    (#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
 
        (++) These APIs configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
 
            by calling the customed HAL_SPI_MspInit(&hspi) API.
 
  
 
    [..]
 
    Using the HAL it is not possible to reach all supported SPI frequency with the differents SPI Modes,
 
    the following table resume the max SPI frequency reached with data size 8bits/16bits:
 
   +-----------------------------------------------------------------------------------------+
 
   |         |                | 2Lines Fullduplex  |     2Lines RxOnly  |        1Line       |
 
   | Process | Tranfert mode  |--------------------|--------------------|--------------------|
 
   |         |                |  Master  |  Slave  |  Master  |  Slave  |  Master  |  Slave  |
 
   |=========================================================================================|
 
   |    T    |     Polling    | Fcpu/32  | Fcpu/32 |    NA    |    NA   |    NA    |   NA    |
 
   |    X    |----------------|----------|---------|----------|---------|----------|---------|
 
   |    /    |     Interrupt  | Fcpu/32  | Fcpu/32 |    NA    |    NA   |    NA    |   NA    |
 
   |    R    |----------------|----------|---------|----------|---------|----------|---------|
 
   |    X    |       DMA      | Fcpu/32  | Fcpu/16 |    NA    |    NA   |    NA    |   NA    |
 
   |=========|================|==========|=========|==========|=========|==========|=========|
 
   |         |     Polling    | Fcpu/32  | Fcpu/16 |  Fcpu/16 | Fcpu/16 |  Fcpu/16 | Fcpu/16 |
 
   |         |----------------|----------|---------|----------|---------|----------|---------|
 
   |    R    |     Interrupt  | Fcpu/16  | Fcpu/16 |  Fcpu/16 | Fcpu/16 |  Fcpu/16 | Fcpu/16 |
 
   |    X    |----------------|----------|---------|----------|---------|----------|---------|
 
   |         |       DMA      |  Fcpu/4  |  Fcpu/8 |  Fcpu/4  |  Fcpu/4 |  Fcpu/8  | Fcpu/16 |
 
   |=========|================|==========|=========|==========|=========|==========|=========|
 
   |         |     Polling    | Fcpu/16  | Fcpu/16 |    NA    |    NA   |  Fcpu/16 | Fcpu/16 |
 
   |         |----------------|----------|---------|----------|---------|----------|---------|
 
   |    T    |     Interrupt  | Fcpu/32  | Fcpu/16 |    NA    |    NA   |  Fcpu/16 | Fcpu/16 |
 
   |    X    |----------------|----------|---------|----------|---------|----------|---------|
 
   |         |       DMA      |  Fcpu/2  | Fcpu/16 |    NA    |    NA   |  Fcpu/8  | Fcpu/16 |
 
   +-----------------------------------------------------------------------------------------+
 
  @note The max SPI frequency depend on SPI data size (4bits, 5bits,..., 8bits,...15bits, 16bits),
 
        SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA).
 
  @note
 
   (#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA()
 
   (#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA()
 
   (#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA()
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
    
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
   
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup SPI SPI HAL module driver
 
  * @brief SPI HAL module driver
 
  * @{
 
  */
 
#ifdef HAL_SPI_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
 
/** @defgroup SPI_Private_Constants SPI Private Constants
 
  * @{
 
  */
 
#define SPI_DEFAULT_TIMEOUT 50
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @defgroup SPI_Private_Functions SPI Private Functions
 
  * @{
 
  */
 
 
static void HAL_SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
 
static void HAL_SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void HAL_SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void HAL_SPI_DMAError(DMA_HandleTypeDef *hdma);
 
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout);
 
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout);
 
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
 
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
 
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
 
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
 
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout);
 
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout);
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup SPI_Exported_Functions SPI Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup SPI_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and Configuration functions #####
 
 ===============================================================================
 
    [..]  This subsection provides a set of functions allowing to initialize and 
 
          de-initialiaze the SPIx peripheral:
 
 
      (+) User must Implement HAL_SPI_MspInit() function in which he configures 
 
          all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
 
 
      (+) Call the function HAL_SPI_Init() to configure the selected device with 
 
          the selected configuration:
 
        (++) Mode
 
        (++) Direction 
 
        (++) Data Size
 
        (++) Clock Polarity and Phase
 
        (++) NSS Management
 
        (++) BaudRate Prescaler
 
        (++) FirstBit
 
        (++) TIMode
 
        (++) CRC Calculation
 
        (++) CRC Polynomial if CRC enabled
 
        (++) CRC Length, used only with Data8 and Data16  
 
        (++) FIFO reception threshold
 
 
      (+) Call the function HAL_SPI_DeInit() to restore the default configuration 
 
          of the selected SPIx periperal.       
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the SPI according to the specified parameters 
 
  *         in the SPI_InitTypeDef and create the associated handle.
 
  * @param  hspi: SPI handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
 
{
 
  uint32_t frxth;
 
  
 
  /* Check the SPI handle allocation */
 
  if(hspi == NULL)
 
  { 
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
 
  assert_param(IS_SPI_MODE(hspi->Init.Mode));
 
  assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
 
  assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
 
  assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
 
  assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
 
  assert_param(IS_SPI_NSS(hspi->Init.NSS));
 
  assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode));
 
  assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
 
  assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
 
  assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
 
  assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
 
  assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
 
  assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength));
 
  
 
  hspi->State = HAL_SPI_STATE_BUSY;
 
  
 
  /* Init the low level hardware : GPIO, CLOCK, NVIC... */
 
  HAL_SPI_MspInit(hspi);
 
  
 
  /* Disable the selected SPI peripheral */
 
  __HAL_SPI_DISABLE(hspi);
 
  
 
  /* Align by default the rs fifo threshold on the data size */
 
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
  {
 
    frxth = SPI_RXFIFO_THRESHOLD_HF;
 
  }
 
  else
 
  {
 
    frxth = SPI_RXFIFO_THRESHOLD_QF;
 
  }
 
  
 
  /* CRC calculation is valid only for 16Bit and 8 Bit */
 
  if(( hspi->Init.DataSize != SPI_DATASIZE_16BIT ) && ( hspi->Init.DataSize != SPI_DATASIZE_8BIT ))
 
  {
 
    /* CRC must be disabled */
 
    hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
 
  }
 
  
 
  /* Align the CRC Length on the data size */
 
  if( hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE)
 
  {
 
    /* CRC Lengtht aligned on the data size : value set by default */
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
    {
 
      hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT;
 
    }
 
    else
 
    {
 
      hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
 
    }
 
  }
 
  
 
  /*---------------------------- SPIx CR1 & CR2 Configuration ------------------------*/
 
  /* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management,
 
  Communication speed, First bit, CRC calculation state, CRC Length */
 
  hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction | 
 
                         hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
 
                         hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit  | hspi->Init.CRCCalculation);
 
  
 
  if( hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
 
  {
 
    hspi->Instance->CR1|= SPI_CR1_CRCL;
 
  }
 
  
 
  /* Configure : NSS management */
 
  /* Configure : Rx Fifo Threshold */
 
  hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode | hspi->Init.NSSPMode |
 
                         hspi->Init.DataSize ) | frxth;
 
  
 
  /*---------------------------- SPIx CRCPOLY Configuration --------------------*/
 
  /* Configure : CRC Polynomial */
 
  hspi->Instance->CRCPR = hspi->Init.CRCPolynomial;
 
  
 
  /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
 
  hspi->Instance->I2SCFGR &= (uint16_t)(~SPI_I2SCFGR_I2SMOD);
 
  
 
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
 
  hspi->State= HAL_SPI_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the SPI peripheral 
 
  * @param  hspi: SPI handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
 
{
 
  /* Check the SPI handle allocation */
 
  if(hspi == NULL)
 
  {
 
     return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
 
 
  hspi->State = HAL_SPI_STATE_BUSY;
 
  
 
  /* Disable the SPI Peripheral Clock */
 
  __HAL_SPI_DISABLE(hspi);
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
 
  HAL_SPI_MspDeInit(hspi);
 
  
 
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
 
  hspi->State = HAL_SPI_STATE_RESET;
 
  
 
  __HAL_UNLOCK(hspi);
 
    
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief SPI MSP Init
 
  * @param hspi: SPI handle
 
  * @retval None
 
  */
 
 __weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SPI_MspInit could be implenetd in the user file
 
   */
 
}
 
 
/**
 
  * @brief SPI MSP DeInit
 
  * @param hspi: SPI handle
 
  * @retval None
 
  */
 
 __weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SPI_MspDeInit could be implenetd in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_Exported_Functions_Group2 I/O operation functions 
 
 *  @brief   Data transfers functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation functions #####
 
 ===============================================================================  
 
    This subsection provides a set of functions allowing to manage the SPI
 
    data transfers.
 
      
 
    [..] The SPI supports master and slave mode : 
 
 
    (#) There are two modes of transfer:
 
       (++) Blocking mode: The communication is performed in polling mode. 
 
            The HAL status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) Non Blocking mode: The communication is performed using Interrupts 
 
           or DMA, These APIs return the HAL status.
 
           The end of the data processing will be indicated through the 
 
           dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when 
 
           using DMA mode.
 
           The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks 
 
           will be executed respectivelly at the end of the transmit or Receive process
 
           The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
 
 
    (#) Blocking mode APIs are :
 
        (++) HAL_SPI_Transmit()in 1Line (simplex) and 2Lines (full duplex) mode
 
        (++) HAL_SPI_Receive() in 1Line (simplex) and 2Lines (full duplex) mode
 
        (++) HAL_SPI_TransmitReceive() in full duplex mode         
 
        
 
    (#) Non Blocking mode APIs with Interrupt are :
 
        (++) HAL_SPI_Transmit_IT()in 1Line (simplex) and 2Lines (full duplex) mode
 
        (++) HAL_SPI_Receive_IT() in 1Line (simplex) and 2Lines (full duplex) mode
 
        (++) HAL_SPI_TransmitReceive_IT()in full duplex mode
 
        (++) HAL_SPI_IRQHandler()
 
 
    (#) Non Blocking mode functions with DMA are :
 
        (++) HAL_SPI_Transmit_DMA()in 1Line (simplex) and 2Lines (full duplex) mode
 
        (++) HAL_SPI_Receive_DMA() in 1Line (simplex) and 2Lines (full duplex) mode
 
        (++) HAL_SPI_TransmitReceie_DMA() in full duplex mode
 
          
 
    (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
 
        (++) HAL_SPI_TxCpltCallback()
 
        (++) HAL_SPI_RxCpltCallback()
 
        (++) HAL_SPI_ErrorCallback()
 
        (++) HAL_SPI_TxRxCpltCallback()
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Transmit an amount of data in blocking mode
 
  * @param  hspi: SPI handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent 
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
 
  
 
  if(hspi->State != HAL_SPI_STATE_READY)
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  if((pData == NULL ) || (Size == 0))
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hspi);
 
  
 
  /* Set the transaction information */  
 
  hspi->State       = HAL_SPI_STATE_BUSY_TX;
 
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
  hspi->pTxBuffPtr  = pData;
 
  hspi->TxXferSize  = Size;
 
  hspi->TxXferCount = Size;
 
  hspi->pRxBuffPtr  = NULL;
 
  hspi->RxXferSize  = 0;
 
  hspi->RxXferCount = 0;
 
 
  /* Reset CRC Calculation */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    __HAL_SPI_RESET_CRC(hspi);
 
  }
 
  
 
  /* Configure communication direction : 1Line */
 
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
 
  {
 
    __HAL_SPI_1LINE_TX(hspi);
 
  }
 
 
  /* Check if the SPI is already enabled */ 
 
  if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
 
  {
 
    /* Enable SPI peripheral */
 
    __HAL_SPI_ENABLE(hspi);
 
  }
 
  
 
  /* Transmit data in 16 Bit mode */
 
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) 
 
  {
 
    while (hspi->TxXferCount > 0)
 
    {
 
      /* Wait until TXE flag is set to send data */
 
      if(SPI_WaitFlagStateUntilTimeout(hspi,SPI_FLAG_TXE,SPI_FLAG_TXE,Timeout) != HAL_OK)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
      hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
 
      hspi->pTxBuffPtr += sizeof(uint16_t);
 
      hspi->TxXferCount--;
 
    }
 
  }
 
  /* Transmit data in 8 Bit mode */
 
  else
 
  {
 
    while (hspi->TxXferCount > 0)
 
    {
 
      if(hspi->TxXferCount != 0x1)
 
      {
 
        /* Wait until TXE flag is set to send data */
 
        if(SPI_WaitFlagStateUntilTimeout(hspi,SPI_FLAG_TXE,SPI_FLAG_TXE,Timeout) != HAL_OK)
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
 
        hspi->pTxBuffPtr += sizeof(uint16_t);
 
        hspi->TxXferCount -= 2;
 
      }
 
      else
 
      {
 
        /* Wait until TXE flag is set to send data */
 
        if(SPI_WaitFlagStateUntilTimeout(hspi,SPI_FLAG_TXE,SPI_FLAG_TXE,Timeout) != HAL_OK)  
 
        {
 
          return HAL_TIMEOUT;
 
        }
 
        *((__IO uint8_t*)&hspi->Instance->DR) = (*hspi->pTxBuffPtr++);
 
        hspi->TxXferCount--;    
 
      }
 
    }
 
  }
 
 
  /* Enable CRC Transmission */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED) 
 
  {
 
     hspi->Instance->CR1|= SPI_CR1_CRCNEXT;
 
  }
 
 
  /* Check the end of the transaction */
 
  if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK)
 
  {
 
    return HAL_TIMEOUT;
 
  }
 
  
 
  /* Clear OVERUN flag in 2 Lines communication mode because received is not read */
 
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
 
  {
 
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
 
  }
 
    
 
  hspi->State = HAL_SPI_STATE_READY; 
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hspi);
 
  
 
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
 
  {   
 
    return HAL_ERROR;
 
  }
 
  else
 
  {
 
    return HAL_OK;
 
  }
 
}
 
 
/**
 
  * @brief  Receive an amount of data in blocking mode 
 
  * @param  hspi: SPI handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
  __IO uint16_t tmpreg;
 
  
 
  if(hspi->State != HAL_SPI_STATE_READY)
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  if((pData == NULL ) || (Size == 0))
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
 
  {
 
    /* the receive process is not supported in 2Lines direction master mode */
 
    /* in this case we call the transmitReceive process                     */
 
    return HAL_SPI_TransmitReceive(hspi,pData,pData,Size,Timeout);
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hspi);
 
    
 
  hspi->State       = HAL_SPI_STATE_BUSY_RX;
 
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
  hspi->pRxBuffPtr  = pData;
 
  hspi->RxXferSize  = Size;
 
  hspi->RxXferCount = Size;
 
  hspi->pTxBuffPtr  = NULL;
 
  hspi->TxXferSize  = 0;
 
  hspi->TxXferCount = 0;
 
    
 
  /* Reset CRC Calculation */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    __HAL_SPI_RESET_CRC(hspi);
 
  }
 
 
  /* Set the Rx Fido thresold */
 
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
  {
 
    /* set fiforxthresold according the reception data lenght: 16bit */
 
    CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
  }
 
  else
 
  {
 
    /* set fiforxthresold according the reception data lenght: 8bit */
 
    SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
  }
 
 
  /* Configure communication direction 1Line and enabled SPI if needed */
 
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
 
  {
 
    __HAL_SPI_1LINE_RX(hspi);
 
  }
 
 
  /* Check if the SPI is already enabled */ 
 
  if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
 
  {
 
    /* Enable SPI peripheral */    
 
    __HAL_SPI_ENABLE(hspi);
 
  }
 
 
  /* Receive data in 8 Bit mode */
 
  if(hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
 
  {
 
    while(hspi->RxXferCount > 1)
 
    {
 
      /* Wait until the RXNE flag */
 
      if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
      (*hspi->pRxBuffPtr++)= *(__IO uint8_t *)&hspi->Instance->DR;
 
      hspi->RxXferCount--;  
 
    }
 
  }
 
  else /* Receive data in 16 Bit mode */
 
  {   
 
    while(hspi->RxXferCount > 1 )
 
    {
 
      /* Wait until RXNE flag is reset to read data */
 
      if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
 
      {
 
        return HAL_TIMEOUT;
 
      }
 
      *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
      hspi->pRxBuffPtr += sizeof(uint16_t);
 
      hspi->RxXferCount--;
 
    } 
 
  }
 
  
 
  /* Enable CRC Transmission */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED) 
 
  {
 
    hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
  }  
 
 
  /* Wait until RXNE flag is set */
 
  if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
 
  {
 
    return HAL_TIMEOUT;
 
  }
 
  
 
  /* Receive last data in 16 Bit mode */
 
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
  {        
 
    *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
    hspi->pRxBuffPtr += sizeof(uint16_t);
 
  }
 
  /* Receive last data in 8 Bit mode */
 
  else 
 
  {
 
    (*hspi->pRxBuffPtr++) = *(__IO uint8_t *)&hspi->Instance->DR;
 
  }
 
  hspi->RxXferCount--;
 
  
 
  /* Read CRC from DR to close CRC calculation process */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    /* Wait until TXE flag */
 
    if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) 
 
    {
 
      /* Erreur on the CRC reception */
 
      hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    }
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
    {        
 
      tmpreg = hspi->Instance->DR;
 
    }
 
    else
 
    {
 
      tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
      if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
 
      {
 
        if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
 
        {
 
          /* Erreur on the CRC reception */
 
          hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
        }
 
        tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
      }
 
    }
 
  }
 
  
 
  /* Check the end of the transaction */
 
  if(SPI_EndRxTransaction(hspi,Timeout) != HAL_OK)
 
  {
 
    return HAL_TIMEOUT;
 
  }
 
 
  hspi->State = HAL_SPI_STATE_READY; 
 
    
 
  /* Check if CRC error occurred */
 
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
  {
 
    hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
                  
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi);
 
    return HAL_ERROR;
 
  }
 
    
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hspi);
 
  
 
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
 
  {   
 
    return HAL_ERROR;
 
  }
 
  else
 
  {
 
    return HAL_OK;
 
  }
 
}
 
 
/**
 
  * @brief  Transmit and Receive an amount of data in blocking mode 
 
  * @param  hspi: SPI handle
 
  * @param  pTxData: pointer to transmission data buffer
 
  * @param  pRxData: pointer to reception data buffer to be
 
  * @param  Size: amount of data to be sent
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
 
{
 
  __IO uint16_t tmpreg = 0;
 
  uint32_t tickstart = 0;
 
  
 
  assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
 
  
 
  if(hspi->State != HAL_SPI_STATE_READY) 
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  if((pTxData == NULL) || (pRxData == NULL) || (Size == 0))
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  tickstart = HAL_GetTick();
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hspi); 
 
  
 
  hspi->State       = HAL_SPI_STATE_BUSY_TX_RX;
 
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
  hspi->pRxBuffPtr  = pRxData;
 
  hspi->RxXferCount = Size;
 
  hspi->RxXferSize  = Size;
 
  hspi->pTxBuffPtr  = pTxData;
 
  hspi->TxXferCount = Size;
 
  hspi->TxXferSize  = Size; 
 
  
 
  /* Reset CRC Calculation */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    __HAL_SPI_RESET_CRC(hspi);
 
  }
 
  
 
  /* Set the Rx Fido threshold */
 
  if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount > 1))
 
  {
 
    /* set fiforxthreshold according the reception data lenght: 16bit */
 
    CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
  }
 
  else
 
  {
 
    /* set fiforxthreshold according the reception data lenght: 8bit */
 
    SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
  }
 
  
 
  /* Check if the SPI is already enabled */ 
 
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
 
  {
 
    /* Enable SPI peripheral */    
 
    __HAL_SPI_ENABLE(hspi);
 
  }
 
  
 
  /* Transmit and Receive data in 16 Bit mode */
 
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
  {  
 
    while ((hspi->TxXferCount > 0 ) || (hspi->RxXferCount > 0))
 
    {
 
      /* Wait until TXE flag */
 
      if((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE))
 
      {
 
        hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
 
        hspi->pTxBuffPtr += sizeof(uint16_t);
 
        hspi->TxXferCount--;
 
        
 
        /* Enable CRC Transmission */
 
        if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED))
 
        {
 
          SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
 
        } 
 
      }
 
      
 
      /* Wait until RXNE flag */
 
      if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE))
 
      {
 
        *((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
        hspi->pRxBuffPtr += sizeof(uint16_t);
 
        hspi->RxXferCount--;
 
      }
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hspi->State = HAL_SPI_STATE_READY;
 
          __HAL_UNLOCK(hspi);
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }  
 
  }
 
  /* Transmit and Receive data in 8 Bit mode */
 
  else
 
  { 
 
    while((hspi->TxXferCount > 0) || (hspi->RxXferCount > 0))
 
    {
 
      /* check if TXE flag is set to send data */
 
      if((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE))
 
      {
 
        if(hspi->TxXferCount > 2)
 
        {
 
          hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
 
          hspi->pTxBuffPtr += sizeof(uint16_t);
 
          hspi->TxXferCount -= 2;
 
        } 
 
        else
 
        {
 
          *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
 
          hspi->TxXferCount--;
 
        }
 
        
 
        /* Enable CRC Transmission */
 
        if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED))
 
        {
 
          SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
 
        }
 
      }
 
            
 
      /* Wait until RXNE flag is reset */
 
      if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE))
 
      {
 
        if(hspi->RxXferCount > 1)
 
        {
 
          *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
          hspi->pRxBuffPtr += sizeof(uint16_t);
 
          hspi->RxXferCount -= 2;
 
          if(hspi->RxXferCount <= 1)
 
          {
 
            /* set fiforxthresold before to switch on 8 bit data size */
 
            SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
          }
 
        }
 
        else
 
        {
 
          (*hspi->pRxBuffPtr++) =  *(__IO uint8_t *)&hspi->Instance->DR;
 
          hspi->RxXferCount--;
 
        }
 
      }
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          hspi->State = HAL_SPI_STATE_READY;
 
          __HAL_UNLOCK(hspi);
 
          return HAL_TIMEOUT;
 
        }
 
      }  
 
    }
 
  }
 
  
 
  /* Read CRC from DR to close CRC calculation process */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    /* Wait until TXE flag */
 
    if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
 
    {  
 
      /* Erreur on the CRC reception */
 
      hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    }
 
    
 
    if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
 
    {
 
      tmpreg = hspi->Instance->DR;
 
    }
 
    else
 
    {
 
      tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
      if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
 
      {
 
        if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) 
 
        {  
 
          /* Erreur on the CRC reception */
 
          hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
        }    
 
        tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
      }
 
    }
 
  }
 
 
  /* Check the end of the transaction */
 
  if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK)
 
  {
 
    return HAL_TIMEOUT;
 
  }
 
 
  hspi->State = HAL_SPI_STATE_READY;
 
  
 
  /* Check if CRC error occurred */
 
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
  {
 
    hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    /* Clear CRC Flag */
 
    __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi);
 
    
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hspi);
 
  
 
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
 
  {   
 
    return HAL_ERROR;
 
  }
 
  else
 
  {
 
    return HAL_OK;
 
  }
 
}
 
 
/**
 
  * @brief  Transmit an amount of data in no-blocking mode with Interrupt
 
  * @param  hspi: SPI handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
 
{
 
  assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
 
  
 
  if(hspi->State == HAL_SPI_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(hspi);
 
    
 
    hspi->State       = HAL_SPI_STATE_BUSY_TX;
 
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
    hspi->pTxBuffPtr  = pData;
 
    hspi->TxXferSize  = Size;
 
    hspi->TxXferCount = Size;
 
    hspi->pRxBuffPtr  = NULL;
 
    hspi->RxXferSize  = 0;
 
    hspi->RxXferCount = 0;
 
 
    /* Set the function for IT treatement */
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
 
    {
 
      hspi->RxISR = NULL;
 
      hspi->TxISR = SPI_TxISR_16BIT;
 
    }
 
    else
 
    {
 
      hspi->RxISR = NULL;
 
      hspi->TxISR = SPI_TxISR_8BIT;
 
    }
 
    
 
    /* Configure communication direction : 1Line */
 
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
 
    {
 
      __HAL_SPI_1LINE_TX(hspi);
 
    }
 
    
 
    /* Reset CRC Calculation */
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      __HAL_SPI_RESET_CRC(hspi);    
 
    }
 
    
 
    /* Enable TXE and ERR interrupt */
 
    __HAL_SPI_ENABLE_IT(hspi,(SPI_IT_TXE));
 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi);
 
 
    /* Note : The SPI must be enabled after unlocking current process 
 
              to avoid the risk of SPI interrupt handle execution before current
 
              process unlock */
 
        
 
    /* Check if the SPI is already enabled */ 
 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
 
    {
 
      /* Enable SPI peripheral */    
 
      __HAL_SPI_ENABLE(hspi);
 
    }
 
        
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Receive an amount of data in no-blocking mode with Interrupt
 
  * @param  hspi: SPI handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
 
{
 
  if(hspi->State == HAL_SPI_STATE_READY)
 
  {
 
    if((pData == NULL) || (Size == 0))
 
    { 
 
      return  HAL_ERROR;                      
 
    }
 
 
    /* Process Locked */
 
    __HAL_LOCK(hspi);
 
    
 
    /* Configure communication */
 
    hspi->State       = HAL_SPI_STATE_BUSY_RX;
 
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
    hspi->pRxBuffPtr  = pData;
 
    hspi->RxXferSize  = Size;
 
    hspi->RxXferCount = Size;
 
    hspi->pTxBuffPtr  = NULL;
 
    hspi->TxXferSize  = 0;
 
    hspi->TxXferCount = 0;
 
 
    if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
 
    {
 
      /* Process Unlocked */
 
      __HAL_UNLOCK(hspi);
 
      /* the receive process is not supported in 2Lines direction master mode */
 
      /* in this we call the transmitReceive process          */
 
      return HAL_SPI_TransmitReceive_IT(hspi,pData,pData,Size);
 
    }
 
        
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->CRCSize = 1;
 
      if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
 
      {
 
        hspi->CRCSize = 2;
 
      }
 
    }
 
    else
 
    {
 
      hspi->CRCSize = 0;
 
    }
 
        
 
    /* check the data size to adapt Rx threshold and the set the function for IT treatement */
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
 
    {
 
      /* set fiforxthresold according the reception data lenght: 16 bit */
 
      CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
      hspi->RxISR = SPI_RxISR_16BIT;
 
      hspi->TxISR = NULL;
 
    }
 
    else
 
    {
 
      /* set fiforxthresold according the reception data lenght: 8 bit */
 
      SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
      hspi->RxISR = SPI_RxISR_8BIT;
 
      hspi->TxISR = NULL;
 
    }
 
    
 
    /* Configure communication direction : 1Line */
 
    if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
 
    {
 
      __HAL_SPI_1LINE_RX(hspi);
 
    }
 
    
 
    /* Reset CRC Calculation */
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      __HAL_SPI_RESET_CRC(hspi);
 
    }
 
    
 
    /* Enable TXE and ERR interrupt */
 
    __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi);
 
    
 
    /* Note : The SPI must be enabled after unlocking current process 
 
    to avoid the risk of SPI interrupt handle execution before current
 
    process unlock */
 
    
 
    /* Check if the SPI is already enabled */ 
 
    if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
 
    {
 
      /* Enable SPI peripheral */    
 
      __HAL_SPI_ENABLE(hspi);
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief  Transmit and Receive an amount of data in no-blocking mode with Interrupt 
 
  * @param  hspi: SPI handle
 
  * @param  pTxData: pointer to transmission data buffer
 
  * @param  pRxData: pointer to reception data buffer to be
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
 
{
 
  assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
 
  
 
  if((hspi->State == HAL_SPI_STATE_READY) || \
 
     ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX)))
 
  {
 
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process locked */
 
    __HAL_LOCK(hspi);
 
    
 
    hspi->CRCSize = 0;
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->CRCSize = 1;
 
      if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
 
      {
 
        hspi->CRCSize = 2;
 
      }
 
    }
 
    
 
    if(hspi->State != HAL_SPI_STATE_BUSY_RX)
 
    {
 
      hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
 
    }
 
    
 
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
    hspi->pTxBuffPtr  = pTxData;
 
    hspi->TxXferSize  = Size;
 
    hspi->TxXferCount = Size;
 
    hspi->pRxBuffPtr  = pRxData;
 
    hspi->RxXferSize  = Size;
 
    hspi->RxXferCount = Size;
 
    
 
    /* Set the function for IT treatement */
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
 
    {
 
      hspi->RxISR = SPI_2linesRxISR_16BIT;
 
      hspi->TxISR = SPI_2linesTxISR_16BIT;       
 
    }
 
    else
 
    {
 
      hspi->RxISR = SPI_2linesRxISR_8BIT;
 
      hspi->TxISR = SPI_2linesTxISR_8BIT;
 
    }
 
    
 
    /* Reset CRC Calculation */
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      __HAL_SPI_RESET_CRC(hspi);
 
    }
 
    
 
    /* check if packing mode is enabled and if there is more than 2 data to receive */
 
    if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount >= 2))
 
    {
 
      /* set fiforxthresold according the reception data lenght: 16 bit */
 
      CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
    }
 
    else
 
    {
 
      /* set fiforxthresold according the reception data lenght: 8 bit */
 
      SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
    }
 
    
 
    /* Enable TXE, RXNE and ERR interrupt */
 
    __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi);
 
    
 
    /* Check if the SPI is already enabled */ 
 
    if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
 
    {
 
      /* Enable SPI peripheral */    
 
      __HAL_SPI_ENABLE(hspi);
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  Transmit an amount of data in no-blocking mode with DMA
 
  * @param  hspi: SPI handle
 
  * @param  pData: pointer to data buffer
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
 
{    
 
  assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
 
 
  if(hspi->State != HAL_SPI_STATE_READY) 
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  if((pData == NULL) || (Size == 0))
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hspi);
 
  
 
  hspi->State       = HAL_SPI_STATE_BUSY_TX;
 
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
  hspi->pTxBuffPtr  = pData;
 
  hspi->TxXferSize  = Size;
 
  hspi->TxXferCount = Size;
 
  hspi->pRxBuffPtr  = NULL;
 
  hspi->RxXferSize  = 0;
 
  hspi->RxXferCount = 0;
 
  
 
  /* Configure communication direction : 1Line */
 
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
 
  {
 
    __HAL_SPI_1LINE_TX(hspi);
 
  }
 
  
 
  /* Reset CRC Calculation */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    __HAL_SPI_RESET_CRC(hspi);
 
  }
 
  
 
  /* Set the SPI TxDMA transfer complete callback */
 
  hspi->hdmatx->XferCpltCallback = HAL_SPI_DMATransmitCplt;
 
  
 
  /* Set the DMA error callback */
 
  hspi->hdmatx->XferErrorCallback = HAL_SPI_DMAError;
 
  
 
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
 
  /* packing mode is enabled only if the DMA setting is HALWORD */
 
  if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
 
  {
 
    /* Check the even/odd of the data size + crc if enabled */
 
    if((hspi->TxXferCount & 0x1) == 0)
 
    {
 
      CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
 
      hspi->TxXferCount = (hspi->TxXferCount >> 1);
 
    }
 
    else
 
    {
 
      SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
 
      hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1;
 
    }
 
  }
 
  
 
  /* Enable the Tx DMA channel */
 
  HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
 
  
 
  /* Check if the SPI is already enabled */ 
 
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
 
  {
 
    /* Enable SPI peripheral */    
 
    __HAL_SPI_ENABLE(hspi);
 
  }
 
 
  /* Enable Tx DMA Request */
 
  hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hspi);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
* @brief  Receive an amount of data in no-blocking mode with DMA 
 
* @param  hspi: SPI handle
 
* @param  pData: pointer to data buffer
 
* @param  Size: amount of data to be sent
 
* @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
 
{
 
  if(hspi->State != HAL_SPI_STATE_READY)
 
  {
 
    return HAL_BUSY;
 
  }
 
  
 
  if((pData == NULL) || (Size == 0))
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(hspi);
 
 
  hspi->State       = HAL_SPI_STATE_BUSY_RX;
 
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
  hspi->pRxBuffPtr  = pData;
 
  hspi->RxXferSize  = Size;
 
  hspi->RxXferCount = Size;
 
  hspi->pTxBuffPtr  = NULL;
 
  hspi->TxXferSize  = 0;
 
  hspi->TxXferCount = 0;
 
 
  if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
 
  {
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi); 
 
    /* the receive process is not supported in 2Lines direction master mode */
 
    /* in this case we call the transmitReceive process                     */
 
    return HAL_SPI_TransmitReceive_DMA(hspi,pData,pData,Size);
 
  }
 
  
 
  /* Configure communication direction : 1Line */
 
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
 
  {
 
    __HAL_SPI_1LINE_RX(hspi);
 
  }
 
  
 
  /* Reset CRC Calculation */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    __HAL_SPI_RESET_CRC(hspi);
 
  }
 
  
 
  /* packing mode management is enabled by the DMA settings */
 
  if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
 
  {
 
    /* Process Locked */
 
    __HAL_UNLOCK(hspi);
 
    /* Restriction the DMA data received is not allowed in this mode */
 
    return HAL_ERROR;
 
  }
 
  
 
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
 
  if( hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
  {
 
    /* set fiforxthresold according the reception data lenght: 16bit */
 
    CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
  }
 
  else
 
  {
 
    /* set fiforxthresold according the reception data lenght: 8bit */
 
    SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
  }
 
  
 
  /* Set the SPI Rx DMA transfer complete callback */
 
  hspi->hdmarx->XferCpltCallback = HAL_SPI_DMAReceiveCplt;
 
  
 
  /* Set the DMA error callback */
 
  hspi->hdmarx->XferErrorCallback = HAL_SPI_DMAError;
 
  
 
  /* Enable Rx DMA Request */  
 
  hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;
 
  
 
  /* Enable the Rx DMA channel */
 
  HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hspi);
 
  
 
  /* Check if the SPI is already enabled */ 
 
  if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
 
  {
 
    /* Enable SPI peripheral */    
 
    __HAL_SPI_ENABLE(hspi);
 
  }
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Transmit and Receive an amount of data in no-blocking mode with DMA 
 
  * @param  hspi: SPI handle
 
  * @param  pTxData: pointer to transmission data buffer
 
  * @param  pRxData: pointer to reception data buffer to be
 
  * @param  Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
 
{
 
  assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
 
  
 
  if((hspi->State == HAL_SPI_STATE_READY) ||
 
     ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX)))
 
  {
 
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process locked */
 
    __HAL_LOCK(hspi);
 
    
 
    /* check if the transmit Receive function is not called by a receive master */
 
    if(hspi->State != HAL_SPI_STATE_BUSY_RX)
 
    {  
 
      hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
 
    }
 
    
 
    hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
 
    hspi->pTxBuffPtr  = (uint8_t *)pTxData;
 
    hspi->TxXferSize  = Size;
 
    hspi->TxXferCount = Size;
 
    hspi->pRxBuffPtr  = (uint8_t *)pRxData;
 
    hspi->RxXferSize  = Size;
 
    hspi->RxXferCount = Size;
 
    
 
    /* Reset CRC Calculation + increase the rxsize */
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      __HAL_SPI_RESET_CRC(hspi);
 
    }
 
    
 
    /* Reset the threshold bit */
 
    CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
 
    CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
 
    
 
    /* the packing mode management is enabled by the DMA settings according the spi data size */
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
    {
 
      /* set fiforxthreshold according the reception data lenght: 16bit */
 
      CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
    }
 
    else
 
    {
 
      /* set fiforxthresold according the reception data lenght: 8bit */
 
      SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
      
 
      if(hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
 
      {
 
        if((hspi->TxXferSize & 0x1) == 0x0 )
 
        {
 
          CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
 
          hspi->TxXferCount = hspi->TxXferCount >> 1;
 
        }
 
        else
 
        {
 
          SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
 
          hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1;
 
        }      
 
      }
 
      
 
      if(hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
 
      {
 
        /* set fiforxthresold according the reception data lenght: 16bit */
 
        CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
 
        
 
        /* Size must include the CRC lenght */
 
        if((hspi->RxXferCount & 0x1) == 0x0 )
 
        {
 
          CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
 
          hspi->RxXferCount = hspi->RxXferCount >> 1;
 
        }
 
        else
 
        {
 
          SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
 
          hspi->RxXferCount = (hspi->RxXferCount >> 1) + 1; 
 
        } 
 
      }
 
    }   
 
    
 
    /* Set the SPI Rx DMA transfer complete callback because the last generated transfer request is 
 
    the reception request (RXNE) */
 
    if(hspi->State == HAL_SPI_STATE_BUSY_RX)
 
    {
 
      hspi->hdmarx->XferCpltCallback = HAL_SPI_DMAReceiveCplt;
 
    }
 
    else
 
    {
 
      hspi->hdmarx->XferCpltCallback = HAL_SPI_DMATransmitReceiveCplt;
 
    }
 
    /* Set the DMA error callback */
 
    hspi->hdmarx->XferErrorCallback = HAL_SPI_DMAError;
 
    
 
    /* Enable Rx DMA Request */  
 
    hspi->Instance->CR2 |= SPI_CR2_RXDMAEN;
 
    
 
    /* Enable the Rx DMA channel */
 
    HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t) hspi->pRxBuffPtr, hspi->RxXferCount);
 
    
 
    /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
 
    is performed in DMA reception complete callback  */
 
    hspi->hdmatx->XferCpltCallback = NULL;
 
    
 
    /* Set the DMA error callback */
 
    hspi->hdmatx->XferErrorCallback = HAL_SPI_DMAError;
 
    
 
    /* Enable the Tx DMA channel */
 
    HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
 
    
 
    /* Check if the SPI is already enabled */ 
 
    if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
 
    {
 
      /* Enable SPI peripheral */    
 
      __HAL_SPI_ENABLE(hspi);
 
    }
 
    
 
    /* Enable Tx DMA Request */  
 
    hspi->Instance->CR2 |= SPI_CR2_TXDMAEN;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hspi);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief  This function handles SPI interrupt request.
 
  * @param  hspi: SPI handle
 
  * @retval HAL status
 
  */
 
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
 
{
 
  /* SPI in mode Receiver ----------------------------------------------------*/
 
  if((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR) == RESET) &&
 
     (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE) != RESET) && (__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_RXNE) != RESET))
 
  {
 
    hspi->RxISR(hspi);
 
    return;
 
  }
 
  
 
  /* SPI in mode Tramitter ---------------------------------------------------*/
 
  if((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE) != RESET) && (__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_TXE) != RESET))
 
  {   
 
    hspi->TxISR(hspi);
 
    return;
 
  }
 
  
 
  /* SPI in Erreur Treatment ---------------------------------------------------*/
 
  if((hspi->Instance->SR & (SPI_FLAG_MODF | SPI_FLAG_OVR | SPI_FLAG_FRE)) != RESET)  
 
  {
 
    /* SPI Overrun error interrupt occured -------------------------------------*/
 
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR) != RESET) 
 
    {
 
      if(hspi->State != HAL_SPI_STATE_BUSY_TX)
 
      {
 
        hspi->ErrorCode |= HAL_SPI_ERROR_OVR;
 
        __HAL_SPI_CLEAR_OVRFLAG(hspi);
 
      }
 
      else
 
      {
 
        return;
 
      }
 
    }
 
    
 
    /* SPI Mode Fault error interrupt occured -------------------------------------*/
 
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_MODF) != RESET)
 
    { 
 
      hspi->ErrorCode |= HAL_SPI_ERROR_MODF;
 
      __HAL_SPI_CLEAR_MODFFLAG(hspi);
 
    }
 
    
 
    /* SPI Frame error interrupt occured ----------------------------------------*/
 
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_FRE) != RESET)
 
    { 
 
      hspi->ErrorCode |= HAL_SPI_ERROR_FRE;
 
      __HAL_SPI_CLEAR_FREFLAG(hspi);
 
    }
 
        
 
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR);
 
    hspi->State = HAL_SPI_STATE_READY;
 
    HAL_SPI_ErrorCallback(hspi);
 
    return;
 
  }
 
}
 
 
/**
 
  * @brief DMA SPI transmit process complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void HAL_SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
 
  /* Disable Tx DMA Request */
 
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
 
 
  /* Check the end of the transaction */
 
  SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
 
  
 
  /* Clear OVERUN flag in 2 Lines communication mode because received data is not read */
 
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
 
  {
 
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
 
  }
 
    
 
  hspi->TxXferCount = 0;
 
  hspi->State = HAL_SPI_STATE_READY;
 
  
 
  /* Check if CRC error occurred or Error code */
 
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
  {
 
    hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
    HAL_SPI_ErrorCallback(hspi); 
 
  }
 
  else 
 
  {
 
    if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
 
    {
 
      HAL_SPI_TxCpltCallback(hspi);
 
    }
 
    else
 
    {
 
      HAL_SPI_ErrorCallback(hspi);
 
    }     
 
  }  
 
}
 
 
/**
 
  * @brief DMA SPI receive process complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void HAL_SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  __IO uint16_t tmpreg;
 
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* CRC handling */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    /* Wait until TXE flag */
 
    if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK)
 
    {
 
      /* Erreur on the CRC reception */
 
      hspi->ErrorCode|= HAL_SPI_ERROR_CRC;      
 
    }
 
    if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
 
    {        
 
      tmpreg = hspi->Instance->DR;
 
    }
 
    else
 
    {
 
      tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
      if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
 
      {
 
        if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK)
 
        {
 
          /* Erreur on the CRC reception */
 
          hspi->ErrorCode|= HAL_SPI_ERROR_CRC;      
 
        }
 
        tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
      }
 
    }  
 
  }
 
 
  /* Disable Rx DMA Request */
 
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
 
  /* Disable Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
 
  hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
 
 
  /* Check the end of the transaction */
 
  SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
 
  
 
  hspi->RxXferCount = 0;
 
  hspi->State = HAL_SPI_STATE_READY;
 
  
 
  /* Check if CRC error occurred */
 
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
  {
 
    hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
    HAL_SPI_RxCpltCallback(hspi);
 
  }
 
  else
 
  {
 
    if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
 
    {
 
      HAL_SPI_RxCpltCallback(hspi);
 
    }
 
    else
 
    {
 
      HAL_SPI_ErrorCallback(hspi); 
 
    }
 
  }
 
}
 
 
/**
 
  * @brief DMA SPI transmit receive process complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
 
static void HAL_SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  __IO int16_t tmpreg;
 
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  /* CRC handling */
 
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
  {
 
    if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT))
 
    {        
 
      if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK)
 
      {
 
        /* Erreur on the CRC reception */
 
        hspi->ErrorCode|= HAL_SPI_ERROR_CRC;      
 
      }
 
      tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
 
    }
 
    else
 
    {
 
      if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK)
 
      {
 
        /* Erreur on the CRC reception */
 
        hspi->ErrorCode|= HAL_SPI_ERROR_CRC;      
 
      }
 
      tmpreg = hspi->Instance->DR;
 
    }
 
  }  
 
  
 
  /* Check the end of the transaction */
 
  SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
 
  
 
  /* Disable Tx DMA Request */
 
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
 
  
 
  /* Disable Rx DMA Request */
 
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
 
   
 
  hspi->TxXferCount = 0;
 
  hspi->RxXferCount = 0;
 
  hspi->State = HAL_SPI_STATE_READY;
 
  
 
  /* Check if CRC error occurred */
 
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
  {
 
    hspi->ErrorCode = HAL_SPI_ERROR_CRC;
 
    __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
    HAL_SPI_ErrorCallback(hspi);
 
  }
 
  else
 
  {     
 
    if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
 
    {
 
      HAL_SPI_TxRxCpltCallback(hspi);
 
    }
 
    else
 
    {
 
      HAL_SPI_ErrorCallback(hspi);
 
    }
 
  }
 
}
 
      
 
/**
 
  * @brief DMA SPI communication error callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void HAL_SPI_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  hspi->TxXferCount = 0;
 
  hspi->RxXferCount = 0;  
 
  hspi->ErrorCode|= HAL_SPI_ERROR_DMA;
 
  hspi->State = HAL_SPI_STATE_READY;
 
  HAL_SPI_ErrorCallback(hspi);
 
}
 
 
/**
 
  * @brief Tx Transfer completed callbacks
 
  * @param hspi: SPI handle
 
  * @retval None
 
  */
 
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SPI_TxCpltCallback could be implenetd in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Rx Transfer completed callbacks
 
  * @param hspi: SPI handle
 
  * @retval None
 
  */
 
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SPI_RxCpltCallback could be implenetd in the user file
 
   */
 
}
 
  
 
/**
 
  * @brief Tx and Rx Transfer completed callbacks
 
  * @param hspi: SPI handle
 
  * @retval None
 
  */
 
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SPI_TxRxCpltCallback could be implenetd in the user file
 
   */
 
}
 
  
 
/**
 
  * @brief SPI error callbacks
 
  * @param hspi: SPI handle
 
  * @retval None
 
  */
 
 __weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_SPI_ErrorCallback could be implenetd in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup SPI_Exported_Functions_Group3 Peripheral Control functions 
 
  * @brief   SPI control functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the SPI.
 
     (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral. 
 
     (+) HAL_SPI_Ctl() API can be used to update the spi configuration (only one parameter)
 
         without calling the HAL_SPI_Init() API
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the SPI state
 
  * @param  hspi : SPI handle
 
  * @retval HAL state
 
  */
 
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
 
{
 
  return hspi->State;
 
}
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @addtogroup SPI_Private_Functions SPI Private Functions
 
 *  @brief   Data transfers Private functions 
 
  * @{
 
  */
 
 
/**
 
  * @brief  Rx Handler for Transmit and Receive in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  /* Receive data in packing mode */
 
  if(hspi->RxXferCount > 1)
 
  {
 
    *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
    hspi->pRxBuffPtr += sizeof(uint16_t);
 
    hspi->RxXferCount -= 2;
 
    if(hspi->RxXferCount == 1)
 
    {
 
      /* set fiforxthresold according the reception data lenght: 8bit */
 
      SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);      
 
    }    
 
  }
 
  /* Receive data in 8 Bit mode */
 
  else
 
  {
 
    *hspi->pRxBuffPtr++ = *((__IO uint8_t *)&hspi->Instance->DR);
 
    hspi->RxXferCount--;
 
  }
 
  
 
  /* check end of the reception */
 
  if(hspi->RxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->RxISR =  SPI_2linesRxISR_8BITCRC; 
 
      return;
 
    }
 
        
 
    /* Disable RXNE interrupt */
 
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); 
 
    
 
    if(hspi->TxXferCount == 0)
 
    {
 
      SPI_CloseRxTx_ISR(hspi);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  Rx Handler for Transmit and Receive in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
 
{
 
  __IO uint8_t tmpreg;
 
  
 
  tmpreg = *((__IO uint8_t *)&hspi->Instance->DR);
 
  hspi->CRCSize--;
 
  
 
  /* check end of the reception */
 
  if(hspi->CRCSize == 0)
 
  {
 
    /* Disable RXNE interrupt */
 
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); 
 
    
 
    if(hspi->TxXferCount == 0)
 
    {
 
      SPI_CloseRxTx_ISR(hspi);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  Tx Handler for Transmit and Receive in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  /* Transmit data in packing Bit mode */
 
  if(hspi->TxXferCount >= 2)
 
  {
 
    hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
 
    hspi->pTxBuffPtr += sizeof(uint16_t);
 
    hspi->TxXferCount -= 2;
 
  }
 
  /* Transmit data in 8 Bit mode */
 
  else
 
  {        
 
    *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
 
    hspi->TxXferCount--;
 
  }
 
  
 
  /* check the end of the transmission */
 
  if(hspi->TxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
    }
 
    /* Disable TXE interrupt */
 
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
 
    
 
    if(hspi->RxXferCount == 0)
 
    { 
 
      SPI_CloseRxTx_ISR(hspi);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  Rx 16Bit Handler for Transmit and Receive in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  /* Receive data in 16 Bit mode */
 
  *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
  hspi->pRxBuffPtr += sizeof(uint16_t);
 
  hspi->RxXferCount--;	
 
  
 
  if(hspi->RxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->RxISR =  SPI_2linesRxISR_16BITCRC; 
 
      return;
 
    }
 
    
 
    /* Disable RXNE interrupt */
 
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); 
 
    
 
    if(hspi->TxXferCount == 0)
 
    {
 
      SPI_CloseRxTx_ISR(hspi);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  Manage the CRC 16bit receive for Transmit and Receive in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
 
{
 
  __IO uint16_t tmpreg;
 
  /* Receive data in 16 Bit mode */
 
  tmpreg = hspi->Instance->DR;
 
  
 
  /* Disable RXNE interrupt */
 
  __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); 
 
  
 
  SPI_CloseRxTx_ISR(hspi);
 
}
 
 
/**
 
  * @brief  Tx Handler for Transmit and Receive in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  /* Transmit data in 16 Bit mode */
 
  hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
 
  hspi->pTxBuffPtr += sizeof(uint16_t);
 
  hspi->TxXferCount--;
 
  
 
  /* Enable CRC Transmission */
 
  if(hspi->TxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
    }
 
    /* Disable TXE interrupt */
 
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
 
    
 
    if(hspi->RxXferCount == 0)
 
    { 
 
      SPI_CloseRxTx_ISR(hspi);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief  Manage the CRC receive in Interrupt context
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
 
{
 
  __IO uint8_t tmpreg;
 
  tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
 
  hspi->CRCSize--;
 
  
 
  if(hspi->CRCSize == 0)
 
  { 
 
    SPI_CloseRx_ISR(hspi);
 
  }
 
}
 
 
/**
 
  * @brief  Manage the recieve in Interrupt context
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  *hspi->pRxBuffPtr++ = (*(__IO uint8_t *)&hspi->Instance->DR);
 
  hspi->RxXferCount--;
 
  
 
  /* Enable CRC Transmission */
 
  if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)) 
 
  {
 
    hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
  }
 
  
 
  if(hspi->RxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->RxISR =  SPI_RxISR_8BITCRC; 
 
      return;
 
    }
 
    SPI_CloseRx_ISR(hspi);
 
  }
 
}
 
 
/**
 
  * @brief  Manage the CRC 16bit recieve in Interrupt context
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
 
{
 
  __IO uint16_t tmpreg;
 
  
 
  tmpreg = hspi->Instance->DR;
 
  
 
  /* Disable RXNE and ERR interrupt */
 
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
 
  
 
  SPI_CloseRx_ISR(hspi);
 
}
 
 
/**
 
  * @brief  Manage the 16Bit recieve in Interrupt context
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  *((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
 
  hspi->pRxBuffPtr += sizeof(uint16_t);
 
  hspi->RxXferCount--;
 
  
 
  /* Enable CRC Transmission */
 
  if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)) 
 
  {
 
    hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
  }
 
  
 
  if(hspi->RxXferCount == 0)
 
  {    
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      hspi->RxISR = SPI_RxISR_16BITCRC;
 
      return;
 
    }
 
    SPI_CloseRx_ISR(hspi);
 
  }
 
}
 
 
/**
 
  * @brief  Handle the data 8Bit transmit in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
 
{
 
  *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
 
  hspi->TxXferCount--;
 
  
 
  if(hspi->TxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      /* Enable CRC Transmission */
 
      hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
    }
 
    SPI_CloseTx_ISR(hspi);
 
  }
 
}
 
 
/**
 
  * @brief  Handle the data 16Bit transmit in Interrupt mode
 
  * @param  hspi: SPI handle
 
  */
 
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
 
{ 
 
  /* Transmit data in 16 Bit mode */
 
  hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
 
  hspi->pTxBuffPtr += sizeof(uint16_t);
 
  hspi->TxXferCount--;
 
  
 
  if(hspi->TxXferCount == 0)
 
  {
 
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
    {
 
      /* Enable CRC Transmission */
 
      hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
 
    }
 
    SPI_CloseTx_ISR(hspi);
 
  }
 
}
 
 
/**
 
  * @brief This function handles SPI Communication Timeout.
 
  * @param hspi: SPI handle
 
  * @param Flag : SPI flag to check
 
  * @param State : flag state to check
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout)
 
{
 
  uint32_t tickstart = HAL_GetTick();
 
     
 
  while((hspi->Instance->SR & Flag) != State)
 
  {
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        /* Disable the SPI and reset the CRC: the CRC value should be cleared
 
        on both master and slave sides in order to resynchronize the master
 
        and slave for their respective CRC calculation */
 
        
 
        /* Disable TXE, RXNE and ERR interrupts for the interrupt process */
 
        __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
 
        
 
        if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
 
        {
 
          /* Disable SPI peripheral */
 
          __HAL_SPI_DISABLE(hspi);
 
        }
 
        
 
        /* Reset CRC Calculation */
 
        if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
        {
 
          __HAL_SPI_RESET_CRC(hspi);
 
        }
 
        
 
        hspi->State= HAL_SPI_STATE_READY;
 
        
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hspi);
 
        
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
  
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief This function handles SPI Communication Timeout.
 
  * @param hspi: SPI handle
 
  * @param Fifo: Fifo to check
 
  * @param State: Fifo state to check
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout)
 
{
 
  __IO uint8_t tmpreg;
 
  uint32_t tickstart = HAL_GetTick();
 
 
  while((hspi->Instance->SR & Fifo) != State)
 
  {
 
    if((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY))
 
    {
 
      tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
 
    }
 
    if(Timeout != HAL_MAX_DELAY)
 
    {
 
      if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
      {
 
        /* Disable the SPI and reset the CRC: the CRC value should be cleared
 
        on both master and slave sides in order to resynchronize the master
 
        and slave for their respective CRC calculation */
 
        
 
        /* Disable TXE, RXNE and ERR interrupts for the interrupt process */
 
        __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
 
        
 
        if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
 
        {
 
          /* Disable SPI peripheral */
 
          __HAL_SPI_DISABLE(hspi);
 
        }
 
        
 
        /* Reset CRC Calculation */
 
        if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED)
 
        {
 
          __HAL_SPI_RESET_CRC(hspi);
 
        }
 
        
 
        hspi->State = HAL_SPI_STATE_READY;
 
        
 
        /* Process Unlocked */
 
        __HAL_UNLOCK(hspi);
 
        
 
        return HAL_TIMEOUT;
 
      }
 
    }
 
  }
 
  
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief This function handles the check of the RX transaction complete.
 
  * @param hspi: SPI handle
 
  * @param Timeout : Timeout duration
 
  */
 
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi,  uint32_t Timeout)
 
{
 
  if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
 
  {
 
    /* Disable SPI peripheral */
 
    __HAL_SPI_DISABLE(hspi);
 
  }
 
  if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK)
 
  {  
 
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
 
    return HAL_TIMEOUT;
 
  }
 
  if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK) 
 
  {
 
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
 
    return HAL_TIMEOUT;
 
  }
 
  
 
  return HAL_OK;
 
}
 
  
 
/**
 
  * @brief This function handles the check of the RXTX or TX transaction complete.
 
  * @param hspi: SPI handle
 
  * @param Timeout : Timeout duration
 
  */
 
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout)
 
{
 
  /* Procedure to check the transaction complete */
 
  if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout) != HAL_OK)
 
  {
 
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
 
    return HAL_TIMEOUT;
 
  }
 
  if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK)
 
  {
 
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
 
    return HAL_TIMEOUT;
 
  }
 
  if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK)
 
  {
 
    hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
 
    return HAL_TIMEOUT;
 
  }
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief This function handles the close of the RXTX transaction.
 
  * @param hspi: SPI handle
 
  */
 
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
 
{
 
  /* Disable ERR interrupt */
 
  __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
 
  
 
  /* Check the end of the transaction */
 
  SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
 
  
 
  /* Check if CRC error occurred */
 
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
  {
 
    hspi->State = HAL_SPI_STATE_READY;
 
    hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
    __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
    HAL_SPI_ErrorCallback(hspi);
 
  }
 
  else
 
  {
 
    if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
 
    {
 
      if(hspi->State == HAL_SPI_STATE_BUSY_RX)
 
      {
 
      	hspi->State = HAL_SPI_STATE_READY;
 
        HAL_SPI_RxCpltCallback(hspi);
 
      }
 
      else
 
      {
 
      	hspi->State = HAL_SPI_STATE_READY;
 
        HAL_SPI_TxRxCpltCallback(hspi);
 
      }      
 
    }
 
    else
 
    {
 
      hspi->State = HAL_SPI_STATE_READY;
 
      HAL_SPI_ErrorCallback(hspi);
 
    }
 
  }
 
}
 
 
/**
 
  * @brief This function handles the close of the RX transaction.
 
  * @param hspi: SPI handle
 
  */
 
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
 
{
 
    /* Disable RXNE and ERR interrupt */
 
    __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
 
    
 
    /* Check the end of the transaction */
 
    SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
 
    
 
    hspi->State = HAL_SPI_STATE_READY; 
 
    
 
    /* Check if CRC error occurred */
 
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
 
    {
 
      hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
 
      __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
 
      HAL_SPI_ErrorCallback(hspi);         
 
    }
 
    else
 
    {
 
      if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
 
      {
 
        HAL_SPI_RxCpltCallback(hspi);         
 
      }
 
      else
 
      {
 
        HAL_SPI_ErrorCallback(hspi);
 
      }
 
    }
 
}
 
 
/**
 
  * @brief This function handles the close of the TX transaction.
 
  * @param hspi: SPI handle
 
  */
 
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
 
{
 
  /* Disable TXE and ERR interrupt */
 
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
 
  
 
  /* Check the end of the transaction */
 
  SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT);
 
  
 
  /* Clear OVERUN flag in 2 Lines communication mode because received is not read */
 
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
 
  {
 
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
 
  }
 
  
 
  hspi->State = HAL_SPI_STATE_READY;
 
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
 
  {
 
    HAL_SPI_ErrorCallback(hspi);
 
  }
 
  else
 
  {
 
    HAL_SPI_TxCpltCallback(hspi);
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_SPI_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_tim.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   TIM HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Timer (TIM) peripheral:
 
  *           + Time Base Initialization
 
  *           + Time Base Start
 
  *           + Time Base Start Interruption
 
  *           + Time Base Start DMA
 
  *           + Time Output Compare/PWM Initialization
 
  *           + Time Output Compare/PWM Channel Configuration
 
  *           + Time Output Compare/PWM  Start
 
  *           + Time Output Compare/PWM  Start Interruption
 
  *           + Time Output Compare/PWM Start DMA
 
  *           + Time Input Capture Initialization
 
  *           + Time Input Capture Channel Configuration
 
  *           + Time Input Capture Start
 
  *           + Time Input Capture Start Interruption 
 
  *           + Time Input Capture Start DMA
 
  *           + Time One Pulse Initialization
 
  *           + Time One Pulse Channel Configuration
 
  *           + Time One Pulse Start 
 
  *           + Time Encoder Interface Initialization
 
  *           + Time Encoder Interface Start
 
  *           + Time Encoder Interface Start Interruption
 
  *           + Time Encoder Interface Start DMA
 
  *           + Commutation Event configuration with Interruption and DMA
 
  *           + Time OCRef clear configuration
 
  *           + Time External Clock configuration
 
  @verbatim
 
  ==============================================================================
 
                      ##### TIMER Generic features #####
 
  ==============================================================================
 
  [..] The Timer features include: 
 
       (#) 16-bit up, down, up/down auto-reload counter.
 
       (#) 16-bit programmable prescaler allowing dividing (also on the fly) the 
 
           counter clock frequency either by any factor between 1 and 65536.
 
       (#) Up to 4 independent channels for:
 
           (++) Input Capture
 
           (++) Output Compare
 
           (++) PWM generation (Edge and Center-aligned Mode)
 
           (++) One-pulse mode output               
 
   
 
            ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
     (#) Initialize the TIM low level resources by implementing the following functions 
 
         depending from feature used :
 
           (++) Time Base : HAL_TIM_Base_MspInit() 
 
           (++) Input Capture : HAL_TIM_IC_MspInit()
 
           (++) Output Compare : HAL_TIM_OC_MspInit()
 
           (++) PWM generation : HAL_TIM_PWM_MspInit()
 
           (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
 
           (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
 
           
 
     (#) Initialize the TIM low level resources :
 
        (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); 
 
        (##) TIM pins configuration
 
            (+++) Enable the clock for the TIM GPIOs using the following function:
 
             __GPIOx_CLK_ENABLE();   
 
            (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();  
 
 
     (#) The external Clock can be configured, if needed (the default clock is the 
 
         internal clock from the APBx), using the following function:
 
         HAL_TIM_ConfigClockSource, the clock configuration should be done before 
 
         any start function.
 
  
 
     (#) Configure the TIM in the desired functioning mode using one of the 
 
       Initialization function of this driver:
 
       (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
 
       (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an 
 
            Output Compare signal.
 
       (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a 
 
            PWM signal.
 
       (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an 
 
            external signal.
 
         (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer 
 
              in One Pulse Mode.
 
       (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
 
 
     (#) Activate the TIM peripheral using one of the start functions depending from the feature used: 
 
           (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
 
           (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
 
           (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
 
           (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
 
           (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
 
           (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
 
 
     (#) The DMA Burst is managed with the two following functions:
 
         HAL_TIM_DMABurst_WriteStart()
 
         HAL_TIM_DMABurst_ReadStart()
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup TIM TIM HAL module driver
 
  * @brief TIM HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_TIM_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
 
/** @defgroup TIM_Private_Functions TIM_Private_Functions
 
  * @{
 
  */
 
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
 
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
 
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
 
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
 
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter);
 
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
 
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter);
 
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter);
 
static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
 
                       uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
 
static void TIM_ITRx_SetConfig(TIM_TypeDef* TIMx, uint16_t InputTriggerSource);
 
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
 
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
 
static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
 
                                     TIM_SlaveConfigTypeDef * sSlaveConfig);
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup TIM_Exported_Functions TIM Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group1 Time Base functions 
 
 *  @brief    Time Base functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
              ##### Time Base functions #####
 
  ==============================================================================
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Initialize and configure the TIM base. 
 
    (+) De-initialize the TIM base.
 
    (+) Start the Time Base.
 
    (+) Stop the Time Base.
 
    (+) Start the Time Base and enable interrupt.
 
    (+) Stop the Time Base and disable interrupt.
 
    (+) Start the Time Base and enable DMA transfer.
 
    (+) Stop the Time Base and disable DMA transfer.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM Time base Unit according to the specified
 
  *         parameters in the TIM_HandleTypeDef and create the associated handle.
 
  * @param  htim : TIM Base handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
 
{ 
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance)); 
 
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
 
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
 
  
 
  if(htim->State == HAL_TIM_STATE_RESET)
 
  {  
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC */
 
    HAL_TIM_Base_MspInit(htim);
 
  }
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
  
 
  /* Set the Time Base configuration */
 
  TIM_Base_SetConfig(htim->Instance, &htim->Init); 
 
  
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the TIM Base peripheral 
 
  * @param  htim : TIM Base handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
   
 
  htim->State = HAL_TIM_STATE_BUSY;
 
   
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
    
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
 
  HAL_TIM_Base_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM Base MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_Base_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM Base MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_Base_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
 
/**
 
  * @brief  Starts the TIM Base generation.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Change the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Base generation.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Base generation in interrupt mode.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
   /* Enable the TIM Update interrupt */
 
   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
 
      
 
   /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
      
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Base generation in interrupt mode.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  /* Disable the TIM Update interrupt */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
 
      
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
    
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Base generation in DMA mode.
 
  * @param  htim : TIM handle
 
  * @param  pData : The source Buffer address.
 
  * @param  Length : The length of data to be transferred from memory to peripheral.
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
 
{ 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); 
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if((pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }  
 
  /* Set the DMA Period elapsed callback */
 
  htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
 
     
 
  /* Set the DMA error callback */
 
  htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
  /* Enable the DMA channel */
 
  HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length);
 
  
 
  /* Enable the TIM Update DMA request */
 
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
 
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Base generation in DMA mode.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
 
  
 
  /* Disable the TIM Update DMA request */
 
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
 
      
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
    
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
      
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions 
 
 *  @brief    Time Output Compare functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
                  ##### Time Output Compare functions #####
 
  ==============================================================================
 
  [..]
 
    This section provides functions allowing to:
 
    (+) Initialize and configure the TIM Output Compare. 
 
    (+) De-initialize the TIM Output Compare.
 
    (+) Start the Time Output Compare.
 
    (+) Stop the Time Output Compare.
 
    (+) Start the Time Output Compare and enable interrupt.
 
    (+) Stop the Time Output Compare and disable interrupt.
 
    (+) Start the Time Output Compare and enable DMA transfer.
 
    (+) Stop the Time Output Compare and disable DMA transfer.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM Output Compare according to the specified
 
  *         parameters in the TIM_HandleTypeDef and create the associated handle.
 
  * @param  htim : TIM Output Compare handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef* htim)
 
{
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
 
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
 
 
 
  if(htim->State == HAL_TIM_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
    HAL_TIM_OC_MspInit(htim);
 
  }
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
 
  /* Init the base time for the Output Compare */  
 
  TIM_Base_SetConfig(htim->Instance,  &htim->Init); 
 
  
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the TIM peripheral 
 
  * @param  htim : TIM Output Compare handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
   htim->State = HAL_TIM_STATE_BUSY;
 
   
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
 
  HAL_TIM_OC_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM Output Compare MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_OC_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM Output Compare MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_OC_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Starts the TIM Output Compare signal generation.
 
  * @param  htim : TIM Output Compare handle  
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected   
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  /* Enable the Output compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Output Compare signal generation.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  /* Disable the Output compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }  
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}  
 
 
/**
 
  * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
 
  * @param  htim : TIM OC handle
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Enable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Enable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Enable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Enable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
 
  /* Enable the Output compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break; 
 
  } 
 
  
 
  /* Disable the Output compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); 
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Output Compare signal generation in DMA mode.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  pData : The source Buffer address.
 
  * @param  Length : The length of data to be transferred from memory to TIM peripheral
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if(((uint32_t)pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }    
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
 
      
 
      /* Enable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
 
      
 
      /* Enable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
 
      
 
      /* Enable the TIM Capture/Compare 3 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
     /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
 
      
 
      /* Enable the TIM Capture/Compare 4 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }
 
 
  /* Enable the Output compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }  
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Output Compare signal generation in DMA mode.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Disable the Output compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group3 Time PWM functions 
 
 *  @brief    Time PWM functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
                          ##### Time PWM functions #####
 
  ==============================================================================
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Initialize and configure the TIM OPWM. 
 
    (+) De-initialize the TIM PWM.
 
    (+) Start the Time PWM.
 
    (+) Stop the Time PWM.
 
    (+) Start the Time PWM and enable interrupt.
 
    (+) Stop the Time PWM and disable interrupt.
 
    (+) Start the Time PWM and enable DMA transfer.
 
    (+) Stop the Time PWM and disable DMA transfer.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM PWM Time Base according to the specified
 
  *         parameters in the TIM_HandleTypeDef and create the associated handle.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
 
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
 
 
  if(htim->State == HAL_TIM_STATE_RESET)
 
  {
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
    HAL_TIM_PWM_MspInit(htim);
 
  }
 
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
 
 
  /* Init the base time for the PWM */  
 
  TIM_Base_SetConfig(htim->Instance, &htim->Init); 
 
   
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the TIM peripheral 
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
    
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
 
  HAL_TIM_PWM_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM PWM MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_PWM_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM PWM MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_PWM_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Starts the PWM signal generation.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  /* Enable the Capture compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
    
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Stops the PWM signal generation.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{   
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
    
 
  /* Disable the Capture compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Starts the PWM signal generation in interrupt mode.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Enable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Enable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Enable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Enable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Enable the Capture compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Stops the PWM signal generation in interrupt mode.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break; 
 
  }
 
  
 
  /* Disable the Capture compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Starts the TIM PWM signal generation in DMA mode.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  pData : The source Buffer address.
 
  * @param  Length : The length of data to be transferred from memory to TIM peripheral
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if(((uint32_t)pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }    
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
 
      
 
      /* Enable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
 
      
 
      /* Enable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
 
      
 
      /* Enable the TIM Output Capture/Compare 3 request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
     /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
 
      
 
      /* Enable the TIM Capture/Compare 4 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }
 
 
  /* Enable the Capture compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM PWM signal generation in DMA mode.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Disable the Capture compare channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions 
 
 *  @brief    Time Input Capture functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
              ##### Time Input Capture functions #####
 
  ==============================================================================
 
 [..]  
 
   This section provides functions allowing to:
 
   (+) Initialize and configure the TIM Input Capture. 
 
   (+) De-initialize the TIM Input Capture.
 
   (+) Start the Time Input Capture.
 
   (+) Stop the Time Input Capture.
 
   (+) Start the Time Input Capture and enable interrupt.
 
   (+) Stop the Time Input Capture and disable interrupt.
 
   (+) Start the Time Input Capture and enable DMA transfer.
 
   (+) Stop the Time Input Capture and disable DMA transfer.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM Input Capture Time base according to the specified
 
  *         parameters in the TIM_HandleTypeDef and create the associated handle.
 
  * @param  htim : TIM Input Capture handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
 
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); 
 
 
  if(htim->State == HAL_TIM_STATE_RESET)
 
  {  
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
    HAL_TIM_IC_MspInit(htim);
 
  }
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY; 
 
  
 
  /* Init the base time for the input capture */  
 
  TIM_Base_SetConfig(htim->Instance, &htim->Init); 
 
   
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the TIM peripheral 
 
  * @param  htim : TIM Input Capture handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
    
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
 
  HAL_TIM_IC_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET;
 
   
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM Input Capture MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_IC_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM Input Capture MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_IC_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Starts the TIM Input Capture measurement.
 
  * @param  htim : TIM Input Capture handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_IC_Start (TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  /* Enable the Input Capture channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
    
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);  
 
 
  /* Return function status */
 
  return HAL_OK;  
 
} 
 
 
/**
 
  * @brief  Stops the TIM Input Capture measurement.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{ 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  /* Disable the Input Capture channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Input Capture measurement in interrupt mode.
 
  * @param  htim : TIM Input Capture handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_IC_Start_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Enable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Enable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Enable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Enable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }  
 
  /* Enable the Input Capture channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
    
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);  
 
 
  /* Return function status */
 
  return HAL_OK;  
 
} 
 
 
/**
 
  * @brief  Stops the TIM Input Capture measurement in interrupt mode.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break; 
 
  } 
 
  
 
  /* Disable the Input Capture channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); 
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Input Capture measurement in DMA mode.
 
  * @param  htim : TIM Input Capture handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  pData : The destination Buffer address.
 
  * @param  Length : The length of data to be transferred from TIM peripheral to memory.
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if((pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }  
 
   
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); 
 
      
 
      /* Enable the TIM Capture/Compare 1 DMA request */      
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length);
 
      
 
      /* Enable the TIM Capture/Compare 2  DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length);
 
      
 
      /* Enable the TIM Capture/Compare 3  DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length);
 
      
 
      /* Enable the TIM Capture/Compare 4  DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }
 
 
  /* Enable the Input Capture channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
 
   
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Input Capture measurement in DMA mode.
 
  * @param  htim : TIM Input Capture handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
 
  assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3  DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4  DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }
 
 
  /* Disable the Input Capture channel */
 
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim); 
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions 
 
 *  @brief    Time One Pulse functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
                        ##### Time One Pulse functions #####
 
  ==============================================================================
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Initialize and configure the TIM One Pulse. 
 
    (+) De-initialize the TIM One Pulse.
 
    (+) Start the Time One Pulse.
 
    (+) Stop the Time One Pulse.
 
    (+) Start the Time One Pulse and enable interrupt.
 
    (+) Stop the Time One Pulse and disable interrupt.
 
    (+) Start the Time One Pulse and enable DMA transfer.
 
    (+) Stop the Time One Pulse and disable DMA transfer.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM One Pulse Time Base according to the specified
 
  *         parameters in the TIM_HandleTypeDef and create the associated handle.
 
  * @param  htim : TIM OnePulse handle
 
  * @param  OnePulseMode : Select the One pulse mode.
 
  *         This parameter can be one of the following values:
 
  *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
 
  *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses wil be generated.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
 
{
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
 
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
 
  assert_param(IS_TIM_OPM_MODE(OnePulseMode));
 
  
 
  if(htim->State == HAL_TIM_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
    HAL_TIM_OnePulse_MspInit(htim);
 
  }
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
  
 
  /* Configure the Time base in the One Pulse Mode */
 
  TIM_Base_SetConfig(htim->Instance, &htim->Init);
 
  
 
  /* Reset the OPM Bit */
 
  htim->Instance->CR1 &= ~TIM_CR1_OPM;
 
 
  /* Configure the OPM Mode */
 
  htim->Instance->CR1 |= OnePulseMode;
 
   
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the TIM One Pulse  
 
  * @param  htim : TIM One Pulse handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
 
  HAL_TIM_OnePulse_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM One Pulse MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_OnePulse_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM One Pulse MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Starts the TIM One Pulse signal generation.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
  /* Enable the Capture compare and the Input Capture channels 
 
    (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
 
    if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
 
    if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output 
 
    in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together 
 
    
 
    No need to enable the counter, it's enabled automatically by hardware 
 
    (the counter starts in response to a stimulus and generate a pulse */
 
  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); 
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); 
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM One Pulse signal generation.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channels to be disable
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
  /* Disable the Capture compare and the Input Capture channels 
 
  (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
 
  if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
 
  if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output 
 
  in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
 
  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
    
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
    
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
  /* Enable the Capture compare and the Input Capture channels 
 
    (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
 
    if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
 
    if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output 
 
    in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together 
 
    
 
    No need to enable the counter, it's enabled automatically by hardware 
 
    (the counter starts in response to a stimulus and generate a pulse */
 
 
 
  /* Enable the TIM Capture/Compare 1 interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
  
 
  /* Enable the TIM Capture/Compare 2 interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); 
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); 
 
  
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Enable the main output */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  }
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
  /* Disable the TIM Capture/Compare 1 interrupt */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);  
 
  
 
  /* Disable the TIM Capture/Compare 2 interrupt */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
  
 
  /* Disable the Capture compare and the Input Capture channels 
 
  (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
 
  if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
 
  if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output 
 
  in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
    
 
  if(IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)  
 
  {
 
    /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  }
 
    
 
  /* Disable the Peripheral */
 
   __HAL_TIM_DISABLE(htim);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions 
 
 *  @brief    Time Encoder functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
                          ##### Time Encoder functions #####
 
  ==============================================================================
 
  [..]
 
    This section provides functions allowing to:
 
    (+) Initialize and configure the TIM Encoder. 
 
    (+) De-initialize the TIM Encoder.
 
    (+) Start the Time Encoder.
 
    (+) Stop the Time Encoder.
 
    (+) Start the Time Encoder and enable interrupt.
 
    (+) Stop the Time Encoder and disable interrupt.
 
    (+) Start the Time Encoder and enable DMA transfer.
 
    (+) Stop the Time Encoder and disable DMA transfer.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM Encoder Interface and create the associated handle.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  sConfig : TIM Encoder Interface configuration structure
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim,  TIM_Encoder_InitTypeDef* sConfig)
 
{
 
  uint32_t tmpsmcr = 0;
 
  uint32_t tmpccmr1 = 0;
 
  uint32_t tmpccer = 0;
 
    
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
   
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
 
  assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
 
  assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
 
  assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
 
  assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity));
 
  assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
 
  assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
 
  assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
 
  assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
 
 
  if(htim->State == HAL_TIM_STATE_RESET)
 
  { 
 
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
    HAL_TIM_Encoder_MspInit(htim);
 
  }
 
  
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
  
 
  /* Reset the SMS bits */
 
  htim->Instance->SMCR &= ~TIM_SMCR_SMS;
 
  
 
  /* Configure the Time base in the Encoder Mode */
 
  TIM_Base_SetConfig(htim->Instance, &htim->Init);  
 
  
 
  /* Get the TIMx SMCR register value */
 
  tmpsmcr = htim->Instance->SMCR;
 
 
  /* Get the TIMx CCMR1 register value */
 
  tmpccmr1 = htim->Instance->CCMR1;
 
 
  /* Get the TIMx CCER register value */
 
  tmpccer = htim->Instance->CCER;
 
 
  /* Set the encoder Mode */
 
  tmpsmcr |= sConfig->EncoderMode;
 
 
  /* Select the Capture Compare 1 and the Capture Compare 2 as input */
 
  tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
 
  tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8));
 
  
 
  /* Set the the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
 
  tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
 
  tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
 
  tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8);
 
  tmpccmr1 |= (sConfig->IC1Filter << 4) | (sConfig->IC2Filter << 12);
 
 
  /* Set the TI1 and the TI2 Polarities */
 
  tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
 
  tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
 
  tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4);
 
  
 
  /* Write to TIMx SMCR */
 
  htim->Instance->SMCR = tmpsmcr;
 
 
  /* Write to TIMx CCMR1 */
 
  htim->Instance->CCMR1 = tmpccmr1;
 
 
  /* Write to TIMx CCER */
 
  htim->Instance->CCER = tmpccer;
 
  
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  return HAL_OK;
 
}
 
 
 
/**
 
  * @brief  DeInitializes the TIM Encoder interface  
 
  * @param  htim : TIM Encoder handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
 
  HAL_TIM_Encoder_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM Encoder Interface MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_Encoder_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM Encoder Interface MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Starts the TIM Encoder Interface.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
  
 
  /* Enable the encoder interface channels */
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); 
 
      break; 
 
  }  
 
    case TIM_CHANNEL_2:
 
  {  
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); 
 
      break;
 
  }  
 
    default :
 
  {
 
     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
 
     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); 
 
     break; 
 
    }
 
  }  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Encoder Interface.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
    assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    
 
   /* Disable the Input Capture channels 1 and 2
 
    (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ 
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
  {
 
     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
      break; 
 
  }  
 
    case TIM_CHANNEL_2:
 
  {  
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
      break;
 
  }  
 
    default :
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
     break; 
 
    }
 
  }
 
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Encoder Interface in interrupt mode.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
  
 
  /* Enable the encoder interface channels */
 
  /* Enable the capture compare Interrupts 1 and/or 2 */
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); 
 
    __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
      break; 
 
  }  
 
    case TIM_CHANNEL_2:
 
  {  
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); 
 
    __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
      break;
 
  }  
 
    default :
 
  {
 
     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
 
     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); 
 
     __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
     __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
     break; 
 
    }
 
  }   
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Encoder Interface in interrupt mode.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  Channel : TIM Channels to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    
 
  /* Disable the Input Capture channels 1 and 2
 
    (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ 
 
  if(Channel == TIM_CHANNEL_1)
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
    
 
    /* Disable the capture compare Interrupts 1 */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
  }  
 
  else if(Channel == TIM_CHANNEL_2)
 
  {  
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
    
 
    /* Disable the capture compare Interrupts 2 */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
  }  
 
  else
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
    
 
    /* Disable the capture compare Interrupts 1 and 2 */
 
    __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
    __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
  }
 
    
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Encoder Interface in DMA mode.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @param  pData1 : The destination Buffer address for IC1.
 
  * @param  pData2 : The destination Buffer address for IC2.
 
  * @param  Length : The length of data to be transferred from TIM peripheral to memory.
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if((((pData1 == 0) || (pData2 == 0) )) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }  
 
   
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t )pData1, Length); 
 
      
 
      /* Enable the TIM Input Capture DMA request */      
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
            
 
      /* Enable the Peripheral */
 
      __HAL_TIM_ENABLE(htim);
 
      
 
      /* Enable the Capture compare channel */
 
      TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError;
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
 
      
 
      /* Enable the TIM Input Capture  DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
     
 
      /* Enable the Peripheral */
 
      __HAL_TIM_ENABLE(htim);
 
      
 
      /* Enable the Capture compare channel */
 
      TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_ALL:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length);
 
      
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
 
          
 
     /* Enable the Peripheral */
 
      __HAL_TIM_ENABLE(htim);
 
      
 
      /* Enable the Capture compare channel */
 
      TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
 
      TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
 
      
 
      /* Enable the TIM Input Capture  DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
      /* Enable the TIM Input Capture  DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Encoder Interface in DMA mode.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
*/
 
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
 
  
 
  /* Disable the Input Capture channels 1 and 2
 
    (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ 
 
  if(Channel == TIM_CHANNEL_1)
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
    
 
    /* Disable the capture compare DMA Request 1 */
 
    __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
  }  
 
  else if(Channel == TIM_CHANNEL_2)
 
  {  
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
    
 
    /* Disable the capture compare DMA Request 2 */
 
    __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
  }  
 
  else
 
  {
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
    TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); 
 
    
 
    /* Disable the capture compare DMA Request 1 and 2 */
 
    __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
    __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
  }
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management 
 
 *  @brief    IRQ handler management 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                        ##### IRQ handler management #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides Timer IRQ handler function.
 
               
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  This function handles TIM interrupts requests.
 
  * @param  htim : TIM  handle
 
  * @retval None
 
  */
 
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
 
{
 
  /* Capture compare 1 event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_CC1) !=RESET)
 
    {
 
      {
 
        __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
 
        htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
 
        
 
        /* Input capture event */
 
        if((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00)
 
        {
 
          HAL_TIM_IC_CaptureCallback(htim);
 
        }
 
        /* Output compare event */
 
        else
 
        {
 
          HAL_TIM_OC_DelayElapsedCallback(htim);
 
          HAL_TIM_PWM_PulseFinishedCallback(htim);
 
        }
 
        htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
 
      }
 
    }
 
  }
 
  /* Capture compare 2 event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_CC2) !=RESET)
 
    {
 
      __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
 
      htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
 
      /* Input capture event */
 
      if((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00)
 
      {          
 
        HAL_TIM_IC_CaptureCallback(htim);
 
      }
 
      /* Output compare event */
 
      else
 
      {
 
        HAL_TIM_OC_DelayElapsedCallback(htim);
 
        HAL_TIM_PWM_PulseFinishedCallback(htim);
 
      }
 
      htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
 
    } 
 
  }
 
  /* Capture compare 3 event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_CC3) !=RESET)
 
    {
 
      __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
 
      htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
 
      /* Input capture event */
 
      if((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00)
 
      {          
 
        HAL_TIM_IC_CaptureCallback(htim);
 
      }
 
      /* Output compare event */
 
      else
 
      {
 
        HAL_TIM_OC_DelayElapsedCallback(htim);
 
        HAL_TIM_PWM_PulseFinishedCallback(htim); 
 
      }
 
      htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
 
    }
 
  }
 
  /* Capture compare 4 event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_CC4) !=RESET)
 
    {
 
      __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
 
      htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
 
      /* Input capture event */
 
      if((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00)
 
      {          
 
        HAL_TIM_IC_CaptureCallback(htim);
 
      }
 
      /* Output compare event */
 
      else
 
      {
 
        HAL_TIM_OC_DelayElapsedCallback(htim);
 
        HAL_TIM_PWM_PulseFinishedCallback(htim);
 
      }
 
      htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
 
    } 
 
  }
 
  /* TIM Update event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_UPDATE) !=RESET)
 
    { 
 
      __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
 
      HAL_TIM_PeriodElapsedCallback(htim);
 
    }
 
  }
 
  /* TIM Break input event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_BREAK) !=RESET)
 
    { 
 
      __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
 
      HAL_TIMEx_BreakCallback(htim);
 
    }
 
  }
 
  /* TIM Trigger detection event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_TRIGGER) !=RESET)
 
    { 
 
      __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
 
      HAL_TIM_TriggerCallback(htim);
 
    }
 
  }
 
  /* TIM commutation event */
 
  if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
 
  {
 
    if(__HAL_TIM_GET_ITSTATUS(htim, TIM_IT_COM) !=RESET)
 
    { 
 
      __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
 
      HAL_TIMEx_CommutationCallback(htim);
 
    }
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions
 
 *  @brief   	Peripheral Control functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                   ##### Peripheral Control functions #####
 
  ==============================================================================  
 
 [..] 
 
   This section provides functions allowing to:
 
      (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. 
 
      (+) Configure External Clock source.
 
      (+) Configure Complementary channels, break features and dead time.
 
      (+) Configure Master and the Slave synchronization.
 
      (+) Configure the DMA Burst Mode.
 
      
 
@endverbatim
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Initializes the TIM Output Compare Channels according to the specified
 
  *         parameters in the TIM_OC_InitTypeDef.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  sConfig : TIM Output Compare configuration structure
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CHANNELS(Channel)); 
 
  assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
 
  assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
 
  assert_param(IS_TIM_OCN_POLARITY(sConfig->OCNPolarity));
 
  assert_param(IS_TIM_OCNIDLE_STATE(sConfig->OCNIdleState));
 
  assert_param(IS_TIM_OCIDLE_STATE(sConfig->OCIdleState));
 
  
 
  /* Check input state */
 
  __HAL_LOCK(htim); 
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      /* Configure the TIM Channel 1 in Output Compare */
 
      TIM_OC1_SetConfig(htim->Instance, sConfig);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
      /* Configure the TIM Channel 2 in Output Compare */
 
      TIM_OC2_SetConfig(htim->Instance, sConfig);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
 
      /* Configure the TIM Channel 3 in Output Compare */
 
      TIM_OC3_SetConfig(htim->Instance, sConfig);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
 
       /* Configure the TIM Channel 4 in Output Compare */
 
       TIM_OC4_SetConfig(htim->Instance, sConfig);
 
    }
 
    break;
 
    
 
    default:
 
    break;    
 
  }
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  __HAL_UNLOCK(htim); 
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM Input Capture Channels according to the specified
 
  *         parameters in the TIM_IC_InitTypeDef.
 
  * @param  htim : TIM IC handle
 
  * @param  sConfig : TIM Input Capture configuration structure
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
 
  assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
 
  assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
 
  assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
 
  
 
  __HAL_LOCK(htim);
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  if (Channel == TIM_CHANNEL_1)
 
  {
 
    /* TI1 Configuration */
 
    TIM_TI1_SetConfig(htim->Instance,
 
               sConfig->ICPolarity,
 
               sConfig->ICSelection,
 
               sConfig->ICFilter);
 
               
 
    /* Reset the IC1PSC Bits */
 
    htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
 
 
    /* Set the IC1PSC value */
 
    htim->Instance->CCMR1 |= sConfig->ICPrescaler;
 
  }
 
  else if (Channel == TIM_CHANNEL_2)
 
  {
 
    /* TI2 Configuration */
 
    assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    
 
    TIM_TI2_SetConfig(htim->Instance, 
 
                      sConfig->ICPolarity,
 
                      sConfig->ICSelection,
 
                      sConfig->ICFilter);
 
               
 
    /* Reset the IC2PSC Bits */
 
    htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
 
 
    /* Set the IC2PSC value */
 
    htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8);
 
  }
 
  else if (Channel == TIM_CHANNEL_3)
 
  {
 
    /* TI3 Configuration */
 
    assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
 
    
 
    TIM_TI3_SetConfig(htim->Instance,  
 
               sConfig->ICPolarity,
 
               sConfig->ICSelection,
 
               sConfig->ICFilter);
 
               
 
    /* Reset the IC3PSC Bits */
 
    htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
 
 
    /* Set the IC3PSC value */
 
    htim->Instance->CCMR2 |= sConfig->ICPrescaler;
 
  }
 
  else
 
  {
 
    /* TI4 Configuration */
 
    assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
 
    
 
    TIM_TI4_SetConfig(htim->Instance, 
 
               sConfig->ICPolarity,
 
               sConfig->ICSelection,
 
               sConfig->ICFilter);
 
               
 
    /* Reset the IC4PSC Bits */
 
    htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
 
 
    /* Set the IC4PSC value */
 
    htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8);
 
  }
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
    
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief  Initializes the TIM PWM  channels according to the specified
 
  *         parameters in the TIM_OC_InitTypeDef.
 
  * @param  htim : TIM handle
 
  * @param  sConfig : TIM PWM configuration structure
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel)
 
{
 
  __HAL_LOCK(htim);
 
  
 
  /* Check the parameters */ 
 
  assert_param(IS_TIM_CHANNELS(Channel)); 
 
  assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
 
  assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
 
  assert_param(IS_TIM_OCN_POLARITY(sConfig->OCNPolarity));
 
  assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));  
 
  assert_param(IS_TIM_OCNIDLE_STATE(sConfig->OCNIdleState));
 
  assert_param(IS_TIM_OCIDLE_STATE(sConfig->OCIdleState));
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
    
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      /* Configure the Channel 1 in PWM mode */
 
      TIM_OC1_SetConfig(htim->Instance, sConfig);
 
      
 
      /* Set the Preload enable bit for channel1 */
 
      htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
 
      
 
      /* Configure the Output Fast mode */
 
      htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
 
      htim->Instance->CCMR1 |= sConfig->OCFastMode;
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
      /* Configure the Channel 2 in PWM mode */
 
      TIM_OC2_SetConfig(htim->Instance, sConfig);
 
      
 
      /* Set the Preload enable bit for channel2 */
 
      htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
 
      
 
      /* Configure the Output Fast mode */
 
      htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
 
      htim->Instance->CCMR1 |= sConfig->OCFastMode << 8;
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
 
      /* Configure the Channel 3 in PWM mode */
 
      TIM_OC3_SetConfig(htim->Instance, sConfig);
 
      
 
      /* Set the Preload enable bit for channel3 */
 
      htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
 
      
 
     /* Configure the Output Fast mode */
 
      htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
 
      htim->Instance->CCMR2 |= sConfig->OCFastMode;  
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
 
      /* Configure the Channel 4 in PWM mode */
 
      TIM_OC4_SetConfig(htim->Instance, sConfig);
 
      
 
      /* Set the Preload enable bit for channel4 */
 
      htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
 
      
 
     /* Configure the Output Fast mode */
 
      htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
 
      htim->Instance->CCMR2 |= sConfig->OCFastMode << 8;  
 
    }
 
    break;
 
    
 
    default:
 
    break;    
 
  }
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
    
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM One Pulse Channels according to the specified
 
  *         parameters in the TIM_OnePulse_InitTypeDef.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  sConfig : TIM One Pulse configuration structure
 
  * @param  OutputChannel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @param  InputChannel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef* sConfig, uint32_t OutputChannel,  uint32_t InputChannel)
 
{
 
  TIM_OC_InitTypeDef temp1;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
 
  assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
 
 
  if(OutputChannel != InputChannel)  
 
  {
 
  __HAL_LOCK(htim);
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
 
  /* Extract the Ouput compare configuration from sConfig structure */  
 
  temp1.OCMode = sConfig->OCMode;
 
  temp1.Pulse = sConfig->Pulse;
 
  temp1.OCPolarity = sConfig->OCPolarity;
 
  temp1.OCNPolarity = sConfig->OCNPolarity;
 
  temp1.OCIdleState = sConfig->OCIdleState;
 
  temp1.OCNIdleState = sConfig->OCNIdleState; 
 
    
 
    switch (OutputChannel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
        assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      
 
      TIM_OC1_SetConfig(htim->Instance, &temp1); 
 
    }
 
    break;
 
    case TIM_CHANNEL_2:
 
    {
 
        assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
      
 
      TIM_OC2_SetConfig(htim->Instance, &temp1);
 
    }
 
    break;
 
    default:
 
    break;  
 
  } 
 
  switch (InputChannel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {
 
      assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      
 
      TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
 
                        sConfig->ICSelection, sConfig->ICFilter);
 
               
 
      /* Reset the IC1PSC Bits */
 
    htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
 
 
      /* Select the Trigger source */
 
        htim->Instance->SMCR &= ~TIM_SMCR_TS;
 
      htim->Instance->SMCR |= TIM_TS_TI1FP1;
 
      
 
      /* Select the Slave Mode */      
 
        htim->Instance->SMCR &= ~TIM_SMCR_SMS;
 
      htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
 
    }
 
    break;
 
    case TIM_CHANNEL_2:
 
    {
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
      
 
      TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
 
                 sConfig->ICSelection, sConfig->ICFilter);
 
               
 
      /* Reset the IC2PSC Bits */
 
        htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
 
 
 
      /* Select the Trigger source */
 
        htim->Instance->SMCR &= ~TIM_SMCR_TS;
 
      htim->Instance->SMCR |= TIM_TS_TI2FP2;
 
      
 
      /* Select the Slave Mode */      
 
        htim->Instance->SMCR &= ~TIM_SMCR_SMS;
 
      htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
 
    }
 
    break;
 
    
 
    default:
 
    break;  
 
  }
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
    
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
} 
 
  else
 
  {
 
    return HAL_ERROR;
 
  }
 
} 
 
 
/**
 
  * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral  
 
  * @param  htim : TIM handle
 
  * @param  BurstBaseAddress : TIM Base address from where the DMA will start the Data write
 
  *         This parameter can be one of the following values:
 
  *            @arg TIM_DMABase_CR1  
 
  *            @arg TIM_DMABase_CR2
 
  *            @arg TIM_DMABase_SMCR
 
  *            @arg TIM_DMABase_DIER
 
  *            @arg TIM_DMABase_SR
 
  *            @arg TIM_DMABase_EGR
 
  *            @arg TIM_DMABase_CCMR1
 
  *            @arg TIM_DMABase_CCMR2
 
  *            @arg TIM_DMABase_CCER
 
  *            @arg TIM_DMABase_CNT   
 
  *            @arg TIM_DMABase_PSC   
 
  *            @arg TIM_DMABase_ARR
 
  *            @arg TIM_DMABase_RCR
 
  *            @arg TIM_DMABase_CCR1
 
  *            @arg TIM_DMABase_CCR2
 
  *            @arg TIM_DMABase_CCR3  
 
  *            @arg TIM_DMABase_CCR4
 
  *            @arg TIM_DMABase_BDTR
 
  *            @arg TIM_DMABase_DCR
 
  * @param  BurstRequestSrc : TIM DMA Request sources
 
  *         This parameter can be one of the following values:
 
  *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
 
  *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
 
  *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
 
  *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
 
  *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
 
  *            @arg TIM_DMA_COM: TIM Commutation DMA source
 
  *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
 
  * @param  BurstBuffer : The Buffer address.
 
  * @param  BurstLength : DMA Burst length. This parameter can be one value
 
  *         between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc,
 
                                              uint32_t* BurstBuffer, uint32_t  BurstLength)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
 
  assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
 
  assert_param(IS_TIM_DMA_LENGTH(BurstLength));
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if((BurstBuffer == 0 ) && (BurstLength > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }
 
  switch(BurstRequestSrc)
 
  {
 
    case TIM_DMA_UPDATE:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); 
 
    }
 
    break;
 
    case TIM_DMA_CC1:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback =  HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_CC2:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback =  HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_CC3:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback =  HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_CC4:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback =  HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_COM:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  HAL_TIMEx_DMACommutationCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_TRIGGER:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    default:
 
    break;  
 
  }
 
   /* configure the DMA Burst Mode */
 
   htim->Instance->DCR = BurstBaseAddress | BurstLength;  
 
   
 
   /* Enable the TIM DMA Request */
 
   __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);  
 
  
 
   htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM DMA Burst mode 
 
  * @param  htim : TIM handle
 
  * @param  BurstRequestSrc : TIM DMA Request sources to disable
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
 
  
 
  /* Abort the DMA transfer (at least disable the DMA channel) */
 
  switch(BurstRequestSrc)
 
  {
 
    case TIM_DMA_UPDATE:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); 
 
    }
 
    break;
 
    case TIM_DMA_CC1:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);     
 
    }
 
    break;
 
    case TIM_DMA_CC2:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);     
 
    }
 
    break;
 
    case TIM_DMA_CC3:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);     
 
    }
 
    break;
 
    case TIM_DMA_CC4:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);     
 
    }
 
    break;
 
    case TIM_DMA_COM:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);     
 
    }
 
    break;
 
    case TIM_DMA_TRIGGER:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);     
 
    }
 
    break;
 
    default:
 
    break;  
 
  }
 
  
 
  /* Disable the TIM Update DMA request */
 
  __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
 
      
 
  /* Return function status */
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory 
 
  * @param  htim : TIM handle
 
  * @param  BurstBaseAddress : TIM Base address from where the DMA will starts the Data read
 
  *         This parameter can be one of the following values:
 
  *            @arg TIM_DMABase_CR1  
 
  *            @arg TIM_DMABase_CR2
 
  *            @arg TIM_DMABase_SMCR
 
  *            @arg TIM_DMABase_DIER
 
  *            @arg TIM_DMABase_SR
 
  *            @arg TIM_DMABase_EGR
 
  *            @arg TIM_DMABase_CCMR1
 
  *            @arg TIM_DMABase_CCMR2
 
  *            @arg TIM_DMABase_CCER
 
  *            @arg TIM_DMABase_CNT   
 
  *            @arg TIM_DMABase_PSC   
 
  *            @arg TIM_DMABase_ARR
 
  *            @arg TIM_DMABase_RCR
 
  *            @arg TIM_DMABase_CCR1
 
  *            @arg TIM_DMABase_CCR2
 
  *            @arg TIM_DMABase_CCR3  
 
  *            @arg TIM_DMABase_CCR4
 
  *            @arg TIM_DMABase_BDTR
 
  *            @arg TIM_DMABase_DCR
 
  * @param  BurstRequestSrc : TIM DMA Request sources
 
  *         This parameter can be one of the following values:
 
  *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
 
  *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
 
  *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
 
  *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
 
  *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
 
  *            @arg TIM_DMA_COM: TIM Commutation DMA source
 
  *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
 
  * @param  BurstBuffer : The Buffer address.
 
  * @param  BurstLength : DMA Burst length. This parameter can be one value
 
  *         between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc,
 
                                             uint32_t  *BurstBuffer, uint32_t  BurstLength)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
 
  assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
 
  assert_param(IS_TIM_DMA_LENGTH(BurstLength));
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if((BurstBuffer == 0 ) && (BurstLength > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }  
 
  switch(BurstRequestSrc)
 
  {
 
    case TIM_DMA_UPDATE:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
       HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_CC1:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback =  HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);      
 
    }
 
    break;
 
    case TIM_DMA_CC2:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback =  HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);     
 
    }
 
    break;
 
    case TIM_DMA_CC3:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback =  HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);      
 
    }
 
    break;
 
    case TIM_DMA_CC4:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback =  HAL_TIM_DMACaptureCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);      
 
    }
 
    break;
 
    case TIM_DMA_COM:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  HAL_TIMEx_DMACommutationCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);      
 
    }
 
    break;
 
    case TIM_DMA_TRIGGER:
 
    {  
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1);      
 
    }
 
    break;
 
    default:
 
    break;  
 
  }
 
 
  /* configure the DMA Burst Mode */
 
  htim->Instance->DCR = BurstBaseAddress | BurstLength;  
 
  
 
  /* Enable the TIM DMA Request */
 
  __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stop the DMA burst reading 
 
  * @param  htim : TIM handle
 
  * @param  BurstRequestSrc : TIM DMA Request sources to disable.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
 
  
 
  /* Abort the DMA transfer (at least disable the DMA channel) */
 
  switch(BurstRequestSrc)
 
  {
 
    case TIM_DMA_UPDATE:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); 
 
    }
 
    break;
 
    case TIM_DMA_CC1:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);     
 
    }
 
    break;
 
    case TIM_DMA_CC2:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);     
 
    }
 
    break;
 
    case TIM_DMA_CC3:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);     
 
    }
 
    break;
 
    case TIM_DMA_CC4:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);     
 
    }
 
    break;
 
    case TIM_DMA_COM:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);     
 
    }
 
    break;
 
    case TIM_DMA_TRIGGER:
 
    {  
 
      HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);     
 
    }
 
    break;
 
    default:
 
    break;  
 
  }
 
 
  /* Disable the TIM Update DMA request */
 
  __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
 
      
 
  /* Return function status */
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  Generate a software event
 
  * @param  htim : TIM handle
 
  * @param  EventSource : specifies the event source.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_EventSource_Update: Timer update Event source
 
  *            @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
 
  *            @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
 
  *            @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
 
  *            @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
 
  *            @arg TIM_EventSource_COM: Timer COM event source  
 
  *            @arg TIM_EventSource_Trigger: Timer Trigger Event source
 
  *            @arg TIM_EventSource_Break: Timer Break event source
 
  * @note TIM6 and TIM7 can only generate an update event. 
 
  * @note TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1, TIM15, TIM16 and TIM17.
 
  * @retval HAL status
 
  */ 
 
 
HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_EVENT_SOURCE(EventSource));
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(htim);
 
  
 
  /* Change the TIM state */
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Set the event sources */
 
  htim->Instance->EGR = EventSource;
 
  
 
  /* Change the TIM state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  __HAL_UNLOCK(htim);
 
      
 
  /* Return function status */
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  Configures the OCRef clear feature
 
  * @param  htim : TIM handle
 
  * @param  sClearInputConfig : pointer to a TIM_ClearInputConfigTypeDef structure that
 
  *         contains the OCREF clear feature and parameters for the TIM peripheral. 
 
  * @param  Channel : specifies the TIM Channel
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_Channel_1: TIM Channel 1
 
  *            @arg TIM_Channel_2: TIM Channel 2
 
  *            @arg TIM_Channel_3: TIM Channel 3
 
  *            @arg TIM_Channel_4: TIM Channel 4
 
  * @retval HAL status
 
  */ 
 
HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef * sClearInputConfig, uint32_t Channel)
 
{
 
  uint32_t tmpsmcr = 0;
 
 
  /* Check the parameters */ 
 
  assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
 
  assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
 
  assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
 
  assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
 
                                        
 
  /* Process Locked */
 
  __HAL_LOCK(htim);
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  switch (sClearInputConfig->ClearInputSource)
 
  {
 
    case TIM_CLEARINPUTSOURCE_NONE:
 
    {
 
      /* Clear the OCREF clear selection bit */
 
      tmpsmcr &= ~TIM_SMCR_OCCS;
 
      
 
      /* Clear the ETR Bits */
 
      tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
 
      
 
      /* Set TIMx_SMCR */
 
      htim->Instance->SMCR = tmpsmcr;
 
   }
 
    break;
 
    
 
    case TIM_CLEARINPUTSOURCE_ETR:
 
    {
 
      TIM_ETR_SetConfig(htim->Instance,
 
                        sClearInputConfig->ClearInputPrescaler,
 
                        sClearInputConfig->ClearInputPolarity,
 
                        sClearInputConfig->ClearInputFilter);
 
      
 
      /* Set the OCREF clear selection bit */
 
      htim->Instance->SMCR |= TIM_SMCR_OCCS;
 
    }
 
    break;
 
    default:  
 
    break;    
 
  }
 
  
 
  switch (Channel)
 
  { 
 
    case TIM_CHANNEL_1:
 
      {
 
        if(sClearInputConfig->ClearInputState != RESET)
 
        {
 
          /* Enable the Ocref clear feature for Channel 1 */
 
          htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE;
 
        }
 
        else
 
        {
 
          /* Disable the Ocref clear feature for Channel 1 */
 
        htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE;      
 
        }
 
      }    
 
      break;
 
    case TIM_CHANNEL_2:    
 
      {
 
        assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); 
 
        if(sClearInputConfig->ClearInputState != RESET)
 
        {
 
          /* Enable the Ocref clear feature for Channel 2 */
 
          htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE;
 
        }
 
        else
 
        {
 
          /* Disable the Ocref clear feature for Channel 2 */
 
          htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE;      
 
        }
 
      }    
 
    break;
 
    case TIM_CHANNEL_3:    
 
      {
 
        assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); 
 
        if(sClearInputConfig->ClearInputState != RESET)
 
        {
 
          /* Enable the Ocref clear feature for Channel 3 */
 
          htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE;
 
        }
 
        else
 
        {
 
          /* Disable the Ocref clear feature for Channel 3 */
 
        htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE;      
 
        }
 
      }    
 
    break;
 
    case TIM_CHANNEL_4:    
 
      {
 
        assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); 
 
        if(sClearInputConfig->ClearInputState != RESET)
 
        {
 
          /* Enable the Ocref clear feature for Channel 4 */
 
          htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE;
 
        }
 
        else
 
        {
 
          /* Disable the Ocref clear feature for Channel 4 */
 
        htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE;      
 
        }
 
      }    
 
    break;
 
    default:  
 
    break;
 
  }
 
  
 
  htim->State = HAL_TIM_STATE_READY; 
 
  
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;  
 
}  
 
 
/**
 
  * @brief   Configures the clock source to be used
 
  * @param  htim : TIM handle
 
  * @param  sClockSourceConfig : pointer to a TIM_ClockConfigTypeDef structure that
 
  *         contains the clock source information for the TIM peripheral. 
 
  * @retval HAL status
 
  */ 
 
HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig)    
 
{
 
  uint32_t tmpsmcr = 0;
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(htim);
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
 
  assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
 
  assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
 
  assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
 
  
 
  /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
 
  tmpsmcr = htim->Instance->SMCR;
 
  tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
 
  tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
 
  htim->Instance->SMCR = tmpsmcr;
 
  
 
  switch (sClockSourceConfig->ClockSource)
 
  {
 
  case TIM_CLOCKSOURCE_INTERNAL:
 
    {
 
      assert_param(IS_TIM_INSTANCE(htim->Instance));      
 
      /* Disable slave mode to clock the prescaler directly with the internal clock */
 
      htim->Instance->SMCR &= ~TIM_SMCR_SMS;
 
    }
 
    break;
 
    
 
  case TIM_CLOCKSOURCE_ETRMODE1:
 
    {
 
      /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
 
      assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
 
      
 
      /* Configure the ETR Clock source */
 
      TIM_ETR_SetConfig(htim->Instance, 
 
                        sClockSourceConfig->ClockPrescaler, 
 
                        sClockSourceConfig->ClockPolarity, 
 
                        sClockSourceConfig->ClockFilter);
 
      /* Get the TIMx SMCR register value */
 
      tmpsmcr = htim->Instance->SMCR;
 
      /* Reset the SMS and TS Bits */
 
      tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
 
      /* Select the External clock mode1 and the ETRF trigger */
 
      tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
 
      /* Write to TIMx SMCR */
 
      htim->Instance->SMCR = tmpsmcr;
 
    }
 
    break;
 
    
 
  case TIM_CLOCKSOURCE_ETRMODE2:
 
    {
 
      /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
 
      assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
 
      
 
      /* Configure the ETR Clock source */
 
      TIM_ETR_SetConfig(htim->Instance, 
 
                        sClockSourceConfig->ClockPrescaler, 
 
                        sClockSourceConfig->ClockPolarity,
 
                        sClockSourceConfig->ClockFilter);
 
      /* Enable the External clock mode2 */
 
      htim->Instance->SMCR |= TIM_SMCR_ECE;
 
    }
 
    break;
 
    
 
  case TIM_CLOCKSOURCE_TI1:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 */
 
      assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
 
      
 
      TIM_TI1_ConfigInputStage(htim->Instance, 
 
                               sClockSourceConfig->ClockPolarity, 
 
                               sClockSourceConfig->ClockFilter);
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
 
    }
 
    break;
 
  case TIM_CLOCKSOURCE_TI2:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
 
      assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
 
      
 
      TIM_TI2_ConfigInputStage(htim->Instance, 
 
                               sClockSourceConfig->ClockPolarity, 
 
                               sClockSourceConfig->ClockFilter);
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
 
    }
 
    break;
 
  case TIM_CLOCKSOURCE_TI1ED:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 */
 
      assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
 
      
 
      TIM_TI1_ConfigInputStage(htim->Instance, 
 
                               sClockSourceConfig->ClockPolarity,
 
                               sClockSourceConfig->ClockFilter);
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
 
    }
 
    break;
 
  case TIM_CLOCKSOURCE_ITR0:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 */
 
      assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
 
      
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0);
 
    }
 
    break;
 
  case TIM_CLOCKSOURCE_ITR1:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 */
 
      assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
 
      
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1);
 
    }
 
    break;
 
  case TIM_CLOCKSOURCE_ITR2:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 */
 
      assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
 
      
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2);
 
    }
 
    break;
 
  case TIM_CLOCKSOURCE_ITR3:
 
    {
 
      /* Check whether or not the timer instance supports external clock mode 1 */
 
      assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
 
      
 
      TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3);
 
    }
 
    break;
 
    
 
  default:
 
    break;    
 
  }
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
 
  *         or a XOR combination between CH1_input, CH2_input & CH3_input
 
  * @param  htim : TIM handle.
 
  * @param  TI1_Selection : Indicate whether or not channel 1 is connected to the
 
  *         output of a XOR gate.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
 
  *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
 
  *            pins are connected to the TI1 input (XOR combination)
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
 
{
 
  uint32_t tmpcr2 = 0;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); 
 
  assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
 
 
  /* Get the TIMx CR2 register value */
 
  tmpcr2 = htim->Instance->CR2;
 
 
  /* Reset the TI1 selection */
 
  tmpcr2 &= ~TIM_CR2_TI1S;
 
 
  /* Set the the TI1 selection */
 
  tmpcr2 |= TI1_Selection;
 
  
 
  /* Write to TIMxCR2 */
 
  htim->Instance->CR2 = tmpcr2;
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configures the TIM in Slave mode
 
  * @param  htim : TIM handle.
 
  * @param  sSlaveConfig : pointer to a TIM_SlaveConfigTypeDef structure that
 
  *         contains the selected trigger (internal trigger input, filtered
 
  *         timer input or external trigger input) and the ) and the Slave 
 
  *         mode (Disable, Reset, Gated, Trigger, External clock mode 1). 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
 
  assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
 
  
 
  __HAL_LOCK(htim);
 
 
  htim->State = HAL_TIM_STATE_BUSY;
 
 
  TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
 
      
 
  /* Disable Trigger Interrupt */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
 
      
 
  /* Disable Trigger DMA request */
 
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
 
                               
 
  htim->State = HAL_TIM_STATE_READY;
 
    
 
  __HAL_UNLOCK(htim);  
 
  
 
  return HAL_OK;
 
    }
 
    
 
/**
 
  * @brief  Configures the TIM in Slave mode in interrupt mode
 
  * @param  htim: TIM handle.
 
  * @param  sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that
 
  *         contains the selected trigger (internal trigger input, filtered
 
  *         timer input or external trigger input) and the ) and the Slave 
 
  *         mode (Disable, Reset, Gated, Trigger, External clock mode 1). 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, 
 
                                                        TIM_SlaveConfigTypeDef * sSlaveConfig)
 
    {
 
      /* Check the parameters */
 
  assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
 
  assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
 
    
 
  __HAL_LOCK(htim);
 
    
 
  htim->State = HAL_TIM_STATE_BUSY;
 
    
 
  TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
 
    
 
  /* Enable Trigger Interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
 
       
 
  /* Disable Trigger DMA request */
 
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
     
 
  __HAL_UNLOCK(htim);  
 
  
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Read the captured value from Capture Compare unit
 
  * @param  htim : TIM handle.
 
  * @param  Channel : TIM Channels to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1 : TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2 : TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3 : TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4 : TIM Channel 4 selected
 
  * @retval Captured value
 
  */
 
uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  uint32_t tmpreg = 0;
 
  
 
  __HAL_LOCK(htim);
 
  
 
  switch (Channel)
 
  {
 
  case TIM_CHANNEL_1:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      
 
      /* Return the capture 1 value */
 
      tmpreg =  htim->Instance->CCR1;
 
      
 
      break;
 
    }
 
  case TIM_CHANNEL_2:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
      
 
      /* Return the capture 2 value */
 
      tmpreg =   htim->Instance->CCR2;
 
      
 
      break;
 
    }
 
    
 
  case TIM_CHANNEL_3:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
 
      
 
      /* Return the capture 3 value */
 
      tmpreg =   htim->Instance->CCR3;
 
      
 
      break;
 
    }
 
    
 
  case TIM_CHANNEL_4:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
 
      
 
      /* Return the capture 4 value */
 
      tmpreg =   htim->Instance->CCR4;
 
      
 
      break;
 
    }
 
    
 
  default:
 
    break;  
 
  }
 
     
 
  __HAL_UNLOCK(htim);  
 
  return tmpreg;
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
 
 *  @brief    TIM Callbacks functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                        ##### TIM Callbacks functions #####
 
  ==============================================================================  
 
 [..]  
 
   This section provides TIM callback functions:
 
   (+) Timer Period elapsed callback
 
   (+) Timer Output Compare callback
 
   (+) Timer Input capture callback
 
   (+) Timer Trigger callback
 
   (+) Timer Error callback
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Period elapsed callback in non blocking mode 
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file
 
   */
 
  
 
}
 
/**
 
  * @brief  Output Compare callback in non blocking mode 
 
  * @param  htim : TIM OC handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
 
   */
 
}
 
/**
 
  * @brief  Input Capture callback in non blocking mode 
 
  * @param  htim : TIM IC handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the __HAL_TIM_IC_CaptureCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  PWM Pulse finished callback in non blocking mode 
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Hall Trigger detection callback in non blocking mode 
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_TriggerCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Timer error callback in non blocking mode 
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIM_ErrorCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions 
 
 *  @brief   Peripheral State functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                        ##### Peripheral State functions #####
 
  ==============================================================================  
 
    [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the TIM Base state
 
  * @param  htim : TIM Base handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @brief  Return the TIM OC state
 
  * @param  htim : TIM Ouput Compare handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @brief  Return the TIM PWM state
 
  * @param  htim : TIM handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @brief  Return the TIM Input Capture state
 
  * @param  htim : TIM IC handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @brief  Return the TIM One Pulse Mode state
 
  * @param  htim : TIM OPM handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @brief  Return the TIM Encoder Mode state
 
  * @param  htim : TIM Encoder handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup TIM_Private_Functions TIM_Private_Functions
 
  * @{
 
  */ 
 
   
 
/**
 
  * @brief  TIM DMA error callback 
 
  * @param  hdma : pointer to DMA handle.
 
  * @retval None
 
  */
 
void HAL_TIM_DMAError(DMA_HandleTypeDef *hdma)
 
{
 
  TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  htim->State= HAL_TIM_STATE_READY;
 
   
 
  HAL_TIM_ErrorCallback(htim);
 
}
 
 
/**
 
  * @brief  TIM DMA Delay Pulse complete callback. 
 
  * @param  hdma : pointer to DMA handle.
 
  * @retval None
 
  */
 
void HAL_TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
 
{
 
  TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  htim->State= HAL_TIM_STATE_READY; 
 
  
 
  if (hdma == htim->hdma[TIM_DMA_ID_CC1])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
 
  }
 
  else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
 
  }
 
  else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
 
  }
 
  else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
 
  }
 
 
  HAL_TIM_PWM_PulseFinishedCallback(htim);
 
 
  htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
 
}
 
/**
 
  * @brief  TIM DMA Capture complete callback. 
 
  * @param  hdma : pointer to DMA handle.
 
  * @retval None
 
  */
 
void HAL_TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
 
{
 
  TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  if (hdma == htim->hdma[TIM_DMA_ID_CC1])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
 
  }
 
  else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
 
  }
 
  else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
 
  }
 
  else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
 
  {
 
    htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
 
  }
 
  
 
  HAL_TIM_IC_CaptureCallback(htim); 
 
  
 
  htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
 
}
 
  
 
/**
 
  * @brief  TIM DMA Period Elapse complete callback. 
 
  * @param  hdma : pointer to DMA handle.
 
  * @retval None
 
  */
 
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
 
{
 
  TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  htim->State= HAL_TIM_STATE_READY;
 
  
 
  HAL_TIM_PeriodElapsedCallback(htim);
 
}
 
 
/**
 
  * @brief  TIM DMA Trigger callback. 
 
  * @param  hdma : pointer to DMA handle.
 
  * @retval None
 
  */
 
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
 
{
 
  TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;  
 
  
 
  htim->State= HAL_TIM_STATE_READY; 
 
  
 
  HAL_TIM_TriggerCallback(htim);
 
}
 
 
/**
 
  * @brief  Time Base configuration
 
  * @param  TIMx : TIM periheral
 
  * @param  Structure : TIM Base configuration structure
 
  * @retval None
 
  */
 
void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure)
 
{
 
  uint32_t tmpcr1 = 0;
 
  tmpcr1 = TIMx->CR1;
 
  
 
  /* Set TIM Time Base Unit parameters ---------------------------------------*/
 
  if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
 
  {
 
    /* Select the Counter Mode */
 
    tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
 
    tmpcr1 |= Structure->CounterMode;
 
  }
 
 
 
  if(IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
 
  {
 
    /* Set the clock division */
 
    tmpcr1 &= ~TIM_CR1_CKD;
 
    tmpcr1 |= (uint32_t)Structure->ClockDivision;
 
  }
 
 
  TIMx->CR1 = tmpcr1;
 
 
  /* Set the Autoreload value */
 
  TIMx->ARR = (uint32_t)Structure->Period ;
 
 
 
  /* Set the Prescaler value */
 
  TIMx->PSC = (uint32_t)Structure->Prescaler;
 
    
 
  if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))  
 
  {
 
    /* Set the Repetition Counter value */
 
    TIMx->RCR = Structure->RepetitionCounter;
 
  }
 
 
  /* Generate an update event to reload the Prescaler 
 
     and the repetition counter(only for TIM1 and TIM8) value immediatly */
 
  TIMx->EGR = TIM_EGR_UG;
 
}
 
 
/**
 
  * @brief  Time Ouput Compare 1 configuration
 
  * @param  TIMx to select the TIM peripheral
 
  * @param  OC_Config : The ouput configuration structure
 
  * @retval None
 
  */
 
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
 
{
 
  uint32_t tmpccmrx = 0;
 
  uint32_t tmpccer = 0;
 
  uint32_t tmpcr2 = 0; 
 
 
   /* Disable the Channel 1: Reset the CC1E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC1E;
 
  
 
  /* Get the TIMx CCER register value */
 
  tmpccer = TIMx->CCER;
 
  /* Get the TIMx CR2 register value */
 
  tmpcr2 =  TIMx->CR2; 
 
  
 
  /* Get the TIMx CCMR1 register value */
 
  tmpccmrx = TIMx->CCMR1;
 
 
  /* Reset the Output Compare Mode Bits */
 
  tmpccmrx &= ~TIM_CCMR1_OC1M;
 
  tmpccmrx &= ~TIM_CCMR1_CC1S;
 
  /* Select the Output Compare Mode */
 
  tmpccmrx |= OC_Config->OCMode;
 
  
 
  /* Reset the Output Polarity level */
 
  tmpccer &= ~TIM_CCER_CC1P;
 
  /* Set the Output Compare Polarity */
 
  tmpccer |= OC_Config->OCPolarity;
 
 
  if(IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
 
  {
 
    /* Check parameters */
 
    assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
 
 
 
    /* Reset the Output N Polarity level */
 
    tmpccer &= ~TIM_CCER_CC1NP;
 
    /* Set the Output N Polarity */
 
    tmpccer |= OC_Config->OCNPolarity;
 
    /* Reset the Output N State */
 
    tmpccer &= ~TIM_CCER_CC1NE;
 
  }
 
  
 
  if(IS_TIM_BREAK_INSTANCE(TIMx))
 
  {
 
    /* Check parameters */
 
    assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
 
    assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
 
 
    /* Reset the Output Compare and Output Compare N IDLE State */
 
    tmpcr2 &= ~TIM_CR2_OIS1;
 
    tmpcr2 &= ~TIM_CR2_OIS1N;
 
    /* Set the Output Idle state */
 
    tmpcr2 |= OC_Config->OCIdleState;
 
    /* Set the Output N Idle state */
 
    tmpcr2 |= OC_Config->OCNIdleState;
 
  }
 
  /* Write to TIMx CR2 */
 
  TIMx->CR2 = tmpcr2;
 
  
 
  /* Write to TIMx CCMR1 */
 
  TIMx->CCMR1 = tmpccmrx;
 
  
 
  /* Set the Capture Compare Register value */
 
  TIMx->CCR1 = OC_Config->Pulse;
 
  
 
  /* Write to TIMx CCER */
 
  TIMx->CCER = tmpccer;  
 
} 
 
 
/**
 
  * @brief  Time Ouput Compare 2 configuration
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  OC_Config : The ouput configuration structure
 
  * @retval None
 
  */
 
void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
 
{
 
  uint32_t tmpccmrx = 0;
 
  uint32_t tmpccer = 0;
 
  uint32_t tmpcr2 = 0; 
 
 
  /* Disable the Channel 2: Reset the CC2E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC2E;
 
  
 
  /* Get the TIMx CCER register value */
 
  tmpccer = TIMx->CCER;
 
  /* Get the TIMx CR2 register value */
 
  tmpcr2 =  TIMx->CR2; 
 
  
 
  /* Get the TIMx CCMR1 register value */
 
  tmpccmrx = TIMx->CCMR1;
 
 
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
 
  tmpccmrx &= ~TIM_CCMR1_OC2M;
 
  tmpccmrx &= ~TIM_CCMR1_CC2S;
 
  
 
  /* Select the Output Compare Mode */
 
  tmpccmrx |= (OC_Config->OCMode << 8);
 
  
 
  /* Reset the Output Polarity level */
 
  tmpccer &= ~TIM_CCER_CC2P;
 
  /* Set the Output Compare Polarity */
 
  tmpccer |= (OC_Config->OCPolarity << 4);
 
 
  if(IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
 
  {   
 
    assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
 
    assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
 
    assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
 
 
    /* Reset the Output N Polarity level */
 
    tmpccer &= ~TIM_CCER_CC2NP;
 
    /* Set the Output N Polarity */
 
    tmpccer |= (OC_Config->OCNPolarity << 4);
 
    /* Reset the Output N State */
 
    tmpccer &= ~TIM_CCER_CC2NE;
 
    
 
  }
 
 
  if(IS_TIM_BREAK_INSTANCE(TIMx))
 
  {
 
    /* Check parameters */
 
    assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
 
    assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
 
 
    /* Reset the Output Compare and Output Compare N IDLE State */
 
    tmpcr2 &= ~TIM_CR2_OIS2;
 
    tmpcr2 &= ~TIM_CR2_OIS2N;
 
    /* Set the Output Idle state */
 
    tmpcr2 |= (OC_Config->OCIdleState << 2);
 
    /* Set the Output N Idle state */
 
    tmpcr2 |= (OC_Config->OCNIdleState << 2);
 
  }
 
 
  /* Write to TIMx CR2 */
 
  TIMx->CR2 = tmpcr2;
 
  
 
  /* Write to TIMx CCMR1 */
 
  TIMx->CCMR1 = tmpccmrx;
 
  
 
  /* Set the Capture Compare Register value */
 
  TIMx->CCR2 = OC_Config->Pulse;
 
  
 
  /* Write to TIMx CCER */
 
  TIMx->CCER = tmpccer;  
 
}
 
 
/**
 
  * @brief  Time Ouput Compare 3 configuration
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  OC_Config : The ouput configuration structure
 
  * @retval None
 
  */
 
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
 
{
 
  uint32_t tmpccmrx = 0;
 
  uint32_t tmpccer = 0;
 
  uint32_t tmpcr2 = 0; 
 
 
  /* Disable the Channel 3: Reset the CC2E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC3E;
 
  
 
  /* Get the TIMx CCER register value */
 
  tmpccer = TIMx->CCER;
 
  /* Get the TIMx CR2 register value */
 
  tmpcr2 =  TIMx->CR2; 
 
  
 
  /* Get the TIMx CCMR2 register value */
 
  tmpccmrx = TIMx->CCMR2;
 
 
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
 
  tmpccmrx &= ~TIM_CCMR2_OC3M;
 
  tmpccmrx &= ~TIM_CCMR2_CC3S;  
 
  /* Select the Output Compare Mode */
 
  tmpccmrx |= OC_Config->OCMode;
 
  
 
  /* Reset the Output Polarity level */
 
  tmpccer &= ~TIM_CCER_CC3P;
 
  /* Set the Output Compare Polarity */
 
  tmpccer |= (OC_Config->OCPolarity << 8);
 
 
  if(IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
 
  {   
 
    assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
 
    assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
 
    assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
 
 
    /* Reset the Output N Polarity level */
 
    tmpccer &= ~TIM_CCER_CC3NP;
 
    /* Set the Output N Polarity */
 
    tmpccer |= (OC_Config->OCNPolarity << 8);
 
    /* Reset the Output N State */
 
    tmpccer &= ~TIM_CCER_CC3NE;
 
  }
 
  
 
  if(IS_TIM_BREAK_INSTANCE(TIMx))
 
  {
 
    /* Check parameters */
 
    assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
 
    assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
 
 
    /* Reset the Output Compare and Output Compare N IDLE State */
 
    tmpcr2 &= ~TIM_CR2_OIS3;
 
    tmpcr2 &= ~TIM_CR2_OIS3N;
 
    /* Set the Output Idle state */
 
    tmpcr2 |= (OC_Config->OCIdleState << 4);
 
    /* Set the Output N Idle state */
 
    tmpcr2 |= (OC_Config->OCNIdleState << 4);
 
  }
 
 
  /* Write to TIMx CR2 */
 
  TIMx->CR2 = tmpcr2;
 
  
 
  /* Write to TIMx CCMR2 */
 
  TIMx->CCMR2 = tmpccmrx;
 
  
 
  /* Set the Capture Compare Register value */
 
  TIMx->CCR3 = OC_Config->Pulse;
 
  
 
  /* Write to TIMx CCER */
 
  TIMx->CCER = tmpccer;  
 
}
 
 
/**
 
  * @brief  Time Ouput Compare 4 configuration
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  OC_Config : The ouput configuration structure
 
  * @retval None
 
  */
 
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
 
{
 
  uint32_t tmpccmrx = 0;
 
  uint32_t tmpccer = 0;
 
  uint32_t tmpcr2 = 0; 
 
 
  /* Disable the Channel 4: Reset the CC4E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC4E;
 
  
 
  /* Get the TIMx CCER register value */
 
  tmpccer = TIMx->CCER;
 
  /* Get the TIMx CR2 register value */
 
  tmpcr2 =  TIMx->CR2; 
 
  
 
  /* Get the TIMx CCMR2 register value */
 
  tmpccmrx = TIMx->CCMR2;
 
 
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
 
  tmpccmrx &= ~TIM_CCMR2_OC4M;
 
  tmpccmrx &= ~TIM_CCMR2_CC4S;
 
  
 
  /* Select the Output Compare Mode */
 
  tmpccmrx |= (OC_Config->OCMode << 8);
 
  
 
  /* Reset the Output Polarity level */
 
  tmpccer &= ~TIM_CCER_CC4P;
 
  /* Set the Output Compare Polarity */
 
  tmpccer |= (OC_Config->OCPolarity << 12);
 
 
  if(IS_TIM_BREAK_INSTANCE(TIMx))
 
  {
 
    assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
 
 
   /* Reset the Output Compare IDLE State */
 
    tmpcr2 &= ~TIM_CR2_OIS4;
 
    /* Set the Output Idle state */
 
    tmpcr2 |= (OC_Config->OCIdleState << 6);
 
  }
 
 
  /* Write to TIMx CR2 */
 
  TIMx->CR2 = tmpcr2;
 
  
 
  /* Write to TIMx CCMR2 */
 
  TIMx->CCMR2 = tmpccmrx;
 
  
 
  /* Set the Capture Compare Register value */
 
  TIMx->CCR4 = OC_Config->Pulse;
 
  
 
  /* Write to TIMx CCER */
 
  TIMx->CCER = tmpccer;  
 
}
 
 
void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
 
                              TIM_SlaveConfigTypeDef * sSlaveConfig)
 
{
 
  uint32_t tmpsmcr = 0;
 
  uint32_t tmpccmr1 = 0;
 
  uint32_t tmpccer = 0;
 
 
  /* Get the TIMx SMCR register value */
 
  tmpsmcr = htim->Instance->SMCR;
 
 
  /* Reset the Trigger Selection Bits */
 
  tmpsmcr &= ~TIM_SMCR_TS;
 
  /* Set the Input Trigger source */
 
  tmpsmcr |= sSlaveConfig->InputTrigger;
 
 
  /* Reset the slave mode Bits */
 
  tmpsmcr &= ~TIM_SMCR_SMS;
 
  /* Set the slave mode */
 
  tmpsmcr |= sSlaveConfig->SlaveMode;
 
 
  /* Write to TIMx SMCR */
 
  htim->Instance->SMCR = tmpsmcr;
 
 
 
  /* Configure the trigger prescaler, filter, and polarity */
 
  switch (sSlaveConfig->InputTrigger)
 
  {
 
  case TIM_TS_ETRF:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
 
      assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
 
      assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
 
      assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
 
      /* Configure the ETR Trigger source */
 
      TIM_ETR_SetConfig(htim->Instance, 
 
                        sSlaveConfig->TriggerPrescaler, 
 
                        sSlaveConfig->TriggerPolarity, 
 
                        sSlaveConfig->TriggerFilter);
 
    }
 
    break;
 
    
 
  case TIM_TS_TI1F_ED:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
 
      assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
 
  
 
      /* Disable the Channel 1: Reset the CC1E Bit */
 
      tmpccer = htim->Instance->CCER;
 
      htim->Instance->CCER &= ~TIM_CCER_CC1E;
 
      tmpccmr1 = htim->Instance->CCMR1;    
 
      
 
      /* Set the filter */
 
      tmpccmr1 &= ~TIM_CCMR1_IC1F;
 
      tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4);
 
      
 
      /* Write to TIMx CCMR1 and CCER registers */
 
      htim->Instance->CCMR1 = tmpccmr1;
 
      htim->Instance->CCER = tmpccer;                               
 
                               
 
    }
 
    break;
 
    
 
  case TIM_TS_TI1FP1:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
 
      assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
 
      assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
 
  
 
      /* Configure TI1 Filter and Polarity */
 
      TIM_TI1_ConfigInputStage(htim->Instance,
 
                               sSlaveConfig->TriggerPolarity,
 
                               sSlaveConfig->TriggerFilter);
 
    }
 
    break;
 
    
 
  case TIM_TS_TI2FP2:
 
    {
 
      /* Check the parameters */
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
      assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
 
      assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
 
  
 
      /* Configure TI2 Filter and Polarity */
 
      TIM_TI2_ConfigInputStage(htim->Instance,
 
                                sSlaveConfig->TriggerPolarity,
 
                                sSlaveConfig->TriggerFilter);
 
    }
 
    break;
 
    
 
  case TIM_TS_ITR0:
 
    {
 
      /* Check the parameter */
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    }
 
    break;
 
    
 
  case TIM_TS_ITR1:
 
    {
 
      /* Check the parameter */
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    }
 
    break;
 
    
 
  case TIM_TS_ITR2:
 
    {
 
      /* Check the parameter */
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    }
 
    break;
 
    
 
  case TIM_TS_ITR3:
 
    {
 
      /* Check the parameter */
 
      assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
 
    }
 
    break;
 
       
 
  default:
 
    break;
 
  }
 
}
 
 
/**
 
  * @brief  Configure the TI1 as Input.
 
  * @param  TIMx  to select the TIM peripheral.
 
  * @param  TIM_ICPolarity : The Input Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPolarity_Rising
 
  *            @arg TIM_ICPolarity_Falling
 
  *            @arg TIM_ICPolarity_BothEdge  
 
  * @param  TIM_ICSelection : specifies the input to be used.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICSelection_DirectTI : TIM Input 1 is selected to be connected to IC1.
 
  *            @arg TIM_ICSelection_IndirectTI : TIM Input 1 is selected to be connected to IC2.
 
  *            @arg TIM_ICSelection_TRC : TIM Input 1 is selected to be connected to TRC.
 
  * @param  TIM_ICFilter : Specifies the Input Capture Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F.
 
  * @retval None
 
  * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 
 
  *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be 
 
  *        protected against un-initialized filter and polarity values.
 
  */
 
void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter)
 
{
 
  uint32_t tmpccmr1 = 0;
 
  uint32_t tmpccer = 0;
 
 
  /* Disable the Channel 1: Reset the CC1E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC1E;
 
  tmpccmr1 = TIMx->CCMR1;
 
  tmpccer = TIMx->CCER;
 
 
  /* Select the Input */
 
  if(IS_TIM_CC2_INSTANCE(TIMx) != RESET)
 
  {
 
    tmpccmr1 &= ~TIM_CCMR1_CC1S;
 
    tmpccmr1 |= TIM_ICSelection;
 
  } 
 
  else
 
  {
 
    tmpccmr1 |= TIM_CCMR1_CC1S_0;
 
  }
 
  
 
  /* Set the filter */
 
  tmpccmr1 &= ~TIM_CCMR1_IC1F;
 
  tmpccmr1 |= ((TIM_ICFilter << 4) & TIM_CCMR1_IC1F);
 
 
  /* Select the Polarity and set the CC1E Bit */
 
  tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
 
  tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
 
 
  /* Write to TIMx CCMR1 and CCER registers */
 
  TIMx->CCMR1 = tmpccmr1;
 
  TIMx->CCER = tmpccer;
 
}
 
 
/**
 
  * @brief  Configure the Polarity and Filter for TI1.
 
  * @param  TIMx  to select the TIM peripheral.
 
  * @param  TIM_ICPolarity : The Input Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPolarity_Rising
 
  *            @arg TIM_ICPolarity_Falling
 
  *            @arg TIM_ICPolarity_BothEdge
 
  * @param  TIM_ICFilter : Specifies the Input Capture Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F.
 
  * @retval None
 
  */
 
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
 
{
 
  uint32_t tmpccmr1 = 0;
 
  uint32_t tmpccer = 0;
 
  
 
  /* Disable the Channel 1: Reset the CC1E Bit */
 
  tmpccer = TIMx->CCER;
 
  TIMx->CCER &= ~TIM_CCER_CC1E;
 
  tmpccmr1 = TIMx->CCMR1;    
 
  
 
  /* Set the filter */
 
  tmpccmr1 &= ~TIM_CCMR1_IC1F;
 
  tmpccmr1 |= (TIM_ICFilter << 4);
 
  
 
  /* Select the Polarity and set the CC1E Bit */
 
  tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
 
  tmpccer |= TIM_ICPolarity;
 
  
 
  /* Write to TIMx CCMR1 and CCER registers */
 
  TIMx->CCMR1 = tmpccmr1;
 
  TIMx->CCER = tmpccer;
 
}
 
 
/**
 
  * @brief  Configure the TI2 as Input.
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  TIM_ICPolarity : The Input Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPolarity_Rising
 
  *            @arg TIM_ICPolarity_Falling
 
  *            @arg TIM_ICPolarity_BothEdge   
 
  * @param  TIM_ICSelection : specifies the input to be used.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICSelection_DirectTI : TIM Input 2 is selected to be connected to IC2.
 
  *            @arg TIM_ICSelection_IndirectTI : TIM Input 2 is selected to be connected to IC1.
 
  *            @arg TIM_ICSelection_TRC : TIM Input 2 is selected to be connected to TRC.
 
  * @param  TIM_ICFilter : Specifies the Input Capture Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F.
 
  * @retval None
 
  * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 
 
  *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be 
 
  *        protected against un-initialized filter and polarity values.
 
  */
 
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter)
 
{
 
  uint32_t tmpccmr1 = 0;
 
  uint32_t tmpccer = 0;
 
 
  /* Disable the Channel 2: Reset the CC2E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC2E;
 
  tmpccmr1 = TIMx->CCMR1;
 
  tmpccer = TIMx->CCER;
 
 
  /* Select the Input */
 
  tmpccmr1 &= ~TIM_CCMR1_CC2S;
 
  tmpccmr1 |= (TIM_ICSelection << 8);
 
 
  /* Set the filter */
 
  tmpccmr1 &= ~TIM_CCMR1_IC2F;
 
  tmpccmr1 |= ((TIM_ICFilter << 12) & TIM_CCMR1_IC2F);
 
 
  /* Select the Polarity and set the CC2E Bit */
 
  tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
 
  tmpccer |= ((TIM_ICPolarity << 4) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
 
 
  /* Write to TIMx CCMR1 and CCER registers */
 
  TIMx->CCMR1 = tmpccmr1 ;
 
  TIMx->CCER = tmpccer;
 
}
 
 
/**
 
  * @brief  Configure the Polarity and Filter for TI2.
 
  * @param  TIMx  to select the TIM peripheral.
 
  * @param  TIM_ICPolarity : The Input Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPolarity_Rising
 
  *            @arg TIM_ICPolarity_Falling
 
  *            @arg TIM_ICPolarity_BothEdge
 
  * @param  TIM_ICFilter : Specifies the Input Capture Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F.
 
  * @retval None
 
  */
 
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
 
{
 
  uint32_t tmpccmr1 = 0;
 
  uint32_t tmpccer = 0;
 
  
 
  /* Disable the Channel 2: Reset the CC2E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC2E;
 
  tmpccmr1 = TIMx->CCMR1;
 
  tmpccer = TIMx->CCER;
 
  
 
  /* Set the filter */
 
  tmpccmr1 &= ~TIM_CCMR1_IC2F;
 
  tmpccmr1 |= (TIM_ICFilter << 12);
 
 
  /* Select the Polarity and set the CC2E Bit */
 
  tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
 
  tmpccer |= (TIM_ICPolarity << 4);
 
 
  /* Write to TIMx CCMR1 and CCER registers */
 
  TIMx->CCMR1 = tmpccmr1 ;
 
  TIMx->CCER = tmpccer;
 
}
 
 
/**
 
  * @brief  Configure the TI3 as Input.
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  TIM_ICPolarity : The Input Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPolarity_Rising
 
  *            @arg TIM_ICPolarity_Falling
 
  *            @arg TIM_ICPolarity_BothEdge         
 
  * @param  TIM_ICSelection : specifies the input to be used.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICSelection_DirectTI : TIM Input 3 is selected to be connected to IC3.
 
  *            @arg TIM_ICSelection_IndirectTI : TIM Input 3 is selected to be connected to IC4.
 
  *            @arg TIM_ICSelection_TRC : TIM Input 3 is selected to be connected to TRC.
 
  * @param  TIM_ICFilter : Specifies the Input Capture Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F.
 
  * @retval None
 
  * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 
 
  *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be 
 
  *        protected against un-initialized filter and polarity values.
 
  */
 
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter)
 
{
 
  uint32_t tmpccmr2 = 0;
 
  uint32_t tmpccer = 0;
 
 
  /* Disable the Channel 3: Reset the CC3E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC3E;
 
  tmpccmr2 = TIMx->CCMR2;
 
  tmpccer = TIMx->CCER;
 
 
  /* Select the Input */
 
  tmpccmr2 &= ~TIM_CCMR2_CC3S;
 
  tmpccmr2 |= TIM_ICSelection;
 
 
  /* Set the filter */
 
  tmpccmr2 &= ~TIM_CCMR2_IC3F;
 
  tmpccmr2 |= ((TIM_ICFilter << 4) & TIM_CCMR2_IC3F);
 
 
  /* Select the Polarity and set the CC3E Bit */
 
  tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
 
  tmpccer |= ((TIM_ICPolarity << 8) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
 
 
  /* Write to TIMx CCMR2 and CCER registers */
 
  TIMx->CCMR2 = tmpccmr2;
 
  TIMx->CCER = tmpccer;
 
}
 
 
/**
 
  * @brief  Configure the TI4 as Input.
 
  * @param  TIMx to select the TIM peripheral
 
  * @param  TIM_ICPolarity : The Input Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICPolarity_Rising
 
  *            @arg TIM_ICPolarity_Falling
 
  *            @arg TIM_ICPolarity_BothEdge     
 
  * @param  TIM_ICSelection : specifies the input to be used.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ICSelection_DirectTI : TIM Input 4 is selected to be connected to IC4.
 
  *            @arg TIM_ICSelection_IndirectTI : TIM Input 4 is selected to be connected to IC3.
 
  *            @arg TIM_ICSelection_TRC : TIM Input 4 is selected to be connected to TRC.
 
  * @param  TIM_ICFilter : Specifies the Input Capture Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F.
 
  * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 
 
  *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be 
 
  *        protected against un-initialized filter and polarity values.
 
  * @retval None
 
  */
 
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
 
                       uint32_t TIM_ICFilter)
 
{
 
  uint32_t tmpccmr2 = 0;
 
  uint32_t tmpccer = 0;
 
 
  /* Disable the Channel 4: Reset the CC4E Bit */
 
  TIMx->CCER &= ~TIM_CCER_CC4E;
 
  tmpccmr2 = TIMx->CCMR2;
 
  tmpccer = TIMx->CCER;
 
 
  /* Select the Input */
 
  tmpccmr2 &= ~TIM_CCMR2_CC4S;
 
  tmpccmr2 |= (TIM_ICSelection << 8);
 
 
  /* Set the filter */
 
  tmpccmr2 &= ~TIM_CCMR2_IC4F;
 
  tmpccmr2 |= ((TIM_ICFilter << 12) & TIM_CCMR2_IC4F);
 
 
  /* Select the Polarity and set the CC4E Bit */
 
  tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
 
  tmpccer |= ((TIM_ICPolarity << 12) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
 
 
  /* Write to TIMx CCMR2 and CCER registers */
 
  TIMx->CCMR2 = tmpccmr2;
 
  TIMx->CCER = tmpccer ;
 
}
 
 
/**
 
  * @brief  Selects the Input Trigger source
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  InputTriggerSource : The Input Trigger source.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_TS_ITR0 : Internal Trigger 0
 
  *            @arg TIM_TS_ITR1 : Internal Trigger 1
 
  *            @arg TIM_TS_ITR2 : Internal Trigger 2
 
  *            @arg TIM_TS_ITR3 : Internal Trigger 3
 
  *            @arg TIM_TS_TI1F_ED : TI1 Edge Detector
 
  *            @arg TIM_TS_TI1FP1 : Filtered Timer Input 1
 
  *            @arg TIM_TS_TI2FP2 : Filtered Timer Input 2
 
  *            @arg TIM_TS_ETRF : External Trigger input
 
  * @retval None
 
  */
 
static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint16_t InputTriggerSource)
 
{
 
  uint32_t tmpsmcr = 0;
 
  
 
   /* Get the TIMx SMCR register value */
 
   tmpsmcr = TIMx->SMCR;
 
   /* Reset the TS Bits */
 
   tmpsmcr &= ~TIM_SMCR_TS;
 
   /* Set the Input Trigger source and the slave mode*/
 
   tmpsmcr |= InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1;
 
   /* Write to TIMx SMCR */
 
   TIMx->SMCR = tmpsmcr;
 
}
 
/**
 
  * @brief  Configures the TIMx External Trigger (ETR).
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  TIM_ExtTRGPrescaler : The external Trigger Prescaler.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ExtTRGPSC_DIV1 : ETRP Prescaler OFF.
 
  *            @arg TIM_ExtTRGPSC_DIV2 : ETRP frequency divided by 2.
 
  *            @arg TIM_ExtTRGPSC_DIV4 : ETRP frequency divided by 4.
 
  *            @arg TIM_ExtTRGPSC_DIV8 : ETRP frequency divided by 8.
 
  * @param  TIM_ExtTRGPolarity : The external Trigger Polarity.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_ExtTRGPolarity_Inverted : active low or falling edge active.
 
  *            @arg TIM_ExtTRGPolarity_NonInverted : active high or rising edge active.
 
  * @param  ExtTRGFilter : External Trigger Filter.
 
  *          This parameter must be a value between 0x00 and 0x0F
 
  * @retval None
 
  */
 
static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
 
                       uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
 
{
 
  uint32_t tmpsmcr = 0;
 
 
  tmpsmcr = TIMx->SMCR;
 
 
  /* Reset the ETR Bits */
 
  tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
 
 
  /* Set the Prescaler, the Filter value and the Polarity */
 
  tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8)));
 
 
  /* Write to TIMx SMCR */
 
  TIMx->SMCR = tmpsmcr;
 
} 
 
 
/**
 
  * @brief  Enables or disables the TIM Capture Compare Channel x.
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  Channel : specifies the TIM Channel
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_Channel_1 : TIM Channel 1
 
  *            @arg TIM_Channel_2 : TIM Channel 2
 
  *            @arg TIM_Channel_3 : TIM Channel 3
 
  *            @arg TIM_Channel_4 : TIM Channel 4
 
  * @param  ChannelState : specifies the TIM Channel CCxE bit new state.
 
  *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable. 
 
  * @retval None
 
  */
 
void TIM_CCxChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelState)
 
{
 
  uint32_t tmp = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CC1_INSTANCE(TIMx)); 
 
  assert_param(IS_TIM_CHANNELS(Channel));
 
 
  tmp = TIM_CCER_CC1E << Channel;
 
 
  /* Reset the CCxE Bit */
 
  TIMx->CCER &= ~tmp;
 
 
  /* Set or reset the CCxE Bit */ 
 
  TIMx->CCER |=  (uint32_t)(ChannelState << Channel);
 
}
 
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_TIM_MODULE_ENABLED */
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_tim_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   TIM HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Timer Extended peripheral:
 
  *           + Time Hall Sensor Interface Initialization
 
  *           + Time Hall Sensor Interface Start
 
  *           + Time Complementary signal bread and dead time configuration  
 
  *           + Time Master and Slave synchronization configuration
 
  *           + Timer remapping capabilities configuration
 
  @verbatim
 
  ==============================================================================
 
                      ##### TIMER Extended features #####
 
  ==============================================================================
 
  [..] 
 
    The Timer Extended features include: 
 
    (#) Complementary outputs with programmable dead-time for :
 
        (++) Output Compare
 
        (++) PWM generation (Edge and Center-aligned Mode)
 
        (++) One-pulse mode output
 
    (#) Synchronization circuit to control the timer with external signals and to 
 
        interconnect several timers together.
 
    (#) Break input to put the timer output signals in reset state or in a known state.
 
    (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for 
 
        positioning purposes                
 
 
            ##### How to use this driver #####
 
  ==============================================================================
 
    [..]
 
     (#) Initialize the TIM low level resources by implementing the following functions 
 
         depending from feature used :
 
           (++) Complementary Output Compare : HAL_TIM_OC_MspInit()
 
           (++) Complementary PWM generation : HAL_TIM_PWM_MspInit()
 
           (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit()
 
           (++) Hall Sensor output : HAL_TIM_HallSensor_MspInit()
 
           
 
     (#) Initialize the TIM low level resources :
 
        (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); 
 
        (##) TIM pins configuration
 
            (+++) Enable the clock for the TIM GPIOs using the following function:
 
              __GPIOx_CLK_ENABLE();   
 
            (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();  
 
 
     (#) The external Clock can be configured, if needed (the default clock is the 
 
         internal clock from the APBx), using the following function:
 
         HAL_TIM_ConfigClockSource, the clock configuration should be done before 
 
         any start function.
 
  
 
     (#) Configure the TIM in the desired functioning mode using one of the 
 
         initialization function of this driver:
 
          (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the 
 
              Timer Hall Sensor Interface and the commutation event with the corresponding 
 
              Interrupt and DMA request if needed (Note that One Timer is used to interface 
 
             with the Hall sensor Interface and another Timer should be used to use 
 
             the commutation event).
 
 
     (#) Activate the TIM peripheral using one of the start functions: 
 
           (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OCN_Start_IT()
 
           (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT()
 
           (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
 
           (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
 
 
  
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
*/ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup TIMEx TIMEx Extended HAL module driver
 
  * @brief TIM Extended HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_TIM_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
 
/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
 
  * @{
 
  */
 
static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState);    
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup TIMEx_Exported_Functions TIMEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions 
 
 *  @brief    Timer Hall Sensor functions 
 
 *
 
@verbatim    
 
  ==============================================================================
 
                      ##### Timer Hall Sensor functions #####
 
  ==============================================================================
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Initialize and configure TIM HAL Sensor. 
 
    (+) De-initialize TIM HAL Sensor.
 
    (+) Start the Hall Sensor Interface.
 
    (+) Stop the Hall Sensor Interface.
 
    (+) Start the Hall Sensor Interface and enable interrupts.
 
    (+) Stop the Hall Sensor Interface and disable interrupts.
 
    (+) Start the Hall Sensor Interface and enable DMA transfers.
 
    (+) Stop the Hall Sensor Interface and disable DMA transfers.
 
 
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Initializes the TIM Hall Sensor Interface and create the associated handle.
 
  * @param  htim : TIM Encoder Interface handle
 
  * @param  sConfig : TIM Hall Sensor configuration structure
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig)
 
{
 
  TIM_OC_InitTypeDef OC_Config;
 
    
 
  /* Check the TIM handle allocation */
 
  if(htim == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
 
  assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
 
  assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
 
  assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
 
  assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
 
 
  /* Set the TIM state */
 
  htim->State= HAL_TIM_STATE_BUSY;
 
  
 
  /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
 
  HAL_TIMEx_HallSensor_MspInit(htim);
 
  
 
  /* Configure the Time base in the Encoder Mode */
 
  TIM_Base_SetConfig(htim->Instance, &htim->Init);
 
  
 
  /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the  Hall sensor */
 
  TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
 
  
 
  /* Reset the IC1PSC Bits */
 
  htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
 
  /* Set the IC1PSC value */
 
  htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
 
  
 
  /* Enable the Hall sensor interface (XOR function of the three inputs) */
 
  htim->Instance->CR2 |= TIM_CR2_TI1S;
 
  
 
  /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
 
  htim->Instance->SMCR &= ~TIM_SMCR_TS;
 
  htim->Instance->SMCR |= TIM_TS_TI1F_ED;
 
  
 
  /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */  
 
  htim->Instance->SMCR &= ~TIM_SMCR_SMS;
 
  htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
 
  
 
  /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
 
  OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
 
  OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
 
  OC_Config.OCMode = TIM_OCMODE_PWM2;
 
  OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
 
  OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
 
  OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
 
  OC_Config.Pulse = sConfig->Commutation_Delay; 
 
    
 
  TIM_OC2_SetConfig(htim->Instance, &OC_Config);
 
  
 
  /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
 
    register to 101 */
 
  htim->Instance->CR2 &= ~TIM_CR2_MMS;
 
  htim->Instance->CR2 |= TIM_TRGO_OC2REF; 
 
  
 
  /* Initialize the TIM state*/
 
  htim->State= HAL_TIM_STATE_READY;
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the TIM Hall Sensor interface  
 
  * @param  htim : TIM Hall Sensor handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_INSTANCE(htim->Instance));
 
 
  htim->State = HAL_TIM_STATE_BUSY;
 
  
 
  /* Disable the TIM Peripheral Clock */
 
  __HAL_TIM_DISABLE(htim);
 
    
 
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
 
  HAL_TIMEx_HallSensor_MspDeInit(htim);
 
    
 
  /* Change TIM state */  
 
  htim->State = HAL_TIM_STATE_RESET; 
 
  
 
  /* Release Lock */
 
  __HAL_UNLOCK(htim);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TIM Hall Sensor MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes TIM Hall Sensor MSP.
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Starts the TIM Hall Sensor Interface.
 
  * @param  htim : TIM Hall Sensor handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  
 
  /* Enable the Input Capture channels 1
 
    (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); 
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Hall sensor Interface.
 
  * @param  htim : TIM Hall Sensor handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  
 
  /* Disable the Input Capture channels 1, 2 and 3
 
    (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Hall Sensor Interface in interrupt mode.
 
  * @param  htim : TIM Hall Sensor handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
 
{ 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  
 
  /* Enable the capture compare Interrupts 1 event */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
  
 
  /* Enable the Input Capture channels 1
 
    (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);  
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Hall Sensor Interface in interrupt mode.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  
 
  /* Disable the Input Capture channels 1
 
    (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
  
 
  /* Disable the capture compare Interrupts event */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM Hall Sensor Interface in DMA mode.
 
  * @param  htim : TIM Hall Sensor handle
 
  * @param  pData : The destination Buffer address.
 
  * @param  Length : The length of data to be transferred from TIM peripheral to memory.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  
 
   if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if(((uint32_t)pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }
 
  /* Enable the Input Capture channels 1
 
    (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); 
 
  
 
  /* Set the DMA Input Capture 1 Callback */
 
  htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt;     
 
  /* Set the DMA error callback */
 
  htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
  
 
  /* Enable the DMA channel for Capture 1*/
 
  HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);    
 
  
 
  /* Enable the capture compare 1 Interrupt */
 
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
 
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Hall Sensor Interface in DMA mode.
 
  * @param  htim : TIM handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
 
  
 
  /* Disable the Input Capture channels 1
 
    (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */  
 
  TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); 
 
 
 
  
 
  /* Disable the capture compare Interrupts 1 event */
 
  __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
 
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions
 
 *  @brief    Timer Complementary Output Compare functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
              ##### Timer Complementary Output Compare functions #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Start the Complementary Output Compare/PWM.
 
    (+) Stop the Complementary Output Compare/PWM.
 
    (+) Start the Complementary Output Compare/PWM and enable interrupts.
 
    (+) Stop the Complementary Output Compare/PWM and disable interrupts.
 
    (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
 
    (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
 
               
 
@endverbatim
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Starts the TIM Output Compare signal generation on the complementary
 
  *         output.
 
  * @param  htim : TIM Output Compare handle  
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
     /* Enable the Capture compare channel N */
 
     TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
 
    
 
  /* Enable the Main Ouput */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Stops the TIM Output Compare signal generation on the complementary
 
  *         output.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{ 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
    /* Disable the Capture compare channel N */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
 
    
 
  /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Starts the TIM Output Compare signal generation in interrupt mode 
 
  *         on the complementary output.
 
  * @param  htim : TIM OC handle
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Enable the TIM Output Compare interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Enable the TIM Output Compare interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Enable the TIM Output Compare interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Enable the TIM Output Compare interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Enable the TIM Break interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
 
  
 
     /* Enable the Capture compare channel N */
 
     TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
 
    
 
  /* Enable the Main Ouput */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Stops the TIM Output Compare signal generation in interrupt mode 
 
  *         on the complementary output.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  uint32_t tmpccer = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Output Compare interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Output Compare interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Output Compare interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Output Compare interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break; 
 
  }
 
    
 
     /* Disable the Capture compare channel N */
 
     TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
 
    
 
  /* Disable the TIM Break interrupt (only if no more channel is active) */
 
  tmpccer = htim->Instance->CCER;
 
  if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET)
 
  {
 
    __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
 
  }
 
 
  /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Starts the TIM Output Compare signal generation in DMA mode 
 
  *         on the complementary output.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  pData : The source Buffer address.
 
  * @param  Length : The length of data to be transferred from memory to TIM peripheral
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if(((uint32_t)pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }    
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {      
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
 
      
 
      /* Enable the TIM Output Compare DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
 
      
 
      /* Enable the TIM Output Compare DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
{
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
 
      
 
      /* Enable the TIM Output Compare DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
     /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
 
      
 
      /* Enable the TIM Output Compare DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }
 
 
  /* Enable the Capture compare channel N */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
 
  
 
  /* Enable the Main Ouput */
 
  __HAL_TIM_MOE_ENABLE(htim);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM Output Compare signal generation in DMA mode 
 
  *         on the complementary output.
 
  * @param  htim : TIM Output Compare handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Output Compare DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Output Compare DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Output Compare DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Output Compare interrupt */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Disable the Capture compare channel N */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
 
  
 
  /* Disable the Main Ouput */
 
  __HAL_TIM_MOE_DISABLE(htim);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions
 
 *  @brief    Timer Complementary PWM functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                 ##### Timer Complementary PWM functions #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Start the Complementary PWM.
 
    (+) Stop the Complementary PWM.
 
    (+) Start the Complementary PWM and enable interrupts.
 
    (+) Stop the Complementary PWM and disable interrupts.
 
    (+) Start the Complementary PWM and enable DMA transfers.
 
    (+) Stop the Complementary PWM and disable DMA transfers.
 
    (+) Start the Complementary Input Capture measurement.
 
    (+) Stop the Complementary Input Capture.
 
    (+) Start the Complementary Input Capture and enable interrupts.
 
    (+) Stop the Complementary Input Capture and disable interrupts.
 
    (+) Start the Complementary Input Capture and enable DMA transfers.
 
    (+) Stop the Complementary Input Capture and disable DMA transfers.
 
    (+) Start the Complementary One Pulse generation.
 
    (+) Stop the Complementary One Pulse.
 
    (+) Start the Complementary One Pulse and enable interrupts.
 
    (+) Stop the Complementary One Pulse and disable interrupts.
 
               
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Starts the PWM signal generation on the complementary output.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  /* Enable the complementary PWM output  */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
 
  
 
  /* Enable the Main Ouput */
 
  __HAL_TIM_MOE_ENABLE(htim);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Stops the PWM signal generation on the complementary output.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{ 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  /* Disable the complementary PWM output  */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);  
 
  
 
  /* Disable the Main Ouput */
 
  __HAL_TIM_MOE_DISABLE(htim);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Starts the PWM signal generation in interrupt mode on the 
 
  *         complementary output.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Enable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Enable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Enable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Enable the TIM Capture/Compare 4 interrupt */
 
      __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Enable the TIM Break interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
 
  
 
  /* Enable the complementary PWM output  */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
 
  
 
  /* Enable the Main Ouput */
 
  __HAL_TIM_MOE_ENABLE(htim);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Stops the PWM signal generation in interrupt mode on the 
 
  *         complementary output.
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  uint32_t tmpccer = 0;
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 3 interrupt */
 
      __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break; 
 
  }
 
  
 
  /* Disable the complementary PWM output  */
 
  TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
 
  
 
  /* Disable the TIM Break interrupt (only if no more channel is active) */
 
  tmpccer = htim->Instance->CCER;
 
  if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET)
 
  {
 
    __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
 
  }
 
  
 
  /* Disable the Main Ouput */
 
  __HAL_TIM_MOE_DISABLE(htim);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
} 
 
 
/**
 
  * @brief  Starts the TIM PWM signal generation in DMA mode on the 
 
  *         complementary output
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @param  pData : The source Buffer address.
 
  * @param  Length : The length of data to be transferred from memory to TIM peripheral
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  if((htim->State == HAL_TIM_STATE_BUSY))
 
  {
 
     return HAL_BUSY;
 
  }
 
  else if((htim->State == HAL_TIM_STATE_READY))
 
  {
 
    if(((uint32_t)pData == 0 ) && (Length > 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    else
 
    {
 
      htim->State = HAL_TIM_STATE_BUSY;
 
    }
 
  }    
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {      
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
 
      
 
      /* Enable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
 
      
 
      /* Enable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
 
      
 
      /* Enable the TIM Capture/Compare 3 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
     /* Set the DMA Period elapsed callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt;
 
     
 
      /* Set the DMA error callback */
 
      htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ;
 
      
 
      /* Enable the DMA channel */
 
      HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
 
      
 
      /* Enable the TIM Capture/Compare 4 DMA request */
 
      __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  }
 
 
  /* Enable the complementary PWM output  */
 
     TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
 
    
 
  /* Enable the Main Ouput */
 
    __HAL_TIM_MOE_ENABLE(htim);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_TIM_ENABLE(htim); 
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM PWM signal generation in DMA mode on the complementary
 
  *         output
 
  * @param  htim : TIM handle
 
  * @param  Channel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
 
  *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); 
 
  
 
  switch (Channel)
 
  {
 
    case TIM_CHANNEL_1:
 
    {       
 
      /* Disable the TIM Capture/Compare 1 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_2:
 
    {
 
      /* Disable the TIM Capture/Compare 2 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_3:
 
    {
 
      /* Disable the TIM Capture/Compare 3 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
 
    }
 
    break;
 
    
 
    case TIM_CHANNEL_4:
 
    {
 
      /* Disable the TIM Capture/Compare 4 DMA request */
 
      __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
 
    }
 
    break;
 
    
 
    default:
 
    break;
 
  } 
 
  
 
  /* Disable the complementary PWM output */
 
    TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
 
     
 
  /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim);
 
  
 
  /* Change the htim state */
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions
 
 *  @brief    Timer Complementary One Pulse functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                ##### Timer Complementary One Pulse functions #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Start the Complementary One Pulse generation.
 
    (+) Stop the Complementary One Pulse.
 
    (+) Start the Complementary One Pulse and enable interrupts.
 
    (+) Stop the Complementary One Pulse and disable interrupts.
 
               
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Starts the TIM One Pulse signal generation on the complemetary 
 
  *         output.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
  {
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); 
 
  
 
  /* Enable the complementary One Pulse output */
 
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); 
 
  
 
  /* Enable the Main Ouput */
 
  __HAL_TIM_MOE_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the TIM One Pulse signal generation on the complementary 
 
  *         output.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); 
 
 
  /* Disable the complementary One Pulse output */
 
    TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
 
  
 
  /* Disable the Main Ouput */
 
    __HAL_TIM_MOE_DISABLE(htim);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_TIM_DISABLE(htim); 
 
   
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the TIM One Pulse signal generation in interrupt mode on the
 
  *         complementary channel.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channel to be enabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); 
 
 
  /* Enable the TIM Capture/Compare 1 interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
 
  
 
  /* Enable the TIM Capture/Compare 2 interrupt */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
 
  
 
  /* Enable the complementary One Pulse output */
 
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); 
 
  
 
  /* Enable the Main Ouput */
 
  __HAL_TIM_MOE_ENABLE(htim);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
  } 
 
  
 
/**
 
  * @brief  Stops the TIM One Pulse signal generation in interrupt mode on the
 
  *         complementary channel.
 
  * @param  htim : TIM One Pulse handle
 
  * @param  OutputChannel : TIM Channel to be disabled
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
 
  *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); 
 
 
  /* Disable the TIM Capture/Compare 1 interrupt */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
 
  
 
  /* Disable the TIM Capture/Compare 2 interrupt */
 
  __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
 
  
 
  /* Disable the complementary One Pulse output */
 
  TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
 
  
 
  /* Disable the Main Ouput */
 
  __HAL_TIM_MOE_DISABLE(htim);
 
  
 
  /* Disable the Peripheral */
 
   __HAL_TIM_DISABLE(htim);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
 
 
/**
 
  * @}
 
  */
 
/** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions
 
 *  @brief   	Peripheral Control functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                    ##### Peripheral Control functions #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides functions allowing to:
 
    (+) Configure the commutation event in case of use of the Hall sensor interface.
 
      (+) Configure Complementary channels, break features and dead time.
 
      (+) Configure Master synchronization.
 
      (+) Configure timer remapping capabilities.
 
      
 
@endverbatim
 
  * @{
 
  */
 
/**
 
  * @brief  Configure the TIM commutation event sequence.
 
  * @note: this function is mandatory to use the commutation event in order to 
 
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
 
  *        the typical use of this feature is with the use of another Timer(interface Timer) 
 
  *        configured in Hall sensor interface, this interface Timer will generate the 
 
  *        commutation at its TRGO output (connected to Timer used in this function) each time 
 
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
 
  * @param  htim : TIM handle
 
  * @param  InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
 
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
 
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
 
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
 
  *            @arg TIM_TS_NONE: No trigger is needed 
 
  * @param  CommutationSource : the Commutation Event source
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
 
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t  InputTrigger, uint32_t  CommutationSource)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
 
  
 
  __HAL_LOCK(htim);
 
  
 
  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
 
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
 
  {    
 
    /* Select the Input trigger */
 
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
 
    htim->Instance->SMCR |= InputTrigger;
 
  }
 
    
 
  /* Select the Capture Compare preload feature */
 
  htim->Instance->CR2 |= TIM_CR2_CCPC;
 
  /* Select the Commutation event source */
 
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
 
  htim->Instance->CR2 |= CommutationSource;
 
    
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configure the TIM commutation event sequence with interrupt.
 
  * @note: this function is mandatory to use the commutation event in order to 
 
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
 
  *        the typical use of this feature is with the use of another Timer(interface Timer) 
 
  *        configured in Hall sensor interface, this interface Timer will generate the 
 
  *        commutation at its TRGO output (connected to Timer used in this function) each time 
 
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
 
  * @param  htim : TIM handle
 
  * @param  InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
 
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
 
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
 
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
 
  *            @arg TIM_TS_NONE: No trigger is needed 
 
  * @param  CommutationSource : the Commutation Event source
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
 
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t  InputTrigger, uint32_t  CommutationSource)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
 
  
 
  __HAL_LOCK(htim);
 
  
 
  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
 
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
 
  {    
 
    /* Select the Input trigger */
 
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
 
    htim->Instance->SMCR |= InputTrigger;
 
  }
 
  
 
  /* Select the Capture Compare preload feature */
 
  htim->Instance->CR2 |= TIM_CR2_CCPC;
 
  /* Select the Commutation event source */
 
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
 
  htim->Instance->CR2 |= CommutationSource;
 
    
 
  /* Enable the Commutation Interrupt Request */
 
  __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
 
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configure the TIM commutation event sequence with DMA.
 
  * @note: this function is mandatory to use the commutation event in order to 
 
  *        update the configuration at each commutation detection on the TRGI input of the Timer,
 
  *        the typical use of this feature is with the use of another Timer(interface Timer) 
 
  *        configured in Hall sensor interface, this interface Timer will generate the 
 
  *        commutation at its TRGO output (connected to Timer used in this function) each time 
 
  *        the TI1 of the Interface Timer detect a commutation at its input TI1.
 
  * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set
 
  * @param  htim : TIM handle
 
  * @param  InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_TS_ITR0: Internal trigger 0 selected
 
  *            @arg TIM_TS_ITR1: Internal trigger 1 selected
 
  *            @arg TIM_TS_ITR2: Internal trigger 2 selected
 
  *            @arg TIM_TS_ITR3: Internal trigger 3 selected
 
  *            @arg TIM_TS_NONE: No trigger is needed 
 
  * @param  CommutationSource : the Commutation Event source
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
 
  *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t  InputTrigger, uint32_t  CommutationSource)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
 
  
 
  __HAL_LOCK(htim);
 
  
 
  if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
 
      (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
 
  {    
 
    /* Select the Input trigger */
 
    htim->Instance->SMCR &= ~TIM_SMCR_TS;
 
    htim->Instance->SMCR |= InputTrigger;
 
  }
 
  
 
  /* Select the Capture Compare preload feature */
 
  htim->Instance->CR2 |= TIM_CR2_CCPC;
 
  /* Select the Commutation event source */
 
  htim->Instance->CR2 &= ~TIM_CR2_CCUS;
 
  htim->Instance->CR2 |= CommutationSource;
 
  
 
  /* Enable the Commutation DMA Request */
 
  /* Set the DMA Commutation Callback */
 
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = HAL_TIMEx_DMACommutationCplt;     
 
  /* Set the DMA error callback */
 
  htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = HAL_TIM_DMAError;
 
  
 
  /* Enable the Commutation DMA Request */
 
  __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
 
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configures the TIM in master mode.
 
  * @param  htim : TIM handle.   
 
  * @param  sMasterConfig : pointer to a TIM_MasterConfigTypeDef structure that
 
  *         contains the selected trigger output (TRGO) and the Master/Slave 
 
  *         mode. 
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
 
  assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
 
  
 
  __HAL_LOCK(htim);
 
 
  htim->State = HAL_TIM_STATE_BUSY;
 
 
  /* Reset the MMS Bits */
 
  htim->Instance->CR2 &= ~TIM_CR2_MMS;
 
  /* Select the TRGO source */
 
  htim->Instance->CR2 |=  sMasterConfig->MasterOutputTrigger;
 
 
  /* Reset the MSM Bit */
 
  htim->Instance->SMCR &= ~TIM_SMCR_MSM;
 
  /* Set or Reset the MSM Bit */
 
  htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode;
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief   Configures the Break feature, dead time, Lock level, OSSI/OSSR State
 
  *          and the AOE(automatic output enable).
 
  * @param  htim : TIM handle
 
  * @param  sBreakDeadTimeConfig : pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
 
  *         contains the BDTR Register configuration  information for the TIM peripheral. 
 
  * @retval HAL status
 
  */    
 
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, 
 
                                                TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
 
  assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
 
  assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
 
  assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
 
  assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
 
  assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
 
  assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(htim);
 
  
 
  htim->State = HAL_TIM_STATE_BUSY;
 
 
  /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
 
     the OSSI State, the dead time value and the Automatic Output Enable Bit */
 
  htim->Instance->BDTR = (uint32_t)sBreakDeadTimeConfig->OffStateRunMode  | 
 
                                   sBreakDeadTimeConfig->OffStateIDLEMode |
 
                                   sBreakDeadTimeConfig->LockLevel        |
 
                                   sBreakDeadTimeConfig->DeadTime         |
 
                                   sBreakDeadTimeConfig->BreakState       |
 
                                   sBreakDeadTimeConfig->BreakPolarity    |
 
                                   sBreakDeadTimeConfig->AutomaticOutput;
 
  
 
                                   
 
  htim->State = HAL_TIM_STATE_READY;                                 
 
  
 
  __HAL_UNLOCK(htim);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Configures the TIM14 Remapping input capabilities.
 
  * @param  htim : TIM handle.
 
  * @param  Remap : specifies the TIM remapping source.
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_TIM14_GPIO: TIM14 TI1 is connected to GPIO
 
  *            @arg TIM_TIM14_RTC: TIM14 TI1 is connected to RTC_clock
 
  *            @arg TIM_TIM14_HSE: TIM14 TI1 is connected to HSE/32
 
  *            @arg TIM_TIM14_MCO: TIM14 TI1 is connected to MCO                     
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
 
{
 
  __HAL_LOCK(htim);
 
    
 
  /* Check parameters */
 
  assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance));
 
  assert_param(IS_TIM_REMAP(Remap));
 
  
 
  /* Set the Timer remapping configuration */
 
  htim->Instance->OR = Remap;
 
  
 
  htim->State = HAL_TIM_STATE_READY;
 
  
 
  __HAL_UNLOCK(htim);  
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions 
 
 *  @brief   Extension Callbacks functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                    ##### Extension Callbacks functions #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides Extension TIM callback functions:
 
    (+) Timer Commutation callback
 
    (+) Timer Break callback
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Hall commutation changed callback in non blocking mode 
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIMEx_CommutationCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Hall Break detection callback in non blocking mode 
 
  * @param  htim : TIM handle
 
  * @retval None
 
  */
 
__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_TIMEx_BreakCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  TIM DMA Commutation callback. 
 
  * @param  hdma : pointer to DMA handle.
 
  * @retval None
 
  */
 
void HAL_TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
 
{
 
  TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  
 
  htim->State= HAL_TIM_STATE_READY;
 
    
 
  HAL_TIMEx_CommutationCallback(htim); 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions 
 
 *  @brief   Extension Peripheral State functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                ##### Extension Peripheral State functions #####
 
  ==============================================================================  
 
  [..]
 
    This subsection permit to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the TIM Hall Sensor interface state
 
  * @param  htim : TIM Hall Sensor handle
 
  * @retval HAL state
 
  */
 
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
 
{
 
  return htim->State;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */ 
 
 
/** @addtogroup TIMEx_Private_Functions
 
  * @{
 
  */
 
 
/**
 
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
 
  * @param  TIMx  to select the TIM peripheral
 
  * @param  Channel : specifies the TIM Channel
 
  *          This parameter can be one of the following values:
 
  *            @arg TIM_Channel_1: TIM Channel 1
 
  *            @arg TIM_Channel_2: TIM Channel 2
 
  *            @arg TIM_Channel_3: TIM Channel 3
 
  * @param  ChannelNState : specifies the TIM Channel CCxNE bit new state.
 
  *          This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. 
 
  * @retval None
 
  */
 
static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState)
 
{
 
  uint32_t tmp = 0;
 
 
  tmp = TIM_CCER_CC1NE << Channel;
 
 
  /* Reset the CCxNE Bit */
 
  TIMx->CCER &=  ~tmp;
 
 
  /* Set or reset the CCxNE Bit */ 
 
  TIMx->CCER |=  (uint32_t)(ChannelNState << Channel);
 
}
 
 
/**
 
  * @}
 
  */ 
 
 
#endif /* HAL_TIM_MODULE_ENABLED */
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tsc.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_tsc.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   This file provides firmware functions to manage the following 
 
  *          functionalities of the Touch Sensing Controller (TSC) peripheral:
 
  *           + Initialization and DeInitialization
 
  *           + Channel IOs, Shield IOs and Sampling IOs configuration
 
  *           + Start and Stop an acquisition
 
  *           + Read acquisition result
 
  *           + Interrupts and flags management
 
  *         
 
  @verbatim
 
================================================================================
 
                       ##### TSC specific features #####
 
================================================================================
 
  [..]
 
  (#) Proven and robust surface charge transfer acquisition principle
 
    
 
  (#) Supports up to 3 capacitive sensing channels per group
 
    
 
  (#) Capacitive sensing channels can be acquired in parallel offering a very good
 
      response time
 
      
 
  (#) Spread spectrum feature to improve system robustness in noisy environments
 
   
 
  (#) Full hardware management of the charge transfer acquisition sequence
 
   
 
  (#) Programmable charge transfer frequency
 
   
 
  (#) Programmable sampling capacitor I/O pin
 
   
 
  (#) Programmable channel I/O pin
 
   
 
  (#) Programmable max count value to avoid long acquisition when a channel is faulty
 
   
 
  (#) Dedicated end of acquisition and max count error flags with interrupt capability
 
   
 
  (#) One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
 
      components
 
   
 
  (#) Compatible with proximity, touchkey, linear and rotary touch sensor implementation
 
 
   
 
                          ##### How to use this driver #####
 
================================================================================
 
  [..]
 
    (#) Enable the TSC interface clock using __TSC_CLK_ENABLE() macro.
 
 
    (#) GPIO pins configuration
 
      (++) Enable the clock for the TSC GPIOs using __GPIOx_CLK_ENABLE() macro.
 
      (++) Configure the TSC pins used as sampling IOs in alternate function output Open-Drain mode,
 
           and TSC pins used as channel/shield IOs in alternate function output Push-Pull mode
 
           using HAL_GPIO_Init() function.
 
      (++) Configure the alternate function on all the TSC pins using HAL_xxxx() function.
 
 
    (#) Interrupts configuration
 
      (++) Configure the NVIC (if the interrupt model is used) using HAL_xxx() function.
 
 
    (#) TSC configuration
 
      (++) Configure all TSC parameters and used TSC IOs using HAL_TSC_Init() function.
 
 
  *** Acquisition sequence ***
 
  ===================================
 
  [..]
 
    (+) Discharge all IOs using HAL_TSC_IODischarge() function.
 
    (+) Wait a certain time allowing a good discharge of all capacitors. This delay depends
 
        of the sampling capacitor and electrodes design.
 
    (+) Select the channel IOs to be acquired using HAL_TSC_IOConfig() function.
 
    (+) Launch the acquisition using either HAL_TSC_Start() or HAL_TSC_Start_IT() function.
 
        If the synchronized mode is selected, the acquisition will start as soon as the signal
 
        is received on the synchro pin.
 
    (+) Wait the end of acquisition using either HAL_TSC_PollForAcquisition() or
 
        HAL_TSC_GetState() function or using WFI instruction for example.
 
    (+) Check the group acquisition status using HAL_TSC_GroupGetStatus() function.
 
    (+) Read the acquisition value using HAL_TSC_GroupGetValue() function.
 
      
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup TSC TSC HAL module driver
 
  * @brief TSC HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_TSC_MODULE_ENABLED
 
 
#if defined(STM32F051x8) || defined(STM32F071xB) || defined(STM32F091xC) || \
 
    defined(STM32F042x6) || defined(STM32F072xB) ||                         \
 
    defined(STM32F048xx) || defined(STM32F058xx) || defined(STM32F078xx) || defined(STM32F098xx)
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
static uint32_t TSC_extract_groups(uint32_t iomask);
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup TSC_Exported_Functions TSC Exported Functions
 
  * @{
 
  */ 
 
 
/** @defgroup TSC_Exported_Functions_Group1 Initialization/de-initialization functions 
 
 *  @brief    Initialization and Configuration functions 
 
 *
 
@verbatim    
 
 ===============================================================================
 
              ##### Initialization and de-initialization functions #####
 
 ===============================================================================
 
    [..]  This section provides functions allowing to:
 
      (+) Initialize and configure the TSC.
 
      (+) De-initialize the TSC.
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the TSC peripheral according to the specified parameters 
 
  *         in the TSC_InitTypeDef structure.           
 
  * @param  htsc: TSC handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_Init(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check TSC handle allocation */
 
  if (htsc == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
  assert_param(IS_TSC_CTPH(htsc->Init.CTPulseHighLength));
 
  assert_param(IS_TSC_CTPL(htsc->Init.CTPulseLowLength));
 
  assert_param(IS_TSC_SS(htsc->Init.SpreadSpectrum));
 
  assert_param(IS_TSC_SSD(htsc->Init.SpreadSpectrumDeviation));
 
  assert_param(IS_TSC_SS_PRESC(htsc->Init.SpreadSpectrumPrescaler));
 
  assert_param(IS_TSC_PG_PRESC(htsc->Init.PulseGeneratorPrescaler));
 
  assert_param(IS_TSC_MCV(htsc->Init.MaxCountValue));
 
  assert_param(IS_TSC_IODEF(htsc->Init.IODefaultMode));
 
  assert_param(IS_TSC_SYNC_POL(htsc->Init.SynchroPinPolarity));
 
  assert_param(IS_TSC_ACQ_MODE(htsc->Init.AcquisitionMode));
 
  assert_param(IS_TSC_MCE_IT(htsc->Init.MaxCountInterrupt));
 
    
 
  /* Initialize the TSC state */
 
  htsc->State = HAL_TSC_STATE_BUSY;
 
 
  /* Init the low level hardware : GPIO, CLOCK, CORTEX */
 
  HAL_TSC_MspInit(htsc);
 
 
  /*--------------------------------------------------------------------------*/  
 
  /* Set TSC parameters */
 
 
  /* Enable TSC */
 
  htsc->Instance->CR = TSC_CR_TSCE;
 
  
 
  /* Set all functions */
 
  htsc->Instance->CR |= (htsc->Init.CTPulseHighLength |
 
                         htsc->Init.CTPulseLowLength |
 
                         (uint32_t)(htsc->Init.SpreadSpectrumDeviation << 17) |
 
                         htsc->Init.SpreadSpectrumPrescaler |
 
                         htsc->Init.PulseGeneratorPrescaler |
 
                         htsc->Init.MaxCountValue |
 
                         htsc->Init.IODefaultMode |
 
                         htsc->Init.SynchroPinPolarity |
 
                         htsc->Init.AcquisitionMode);
 
 
  /* Spread spectrum */
 
  if (htsc->Init.SpreadSpectrum == ENABLE)
 
  {
 
    htsc->Instance->CR |= TSC_CR_SSE;
 
  }
 
  
 
  /* Disable Schmitt trigger hysteresis on all used TSC IOs */
 
  htsc->Instance->IOHCR = (uint32_t)(~(htsc->Init.ChannelIOs | htsc->Init.ShieldIOs | htsc->Init.SamplingIOs));
 
 
  /* Set channel and shield IOs */
 
  htsc->Instance->IOCCR = (htsc->Init.ChannelIOs | htsc->Init.ShieldIOs);
 
  
 
  /* Set sampling IOs */
 
  htsc->Instance->IOSCR = htsc->Init.SamplingIOs;
 
  
 
  /* Set the groups to be acquired */
 
  htsc->Instance->IOGCSR = TSC_extract_groups(htsc->Init.ChannelIOs);
 
  
 
  /* Clear interrupts */
 
  htsc->Instance->IER &= (uint32_t)(~(TSC_IT_EOA | TSC_IT_MCE));
 
  
 
  /* Clear flags */
 
  htsc->Instance->ICR = (TSC_FLAG_EOA | TSC_FLAG_MCE);
 
 
  /*--------------------------------------------------------------------------*/
 
  
 
  /* Initialize the TSC state */
 
  htsc->State = HAL_TSC_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Deinitializes the TSC peripheral registers to their default reset values.
 
  * @param  htsc: TSC handle  
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_DeInit(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check TSC handle allocation */
 
  if (htsc == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
   
 
  /* Change TSC state */
 
  htsc->State = HAL_TSC_STATE_BUSY;
 
 
 
  /* DeInit the low level hardware */
 
  HAL_TSC_MspDeInit(htsc);
 
  
 
  /* Change TSC state */
 
  htsc->State = HAL_TSC_STATE_RESET;
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the TSC MSP.
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.  
 
  * @retval None
 
  */
 
__weak void HAL_TSC_MspInit(TSC_HandleTypeDef* htsc)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_TSC_MspInit could be implemented in the user file.
 
   */ 
 
}
 
 
/**
 
  * @brief  DeInitializes the TSC MSP.
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.  
 
  * @retval None
 
  */
 
__weak void HAL_TSC_MspDeInit(TSC_HandleTypeDef* htsc)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_TSC_MspDeInit could be implemented in the user file.
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_Exported_Functions_Group2 IO operation functions
 
 *  @brief    IO operation functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
             ##### IO operation functions #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Start acquisition in polling mode.
 
      (+) Start acquisition in interrupt mode.
 
      (+) Stop conversion in polling mode.
 
      (+) Stop conversion in interrupt mode.
 
      (+) Get group acquisition status.
 
      (+) Get group acquisition value.
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Starts the acquisition.
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_Start(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
  
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
  
 
  /* Change TSC state */
 
  htsc->State = HAL_TSC_STATE_BUSY;
 
 
  /* Clear interrupts */
 
  __HAL_TSC_DISABLE_IT(htsc, (TSC_IT_EOA | TSC_IT_MCE));
 
 
  /* Clear flags */
 
  __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE));
 
 
  /* Stop discharging the IOs */
 
  __HAL_TSC_SET_IODEF_INFLOAT(htsc);
 
  
 
  /* Launch the acquisition */
 
  __HAL_TSC_START_ACQ(htsc);
 
  
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Enables the interrupt and starts the acquisition
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval HAL status.
 
  */
 
HAL_StatusTypeDef HAL_TSC_Start_IT(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
  assert_param(IS_TSC_MCE_IT(htsc->Init.MaxCountInterrupt));
 
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
  
 
  /* Change TSC state */
 
  htsc->State = HAL_TSC_STATE_BUSY;
 
  
 
  /* Enable end of acquisition interrupt */
 
  __HAL_TSC_ENABLE_IT(htsc, TSC_IT_EOA);
 
 
  /* Enable max count error interrupt (optional) */
 
  if (htsc->Init.MaxCountInterrupt == ENABLE)
 
  {
 
    __HAL_TSC_ENABLE_IT(htsc, TSC_IT_MCE);
 
  }
 
  else
 
  {
 
    __HAL_TSC_DISABLE_IT(htsc, TSC_IT_MCE);
 
  }
 
 
  /* Clear flags */
 
  __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE));
 
  
 
  /* Stop discharging the IOs */
 
  __HAL_TSC_SET_IODEF_INFLOAT(htsc);
 
  
 
  /* Launch the acquisition */
 
  __HAL_TSC_START_ACQ(htsc);
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the acquisition previously launched in polling mode
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_Stop(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
  
 
  /* Stop the acquisition */
 
  __HAL_TSC_STOP_ACQ(htsc);
 
 
  /* Clear flags */
 
  __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE));
 
  
 
  /* Change TSC state */
 
  htsc->State = HAL_TSC_STATE_READY;
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Stops the acquisition previously launched in interrupt mode
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_Stop_IT(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
  
 
  /* Stop the acquisition */
 
  __HAL_TSC_STOP_ACQ(htsc);
 
  
 
  /* Disable interrupts */
 
  __HAL_TSC_DISABLE_IT(htsc, (TSC_IT_EOA | TSC_IT_MCE));
 
 
  /* Clear flags */
 
  __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE));
 
  
 
  /* Change TSC state */
 
  htsc->State = HAL_TSC_STATE_READY;
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Gets the acquisition status for a group
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @param  gx_index: Index of the group
 
  * @retval Group status
 
  */
 
TSC_GroupStatusTypeDef HAL_TSC_GroupGetStatus(TSC_HandleTypeDef* htsc, uint32_t gx_index)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
  assert_param(IS_GROUP_INDEX(gx_index));
 
 
  /* Return the group status */ 
 
  return(__HAL_TSC_GET_GROUP_STATUS(htsc, gx_index));
 
}
 
 
/**
 
  * @brief  Gets the acquisition measure for a group
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @param  gx_index: Index of the group
 
  * @retval Acquisition measure
 
  */
 
uint32_t HAL_TSC_GroupGetValue(TSC_HandleTypeDef* htsc, uint32_t gx_index)
 
{       
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
  assert_param(IS_GROUP_INDEX(gx_index));
 
 
  /* Return the group acquisition counter */ 
 
  return htsc->Instance->IOGXCR[gx_index];
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
/** @defgroup TSC_Exported_Functions_Group3 Peripheral Control functions
 
 *  @brief    Peripheral Control functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
             ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]  This section provides functions allowing to:
 
      (+) Configure TSC IOs
 
      (+) Discharge TSC IOs
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Configures TSC IOs
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @param  config: pointer to the configuration structure.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_IOConfig(TSC_HandleTypeDef* htsc, TSC_IOConfigTypeDef* config)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
 
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
 
  /* Stop acquisition */
 
  __HAL_TSC_STOP_ACQ(htsc);
 
 
  /* Disable Schmitt trigger hysteresis on all used TSC IOs */
 
  htsc->Instance->IOHCR = (uint32_t)(~(config->ChannelIOs | config->ShieldIOs | config->SamplingIOs));
 
 
  /* Set channel and shield IOs */
 
  htsc->Instance->IOCCR = (config->ChannelIOs | config->ShieldIOs);
 
  
 
  /* Set sampling IOs */
 
  htsc->Instance->IOSCR = config->SamplingIOs;
 
  
 
  /* Set groups to be acquired */
 
  htsc->Instance->IOGCSR = TSC_extract_groups(config->ChannelIOs);
 
    
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Discharge TSC IOs
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @param  choice: enable or disable
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_TSC_IODischarge(TSC_HandleTypeDef* htsc, uint32_t choice)
 
{       
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
  
 
  if (choice == ENABLE)
 
  {
 
    __HAL_TSC_SET_IODEF_OUTPPLOW(htsc);
 
  }
 
  else
 
  {
 
    __HAL_TSC_SET_IODEF_INFLOAT(htsc);
 
  }
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  /* Return the group acquisition counter */ 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_Exported_Functions_Group4 State functions
 
 *  @brief   State functions 
 
 *
 
@verbatim   
 
 ===============================================================================
 
            ##### State functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides functions allowing to
 
      (+) Get TSC state.
 
      (+) Poll for acquisition completed.
 
      (+) Handles TSC interrupt request.
 
         
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Return the TSC state
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval HAL state
 
  */
 
HAL_TSC_StateTypeDef HAL_TSC_GetState(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
  
 
  if (htsc->State == HAL_TSC_STATE_BUSY)
 
  {
 
    /* Check end of acquisition flag */
 
    if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_EOA) != RESET)
 
    {
 
      /* Check max count error flag */
 
      if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_MCE) != RESET)
 
      {
 
        /* Change TSC state */
 
        htsc->State = HAL_TSC_STATE_ERROR;
 
      }
 
      else
 
      {
 
        /* Change TSC state */
 
        htsc->State = HAL_TSC_STATE_READY;
 
      }
 
    }
 
  }
 
  
 
  /* Return TSC state */
 
  return htsc->State;
 
}
 
 
/**
 
  * @brief  Start acquisition and wait until completion
 
  * @note   There is no need of a timeout parameter as the max count error is already
 
  *         managed by the TSC peripheral.
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval HAL state
 
  */
 
HAL_StatusTypeDef HAL_TSC_PollForAcquisition(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
 
  /* Process locked */
 
  __HAL_LOCK(htsc);
 
  
 
  /* Check end of acquisition */
 
  while (HAL_TSC_GetState(htsc) == HAL_TSC_STATE_BUSY)
 
  {
 
    /* The timeout (max count error) is managed by the TSC peripheral itself. */
 
  }
 
 
  /* Process unlocked */
 
  __HAL_UNLOCK(htsc);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Handles TSC interrupt request  
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval None
 
  */
 
void HAL_TSC_IRQHandler(TSC_HandleTypeDef* htsc)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance));
 
 
  /* Check if the end of acquisition occured */
 
  if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_EOA) != RESET)
 
  {
 
    /* Clear EOA flag */
 
    __HAL_TSC_CLEAR_FLAG(htsc, TSC_FLAG_EOA);
 
  }
 
  
 
  /* Check if max count error occured */
 
  if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_MCE) != RESET)
 
  {
 
    /* Clear MCE flag */
 
    __HAL_TSC_CLEAR_FLAG(htsc, TSC_FLAG_MCE);
 
    /* Change TSC state */
 
    htsc->State = HAL_TSC_STATE_ERROR;
 
    /* Conversion completed callback */
 
    HAL_TSC_ErrorCallback(htsc);
 
  }
 
  else
 
  {
 
    /* Change TSC state */
 
    htsc->State = HAL_TSC_STATE_READY;
 
    /* Conversion completed callback */
 
    HAL_TSC_ConvCpltCallback(htsc);
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_Exported_Functions_Group5 Callback functions
 
 *  @brief   Callback functions 
 
 *  @{
 
 */
 
 
 
/**
 
  * @brief  Acquisition completed callback in non blocking mode 
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval None
 
  */
 
__weak void HAL_TSC_ConvCpltCallback(TSC_HandleTypeDef* htsc)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_TSC_ConvCpltCallback could be implemented in the user file.
 
   */
 
}
 
 
/**
 
  * @brief  Error callback in non blocking mode
 
  * @param  htsc: pointer to a TSC_HandleTypeDef structure that contains
 
  *         the configuration information for the specified TSC.
 
  * @retval None
 
  */
 
__weak void HAL_TSC_ErrorCallback(TSC_HandleTypeDef* htsc)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_TSC_ErrorCallback could be implemented in the user file.
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup TSC_Private_Functions TSC Private Functions
 
 *  @{
 
 */
 
      
 
/**
 
  * @brief  Utility function used to set the acquired groups mask
 
  * @param  iomask: Channels IOs mask
 
  * @retval Acquired groups mask
 
  */
 
static uint32_t TSC_extract_groups(uint32_t iomask)
 
{
 
  uint32_t groups = 0;
 
  uint32_t idx;
 
  
 
  for (idx = 0; idx < TSC_NB_OF_GROUPS; idx++)
 
  {
 
    if ((iomask & ((uint32_t)0x0F << (idx * 4))) != RESET)
 
    {
 
      groups |= ((uint32_t)1 << idx);
 
    }
 
  }
 
  
 
  return groups;
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* defined(STM32F051x8) || defined(STM32F071xB) || defined(STM32F091xC) || */
 
       /* defined(STM32F042x6) || defined(STM32F072xB) ||                         */
 
       /* defined(STM32F048xx) || defined(STM32F058xx) || defined(STM32F078xx) || defined(STM32F098xx) */
 
 
#endif /* HAL_TSC_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_uart.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   UART HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral Control functions 
 
  *           + Peripheral State and Errors functions  
 
 @verbatim
 
 ===============================================================================
 
            ##### How to use this driver #####
 
================================================================================
 
   [..]
 
    The UART HAL driver can be used as follows:
 
    
 
    (#) Declare a UART_HandleTypeDef handle structure.
 
 
    (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit ()API:
 
        (##) Enable the USARTx interface clock.
 
        (##) UART pins configuration:
 
            (+++) Enable the clock for the UART GPIOs.
 
            (+++) Configure these UART pins as alternate function pull-up.
 
        (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
 
             and HAL_UART_Receive_IT() APIs):
 
            (+++) Configure the USARTx interrupt priority.
 
            (+++) Enable the NVIC USART IRQ handle.
 
        (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
 
             and HAL_UART_Receive_DMA() APIs):
 
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
 
            (+++) Enable the DMAx interface clock.
 
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.                
 
            (+++) Configure the DMA Tx/Rx channel.
 
            (+++) Associate the initilalized DMA handle to the UART DMA Tx/Rx handle.
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
 
 
    (#) Program the Baud Rate, Word Length , Stop Bit, Parity, Hardware 
 
        flow control and Mode(Receiver/Transmitter) in the huart Init structure.
 
        
 
    (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
 
        in the huart AdvancedInit structure.
 
 
    (#) For the UART asynchronous mode, initialize the UART registers by calling
 
        the HAL_UART_Init() API.
 
    
 
    (#) For the UART Half duplex mode, initialize the UART registers by calling 
 
        the HAL_HalfDuplex_Init() API.         
 
     
 
    (#) For the UART Multiprocessor mode, initialize the UART registers 
 
        by calling the HAL_MultiProcessor_Init() API. 
 
 
    (#) For the UART RS485 Driver Enabled mode, initialize the UART registers 
 
        by calling the HAL_RS485Ex_Init() API.                                  
 
 
  [..]
 
    (@) The specific UART interrupts (Transmission complete interrupt, 
 
        RXNE interrupt and Error Interrupts) will be managed using the macros
 
        __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit and receive process.
 
 
  [..]                                          
 
    (@) These APIs(HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_MultiProcessor_Init(),
 
        also configure also the low level Hardware GPIO, CLOCK, CORTEX...etc) by 
 
        calling the customed HAL_UART_MspInit() API.
 
 
        Three operation modes are available within this driver :     
 
  
 
     *** Polling mode IO operation ***
 
     =================================
 
     [..]    
 
       (+) Send an amount of data in blocking mode using HAL_UART_Transmit() 
 
       (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
 
       
 
     *** Interrupt mode IO operation ***    
 
     ===================================
 
     [..]    
 
       (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() 
 
       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback 
 
       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() 
 
       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback 
 
       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_ErrorCallback
 
 
     *** DMA mode IO operation ***    
 
     ==============================
 
     [..] 
 
       (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() 
 
       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback 
 
       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() 
 
       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback 
 
       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_UART_ErrorCallback
 
       (+) Pause the DMA Transfer using HAL_UART_DMAPause()      
 
       (+) Resume the DMA Transfer using HAL_UART_DMAResume()  
 
       (+) Stop the DMA Transfer using HAL_UART_DMAStop()      
 
    
 
     *** UART HAL driver macros list ***
 
     ============================================= 
 
     [..]
 
       Below the list of most used macros in UART HAL driver.
 
       
 
      (+) __HAL_UART_ENABLE: Enable the UART peripheral 
 
      (+) __HAL_UART_DISABLE: Disable the UART peripheral     
 
      (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
 
      (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
 
      (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
 
      (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
 
      
 
     [..] 
 
       (@) You can refer to the UART HAL driver header file for more useful macros 
 
      
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup UART UART HAL module driver
 
  * @brief HAL UART module driver
 
  * @{
 
  */
 
#ifdef HAL_UART_MODULE_ENABLED
 
    
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup UART_Private_Constants   UART Private Constants
 
  * @{
 
  */
 
#define HAL_UART_TXDMA_TIMEOUTVALUE                      22000
 
#define UART_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \
 
                                     USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8))
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @addtogroup UART_Private_Functions   UART Private Functions
 
  * @{
 
  */
 
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
 
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
 
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
 
static void UART_DMAError(DMA_HandleTypeDef *hdma); 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup UART_Exported_Functions UART Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  *  @brief    Initialization and Configuration functions 
 
  *
 
@verbatim    
 
===============================================================================
 
            ##### Initialization and Configuration functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy 
 
    in asynchronous mode.
 
      (+) For the asynchronous mode only these parameters can be configured: 
 
        (++) Baud Rate
 
        (++) Word Length 
 
        (++) Stop Bit
 
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
 
             in the data register is transmitted but is changed by the parity bit.
 
             Depending on the frame length defined by the M bit (8-bits or 9-bits),
 
             the possible UART frame formats are as listed in the following table:
 
   |-----------|-----------|---------------------------------------|  
 
   | M1M0 bits |  PCE bit  |            UART frame                 |
 
   |-----------------------|---------------------------------------|           
 
   |     00    |     0     |    | SB | 8-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     00    |     1     |    | SB | 7-bit data | PB | STB |     |
 
   |-----------|-----------|---------------------------------------|  
 
   |     01    |     0     |    | SB | 9-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     01    |     1     |    | SB | 8-bit data | PB | STB |     |
 
   +---------------------------------------------------------------+ 
 
   |     10    |     0     |    | SB | 7-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     10    |     1     |    | SB | 6-bit data | PB | STB |     |   
 
   +---------------------------------------------------------------+              
 
        (++) Hardware flow control
 
        (++) Receiver/transmitter modes
 
        (++) Over Sampling Method
 
        (++) One-Bit Sampling Method
 
      (+) For the asynchronous mode, the following advanced features can be configured as well:
 
        (++) TX and/or RX pin level inversion
 
        (++) data logical level inversion
 
        (++) RX and TX pins swap
 
        (++) RX overrun detection disabling
 
        (++) DMA disabling on RX error
 
        (++) MSB first on communication line
 
        (++) auto Baud rate detection
 
    [..]
 
    The HAL_UART_Init(), HAL_HalfDuplex_Init() and HAL_MultiProcessor_Init() 
 
    API follow respectively the UART asynchronous, UART Half duplex and multiprocessor
 
    configuration procedures (details for the procedures are available in reference manual).
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Initializes the UART mode according to the specified
 
  *         parameters in the UART_InitTypeDef and creates the associated handle .
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
 
{
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
 
  }
 
  else
 
  {
 
    /* Check the parameters */
 
    assert_param(IS_UART_INSTANCE(huart->Instance));
 
  }
 
  
 
  if(huart->State == HAL_UART_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_UART_MspInit(huart);
 
  }
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  /* Set the UART Communication parameters */
 
  if (UART_SetConfig(huart) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  }  
 
  
 
  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
 
  {
 
    UART_AdvFeatureConfig(huart);
 
  }
 
  
 
  /* In asynchronous mode, the following bits must be kept cleared: 
 
  - LINEN and CLKEN bits in the USART_CR2 register,
 
  - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
 
  huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); 
 
  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); 
 
    
 
  /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart);
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
 
/**
 
  * @brief Initializes the half-duplex mode according to the specified
 
  *         parameters in the UART_InitTypeDef and creates the associated handle .
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
 
{
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check UART instance */
 
  assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
 
  
 
  if(huart->State == HAL_UART_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_UART_MspInit(huart);
 
  }
 
    
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  /* Set the UART Communication parameters */
 
  if (UART_SetConfig(huart) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  } 
 
  
 
  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
 
  {
 
    UART_AdvFeatureConfig(huart);
 
  }
 
  
 
  /* In half-duplex mode, the following bits must be kept cleared: 
 
  - LINEN and CLKEN bits in the USART_CR2 register,
 
  - SCEN and IREN bits in the USART_CR3 register.*/
 
  huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN);
 
  huart->Instance->CR3 &= ~(USART_CR3_IREN | USART_CR3_SCEN);
 
  
 
  /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
 
  huart->Instance->CR3 |= USART_CR3_HDSEL;
 
  
 
  /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart);
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
 
 
/**
 
  * @brief Initializes the multiprocessor mode according to the specified
 
  *         parameters in the UART_InitTypeDef and creates the associated handle.
 
  * @param huart: UART handle   
 
  * @param Address: UART node address (4-, 6-, 7- or 8-bit long)
 
  * @param WakeUpMethod: specifies the UART wakeup method.
 
  *        This parameter can be one of the following values:
 
  *          @arg UART_WAKEUPMETHOD_IDLELINE: WakeUp by an idle line detection
 
  *          @arg UART_WAKEUPMETHOD_ADDRESSMARK: WakeUp by an address mark
 
  * @note  If the user resorts to idle line detection wake up, the Address parameter
 
  *        is useless and ignored by the initialization function.               
 
  * @note  If the user resorts to address mark wake up, the address length detection 
 
  *        is configured by default to 4 bits only. For the UART to be able to 
 
  *        manage 6-, 7- or 8-bit long addresses detection, the API
 
  *        HAL_MultiProcessorEx_AddressLength_Set() must be called after 
 
  *        HAL_MultiProcessor_Init().                      
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
 
{
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the wake up method parameter */
 
  assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
 
  
 
  if(huart->State == HAL_UART_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_UART_MspInit(huart);
 
  }
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  /* Set the UART Communication parameters */
 
  if (UART_SetConfig(huart) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  } 
 
  
 
  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
 
  {
 
    UART_AdvFeatureConfig(huart);
 
  }
 
  
 
  /* In multiprocessor mode, the following bits must be kept cleared: 
 
  - LINEN and CLKEN bits in the USART_CR2 register,
 
  - SCEN, HDSEL and IREN  bits in the USART_CR3 register. */
 
  huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN);
 
  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN);
 
  
 
  if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
 
  {
 
    /* If address mark wake up method is chosen, set the USART address node */
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
 
  }
 
  
 
  /* Set the wake up method by setting the WAKE bit in the CR1 register */
 
  MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart); 
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
 
/**
 
  * @brief DeInitializes the UART peripheral 
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
 
{
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_UART_INSTANCE(huart->Instance));
 
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  huart->Instance->CR1 = 0x0;
 
  huart->Instance->CR2 = 0x0;
 
  huart->Instance->CR3 = 0x0;
 
  
 
  /* DeInit the low level hardware */
 
  HAL_UART_MspDeInit(huart);
 
 
  huart->ErrorCode = HAL_UART_ERROR_NONE;
 
  huart->State = HAL_UART_STATE_RESET;
 
  
 
  /* Process Unlock */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief UART MSP Init
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
 __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_UART_MspInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief UART MSP DeInit
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
 __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_UART_MspDeInit could be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UART_Exported_Functions_Group2 IO operation functions 
 
  *  @brief UART Transmit and Receive functions 
 
  *
 
@verbatim   
 
  ==============================================================================
 
                      ##### IO operation functions #####
 
  ==============================================================================  
 
  [..]    
 
    This subsection provides a set of functions allowing to manage the UART asynchronous
 
    and Half duplex data transfers.
 
 
    (#) There are two mode of transfer:
 
       (++) Blocking mode: The communication is performed in polling mode. 
 
            The HAL status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) No-Blocking mode: The communication is performed using Interrupts 
 
           or DMA, These APIs return the HAL status.
 
           The end of the data processing will be indicated through the 
 
           dedicated UART IRQ when using Interrupt mode or the DMA IRQ when 
 
           using DMA mode.
 
           The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks 
 
           will be executed respectivelly at the end of the transmit or Receive process
 
           The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
 
 
    (#) Blocking mode APIs are :
 
        (++) HAL_UART_Transmit()
 
        (++) HAL_UART_Receive() 
 
        
 
    (#) Non Blocking mode APIs with Interrupt are :
 
        (++) HAL_UART_Transmit_IT()
 
        (++) HAL_UART_Receive_IT()
 
        (++) HAL_UART_IRQHandler()
 
        (++) UART_Transmit_IT()
 
        (++) UART_Receive_IT()
 
 
    (#) Non Blocking mode APIs with DMA are :
 
        (++) HAL_UART_Transmit_DMA()
 
        (++) HAL_UART_Receive_DMA()
 
        (++) HAL_UART_DMAPause()
 
        (++) HAL_UART_DMAResume()
 
        (++) HAL_UART_DMAStop()
 
 
    (#) A set of Transfer Complete Callbacks are provided in non blocking mode:
 
        (++) HAL_UART_TxHalfCpltCallback()
 
        (++) HAL_UART_TxCpltCallback()
 
        (++) HAL_UART_RxHalfCpltCallback()
 
        (++) HAL_UART_RxCpltCallback()
 
        (++) HAL_UART_ErrorCallback()
 
 
  [..] 
 
    (@) In the Half duplex communication, it is forbidden to run the transmit 
 
        and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Send an amount of data in blocking mode 
 
  * @param huart: uart handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{
 
   uint16_t* tmp; 
 
 
  if((huart->State == HAL_UART_STATE_READY) || (huart->State == HAL_UART_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(huart);
 
    
 
    huart->ErrorCode = HAL_UART_ERROR_NONE;
 
    /* Check if a non-blocking receive process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_RX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX;
 
    }
 
    
 
    huart->TxXferSize = Size;
 
    huart->TxXferCount = Size;
 
    while(huart->TxXferCount > 0)
 
    {
 
      huart->TxXferCount--;
 
      if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK)  
 
      { 
 
        return HAL_TIMEOUT;
 
      }
 
      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pData;
 
        huart->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
 
        pData += 2;
 
      }
 
      else
 
      {
 
         huart->Instance->TDR = (*pData++ & (uint8_t)0xFF);  
 
      }      
 
    }
 
    if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, Timeout) != HAL_OK)  
 
    { 
 
      return HAL_TIMEOUT;
 
    }
 
    /* Check if a non-blocking receive Process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_TX_RX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_READY;
 
    }
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(huart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in blocking mode 
 
  * @param huart: uart handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
 
{ 
 
  uint16_t* tmp;
 
  uint16_t uhMask;
 
 
  if((huart->State == HAL_UART_STATE_READY) || (huart->State == HAL_UART_STATE_BUSY_TX))
 
  { 
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(huart);
 
    
 
    huart->ErrorCode = HAL_UART_ERROR_NONE;
 
    /* Check if a non-blocking transmit process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_TX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_RX;
 
    }
 
    
 
    huart->RxXferSize = Size; 
 
    huart->RxXferCount = Size;
 
    
 
    /* Computation of UART mask to apply to RDR register */
 
    __HAL_UART_MASK_COMPUTATION(huart);
 
    uhMask = huart->Mask;
 
    
 
    /* as long as data have to be received */
 
    while(huart->RxXferCount > 0)
 
    {
 
      huart->RxXferCount--;
 
      if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK)  
 
      { 
 
        return HAL_TIMEOUT;
 
      }  
 
      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pData ;
 
        *tmp = (uint16_t)(huart->Instance->RDR & uhMask);
 
        pData +=2;
 
      }
 
      else
 
      {
 
        *pData++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); 
 
      } 
 
    }
 
    
 
    /* Check if a non-blocking transmit Process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_TX_RX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_READY;
 
    } 
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(huart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in interrupt mode 
 
  * @param huart: uart handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
 
{  
 
  if((huart->State == HAL_UART_STATE_READY) || (huart->State == HAL_UART_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(huart);
 
    
 
    huart->pTxBuffPtr = pData;
 
    huart->TxXferSize = Size;
 
    huart->TxXferCount = Size;
 
    
 
    huart->ErrorCode = HAL_UART_ERROR_NONE;
 
    /* Check if a receive process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_RX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX;
 
    }
 
    
 
    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(huart);    
 
    
 
    /* Enable the UART Transmit Data Register Empty Interrupt */
 
    __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in interrupt mode 
 
  * @param huart: uart handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
 
{  
 
  if((huart->State == HAL_UART_STATE_READY) || (huart->State == HAL_UART_STATE_BUSY_TX))
 
  {
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(huart);
 
  
 
    huart->pRxBuffPtr = pData;
 
    huart->RxXferSize = Size;
 
    huart->RxXferCount = Size;
 
    
 
    /* Computation of UART mask to apply to RDR register */
 
    __HAL_UART_MASK_COMPUTATION(huart);
 
    
 
    huart->ErrorCode = HAL_UART_ERROR_NONE;
 
    /* Check if a transmit process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_TX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_RX;
 
    }
 
    
 
    /* Enable the UART Parity Error Interrupt */
 
    __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
 
    
 
    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(huart);
 
    
 
    /* Enable the UART Data Register not empty Interrupt */
 
    __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in DMA mode 
 
  * @param huart: uart handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
 
{
 
  uint32_t *tmp;
 
  
 
  if((huart->State == HAL_UART_STATE_READY) || (huart->State == HAL_UART_STATE_BUSY_RX))
 
  {
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(huart);
 
    
 
    huart->pTxBuffPtr = pData;
 
    huart->TxXferSize = Size;
 
    huart->TxXferCount = Size; 
 
    
 
    huart->ErrorCode = HAL_UART_ERROR_NONE;
 
    /* Check if a receive process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_RX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX;
 
    }
 
    
 
    /* Set the UART DMA transfer complete callback */
 
    huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
 
    
 
    /* Set the UART DMA Half transfer complete callback */
 
    huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;    
 
    
 
    /* Set the DMA error callback */
 
    huart->hdmatx->XferErrorCallback = UART_DMAError;
 
 
    /* Enable the UART transmit DMA channel */
 
    tmp = (uint32_t*)&pData;
 
    HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->TDR, Size);
 
    
 
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
 
       in the UART CR3 register */
 
    huart->Instance->CR3 |= USART_CR3_DMAT;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(huart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in DMA mode 
 
  * @param huart: uart handle
 
  * @param pData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @note   When the UART parity is enabled (PCE = 1), the received data contain 
 
  *         the parity bit (MSB position)     
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
 
{
 
  uint32_t *tmp;
 
  
 
  if((huart->State == HAL_UART_STATE_READY) || (huart->State == HAL_UART_STATE_BUSY_TX))
 
  {
 
    if((pData == NULL ) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(huart);
 
    
 
    huart->pRxBuffPtr = pData;
 
    huart->RxXferSize = Size;
 
    
 
    huart->ErrorCode = HAL_UART_ERROR_NONE;
 
    /* Check if a transmit process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_TX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_TX_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_RX;
 
    }
 
    
 
    /* Set the UART DMA transfer complete callback */
 
    huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
 
    
 
    /* Set the UART DMA Half transfer complete callback */
 
    huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
 
    
 
    /* Set the DMA error callback */
 
    huart->hdmarx->XferErrorCallback = UART_DMAError;
 
 
    /* Enable the DMA channel */
 
    tmp = (uint32_t*)&pData;
 
    HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, *(uint32_t*)tmp, Size);
 
 
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
 
       in the UART CR3 register */
 
     huart->Instance->CR3 |= USART_CR3_DMAR;
 
    
 
     /* Process Unlocked */
 
     __HAL_UNLOCK(huart);
 
     
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Pauses the DMA Transfer.
 
  * @param huart: UART handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  if(huart->State == HAL_UART_STATE_BUSY_TX)
 
  {
 
    /* Disable the UART DMA Tx request */
 
    huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
 
  }
 
  else if(huart->State == HAL_UART_STATE_BUSY_RX)
 
  {
 
    /* Disable the UART DMA Rx request */
 
    huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
 
  }
 
  else if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
 
  {
 
    /* Disable the UART DMA Tx request */
 
    huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
 
    /* Disable the UART DMA Rx request */
 
    huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
 
  }
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief Resumes the DMA Transfer.
 
  * @param huart: UART handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  if(huart->State == HAL_UART_STATE_BUSY_TX)
 
  {
 
    /* Enable the UART DMA Tx request */
 
    huart->Instance->CR3 |= USART_CR3_DMAT;
 
  }
 
  else if(huart->State == HAL_UART_STATE_BUSY_RX)
 
  {
 
    /* Enable the UART DMA Rx request */
 
    huart->Instance->CR3 |= USART_CR3_DMAR;
 
  }
 
  else if(huart->State == HAL_UART_STATE_BUSY_TX_RX)
 
  {
 
    /* Enable the UART DMA Rx request  before the DMA Tx request */
 
    huart->Instance->CR3 |= USART_CR3_DMAR;
 
    /* Enable the UART DMA Tx request */
 
    huart->Instance->CR3 |= USART_CR3_DMAT;
 
  }
 
 
  /* If the UART peripheral is still not enabled, enable it */ 
 
  if ((huart->Instance->CR1 & USART_CR1_UE) == 0)
 
  {
 
    /* Enable UART peripheral */    
 
    __HAL_UART_ENABLE(huart);
 
  }
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
 
/**
 
  * @brief Stops the DMA Transfer.
 
  * @param huart: UART handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  /* Disable the UART Tx/Rx DMA requests */
 
  huart->Instance->CR3 &= ~USART_CR3_DMAT;
 
  huart->Instance->CR3 &= ~USART_CR3_DMAR;
 
  
 
  /* Abort the UART DMA tx channel */
 
  if(huart->hdmatx != NULL)
 
  {
 
    HAL_DMA_Abort(huart->hdmatx);
 
  }
 
  /* Abort the UART DMA rx channel */
 
  if(huart->hdmarx != NULL)
 
  {
 
    HAL_DMA_Abort(huart->hdmarx);
 
  }
 
  
 
  /* Disable UART peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  huart->State = HAL_UART_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK;
 
}
 
    
 
/**
 
  * @brief Tx Transfer completed callbacks
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
 __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_UART_TxCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Tx Half Transfer completed callbacks.
 
  * @param  huart: UART handle
 
  * @retval None
 
  */
 
 __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE: This function should not be modified, when the callback is needed,
 
           the HAL_UART_TxHalfCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief Rx Transfer completed callbacks
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_UART_RxCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  Rx Half Transfer completed callbacks.
 
  * @param  huart: UART handle
 
  * @retval None
 
  */
 
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE: This function should not be modified, when the callback is needed,
 
           the HAL_UART_RxHalfCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief UART error callbacks
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
 __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_UART_ErrorCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions 
 
  *  @brief   UART control functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the UART.
 
     (+) HAL_UART_GetState() API is helpful to check in run-time the state of the UART peripheral. 
 
     (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
 
     (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
 
     (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
 
     (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
 
     (+) HAL_UART_EnableStopMode() API enables the UART to wake up the MCU from stop mode   
 
     (+) HAL_UART_DisableStopMode() API disables the above functionality 
 
     (+) UART_SetConfig() API configures the UART peripheral  
 
     (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features     
 
     (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization 
 
     (+) UART_Wakeup_AddressConfig() API configures the wake-up from stop mode parameters                
 
     (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter  
 
     (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver             
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Enable UART in mute mode (doesn't mean UART enters mute mode;
 
  * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called)
 
  * @param huart: UART handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
 
{  
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Enable USART mute mode by setting the MME bit in the CR1 register */
 
  huart->Instance->CR1 |= USART_CR1_MME;
 
  
 
  huart->State = HAL_UART_STATE_READY;
 
  
 
  return (UART_CheckIdleState(huart));
 
}
 
 
/**
 
  * @brief Disable UART mute mode (doesn't mean it actually wakes up the software,
 
  * as it may not have been in mute mode at this very moment).
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
 
{ 
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
   /* Disable USART mute mode by clearing the MME bit in the CR1 register */
 
  huart->Instance->CR1 &= ~(USART_CR1_MME);
 
  
 
  huart->State = HAL_UART_STATE_READY;
 
  
 
  return (UART_CheckIdleState(huart));
 
}
 
 
/**
 
  * @brief Enter UART mute mode (means UART actually enters mute mode).
 
  * To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called. 
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
 
{    
 
  __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
 
}
 
 
/**
 
  * @brief  Enables the UART transmitter and disables the UART receiver.
 
  * @param  huart: UART handle
 
  * @retval HAL status
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Clear TE and RE bits */
 
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
 
  /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
 
  SET_BIT(huart->Instance->CR1, USART_CR1_TE);
 
 
 
  huart->State = HAL_UART_STATE_READY;
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief  Enables the UART receiver and disables the UART transmitter.
 
  * @param  huart: UART handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Clear TE and RE bits */
 
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
 
  /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
 
  SET_BIT(huart->Instance->CR1, USART_CR1_RE);
 
 
 
  huart->State = HAL_UART_STATE_READY;
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @}
 
  */ 
 
  
 
/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions 
 
  * @{
 
  */
 
 
/**
 
  * @brief return the UART state
 
  * @param huart: uart handle
 
  * @retval HAL state
 
  */
 
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
 
{
 
  return huart->State;
 
}
 
 
/**
 
* @brief  Return the UART error code
 
* @param  huart : pointer to a UART_HandleTypeDef structure that contains
 
  *              the configuration information for the specified UART.
 
* @retval UART Error Code
 
*/
 
uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
 
{
 
  return huart->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */ 
 
  
 
/**
 
  * @}
 
  */ 
 
    
 
/** @defgroup UART_Private_Functions UART Private Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief Send an amount of data in interrupt mode 
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_UART_Transmit_IT()      
 
  * @param  huart: UART handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
 
{
 
  uint16_t* tmp;
 
  
 
  if ((huart->State == HAL_UART_STATE_BUSY_TX) || (huart->State == HAL_UART_STATE_BUSY_TX_RX))
 
  {
 
 
 
    if(huart->TxXferCount == 0)
 
    {
 
      /* Disable the UART Transmit Data Register Empty Interrupt */
 
      __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
 
     
 
      /* Enable the UART Transmit Complete Interrupt */    
 
      __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {
 
      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) huart->pTxBuffPtr;
 
        huart->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
 
        huart->pTxBuffPtr += 2;
 
      }
 
      else
 
      { 
 
        huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0xFF); 
 
      }  
 
 
      huart->TxXferCount--;
 
 
      return HAL_OK;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in interrupt mode 
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_UART_Receive_IT()      
 
  * @param  huart: UART handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
 
{
 
  uint16_t* tmp;
 
  uint16_t uhMask = huart->Mask;
 
  
 
  if((huart->State == HAL_UART_STATE_BUSY_RX) || (huart->State == HAL_UART_STATE_BUSY_TX_RX))
 
  {
 
     
 
    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
 
    {
 
      tmp = (uint16_t*) huart->pRxBuffPtr  ;
 
      *tmp = (uint16_t)(huart->Instance->RDR & uhMask);
 
      huart->pRxBuffPtr  +=2;
 
    }
 
    else
 
    {
 
      *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); 
 
    }
 
    
 
    if(--huart->RxXferCount == 0)
 
    {
 
      __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
 
      
 
      /* Check if a transmit Process is ongoing or not */
 
      if(huart->State == HAL_UART_STATE_BUSY_TX_RX) 
 
      {
 
        huart->State = HAL_UART_STATE_BUSY_TX;
 
      }
 
      else
 
      {
 
        /* Disable the UART Parity Error Interrupt */
 
        __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
 
        
 
        /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
 
        __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
 
        
 
        huart->State = HAL_UART_STATE_READY;
 
      }
 
      
 
      HAL_UART_RxCpltCallback(huart);
 
      
 
      return HAL_OK;
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Check the UART Idle State
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
 
{
 
  /* Initialize the UART ErrorCode */
 
  huart->ErrorCode = HAL_UART_ERROR_NONE;
 
  
 
  /* Check if the Transmitter is enabled */
 
  if((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
 
  {
 
    /* Wait until TEACK flag is set */
 
    if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, HAL_UART_TIMEOUT_VALUE) != HAL_OK)  
 
    { 
 
      /* Timeout Occured */
 
      return HAL_TIMEOUT;
 
    } 
 
  }
 
  /* Check if the Receiver is enabled */
 
  if((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
 
  {
 
    /* Wait until REACK flag is set */
 
    if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET,  HAL_UART_TIMEOUT_VALUE) != HAL_OK)  
 
    { 
 
      /* Timeout Occured */
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
 
  /* Initialize the UART State */
 
  huart->State= HAL_UART_STATE_READY;  
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  This function handles UART Communication Timeout.
 
  * @param  huart: UART handle
 
  * @param  Flag: specifies the UART flag to check.
 
  * @param  Status: The new Flag status (SET or RESET).
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
 
{
 
  uint32_t tickstart = HAL_GetTick();
 
 
  /* Wait until flag is set */
 
  if(Status == RESET)
 
  {    
 
    while(__HAL_UART_GET_FLAG(huart, Flag) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
 
 
          huart->State = HAL_UART_STATE_TIMEOUT;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(huart);
 
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_UART_GET_FLAG(huart, Flag) != RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
 
          __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
 
 
          huart->State = HAL_UART_STATE_TIMEOUT;
 
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(huart);
 
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
/**
 
  * @brief DMA UART transmit process complete callback 
 
  * @param hdma: DMA handle
 
  * @retval None
 
  */
 
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)     
 
{
 
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  huart->TxXferCount = 0;
 
  
 
  /* Disable the DMA transfer for transmit request by setting the DMAT bit
 
  in the UART CR3 register */
 
  huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT);
 
  
 
  /* Wait for UART TC Flag */
 
  if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, HAL_UART_TXDMA_TIMEOUTVALUE) != HAL_OK)
 
  {
 
    /* Timeout Occured */ 
 
    huart->State = HAL_UART_STATE_TIMEOUT;
 
    HAL_UART_ErrorCallback(huart);
 
  }
 
  else
 
  {
 
    /* No Timeout */
 
    /* Check if a receive process is ongoing or not */
 
    if(huart->State == HAL_UART_STATE_BUSY_TX_RX) 
 
    {
 
      huart->State = HAL_UART_STATE_BUSY_RX;
 
    }
 
    else
 
    {
 
      huart->State = HAL_UART_STATE_READY;
 
    }
 
    HAL_UART_TxCpltCallback(huart);
 
  }
 
}
 
 
/**
 
  * @brief DMA UART transmit process half complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
 
{
 
  UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
 
  HAL_UART_TxHalfCpltCallback(huart);
 
}
 
 
/**
 
  * @brief DMA UART receive process complete callback 
 
  * @param hdma: DMA handle
 
  * @retval None
 
  */
 
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)  
 
{
 
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  huart->RxXferCount = 0;
 
  
 
  /* Disable the DMA transfer for the receiver request by setting the DMAR bit 
 
     in the UART CR3 register */
 
  huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR);
 
  
 
  /* Check if a transmit Process is ongoing or not */
 
  if(huart->State == HAL_UART_STATE_BUSY_TX_RX) 
 
  {
 
    huart->State = HAL_UART_STATE_BUSY_TX;
 
  }
 
  else
 
  {
 
    huart->State = HAL_UART_STATE_READY;
 
  }
 
  HAL_UART_RxCpltCallback(huart);
 
}
 
 
/**
 
  * @brief DMA UART receive process half complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
 
{
 
  UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
 
  HAL_UART_RxHalfCpltCallback(huart); 
 
}
 
 
/**
 
  * @brief DMA UART communication error callback 
 
  * @param hdma: DMA handle
 
  * @retval None
 
  */
 
static void UART_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  huart->RxXferCount = 0;
 
  huart->TxXferCount = 0;
 
  huart->State= HAL_UART_STATE_READY;
 
  huart->ErrorCode |= HAL_UART_ERROR_DMA;
 
  HAL_UART_ErrorCallback(huart);
 
}
 
 
/**
 
  * @brief Configure the UART peripheral 
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
 
{
 
  uint32_t tmpreg                     = 0x00000000;
 
  UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
 
  uint16_t brrtemp                    = 0x0000;
 
  uint16_t usartdiv                   = 0x0000;
 
  HAL_StatusTypeDef ret               = HAL_OK;  
 
  
 
  /* Check the parameters */ 
 
  assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));  
 
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
 
  assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
 
  assert_param(IS_UART_PARITY(huart->Init.Parity));
 
  assert_param(IS_UART_MODE(huart->Init.Mode));
 
  assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
 
  assert_param(IS_UART_ONEBIT_SAMPLING(huart->Init.OneBitSampling)); 
 
 
 
  /*-------------------------- USART CR1 Configuration -----------------------*/
 
  /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure       
 
   *  the UART Word Length, Parity, Mode and oversampling: 
 
   *  set the M bits according to huart->Init.WordLength value 
 
   *  set PCE and PS bits according to huart->Init.Parity value
 
   *  set TE and RE bits according to huart->Init.Mode value
 
   *  set OVER8 bit according to huart->Init.OverSampling value */
 
  tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
 
  MODIFY_REG(huart->Instance->CR1, UART_CR1_FIELDS, tmpreg);
 
 
  /*-------------------------- USART CR2 Configuration -----------------------*/
 
  /* Configure the UART Stop Bits: Set STOP[13:12] bits according 
 
   * to huart->Init.StopBits value */
 
  MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
 
  
 
  /*-------------------------- USART CR3 Configuration -----------------------*/    
 
  /* Configure 
 
   * - UART HardWare Flow Control: set CTSE and RTSE bits according 
 
   *   to huart->Init.HwFlowCtl value 
 
   * - one-bit sampling method versus three samples' majority rule according
 
   *   to huart->Init.OneBitSampling */
 
  tmpreg = (uint32_t)huart->Init.HwFlowCtl | huart->Init.OneBitSampling ;
 
  MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT), tmpreg);
 
  
 
  /*-------------------------- USART BRR Configuration -----------------------*/  
 
  __HAL_UART_GETCLOCKSOURCE(huart, clocksource);
 
  
 
    /* Check the Over Sampling to set Baud Rate Register */
 
  if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
 
  {
 
    switch (clocksource)
 
    {
 
      case UART_CLOCKSOURCE_PCLK1:
 
        usartdiv = (uint16_t)(__DIV_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate));
 
        break;
 
      case UART_CLOCKSOURCE_HSI:
 
        usartdiv = (uint16_t)(__DIV_SAMPLING8(HSI_VALUE, huart->Init.BaudRate)); 
 
        break;
 
      case UART_CLOCKSOURCE_SYSCLK:
 
        usartdiv = (uint16_t)(__DIV_SAMPLING8(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate));
 
        break;
 
      case UART_CLOCKSOURCE_LSE:
 
        usartdiv = (uint16_t)(__DIV_SAMPLING8(LSE_VALUE, huart->Init.BaudRate)); 
 
        break;
 
      case UART_CLOCKSOURCE_UNDEFINED:
 
      default:                        
 
        ret = HAL_ERROR; 
 
        break;                   
 
    }
 
    
 
    brrtemp = usartdiv & 0xFFF0;
 
    brrtemp |= (uint16_t) ((usartdiv & (uint16_t)0x000F) >> 1U);
 
    huart->Instance->BRR = brrtemp;
 
  }
 
  else
 
  {
 
    switch (clocksource)
 
    {
 
      case UART_CLOCKSOURCE_PCLK1:
 
        huart->Instance->BRR = (uint16_t)(__DIV_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate));
 
        break;
 
      case UART_CLOCKSOURCE_HSI:
 
        huart->Instance->BRR = (uint16_t)(__DIV_SAMPLING16(HSI_VALUE, huart->Init.BaudRate)); 
 
        break;
 
      case UART_CLOCKSOURCE_SYSCLK:
 
        huart->Instance->BRR = (uint16_t)(__DIV_SAMPLING16(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate));
 
        break;
 
      case UART_CLOCKSOURCE_LSE:
 
        huart->Instance->BRR = (uint16_t)(__DIV_SAMPLING16(LSE_VALUE, huart->Init.BaudRate)); 
 
        break;
 
      case UART_CLOCKSOURCE_UNDEFINED: 
 
      default:
 
        ret = HAL_ERROR;
 
        break;
 
    }
 
  }
 
 
  return ret;   
 
 
}
 
 
/**
 
  * @brief Configure the UART peripheral advanced feautures 
 
  * @param huart: uart handle  
 
  * @retval None
 
  */
 
void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
 
{  
 
  /* Check whether the set of advanced features to configure is properly set */ 
 
  assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
 
  
 
  /* if required, configure TX pin active level inversion */
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
 
  {
 
    assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
 
  }
 
  
 
  /* if required, configure RX pin active level inversion */
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
 
  {
 
    assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
 
  }
 
  
 
  /* if required, configure data inversion */
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
 
  {
 
    assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
 
  }
 
  
 
  /* if required, configure RX/TX pins swap */
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
 
  {
 
    assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
 
  }
 
  
 
  /* if required, configure RX overrun detection disabling */
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
 
  {
 
    assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));  
 
    MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
 
  }
 
  
 
  /* if required, configure DMA disabling on reception error */
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
 
  {
 
    assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));   
 
    MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
 
  }
 
  
 
  /* if required, configure auto Baud rate detection scheme */              
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
 
  {
 
    assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
 
    assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
 
    /* set auto Baudrate detection parameters if detection is enabled */
 
    if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
 
    {
 
      assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
 
      MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
 
    }
 
  }
 
  
 
  /* if required, configure MSB first on communication line */  
 
  if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
 
  {
 
    assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));   
 
    MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
  
 
#endif /* HAL_UART_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_uart_ex.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   Extended UART HAL module driver.
 
  *    
 
  *          This file provides firmware functions to manage the following extended
 
  *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
 
  *           + Initialization and de-initialization functions
 
  *           + Peripheral Control functions
 
  *
 
  *
 
  @verbatim
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
   [..]
 
    The Extended UART HAL driver can be used as follows:
 
    
 
    (#) Declare a UART_HandleTypeDef handle structure.
 
 
    (#) For the UART RS485 Driver Enabled mode, initialize the UART registers 
 
        by calling the HAL_RS485Ex_Init() API.                                  
 
        
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup UARTEx UARTEx Extended HAL module driver
 
  * @brief UART Extended HAL module driver
 
  * @{
 
  */
 
 
#ifdef HAL_UART_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
 
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
 
  * @{
 
  */
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)  
 
static void UART_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
 
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup UARTEx_Exported_Functions_Group2 Extended IO operation function 
 
  * @brief    UART Interrupt handling function 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### IO operation function #####
 
 ===============================================================================  
 
    This subsection provides functions allowing to manage the UART interrupts
 
    and to handle Wake up interrupt call-back.
 
        
 
    (#) Non-Blocking mode API with Interrupt is :
 
        (+) HAL_UART_IRQHandler()
 
 
    (#) Callback provided in No_Blocking mode:
 
        (+) HAL_UART_WakeupCallback()
 
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief This function handles UART interrupt request.
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
 
{
 
  /* UART parity error interrupt occurred -------------------------------------*/
 
  if((__HAL_UART_GET_IT(huart, UART_IT_PE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_PE) != RESET))
 
  { 
 
    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_PEF);
 
    
 
    huart->ErrorCode |= HAL_UART_ERROR_PE;
 
    /* Set the UART state ready to be able to start again the process */
 
    huart->State = HAL_UART_STATE_READY;
 
  }
 
  
 
  /* UART frame error interrupt occured --------------------------------------*/
 
  if((__HAL_UART_GET_IT(huart, UART_IT_FE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET))
 
  { 
 
    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_FEF);
 
    
 
    huart->ErrorCode |= HAL_UART_ERROR_FE;
 
    /* Set the UART state ready to be able to start again the process */
 
    huart->State = HAL_UART_STATE_READY;
 
  }
 
  
 
  /* UART noise error interrupt occured --------------------------------------*/
 
  if((__HAL_UART_GET_IT(huart, UART_IT_NE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET))
 
  { 
 
    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_NEF);
 
    
 
    huart->ErrorCode |= HAL_UART_ERROR_NE;    
 
    /* Set the UART state ready to be able to start again the process */
 
    huart->State = HAL_UART_STATE_READY;
 
  }
 
  
 
  /* UART Over-Run interrupt occured -----------------------------------------*/
 
  if((__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET))
 
  { 
 
    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_OREF);
 
    
 
    huart->ErrorCode |= HAL_UART_ERROR_ORE;     
 
    /* Set the UART state ready to be able to start again the process */
 
    huart->State = HAL_UART_STATE_READY;
 
  }
 
  
 
   /* Call UART Error Call back function if need be --------------------------*/
 
  if(huart->ErrorCode != HAL_UART_ERROR_NONE)
 
  {
 
    HAL_UART_ErrorCallback(huart);
 
  }
 
  
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)  
 
  /* UART wakeup from Stop mode interrupt occurred -------------------------------------*/
 
  if((__HAL_UART_GET_IT(huart, UART_IT_WUF) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_WUF) != RESET))
 
  { 
 
    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_WUF);
 
    /* Set the UART state ready to be able to start again the process */
 
    huart->State = HAL_UART_STATE_READY;
 
    HAL_UART_WakeupCallback(huart);
 
  }
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
  
 
  /* UART in mode Receiver ---------------------------------------------------*/
 
  if((__HAL_UART_GET_IT(huart, UART_IT_RXNE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET))
 
  { 
 
    UART_Receive_IT(huart);
 
    /* Clear RXNE interrupt flag */
 
    __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
 
  }
 
  
 
 
  /* UART in mode Transmitter ------------------------------------------------*/
 
 if((__HAL_UART_GET_IT(huart, UART_IT_TXE) != RESET) &&(__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE) != RESET))
 
  {
 
    UART_Transmit_IT(huart);
 
  } 
 
  
 
  /* UART in mode Transmitter ------------------------------------------------*/
 
 if((__HAL_UART_GET_IT(huart, UART_IT_TC) != RESET) &&(__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET))
 
  {
 
    UART_EndTransmit_IT(huart);
 
  }  
 
}
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8) 
 
/**
 
  * @brief UART wakeup from Stop mode callback
 
  * @param huart: uart handle
 
  * @retval None
 
  */
 
 __weak void HAL_UART_WakeupCallback(UART_HandleTypeDef *huart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_UART_WakeupCallback can be implemented in the user file
 
   */ 
 
}
 
#endif /*!defined(STM32F030x6) && !defined(STM32F030x8)*/ 
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UARTEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions
 
  * @brief    Extended Initialization and Configuration Functions
 
  *
 
@verbatim    
 
===============================================================================
 
            ##### Initialization and Configuration functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy 
 
    in asynchronous mode.
 
      (+) For the asynchronous mode only these parameters can be configured: 
 
        (++) Baud Rate
 
        (++) Word Length 
 
        (++) Stop Bit
 
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
 
             in the data register is transmitted but is changed by the parity bit.
 
             Depending on the frame length defined by the M bit (8-bits or 9-bits),
 
             the possible UART frame formats are as listed in the following table:
 
   |-----------|-----------|---------------------------------------|  
 
   | M1M0 bits |  PCE bit  |            UART frame                 |
 
   |-----------------------|---------------------------------------|           
 
   |     00    |     0     |    | SB | 8-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     00    |     1     |    | SB | 7-bit data | PB | STB |     |
 
   |-----------|-----------|---------------------------------------|  
 
   |     01    |     0     |    | SB | 9-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     01    |     1     |    | SB | 8-bit data | PB | STB |     |
 
   +---------------------------------------------------------------+ 
 
   |     10    |     0     |    | SB | 7-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     10    |     1     |    | SB | 6-bit data | PB | STB |     |   
 
   +---------------------------------------------------------------+              
 
        (++) Hardware flow control
 
        (++) Receiver/transmitter modes
 
        (++) Over Sampling Method
 
        (++) One-Bit Sampling Method
 
      (+) For the asynchronous mode, the following advanced features can be configured as well:
 
        (++) TX and/or RX pin level inversion
 
        (++) data logical level inversion
 
        (++) RX and TX pins swap
 
        (++) RX overrun detection disabling
 
        (++) DMA disabling on RX error
 
        (++) MSB first on communication line
 
        (++) auto Baud rate detection
 
    [..]
 
    The HAL_LIN_Init() and HAL_RS485Ex_Init() APIs follows respectively the LIN and 
 
    the UART RS485 mode configuration procedures (details for the procedures are 
 
    available in reference manual).
 
 
@endverbatim
 
  * @{
 
  */
 
 
  
 
/**
 
  * @brief Initializes the RS485 Driver enable feature according to the specified
 
  *         parameters in the UART_InitTypeDef and creates the associated handle .
 
  * @param huart: uart handle
 
  * @param UART_DEPolarity: select the driver enable polarity
 
  *        This parameter can be one of the following values:
 
  *          @arg UART_DE_POLARITY_HIGH: DE signal is active high
 
  *          @arg UART_DE_POLARITY_LOW: DE signal is active low
 
  * @param UART_DEAssertionTime: Driver Enable assertion time
 
  *                         5-bit value defining the time between the activation of the DE (Driver Enable)
 
  *                         signal and the beginning of the start bit. It is expressed in sample time
 
  *                         units (1/8 or 1/16 bit time, depending on the oversampling rate)         
 
  * @param UART_DEDeassertionTime: Driver Enable deassertion time          
 
  *                         5-bit value defining the time between the end of the last stop bit, in a
 
  *                         transmitted message, and the de-activation of the DE (Driver Enable) signal.
 
  *                         It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
 
  *                         oversampling rate).        
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t UART_DEPolarity, uint32_t UART_DEAssertionTime, uint32_t UART_DEDeassertionTime)
 
{
 
  uint32_t temp = 0x0;
 
  
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  /* Check the Driver Enable UART instance */
 
  assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
 
  
 
  /* Check the Driver Enable polarity */
 
  assert_param(IS_UART_DE_POLARITY(UART_DEPolarity));
 
  
 
  /* Check the Driver Enable assertion time */
 
  assert_param(IS_UART_ASSERTIONTIME(UART_DEAssertionTime));
 
  
 
  /* Check the Driver Enable deassertion time */
 
  assert_param(IS_UART_DEASSERTIONTIME(UART_DEDeassertionTime));
 
  
 
  if(huart->State == HAL_UART_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_UART_MspInit(huart);
 
  }
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  /* Set the UART Communication parameters */
 
  if (UART_SetConfig(huart) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  } 
 
  
 
  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
 
  {
 
    UART_AdvFeatureConfig(huart);
 
  }
 
  
 
  /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
 
  huart->Instance->CR3 |= USART_CR3_DEM;
 
  
 
  /* Set the Driver Enable polarity */
 
  MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, UART_DEPolarity);
 
  
 
  /* Set the Driver Enable assertion and deassertion times */
 
  temp = (UART_DEAssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
 
  temp |= (UART_DEDeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
 
  MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT|USART_CR1_DEAT), temp);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart);
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)  
 
/**
 
  * @brief Initializes the LIN mode according to the specified
 
  *         parameters in the UART_InitTypeDef and creates the associated handle .
 
  * @param huart: uart handle
 
  * @param BreakDetectLength: specifies the LIN break detection length.
 
  *        This parameter can be one of the following values:
 
  *          @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
 
  *          @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
 
{
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
 
  assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
 
  
 
  /* LIN mode limited to 16-bit oversampling only */
 
  if(huart->Init.OverSampling == UART_OVERSAMPLING_8)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Init the low level hardware : GPIO, CLOCK, CORTEX */
 
  HAL_UART_MspInit(huart);
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  /* Set the UART Communication parameters */
 
  if (UART_SetConfig(huart) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  } 
 
  
 
  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
 
  {
 
    UART_AdvFeatureConfig(huart);
 
  }
 
  
 
  /* In LIN mode, the following bits must be kept cleared: 
 
  - LINEN and CLKEN bits in the USART_CR2 register,
 
  - SCEN and IREN bits in the USART_CR3 register.*/
 
  huart->Instance->CR2 &= ~(USART_CR2_CLKEN);
 
  huart->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN);
 
  
 
  /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
 
  huart->Instance->CR2 |= USART_CR2_LINEN;
 
  
 
  /* Set the USART LIN Break detection length. */
 
  MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
 
  
 
    /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart);
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */ 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup UARTEx_Exported_Functions_Group3 Extended Peripheral Control functions
 
  * @brief    Extended Peripheral Control functions
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control function #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides extended functions allowing to control the UART.         
 
     (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
 
         detection length to more than 4 bits for multiprocessor address mark wake up.
 
     (+) HAL_UART_EnableStopMode() API allows the UART to wake up the MCU from Stop mode as 
 
         long as UART clock is HSI or LSE 
 
     (+) HAL_UART_DisableStopMode() API disables the above feature 
 
     (+) HAL_MultiProcessorEx_AddressLength_Set() API configures the address length when the
 
         wake-up event is the address match feature 
 
     (+) UART_Wakeup_AddressConfig() API sets the reference address used when address
 
         match feature is carried out
 
             
 
@endverbatim
 
  * @{
 
  */
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)
 
/**
 
  * @brief Set Wakeup from Stop mode interrupt flag selection
 
  * @param huart: uart handle, 
 
  * @param WakeUpSelection: address match, Start Bit detection or RXNE bit status.
 
  * This parameter can be one of the following values:  
 
  *      @arg UART_WAKEUP_ON_ADDRESS
 
  *      @arg UART_WAKEUP_ON_STARTBIT
 
  *      @arg UART_WAKEUP_ON_READDATA_NONEMPTY      
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
 
{
 
  /* Check parameters */
 
  assert_param(IS_UART_WAKEUP_INSTANCE(huart->Instance));
 
  assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
 
  
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
 
  /* Set the wake-up selection scheme */
 
  MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
 
  
 
  if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
 
  {
 
    UART_Wakeup_AddressConfig(huart, WakeUpSelection);
 
  }
 
  
 
  /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart);
 
  
 
  /* Wait until REACK flag is set */
 
  if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, HAL_UART_TIMEOUT_VALUE) != HAL_OK)  
 
  { 
 
    return HAL_TIMEOUT;
 
  }
 
  else
 
  {
 
    /* Initialize the UART State */
 
    huart->State= HAL_UART_STATE_READY;
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(huart);  
 
    return HAL_OK;
 
  }
 
}
 
 
/**
 
  * @brief Enable UART Stop Mode
 
  * The UART is able to wake up the MCU from Stop mode as long as UART clock is HSI or LSE
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
 
{
 
  /* Check parameter */
 
  assert_param(IS_UART_WAKEUP_INSTANCE(huart->Instance));
 
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Set the USART UESM bit */
 
  huart->Instance->CR1 |= USART_CR1_UESM;
 
  
 
  huart->State = HAL_UART_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief Disable UART Stop Mode 
 
  * @param huart: uart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
 
{
 
  /* Check parameter */
 
  assert_param(IS_UART_WAKEUP_INSTANCE(huart->Instance));
 
 
  /* Process Locked */
 
  __HAL_LOCK(huart);
 
  
 
  huart->State = HAL_UART_STATE_BUSY; 
 
 
  /* Clear USART UESM bit */
 
  huart->Instance->CR1 &= ~(USART_CR1_UESM);
 
  
 
  huart->State = HAL_UART_STATE_READY;
 
  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(huart);
 
  
 
  return HAL_OK; 
 
}
 
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
                
 
/**
 
  * @brief By default in multiprocessor mode, when the wake up method is set 
 
  *        to address mark, the UART handles only 4-bit long addresses detection. 
 
  *        This API allows to enable longer addresses detection (6-, 7- or 8-bit
 
  *        long):
 
  *        - 6-bit address detection in 7-bit data mode
 
  *        - 7-bit address detection in 8-bit data mode
 
  *        - 8-bit address detection in 9-bit data mode                  
 
  * @param huart: UART handle
 
  * @param AddressLength: this parameter can be one of the following values:
 
  *          @arg UART_ADDRESS_DETECT_4B: 4-bit long address
 
  *          @arg UART_ADDRESS_DETECT_7B: 6-, 7- or 8-bit long address    
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
 
{
 
  /* Check the UART handle allocation */
 
  if(huart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
  /* Check the address length parameter */
 
  assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
 
  
 
  huart->State = HAL_UART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_UART_DISABLE(huart);
 
  
 
  /* Set the address length */
 
  MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
 
  
 
  /* Enable the Peripheral */
 
  __HAL_UART_ENABLE(huart); 
 
  
 
  /* TEACK and/or REACK to check before moving huart->State to Ready */
 
  return (UART_CheckIdleState(huart));
 
}
 
 
 
#if !defined(STM32F030x6) && !defined(STM32F030x8)  
 
/**
 
  * @brief Initializes the UART wake-up from stop mode parameters when triggered by address detection.
 
  * @param huart: uart handle
 
  * @param WakeUpSelection: UART wake up from stop mode parameters
 
  * @retval HAL status
 
  */                        
 
static void UART_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
 
{
 
  /* Check parmeters */
 
  assert_param(IS_UART_WAKEUP_INSTANCE(huart->Instance));
 
  assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
 
 
  /* Set the USART address length */
 
  MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
 
 
  /* Set the USART address node */
 
  MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
 
}
 
#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */  
 
 
/** @addtogroup UARTEx_Private_Functions
 
  * @{
 
  */
 
  
 
/**
 
  * @brief  Wraps up transmission in non blocking mode.
 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
 
  *                the configuration information for the specified UART module.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
 
{
 
  /* Disable the UART Transmit Complete Interrupt */    
 
  __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
 
  
 
  /* Check if a receive process is ongoing or not */
 
  if(huart->State == HAL_UART_STATE_BUSY_TX_RX) 
 
  {
 
    huart->State = HAL_UART_STATE_BUSY_RX;
 
  }
 
  else
 
  {
 
    /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
 
    
 
    huart->State = HAL_UART_STATE_READY;
 
  }
 
  
 
  HAL_UART_TxCpltCallback(huart);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_UART_MODULE_ENABLED */
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_usart.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   USART HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Universal Synchronous Asynchronous Receiver Transmitter (USART) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral Control functions
 
  *           + Peripheral State and Errors functions  
 
  @verbatim       
 
 ===============================================================================
 
                        ##### How to use this driver #####
 
 ===============================================================================
 
    [..]
 
    The USART HAL driver can be used as follows:
 
    
 
    (#) Declare a USART_HandleTypeDef handle structure.
 
    (#) Initialize the USART low level resources by implementing the HAL_USART_MspInit ()API:
 
        (##) Enable the USARTx interface clock.
 
        (##) USART pins configuration:
 
            (+++) Enable the clock for the USART GPIOs.
 
            (+++) Configure these USART pins as alternate function pull-up.
 
        (##) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(),
 
              HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs):
 
            (+++) Configure the USARTx interrupt priority.
 
            (+++) Enable the NVIC USART IRQ handle.
 
        (##) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA()
 
             HAL_USART_Receive_DMA() and HAL_USART_TransmitReceive_DMA() APIs):
 
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
 
            (+++) Enable the DMAx interface clock.
 
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.                
 
            (+++) Configure the DMA Tx/Rx channel.
 
            (+++) Associate the initilalized DMA handle to the USART DMA Tx/Rx handle.
 
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
 
 
    (#) Program the Baud Rate, Word Length , Stop Bit, Parity, Hardware 
 
        flow control and Mode(Receiver/Transmitter) in the husart Init structure.
 
 
    (#) Initialize the USART registers by calling the HAL_USART_Init() API:
 
        (++) These APIs configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
 
            by calling the customed HAL_USART_MspInit(&husart) API.
 
 
        -@@- The specific USART interrupts (Transmission complete interrupt, 
 
             RXNE interrupt and Error Interrupts) will be managed using the macros
 
             __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process.
 
           
 
    (#) Three operation modes are available within this driver :     
 
  
 
     *** Polling mode IO operation ***
 
     =================================
 
     [..]    
 
       (+) Send an amount of data in blocking mode using HAL_USART_Transmit() 
 
       (+) Receive an amount of data in blocking mode using HAL_USART_Receive()
 
       
 
     *** Interrupt mode IO operation ***    
 
     ===================================
 
     [..]    
 
       (+) Send an amount of data in non blocking mode using HAL_USART_Transmit_IT() 
 
       (+) At transmission end of half transfer HAL_USART_TxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_TxHalfCpltCallback 
 
       (+) At transmission end of transfer HAL_USART_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode using HAL_USART_Receive_IT() 
 
       (+) At reception end of half transfer HAL_USART_RxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_RxHalfCpltCallback 
 
       (+) At reception end of transfer HAL_USART_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_USART_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_ErrorCallback
 
    
 
     *** DMA mode IO operation ***    
 
     ==============================
 
     [..] 
 
       (+) Send an amount of data in non blocking mode (DMA) using HAL_USART_Transmit_DMA() 
 
       (+) At transmission end of half transfer HAL_USART_TxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_TxHalfCpltCallback 
 
       (+) At transmission end of transfer HAL_USART_TxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_TxCpltCallback
 
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_USART_Receive_DMA() 
 
       (+) At reception end of half transfer HAL_USART_RxHalfCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_RxHalfCpltCallback 
 
       (+) At reception end of transfer HAL_USART_RxCpltCallback is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_RxCpltCallback                                      
 
       (+) In case of transfer Error, HAL_USART_ErrorCallback() function is executed and user can 
 
            add his own code by customization of function pointer HAL_USART_ErrorCallback
 
       (+) Pause the DMA Transfer using HAL_USART_DMAPause()      
 
       (+) Resume the DMA Transfer using HAL_USART_DMAResume()  
 
       (+) Stop the DMA Transfer using HAL_USART_DMAStop()      
 
     
 
     *** USART HAL driver macros list ***
 
     ============================================= 
 
     [..]
 
       Below the list of most used macros in USART HAL driver.
 
       
 
       (+) __HAL_USART_ENABLE: Enable the USART peripheral 
 
       (+) __HAL_USART_DISABLE: Disable the USART peripheral     
 
       (+) __HAL_USART_GET_FLAG : Check whether the specified USART flag is set or not
 
       (+) __HAL_USART_CLEAR_FLAG : Clear the specified USART pending flag
 
       (+) __HAL_USART_ENABLE_IT: Enable the specified USART interrupt
 
       (+) __HAL_USART_DISABLE_IT: Disable the specified USART interrupt
 
      
 
     [..] 
 
       (@) You can refer to the USART HAL driver header file for more useful macros
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup USART USART HAL module driver
 
  * @brief HAL USART Synchronous module driver
 
  * @{
 
  */
 
#ifdef HAL_USART_MODULE_ENABLED
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/** @defgroup USART_Private_Constants   USART Private Constants
 
  * @{
 
  */
 
#define DUMMY_DATA              ((uint16_t) 0xFFFF)
 
#define TEACK_REACK_TIMEOUT     ((uint32_t) 1000)
 
#define USART_TXDMA_TIMEOUTVALUE            22000
 
#define USART_TIMEOUT_VALUE                 22000
 
#define USART_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \
 
                                      USART_CR1_TE | USART_CR1_RE))
 
#define USART_CR2_FIELDS  ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | \
 
                                      USART_CR2_CLKEN | USART_CR2_LBCL | USART_CR2_STOP))
 
/**
 
  * @}
 
  */
 
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/** @addtogroup USART_Private_Functions   USART Private Functions
 
  * @{
 
  */
 
static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
 
static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
 
static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
 
static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
 
static void USART_DMAError(DMA_HandleTypeDef *hdma); 
 
static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
 
static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart);
 
static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart);
 
static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart);
 
static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart);
 
static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart);
 
static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart);
 
/**
 
  * @}
 
  */
 
 
/* Exported functions ---------------------------------------------------------*/
 
 
 
/** @defgroup USART_Exported_Functions USART Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup USART_Exported_Functions_Group1 Initialization and de-initialization functions 
 
  *  @brief    Initialization and Configuration functions 
 
  *
 
@verbatim   
 
  ==============================================================================
 
            ##### Initialization and Configuration functions #####
 
  ==============================================================================
 
    [..]
 
    This subsection provides a set of functions allowing to initialize the USART 
 
    in asynchronous and in synchronous modes.
 
      (+) For the asynchronous mode only these parameters can be configured: 
 
        (++) Baud Rate
 
        (++) Word Length 
 
        (++) Stop Bit
 
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
 
             in the data register is transmitted but is changed by the parity bit.
 
             Depending on the frame length defined by the M bit (8-bits or 9-bits)
 
             or by the M1 and M0 bits (7-bit, 8-bit or 9-bit),
 
             the possible USART frame formats are as listed in the following table:
 
   +---------------------------------------------------------------+     
 
   |    M bit  |  PCE bit  |            USART frame                |
 
   |-----------|-----------|---------------------------------------|             
 
   |     0     |     0     |    | SB | 8-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     0     |     1     |    | SB | 7-bit data | PB | STB |     |
 
   |-----------|-----------|---------------------------------------|  
 
   |     1     |     0     |    | SB | 9-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     1     |     1     |    | SB | 8-bit data | PB | STB |     |
 
   +---------------------------------------------------------------+     
 
   | M1M0 bits |  PCE bit  |            USART frame                |
 
   |-----------------------|---------------------------------------|             
 
   |     10    |     0     |    | SB | 7-bit data | STB |          |
 
   |-----------|-----------|---------------------------------------|  
 
   |     10    |     1     |    | SB | 6-bit data | PB | STB |     |   
 
   +---------------------------------------------------------------+          
 
        (++) USART polarity
 
        (++) USART phase
 
        (++) USART LastBit
 
        (++) Receiver/transmitter modes
 
 
    [..]
 
    The HAL_USART_Init() function follows the USART  synchronous configuration 
 
    procedure (details for the procedure are available in reference manual).
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Initializes the USART mode according to the specified
 
  *         parameters in the USART_InitTypeDef and create the associated handle .
 
  * @param husart: usart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart)
 
{
 
  /* Check the USART handle allocation */
 
  if(husart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_USART_INSTANCE(husart->Instance));
 
  
 
  if(husart->State == HAL_USART_STATE_RESET)
 
  {   
 
    /* Init the low level hardware : GPIO, CLOCK */
 
    HAL_USART_MspInit(husart);
 
  }
 
  
 
  husart->State = HAL_USART_STATE_BUSY;
 
  
 
  /* Disable the Peripheral */
 
  __HAL_USART_DISABLE(husart);
 
  
 
  /* Set the Usart Communication parameters */
 
  if (USART_SetConfig(husart) == HAL_ERROR)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* In Synchronous mode, the following bits must be kept cleared: 
 
  - LINEN bit in the USART_CR2 register
 
  - HDSEL, SCEN and IREN bits in the USART_CR3 register.*/
 
  husart->Instance->CR2 &= ~USART_CR2_LINEN;
 
  husart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN);
 
  
 
  /* Enable the Peripharal */
 
  __HAL_USART_ENABLE(husart);
 
  
 
  /* TEACK and/or REACK to check before moving husart->State to Ready */
 
  return (USART_CheckIdleState(husart));
 
}
 
 
/**
 
  * @brief DeInitializes the USART peripheral 
 
  * @param husart: usart handle
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart)
 
{
 
   /* Check the USART handle allocation */
 
  if(husart == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
  
 
  /* Check the parameters */
 
  assert_param(IS_USART_INSTANCE(husart->Instance));
 
  
 
  husart->State = HAL_USART_STATE_BUSY;
 
  
 
  husart->Instance->CR1 = 0x0;
 
  husart->Instance->CR2 = 0x0;
 
  husart->Instance->CR3 = 0x0;
 
  
 
  /* DeInit the low level hardware */
 
  HAL_USART_MspDeInit(husart);
 
  
 
  husart->ErrorCode = HAL_USART_ERROR_NONE;
 
  husart->State = HAL_USART_STATE_RESET;
 
  
 
  /* Process Unlock */
 
  __HAL_UNLOCK(husart);
 
  
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief USART MSP Init
 
  * @param husart: usart handle
 
  * @retval None
 
  */
 
 __weak void HAL_USART_MspInit(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_USART_MspInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief USART MSP DeInit
 
  * @param husart: usart handle
 
  * @retval None
 
  */
 
 __weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_USART_MspDeInit can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_Exported_Functions_Group2 IO operation functions 
 
  *  @brief   USART Transmit and Receive functions 
 
  *
 
@verbatim   
 
  ==============================================================================
 
                         ##### IO operation functions #####
 
  ==============================================================================
 
  [..]
 
    This subsection provides a set of functions allowing to manage the USART synchronous
 
    data transfers.
 
      
 
    [..] 
 
      The USART supports master mode only: it cannot receive or send data related to an input
 
         clock (SCLK is always an output).
 
 
    (#) There are two modes of transfer:
 
       (++) Blocking mode: The communication is performed in polling mode. 
 
            The HAL status of all data processing is returned by the same function 
 
            after finishing transfer.  
 
       (++) Non Blocking mode: The communication is performed using Interrupts 
 
           or DMA, These APIs return the HAL status.
 
           The end of the data processing will be indicated through the 
 
           dedicated USART IRQ when using Interrupt mode or the DMA IRQ when 
 
           using DMA mode.
 
           The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() user callbacks 
 
           will be executed respectivelly at the end of the transmit or Receive process
 
           The HAL_USART_ErrorCallback()user callback will be executed when a communication error is detected
 
 
    (#) Blocking mode APIs are :
 
        (++) HAL_USART_Transmit()in simplex mode
 
        (++) HAL_USART_Receive() in full duplex receive only
 
        (++) HAL_USART_TransmitReceive() in full duplex mode         
 
        
 
    (#) Non Blocking mode APIs with Interrupt are :
 
        (++) HAL_USART_Transmit_IT()in simplex mode
 
        (++) HAL_USART_Receive_IT() in full duplex receive only
 
        (++) HAL_USART_TransmitReceive_IT()in full duplex mode
 
        (++) HAL_USART_IRQHandler()
 
 
    (#) Non Blocking mode functions with DMA are :
 
        (++) HAL_USART_Transmit_DMA()in simplex mode
 
        (++) HAL_USART_Receive_DMA() in full duplex receive only
 
        (++) HAL_USART_TransmitReceive_DMA() in full duplex mode
 
        (++) HAL_USART_DMAPause()
 
        (++) HAL_USART_DMAResume()
 
        (++) HAL_USART_DMAStop()
 
          
 
    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
 
        (++) HAL_USART_TxCpltCallback()
 
        (++) HAL_USART_RxCpltCallback()
 
        (++) HAL_USART_TxHalfCpltCallback()
 
        (++) HAL_USART_RxHalfCpltCallback()
 
        (++) HAL_USART_ErrorCallback()
 
        (++) HAL_USART_TxRxCpltCallback()
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief Simplex Send an amount of data in blocking mode 
 
  * @param husart: USART handle
 
  * @param pTxData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size, uint32_t Timeout)
 
{
 
   uint16_t* tmp=0; 
 
    
 
  if(husart->State == HAL_USART_STATE_READY)
 
  { 
 
    if((pTxData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_TX;
 
    
 
    husart->TxXferSize = Size;
 
    husart->TxXferCount = Size;
 
    
 
    /* Check the remaining data to be sent */
 
    while(husart->TxXferCount > 0)
 
    {
 
      husart->TxXferCount--;
 
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, Timeout) != HAL_OK)
 
      { 
 
        return HAL_TIMEOUT;
 
      }
 
      if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pTxData;
 
        husart->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
 
        pTxData += 2;
 
      }
 
      else
 
      {
 
         husart->Instance->TDR = (*pTxData++ & (uint8_t)0xFF);  
 
      }      
 
    }
 
    
 
    if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, Timeout) != HAL_OK)
 
    { 
 
      return HAL_TIMEOUT;
 
    }
 
    
 
    husart->State = HAL_USART_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in blocking mode 
 
  *        To receive synchronous data, dummy data are simultaneously transmitted  
 
  * @param husart: USART handle
 
  * @param pRxData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
 
{ 
 
  uint16_t* tmp=0;
 
  uint16_t uhMask;  
 
  
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pRxData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_RX;
 
    
 
    husart->RxXferSize = Size; 
 
    husart->RxXferCount = Size;
 
 
    /* Computation of USART mask to apply to RDR register */
 
    __HAL_USART_MASK_COMPUTATION(husart);
 
    uhMask = husart->Mask;
 
    
 
    /* as long as data have to be received */
 
    while(husart->RxXferCount > 0)
 
    {
 
      husart->RxXferCount--;
 
      
 
      /* Wait until TC flag is set to send dummy byte in order to generate the 
 
      * clock for the slave to send data.
 
       * Whatever the frame length (7, 8 or 9-bit long), the same dummy value 
 
       * can be written for all the cases. */
 
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, Timeout) != HAL_OK)
 
      {            
 
           return HAL_TIMEOUT;  
 
      }
 
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x0FF);         
 
              
 
      /* Wait for RXNE Flag */
 
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
 
      {            
 
        return HAL_TIMEOUT;
 
      }
 
      
 
      if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pRxData ;
 
        *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
 
        pRxData +=2;  
 
      }
 
      else
 
      {
 
        *pRxData++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);  
 
      }       
 
    }
 
    
 
    husart->State = HAL_USART_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Full-Duplex Send and Receive an amount of data in blocking mode 
 
  * @param husart: USART handle
 
  * @param pTxData: pointer to TX data buffer
 
  * @param pRxData: pointer to RX data buffer
 
  * @param Size: amount of data to be sent (same amount to be received)
 
  * @param Timeout : Timeout duration
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
 
{
 
  uint16_t* tmp=0;
 
  uint16_t uhMask;  
 
  
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) 
 
    {
 
      return  HAL_ERROR;                                    
 
    }
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_RX;
 
    
 
    husart->RxXferSize = Size;
 
    husart->TxXferSize = Size;
 
    husart->TxXferCount = Size;
 
    husart->RxXferCount = Size;
 
    
 
    /* Computation of USART mask to apply to RDR register */
 
    __HAL_USART_MASK_COMPUTATION(husart);
 
    uhMask = husart->Mask;
 
 
    /* Check the remain data to be sent */
 
    while(husart->TxXferCount > 0)
 
    {
 
      husart->TxXferCount--;
 
      husart->RxXferCount--;   
 
      
 
       /* Wait until TC flag is set to send data */
 
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, Timeout) != HAL_OK)
 
      {            
 
           return HAL_TIMEOUT;  
 
      }
 
      if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pTxData;
 
        husart->Instance->TDR = (*tmp & uhMask);
 
        pTxData += 2;
 
      }
 
      else
 
      {
 
        husart->Instance->TDR = (*pTxData++ & (uint8_t)uhMask);         
 
      }   
 
           
 
      /* Wait for RXNE Flag */
 
      if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
 
      {            
 
        return HAL_TIMEOUT;
 
      }
 
      
 
      if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) pRxData ;
 
        *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
 
        pRxData +=2;  
 
      }
 
      else
 
      {
 
        *pRxData++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);  
 
      }       
 
    }
 
    
 
    husart->State = HAL_USART_STATE_READY;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Send an amount of data in interrupt mode 
 
  * @param husart: USART handle
 
  * @param pTxData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size)
 
{  
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pTxData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->pTxBuffPtr = pTxData;
 
    husart->TxXferSize = Size;
 
    husart->TxXferCount = Size;
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_TX;
 
    
 
    /* The USART Error Interrupts: (Frame error, noise error, overrun error) 
 
    are not managed by the USART Transmit Process to avoid the overrun interrupt
 
    when the usart mode is configured for transmit and receive "USART_MODE_TX_RX"
 
    to benefit for the frame error and noise interrupts the usart mode should be 
 
    configured only for transmit "USART_MODE_TX" */
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    /* Enable the USART Transmit Data Register Empty Interrupt */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_TXE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Receive an amount of data in blocking mode 
 
  *        To receive synchronous data, dummy data are simultaneously transmitted  
 
  * @param husart: usart handle
 
  * @param pRxData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size)
 
{
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pRxData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->pRxBuffPtr = pRxData;
 
    husart->RxXferSize = Size;
 
    husart->RxXferCount = Size;
 
    
 
    __HAL_USART_MASK_COMPUTATION(husart);
 
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_RX;
 
    
 
    /* Enable the USART Parity Error Interrupt */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_PE);
 
    
 
    /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_ERR);
 
    
 
    /* Enable the USART Data Register not empty Interrupt */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_RXNE);
 
   
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
 
    
 
    /* Send dummy byte in order to generate the clock for the Slave to send the next data */
 
    if(husart->Init.WordLength == USART_WORDLENGTH_9B)
 
    {
 
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x01FF); 
 
    } 
 
    else
 
    {
 
      husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x00FF);
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Full-Duplex Send and Receive an amount of data in interrupt mode 
 
  * @param husart: USART handle
 
  * @param pTxData: pointer to TX data buffer
 
  * @param pRxData: pointer to RX data buffer
 
  * @param Size: amount of data to be sent (same amount to be received)   
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData,  uint16_t Size)
 
{
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->pRxBuffPtr = pRxData;
 
    husart->RxXferSize = Size;
 
    husart->RxXferCount = Size;
 
    husart->pTxBuffPtr = pTxData;
 
    husart->TxXferSize = Size;
 
    husart->TxXferCount = Size;
 
    
 
    /* Computation of USART mask to apply to RDR register */
 
    __HAL_USART_MASK_COMPUTATION(husart);
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_TX_RX;
 
    
 
    /* Enable the USART Data Register not empty Interrupt */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_RXNE); 
 
    
 
    /* Enable the USART Parity Error Interrupt */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_PE);
 
    
 
    /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_ERR);
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    /* Enable the USART Transmit Data Register Empty Interrupt */
 
    __HAL_USART_ENABLE_IT(husart, USART_IT_TXE);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  } 
 
}
 
 
/**
 
  * @brief Send an amount of data in DMA mode 
 
  * @param husart: USART handle
 
  * @param pTxData: pointer to data buffer
 
  * @param Size: amount of data to be sent
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size)
 
{
 
  uint32_t *tmp=0;
 
  
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pTxData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR; 
 
    }
 
    /* Process Locked */
 
    __HAL_LOCK(husart);  
 
    
 
    husart->pTxBuffPtr = pTxData;
 
    husart->TxXferSize = Size;
 
    husart->TxXferCount = Size;
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_TX;
 
    
 
    /* Set the USART DMA transfer complete callback */
 
    husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt;
 
    
 
    /* Set the USART DMA Half transfer complete callback */
 
    husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt;
 
    
 
    /* Set the DMA error callback */
 
    husart->hdmatx->XferErrorCallback = USART_DMAError;
 
 
    /* Enable the USART transmit DMA channel */
 
    tmp = (uint32_t*)&pTxData;
 
    HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size);
 
    
 
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
 
       in the USART CR3 register */
 
    husart->Instance->CR3 |= USART_CR3_DMAT;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
/**
 
  * @brief Full-Duplex Receive an amount of data in non-blocking mode 
 
  * @param husart: USART handle
 
  * @param pRxData: pointer to data buffer
 
  * @param Size: amount of data to be received
 
  * @note   When the USART parity is enabled (PCE = 1), the received data contain 
 
  *         the parity bit (MSB position)    
 
  * @retval HAL status
 
  * @note The USART DMA transmit channel must be configured in order to generate the clock for the slave.
 
  */
 
HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size)
 
{
 
  uint32_t *tmp=0;
 
  
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pRxData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->pRxBuffPtr = pRxData;
 
    husart->RxXferSize = Size;
 
    husart->pTxBuffPtr = pRxData;
 
    husart->TxXferSize = Size;
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_RX;
 
    
 
    /* Set the USART DMA Rx transfer complete callback */
 
    husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt;
 
    
 
    /* Set the USART DMA Half transfer complete callback */
 
    husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt;    
 
    
 
    /* Set the USART DMA Rx transfer error callback */
 
    husart->hdmarx->XferErrorCallback = USART_DMAError;
 
    
 
    /* Enable the USART receive DMA channel */
 
    tmp = (uint32_t*)&pRxData;
 
    HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t*)tmp, Size);
 
    
 
    /* Enable the USART transmit DMA channel: the transmit channel is used in order
 
       to generate in the non-blocking mode the clock to the slave device, 
 
       this mode isn't a simplex receive mode but a full-duplex receive mode */
 
    tmp = (uint32_t*)&pRxData;
 
    HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size);
 
 
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
 
    in the USART CR3 register */
 
    husart->Instance->CR3 |= USART_CR3_DMAR;
 
    
 
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
 
       in the USART CR3 register */
 
    husart->Instance->CR3 |= USART_CR3_DMAT;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief Full-Duplex Transmit Receive an amount of data in non blocking mode 
 
  * @param husart: usart handle
 
  * @param pTxData: pointer to TX data buffer
 
  * @param pRxData: pointer to RX data buffer
 
  * @param Size: amount of data to be received/sent
 
  * @note   When the USART parity is enabled (PCE = 1) the data received contain the parity bit.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
 
{
 
  uint32_t *tmp=0;
 
  
 
  if(husart->State == HAL_USART_STATE_READY)
 
  {
 
    if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) 
 
    {
 
      return HAL_ERROR;                                    
 
    }
 
    /* Process Locked */
 
    __HAL_LOCK(husart);
 
    
 
    husart->pRxBuffPtr = pRxData;
 
    husart->RxXferSize = Size;
 
    husart->pTxBuffPtr = pTxData;
 
    husart->TxXferSize = Size;
 
    
 
    husart->ErrorCode = HAL_USART_ERROR_NONE;
 
    husart->State = HAL_USART_STATE_BUSY_TX_RX;
 
    
 
    /* Set the USART DMA Rx transfer complete callback */
 
    husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt;
 
    
 
    /* Set the USART DMA Half transfer complete callback */
 
    husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt;
 
 
    /* Set the USART DMA Tx transfer complete callback */
 
    husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt;
 
    
 
    /* Set the USART DMA Half transfer complete callback */
 
    husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt;
 
 
    /* Set the USART DMA Tx transfer error callback */
 
    husart->hdmatx->XferErrorCallback = USART_DMAError;
 
    
 
    /* Set the USART DMA Rx transfer error callback */
 
    husart->hdmarx->XferErrorCallback = USART_DMAError;
 
    
 
    /* Enable the USART receive DMA channel */
 
    tmp = (uint32_t*)&pRxData;
 
    HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t*)tmp, Size);
 
    
 
    /* Enable the USART transmit DMA channel */
 
    tmp = (uint32_t*)&pTxData;
 
    HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size);
 
 
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
 
    in the USART CR3 register */
 
    husart->Instance->CR3 |= USART_CR3_DMAR;
 
    
 
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
 
       in the USART CR3 register */
 
    husart->Instance->CR3 |= USART_CR3_DMAT;
 
    
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(husart);
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
    
 
/**
 
  * @brief Pauses the DMA Transfer.
 
  * @param husart: USART handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(husart);
 
 
  if(husart->State == HAL_USART_STATE_BUSY_TX)
 
  {
 
    /* Disable the USART DMA Tx request */
 
    husart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
 
  }
 
  else if(husart->State == HAL_USART_STATE_BUSY_RX)
 
  {
 
    /* Disable the USART DMA Rx request */
 
    husart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
 
  }
 
  else if(husart->State == HAL_USART_STATE_BUSY_TX_RX)
 
  {
 
    /* Disable the USART DMA Tx request */
 
    husart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
 
    /* Disable the USART DMA Rx request */
 
    husart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(husart);
 
 
  return HAL_OK; 
 
}
 
 
/**
 
  * @brief Resumes the DMA Transfer.
 
  * @param husart: USART handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(husart);
 
 
  if(husart->State == HAL_USART_STATE_BUSY_TX)
 
  {
 
    /* Enable the USART DMA Tx request */
 
    husart->Instance->CR3 |= USART_CR3_DMAT;
 
  }
 
  else if(husart->State == HAL_USART_STATE_BUSY_RX)
 
  {
 
    /* Enable the USART DMA Rx request */
 
    husart->Instance->CR3 |= USART_CR3_DMAR;
 
  }
 
  else if(husart->State == HAL_USART_STATE_BUSY_TX_RX)
 
  {
 
    /* Enable the USART DMA Rx request  before the DMA Tx request */
 
    husart->Instance->CR3 |= USART_CR3_DMAR;
 
    /* Enable the USART DMA Tx request */
 
    husart->Instance->CR3 |= USART_CR3_DMAT;
 
  }
 
 
  /* If the USART peripheral is still not enabled, enable it */
 
  if ((husart->Instance->CR1 & USART_CR1_UE) == 0)
 
  {
 
    /* Enable USART peripheral */
 
    __HAL_USART_ENABLE(husart);
 
  }
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(husart);
 
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief Stops the DMA Transfer.
 
  * @param husart: USART handle
 
  * @retval None
 
  */
 
HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(husart);
 
 
  /* Disable the USART Tx/Rx DMA requests */
 
  husart->Instance->CR3 &= ~USART_CR3_DMAT;
 
  husart->Instance->CR3 &= ~USART_CR3_DMAR;
 
 
  /* Abort the USART DMA tx Channel */
 
  if(husart->hdmatx != NULL)
 
  {
 
    HAL_DMA_Abort(husart->hdmatx);
 
  }
 
  /* Abort the USART DMA rx Channel */
 
  if(husart->hdmarx != NULL)
 
  {
 
    HAL_DMA_Abort(husart->hdmarx);
 
  }
 
 
  /* Disable USART peripheral */
 
  __HAL_USART_DISABLE(husart);
 
 
  husart->State = HAL_USART_STATE_READY;
 
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(husart);
 
 
  return HAL_OK;
 
}    
 
    
 
/**
 
  * @brief This function handles USART interrupt request.
 
  * @param husart: USART handle
 
  * @retval None
 
  */
 
void HAL_USART_IRQHandler(USART_HandleTypeDef *husart)
 
{
 
  
 
  /* USART parity error interrupt occured ------------------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_PE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_PE) != RESET))
 
  { 
 
    __HAL_USART_CLEAR_IT(husart, USART_IT_PE);
 
    husart->ErrorCode |= HAL_USART_ERROR_PE;
 
    /* Set the USART state ready to be able to start again the process */
 
    husart->State = HAL_USART_STATE_READY;
 
  }
 
  
 
  /* USART frame error interrupt occured -------------------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_FE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR) != RESET))
 
  { 
 
    __HAL_USART_CLEAR_IT(husart, USART_IT_FE);
 
    husart->ErrorCode |= HAL_USART_ERROR_FE;
 
    /* Set the USART state ready to be able to start again the process */
 
    husart->State = HAL_USART_STATE_READY;
 
  }
 
  
 
  /* USART noise error interrupt occured -------------------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_NE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR) != RESET))
 
  { 
 
    __HAL_USART_CLEAR_IT(husart, USART_IT_NE);
 
    husart->ErrorCode |= HAL_USART_ERROR_NE;
 
    /* Set the USART state ready to be able to start again the process */
 
    husart->State = HAL_USART_STATE_READY;
 
  }
 
  
 
  /* USART Over-Run interrupt occured ----------------------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_ORE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR) != RESET))
 
  { 
 
    __HAL_USART_CLEAR_IT(husart, USART_IT_ORE);
 
    husart->ErrorCode |= HAL_USART_ERROR_ORE;
 
    /* Set the USART state ready to be able to start again the process */
 
    husart->State = HAL_USART_STATE_READY;
 
  }
 
 
 
   /* Call USART Error Call back function if need be --------------------------*/
 
  if(husart->ErrorCode != HAL_USART_ERROR_NONE)
 
  {
 
    HAL_USART_ErrorCallback(husart);
 
  }  
 
 
 
  /* USART in mode Receiver --------------------------------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_RXNE) != RESET) && (__HAL_USART_GET_IT_SOURCE(husart, USART_IT_RXNE) != RESET))
 
  {
 
    if(husart->State == HAL_USART_STATE_BUSY_RX)
 
    {
 
      USART_Receive_IT(husart);
 
    }
 
    else
 
    {
 
      USART_TransmitReceive_IT(husart);
 
    }
 
  }
 
  
 
  /* USART in mode Transmitter -----------------------------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_TXE) != RESET) &&(__HAL_USART_GET_IT_SOURCE(husart, USART_IT_TXE) != RESET))
 
  {    
 
    if(husart->State == HAL_USART_STATE_BUSY_TX)
 
    {
 
      USART_Transmit_IT(husart);
 
    }
 
    else
 
    {
 
      USART_TransmitReceive_IT(husart);
 
    }
 
  }
 
  
 
  /* USART in mode Transmitter (transmission end) -----------------------------*/
 
  if((__HAL_USART_GET_IT(husart, USART_IT_TC) != RESET) &&(__HAL_USART_GET_IT_SOURCE(husart, USART_IT_TC) != RESET))
 
  {
 
    USART_EndTransmit_IT(husart);
 
  } 
 
 
}
 
 
 
/**
 
  * @brief Tx Transfer completed callbacks
 
  * @param husart: usart handle
 
  * @retval None
 
  */
 
__weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_USART_TxCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Tx Half Transfer completed callbacks.
 
  * @param  husart: USART handle
 
  * @retval None
 
  */
 
 __weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE: This function should not be modified, when the callback is needed,
 
           the HAL_USART_TxHalfCpltCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @brief  Rx Transfer completed callbacks.
 
  * @param  husart: USART handle
 
  * @retval None
 
  */
 
__weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE: This function should not be modified, when the callback is needed,
 
           the HAL_USART_RxCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief Rx Half Transfer completed callbacks
 
  * @param husart: usart handle
 
  * @retval None
 
  */
 
__weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_USART_RxHalfCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief Tx/Rx Transfers completed callback for the non-blocking process
 
  * @param husart: usart handle
 
  * @retval None
 
  */
 
__weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_USART_TxRxCpltCallback can be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief USART error callbacks
 
  * @param husart: usart handle
 
  * @retval None
 
  */
 
__weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart)
 
{
 
  /* NOTE : This function should not be modified, when the callback is needed,
 
            the HAL_USART_ErrorCallback can be implemented in the user file
 
   */ 
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_Exported_Functions_Group3 Peripheral State and Errors functions 
 
  *  @brief   USART control functions 
 
  *
 
@verbatim   
 
 ===============================================================================
 
                      ##### Peripheral Control functions #####
 
 ===============================================================================  
 
    [..]
 
    This subsection provides a set of functions allowing to control the USART.
 
     (+) HAL_USART_GetState() API can be helpful to check in run-time the state of the USART peripheral. 
 
     (+) USART_SetConfig() API is used to set the USART communication parameters.
 
     (+) USART_CheckIdleState() APi ensures that TEACK and/or REACK bits are set after initialization
 
      
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief return the USART state
 
  * @param husart: USART handle
 
  * @retval HAL state
 
  */
 
HAL_USART_StateTypeDef HAL_USART_GetState(USART_HandleTypeDef *husart)
 
{
 
  return husart->State;
 
}
 
 
/**
 
  * @brief  Return the USART error code
 
  * @param  husart : pointer to a USART_HandleTypeDef structure that contains
 
  *              the configuration information for the specified USART.
 
  * @retval USART Error Code
 
  */
 
uint32_t HAL_USART_GetError(USART_HandleTypeDef *husart)
 
{
 
  return husart->ErrorCode;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup USART_Private_Functions   USART Private Functions
 
  *  @brief   USART Private functions 
 
  * @{
 
  */
 
 
/**
 
  * @brief Configure the USART peripheral 
 
  * @param husart: USART handle
 
  * @retval None
 
  */
 
static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart)
 
{
 
  uint32_t tmpreg                      = 0x0;
 
  USART_ClockSourceTypeDef clocksource = USART_CLOCKSOURCE_UNDEFINED;
 
  HAL_StatusTypeDef ret                = HAL_OK;
 
  
 
  /* Check the parameters */
 
  assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity));
 
  assert_param(IS_USART_PHASE(husart->Init.CLKPhase));
 
  assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit));
 
  assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate));  
 
  assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength));
 
  assert_param(IS_USART_STOPBITS(husart->Init.StopBits));
 
  assert_param(IS_USART_PARITY(husart->Init.Parity));
 
  assert_param(IS_USART_MODE(husart->Init.Mode));
 
 
 
 
  /*-------------------------- USART CR1 Configuration -----------------------*/
 
   /* Clear M, PCE, PS, TE and RE bits and configure       
 
   *  the USART Word Length, Parity and Mode: 
 
   *  set the M bits according to husart->Init.WordLength value 
 
   *  set PCE and PS bits according to husart->Init.Parity value
 
   *  set TE and RE bits according to husart->Init.Mode value */
 
  tmpreg = (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode;
 
  MODIFY_REG(husart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
 
  
 
  /*---------------------------- USART CR2 Configuration ---------------------*/
 
  /* Clear and configure the USART Clock, CPOL, CPHA, LBCL and STOP bits:
 
   * set CPOL bit according to husart->Init.CLKPolarity value
 
   * set CPHA bit according to husart->Init.CLKPhase value
 
   * set LBCL bit according to husart->Init.CLKLastBit value
 
   * set STOP[13:12] bits according to husart->Init.StopBits value */
 
  tmpreg = (uint32_t)(USART_CLOCK_ENABLED); 
 
  tmpreg |= ((uint32_t)husart->Init.CLKPolarity | (uint32_t)husart->Init.CLKPhase);
 
  tmpreg |= ((uint32_t)husart->Init.CLKLastBit | (uint32_t)husart->Init.StopBits);
 
  MODIFY_REG(husart->Instance->CR2, USART_CR2_FIELDS, tmpreg);
 
 
  /*-------------------------- USART CR3 Configuration -----------------------*/  
 
  /* no CR3 register configuration                                            */
 
 
  /*-------------------------- USART BRR Configuration -----------------------*/
 
  __HAL_USART_GETCLOCKSOURCE(husart, clocksource);
 
  switch (clocksource)
 
  {
 
    case USART_CLOCKSOURCE_PCLK1: 
 
      husart->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK1Freq() / husart->Init.BaudRate);
 
      break;
 
    case USART_CLOCKSOURCE_HSI: 
 
      husart->Instance->BRR = (uint16_t)(HSI_VALUE / husart->Init.BaudRate); 
 
      break; 
 
    case USART_CLOCKSOURCE_SYSCLK:  
 
      husart->Instance->BRR = (uint16_t)(HAL_RCC_GetSysClockFreq() / husart->Init.BaudRate);
 
      break;  
 
    case USART_CLOCKSOURCE_LSE:                
 
      husart->Instance->BRR = (uint16_t)(LSE_VALUE / husart->Init.BaudRate); 
 
      break; 
 
    case USART_CLOCKSOURCE_UNDEFINED:
 
    default:                
 
      ret = HAL_ERROR; 
 
      break;          
 
  }
 
  
 
  return ret; 
 
}
 
 
/**
 
  * @brief Check the USART Idle State
 
  * @param husart: USART handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart)
 
{
 
  /* Initialize the USART ErrorCode */
 
  husart->ErrorCode = HAL_USART_ERROR_NONE;
 
  
 
  /* Check if the Transmitter is enabled */
 
  if((husart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
 
  {
 
    /* Wait until TEACK flag is set */
 
    if(USART_WaitOnFlagUntilTimeout(husart, USART_ISR_TEACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)  
 
    { 
 
      husart->State= HAL_USART_STATE_TIMEOUT;      
 
      return HAL_TIMEOUT;
 
    } 
 
  }
 
  /* Check if the Receiver is enabled */
 
  if((husart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
 
  {
 
    /* Wait until REACK flag is set */
 
    if(USART_WaitOnFlagUntilTimeout(husart, USART_ISR_REACK, RESET, TEACK_REACK_TIMEOUT) != HAL_OK)  
 
    { 
 
      husart->State= HAL_USART_STATE_TIMEOUT;       
 
      return HAL_TIMEOUT;
 
    }
 
  }
 
  
 
  /* Initialize the USART state*/
 
  husart->State= HAL_USART_STATE_READY;  
 
    
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(husart);
 
  
 
  return HAL_OK;  
 
}
 
 
/**
 
  * @brief  This function handles USART Communication Timeout.
 
  * @param  husart: USART handle
 
  * @param  Flag: specifies the USART flag to check.
 
  * @param  Status: The new Flag status (SET or RESET).
 
  * @param  Timeout: Timeout duration
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
 
{
 
  uint32_t tickstart = HAL_GetTick();
 
  
 
  /* Wait until flag is set */
 
  if(Status == RESET)
 
  {    
 
    while(__HAL_USART_GET_FLAG(husart, Flag) == RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
 
          
 
          husart->State= HAL_USART_STATE_TIMEOUT;
 
          
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(husart);
 
          
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  else
 
  {
 
    while(__HAL_USART_GET_FLAG(husart, Flag) != RESET)
 
    {
 
      /* Check for the Timeout */
 
      if(Timeout != HAL_MAX_DELAY)
 
      {
 
        if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
 
        {
 
          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
 
          __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
 
  
 
          husart->State= HAL_USART_STATE_TIMEOUT;
 
          
 
          /* Process Unlocked */
 
          __HAL_UNLOCK(husart);
 
          
 
          return HAL_TIMEOUT;
 
        }
 
      }
 
    }
 
  }
 
  return HAL_OK;      
 
}
 
 
 
/**
 
  * @brief DMA USART transmit process complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
 
  husart->TxXferCount = 0;
 
  
 
  if(husart->State == HAL_USART_STATE_BUSY_TX)
 
  {
 
    /* Wait for USART TC Flag */
 
    if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, USART_TXDMA_TIMEOUTVALUE) != HAL_OK)
 
    {
 
      /* Timeout Occured */ 
 
      husart->State = HAL_USART_STATE_TIMEOUT;
 
      HAL_USART_ErrorCallback(husart);
 
    }
 
    else
 
    {
 
      /* No Timeout */
 
      /* Disable the DMA transfer for transmit request by setting the DMAT bit
 
       in the USART CR3 register */
 
      husart->Instance->CR3 &= ~(USART_CR3_DMAT);
 
      husart->State= HAL_USART_STATE_READY;
 
    }
 
  }
 
  /* the usart state is HAL_USART_STATE_BUSY_TX_RX*/
 
  else
 
  {
 
    husart->State= HAL_USART_STATE_BUSY_RX;
 
  HAL_USART_TxCpltCallback(husart);
 
}
 
}
 
 
 
/**
 
  * @brief DMA USART transmit process half complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
 
{
 
  USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
 
  HAL_USART_TxHalfCpltCallback(husart);
 
}
 
 
/**
 
  * @brief DMA USART receive process complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)   
 
{
 
  USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
 
  husart->RxXferCount = 0;
 
  
 
  /* Disable the DMA RX transfer for the receiver request by resetting the DMAR bit 
 
     in USART CR3 register */
 
  husart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR);
 
  /* similarly, disable the DMA TX transfer that was started to provide the 
 
     clock to the slave device */
 
  husart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT);
 
 
  husart->State= HAL_USART_STATE_READY;
 
  
 
  HAL_USART_RxCpltCallback(husart);
 
}
 
 
/**
 
  * @brief DMA USART receive process half complete callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
 
{
 
  USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
 
 
  HAL_USART_RxHalfCpltCallback(husart); 
 
}
 
 
/**
 
  * @brief DMA USART communication error callback 
 
  * @param hdma : DMA handle
 
  * @retval None
 
  */
 
static void USART_DMAError(DMA_HandleTypeDef *hdma)   
 
{
 
  USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
 
  husart->RxXferCount = 0;
 
  husart->TxXferCount = 0;
 
  husart->ErrorCode |= HAL_USART_ERROR_DMA;
 
  husart->State= HAL_USART_STATE_READY;
 
  
 
  HAL_USART_ErrorCallback(husart);
 
}
 
 
/**
 
  * @brief  Simplex Send an amount of data in non-blocking mode.
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_USART_Transmit_IT()      
 
  * @param  husart: USART handle
 
  * @retval HAL status
 
  * @note   The USART errors are not managed to avoid the overrun error.
 
  */
 
static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart)
 
{
 
  uint16_t* tmp=0;
 
 
  if (husart->State == HAL_USART_STATE_BUSY_TX)
 
  {
 
    
 
     if(husart->TxXferCount == 0)
 
    {
 
      /* Disable the USART Transmit Complete Interrupt */
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
 
     
 
      /* Enable the USART Transmit Complete Interrupt */    
 
      __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
 
      
 
      return HAL_OK;
 
    }
 
    else
 
    {
 
      if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
      {
 
        tmp = (uint16_t*) husart->pTxBuffPtr;
 
        husart->Instance->TDR = (*tmp & (uint16_t)0x01FF);   
 
        husart->pTxBuffPtr += 2;
 
      }
 
      else
 
      { 
 
        husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)0xFF); 
 
      }  
 
 
      husart->TxXferCount--;
 
    
 
      return HAL_OK;
 
    }
 
  }
 
  else
 
  {
 
    return HAL_BUSY;   
 
  }
 
}
 
 
 
/**
 
  * @brief  Wraps up transmission in non blocking mode.
 
  * @param  husart: pointer to a USART_HandleTypeDef structure that contains
 
  *                the configuration information for the specified USART module.
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart)
 
{
 
  /* Disable the USART Transmit Complete Interrupt */    
 
  __HAL_USART_DISABLE_IT(husart, USART_IT_TC);
 
  
 
  /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
 
  __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
 
    
 
  husart->State = HAL_USART_STATE_READY;
 
   
 
  HAL_USART_TxCpltCallback(husart);
 
  
 
  return HAL_OK;
 
}
 
 
 
/**
 
  * @brief  Simplex Receive an amount of data in non-blocking mode.
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_USART_Receive_IT()    
 
  * @param  husart: USART handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart)
 
{
 
  uint16_t* tmp=0;
 
  uint16_t uhMask = husart->Mask;  
 
 
  if(husart->State == HAL_USART_STATE_BUSY_RX)
 
  {  
 
    
 
    if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
    {      
 
      tmp = (uint16_t*) husart->pRxBuffPtr ;
 
      *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
 
      husart->pRxBuffPtr += 2;
 
    } 
 
    else
 
    {
 
      *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);       
 
    }
 
    /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
 
    husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x00FF); 
 
    
 
    if(--husart->RxXferCount == 0)
 
    { 
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);      
 
 
      /* Disable the USART Parity Error Interrupt */
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
 
        
 
      /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
 
        
 
      husart->State = HAL_USART_STATE_READY;
 
      
 
      HAL_USART_RxCpltCallback(husart);
 
      
 
      return HAL_OK;
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @brief  Full-Duplex Send receive an amount of data in full-duplex mode (non-blocking).
 
  *         Function called under interruption only, once
 
  *         interruptions have been enabled by HAL_USART_TransmitReceive_IT()     
 
  * @param  husart: USART handle
 
  * @retval HAL status
 
  */
 
static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart)
 
{
 
  uint16_t* tmp=0;
 
  uint16_t uhMask = husart->Mask;   
 
 
  if(husart->State == HAL_USART_STATE_BUSY_TX_RX)
 
  {
 
 
    if(husart->TxXferCount != 0x00)
 
    {
 
      if(__HAL_USART_GET_FLAG(husart, USART_FLAG_TXE) != RESET)
 
      {
 
        if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
        {
 
          tmp = (uint16_t*) husart->pTxBuffPtr;
 
          husart->Instance->TDR = (uint16_t)(*tmp & uhMask);
 
          husart->pTxBuffPtr += 2;
 
        } 
 
        else
 
        {
 
          husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)uhMask);       
 
        }
 
        husart->TxXferCount--;
 
        
 
        /* Check the latest data transmitted */
 
        if(husart->TxXferCount == 0)
 
        {
 
           __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
 
        }
 
      }
 
    }
 
    
 
    if(husart->RxXferCount != 0x00)
 
    {
 
      if(__HAL_USART_GET_FLAG(husart, USART_FLAG_RXNE) != RESET)
 
      {
 
        if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
 
        {
 
          tmp = (uint16_t*) husart->pRxBuffPtr ;
 
          *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
 
          husart->pRxBuffPtr += 2;
 
        }
 
        else
 
        { 
 
          *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);         
 
        }
 
        husart->RxXferCount--;
 
      }
 
    }
 
    
 
    /* Check the latest data received */
 
    if(husart->RxXferCount == 0)
 
    {
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE);
 
      
 
      /* Disable the USART Parity Error Interrupt */
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_PE);
 
      
 
      /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
 
      __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
 
      
 
      husart->State = HAL_USART_STATE_READY;
 
      
 
      HAL_USART_TxRxCpltCallback(husart);
 
      
 
      return HAL_OK;
 
    }
 
    
 
    return HAL_OK;
 
  }
 
  else
 
  {
 
    return HAL_BUSY; 
 
  }
 
}
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_USART_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_wwdg.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    stm32f0xx_hal_wwdg.c
 
  * @author  MCD Application Team
 
  * @version V1.1.0
 
  * @date    03-Oct-2014
 
  * @brief   WWDG HAL module driver.
 
  *          This file provides firmware functions to manage the following 
 
  *          functionalities of the Window Watchdog (WWDG) peripheral:
 
  *           + Initialization and de-initialization functions
 
  *           + IO operation functions
 
  *           + Peripheral State functions    
 
  *         
 
  @verbatim
 
  ==============================================================================
 
                      ##### WWDG specific features #####
 
  ==============================================================================
 
  [..] 
 
    Once enabled the WWDG generates a system reset on expiry of a programmed
 
    time period, unless the program refreshes the Counter (T[6;0] downcounter) 
 
    before reaching 0x3F value (i.e. a reset is generated when the counter
 
    value rolls over from 0x40 to 0x3F). 
 
       
 
    (+) An MCU reset is also generated if the counter value is refreshed
 
        before the counter has reached the refresh window value. This 
 
        implies that the counter must be refreshed in a limited window.
 
    (+) Once enabled the WWDG cannot be disabled except by a system reset.
 
    (+) WWDGRST flag in RCC_CSR register can be used to inform when a WWDG
 
        reset occurs.               
 
    (+) The WWDG counter input clock is derived from the APB clock divided 
 
        by a programmable prescaler.
 
    (+) WWDG clock (Hz) = PCLK / (4096 * Prescaler)
 
    (+) WWDG timeout (mS) = 1000 * (T[5;0] + 1) / WWDG clock
 
        where T[5;0] are the lowest 6 bits of Counter.
 
    (+) WWDG Counter refresh is allowed between the following limits :
 
        (++) min time (mS) = 1000 * (Counter-Window) / WWDG clock
 
        (++) max time (mS) = 1000 * (Counter-0x40) / WWDG clock
 
 
    (+) Min-max timeout value @48 MHz(PCLK): ~85,3us / ~5,46 ms
 
   
 
 ===============================================================================
 
                     ##### How to use this driver #####
 
 ===============================================================================
 
      [..]
 
      (+) Enable WWDG APB1 clock using __WWDG_CLK_ENABLE().
 
      (+) Set the WWDG prescaler, refresh window and counter value 
 
          using HAL_WWDG_Init() function.
 
      (+) Start the WWDG using HAL_WWDG_Start() function.
 
          When the WWDG is enabled the counter value should be configured to 
 
          a value greater than 0x40 to prevent generating an immediate reset.
 
      (+) Optionally you can enable the Early Wakeup Interrupt (EWI) which is 
 
          generated when the counter reaches 0x40, and then start the WWDG using
 
          HAL_WWDG_Start_IT(). At EWI HAL_WWDG_WakeupCallback is executed and user can 
 
          add his own code by customization of function pointer HAL_WWDG_WakeupCallback
 
          Once enabled, EWI interrupt cannot be disabled except by a system reset.          
 
      (+) Then the application program must refresh the WWDG counter at regular
 
          intervals during normal operation to prevent an MCU reset, using
 
          HAL_WWDG_Refresh() function. This operation must occur only when
 
          the counter is lower than the refresh window value already programmed.
 
  
 
     *** WWDG HAL driver macros list ***
 
     ==================================
 
     [..]
 
       Below the list of most used macros in WWDG HAL driver.
 
       
 
      (+) __HAL_WWDG_ENABLE: Enable the WWDG peripheral 
 
      (+) __HAL_WWDG_GET_FLAG: Get the selected WWDG's flag status
 
      (+) __HAL_WWDG_CLEAR_FLAG: Clear the WWDG's pending flags 
 
      (+) __HAL_WWDG_ENABLE_IT:  Enables the WWDG early wakeup interrupt 
 
 
  @endverbatim
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
 
  *
 
  * Redistribution and use in source and binary forms, with or without modification,
 
  * are permitted provided that the following conditions are met:
 
  *   1. Redistributions of source code must retain the above copyright notice,
 
  *      this list of conditions and the following disclaimer.
 
  *   2. Redistributions in binary form must reproduce the above copyright notice,
 
  *      this list of conditions and the following disclaimer in the documentation
 
  *      and/or other materials provided with the distribution.
 
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
 
  *      may be used to endorse or promote products derived from this software
 
  *      without specific prior written permission.
 
  *
 
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
  *
 
  ******************************************************************************  
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "stm32f0xx_hal.h"
 
 
/** @addtogroup STM32F0xx_HAL_Driver
 
  * @{
 
  */
 
 
/** @defgroup WWDG WWDG HAL module driver
 
  * @brief WWDG HAL module driver.
 
  * @{
 
  */
 
 
#ifdef HAL_WWDG_MODULE_ENABLED
 
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
 
/** @defgroup WWDG_Exported_Functions WWDG Exported Functions
 
  * @{
 
  */
 
 
/** @defgroup WWDG_Exported_Functions_Group1 Initialization and de-initialization functions 
 
 *  @brief    Initialization and Configuration functions. 
 
 *
 
@verbatim    
 
  ==============================================================================
 
          ##### Initialization and de-initialization functions #####
 
  ==============================================================================
 
  [..]  
 
    This section provides functions allowing to:
 
      (+) Initialize the WWDG according to the specified parameters 
 
          in the WWDG_InitTypeDef and create the associated handle
 
      (+) DeInitialize the WWDG peripheral
 
      (+) Initialize the WWDG MSP
 
      (+) DeInitialize the WWDG MSP 
 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Initializes the WWDG according to the specified
 
  *         parameters in the WWDG_InitTypeDef and creates the associated handle.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg)
 
{ 
 
  /* Check the WWDG handle allocation */
 
  if(hwwdg == NULL)
 
  {
 
    return HAL_ERROR;
 
  }
 
 
 
  /* Check the parameters */
 
  assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance));
 
  assert_param(IS_WWDG_PRESCALER(hwwdg->Init.Prescaler));
 
  assert_param(IS_WWDG_WINDOW(hwwdg->Init.Window)); 
 
  assert_param(IS_WWDG_COUNTER(hwwdg->Init.Counter)); 
 
  
 
  if(hwwdg->State == HAL_WWDG_STATE_RESET)
 
  {
 
    /* Init the low level hardware */
 
    HAL_WWDG_MspInit(hwwdg);
 
  }
 
  
 
  /* Change WWDG peripheral state */
 
  hwwdg->State = HAL_WWDG_STATE_BUSY;
 
  
 
  /* Set WWDG Prescaler and Window */
 
  MODIFY_REG(hwwdg->Instance->CFR, (WWDG_CFR_WDGTB | WWDG_CFR_W), (hwwdg->Init.Prescaler | hwwdg->Init.Window));
 
 
 
  /* Set WWDG Counter */
 
  MODIFY_REG(hwwdg->Instance->CR, WWDG_CR_T, hwwdg->Init.Counter);
 
   
 
  /* Change WWDG peripheral state */
 
  hwwdg->State = HAL_WWDG_STATE_READY;
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  DeInitializes the WWDG peripheral. 
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_WWDG_DeInit(WWDG_HandleTypeDef *hwwdg)
 
{
 
  /* Check the parameters */
 
  assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance));
 
 
  /* Change WWDG peripheral state */  
 
  hwwdg->State = HAL_WWDG_STATE_BUSY;
 
 
  /* DeInit the low level hardware */
 
  HAL_WWDG_MspDeInit(hwwdg);
 
  
 
  /* Reset WWDG Control register */
 
  hwwdg->Instance->CR  = (uint32_t)0x0000007F;
 
    
 
  /* Reset WWDG Configuration register */
 
  hwwdg->Instance->CFR = (uint32_t)0x0000007F;
 
  
 
  /* Reset WWDG Status register */
 
  hwwdg->Instance->SR  = 0; 
 
  
 
  /* Change WWDG peripheral state */    
 
  hwwdg->State = HAL_WWDG_STATE_RESET; 
 
 
  /* Release Lock */
 
  __HAL_UNLOCK(hwwdg);
 
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Initializes the WWDG MSP.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval None
 
  */
 
__weak void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_WWDG_MspInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @brief  DeInitializes the WWDG MSP.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval None
 
  */
 
__weak void HAL_WWDG_MspDeInit(WWDG_HandleTypeDef *hwwdg)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_WWDG_MspDeInit could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Exported_Functions_Group2 IO operation functions 
 
 *  @brief    IO operation functions 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                       ##### IO operation functions #####
 
  ==============================================================================  
 
  [..]  
 
    This section provides functions allowing to:
 
      (+) Start the WWDG.
 
      (+) Refresh the WWDG.
 
      (+) Handle WWDG interrupt request. 
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Starts the WWDG.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_WWDG_Start(WWDG_HandleTypeDef *hwwdg)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hwwdg); 
 
  
 
  /* Change WWDG peripheral state */  
 
  hwwdg->State = HAL_WWDG_STATE_BUSY;
 
                  
 
  /* Enable the peripheral */
 
  __HAL_WWDG_ENABLE(hwwdg);  
 
 
  /* Change WWDG peripheral state */    
 
  hwwdg->State = HAL_WWDG_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hwwdg);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Starts the WWDG with interrupt enabled.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_WWDG_Start_IT(WWDG_HandleTypeDef *hwwdg)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hwwdg); 
 
  
 
  /* Change WWDG peripheral state */  
 
  hwwdg->State = HAL_WWDG_STATE_BUSY;
 
 
  /* Enable the Early Wakeup Interrupt */ 
 
  __HAL_WWDG_ENABLE_IT(WWDG_IT_EWI);
 
                  
 
  /* Enable the peripheral */
 
  __HAL_WWDG_ENABLE(hwwdg);  
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Refreshes the WWDG.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @param  Counter: value of counter to put in WWDG counter
 
  * @retval HAL status
 
  */
 
HAL_StatusTypeDef HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg, uint32_t Counter)
 
{
 
  /* Process Locked */
 
  __HAL_LOCK(hwwdg); 
 
 
  /* Change WWDG peripheral state */  
 
  hwwdg->State = HAL_WWDG_STATE_BUSY;
 
 
  /* Check the parameters */
 
  assert_param(IS_WWDG_COUNTER(Counter));
 
 
  /* Write to WWDG CR the WWDG Counter value to refresh with */
 
  MODIFY_REG(hwwdg->Instance->CR, (uint32_t)WWDG_CR_T, Counter);
 
  
 
  /* Change WWDG peripheral state */    
 
  hwwdg->State = HAL_WWDG_STATE_READY; 
 
                  
 
  /* Process Unlocked */
 
  __HAL_UNLOCK(hwwdg);
 
  
 
  /* Return function status */
 
  return HAL_OK;
 
}
 
 
/**
 
  * @brief  Handles WWDG interrupt request.
 
  * @note   The Early Wakeup Interrupt (EWI) can be used if specific safety operations 
 
  *         or data logging must be performed before the actual reset is generated. 
 
  *         The EWI interrupt is enabled using __HAL_WWDG_ENABLE_IT() macro.
 
  *         When the downcounter reaches the value 0x40, and EWI interrupt is 
 
  *         generated and the corresponding Interrupt Service Routine (ISR) can 
 
  *         be used to trigger specific actions (such as communications or data 
 
  *         logging), before resetting the device. 
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval None
 
  */
 
void HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg)
 
{
 
  /* WWDG Early Wakeup Interrupt occurred */   
 
  if(__HAL_WWDG_GET_FLAG(hwwdg, WWDG_FLAG_EWIF) != RESET)
 
  {
 
    /* Early Wakeup callback */ 
 
    HAL_WWDG_WakeupCallback(hwwdg);
 
  
 
    /* Change WWDG peripheral state */
 
    hwwdg->State = HAL_WWDG_STATE_READY; 
 
                  
 
    /* Clear the WWDG Data Ready flag */
 
    __HAL_WWDG_CLEAR_IT(hwwdg, WWDG_FLAG_EWIF);
 
  
 
    /* Process Unlocked */
 
    __HAL_UNLOCK(hwwdg);
 
}
 
  }
 
 
/**
 
  * @brief  Early Wakeup WWDG callback.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval None
 
  */
 
__weak void HAL_WWDG_WakeupCallback(WWDG_HandleTypeDef* hwwdg)
 
{
 
  /* NOTE : This function Should not be modified, when the callback is needed,
 
            the HAL_WWDG_WakeupCallback could be implemented in the user file
 
   */
 
}
 
 
/**
 
  * @}
 
  */
 
 
/** @defgroup WWDG_Exported_Functions_Group3 Peripheral State functions 
 
 *  @brief    Peripheral State functions. 
 
 *
 
@verbatim   
 
  ==============================================================================
 
                        ##### Peripheral State functions #####
 
  ==============================================================================  
 
    [..]
 
    This subsection permits to get in run-time the status of the peripheral 
 
    and the data flow.
 
 
@endverbatim
 
  * @{
 
  */
 
 
/**
 
  * @brief  Returns the WWDG state.
 
  * @param  hwwdg: pointer to a WWDG_HandleTypeDef structure that contains
 
  *              the configuration information for the specified WWDG module.
 
  * @retval HAL state
 
  */
 
HAL_WWDG_StateTypeDef HAL_WWDG_GetState(WWDG_HandleTypeDef *hwwdg)
 
{
 
  return hwwdg->State;
 
}
 
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
#endif /* HAL_WWDG_MODULE_ENABLED */
 
/**
 
  * @}
 
  */
 
 
/**
 
  * @}
 
  */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_adc.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_can.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_cec.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_comp.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_crc.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_crs.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_dac.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_dbgmcu.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_dma.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_exti.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_flash.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_gpio.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_i2c.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_iwdg.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_misc.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_pwr.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_rcc.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_rtc.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_spi.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_syscfg.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_tim.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_usart.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/inc/stm32f0xx_wwdg.h
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_adc.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_can.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_cec.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_comp.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_crc.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_crs.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_dac.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_dbgmcu.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_dma.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_exti.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_flash.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_gpio.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_i2c.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_iwdg.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_misc.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_pwr.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_rcc.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_rtc.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_spi.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_syscfg.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_tim.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_usart.c
Show inline comments
 
deleted file
libraries/STM32F0xx_StdPeriph_Driver/src/stm32f0xx_wwdg.c
Show inline comments
 
deleted file
libraries/STM32_USB_Device_Library/Class/CDC/usbd_cdc.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_cdc.c
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   This file provides the high layer firmware functions to manage the 
 
  *          following functionalities of the USB CDC Class:
 
  *           - Initialization and Configuration of high and low layer
 
  *           - Enumeration as CDC Device (and enumeration for each implemented memory interface)
 
  *           - OUT/IN data transfer
 
  *           - Command IN transfer (class requests management)
 
  *           - Error management
 
  *           
 
  *  @verbatim
 
  *      
 
  *          ===================================================================      
 
  *                                CDC Class Driver Description
 
  *          =================================================================== 
 
  *           This driver manages the "Universal Serial Bus Class Definitions for Communications Devices
 
  *           Revision 1.2 November 16, 2007" and the sub-protocol specification of "Universal Serial Bus 
 
  *           Communications Class Subclass Specification for PSTN Devices Revision 1.2 February 9, 2007"
 
  *           This driver implements the following aspects of the specification:
 
  *             - Device descriptor management
 
  *             - Configuration descriptor management
 
  *             - Enumeration as CDC device with 2 data endpoints (IN and OUT) and 1 command endpoint (IN)
 
  *             - Requests management (as described in section 6.2 in specification)
 
  *             - Abstract Control Model compliant
 
  *             - Union Functional collection (using 1 IN endpoint for control)
 
  *             - Data interface class
 
  * 
 
  *           These aspects may be enriched or modified for a specific user application.
 
  *          
 
  *            This driver doesn't implement the following aspects of the specification 
 
  *            (but it is possible to manage these features with some modifications on this driver):
 
  *             - Any class-specific aspect relative to communication classes should be managed by user application.
 
  *             - All communication classes other than PSTN are not managed
 
  *      
 
  *  @endverbatim
 
  *                                  
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "USBD_CDC.h"
 
#include "usbd_desc.h"
 
#include "usbd_ctlreq.h"
 
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
 
 
/** @defgroup USBD_CDC 
 
  * @brief usbd core module
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_CDC_Private_TypesDefinitions
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CDC_Private_Defines
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CDC_Private_Macros
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CDC_Private_FunctionPrototypes
 
  * @{
 
  */
 
 
 
static uint8_t  USBD_CDC_Init (USBD_HandleTypeDef *pdev, 
 
                               uint8_t cfgidx);
 
 
static uint8_t  USBD_CDC_DeInit (USBD_HandleTypeDef *pdev, 
 
                                 uint8_t cfgidx);
 
 
static uint8_t  USBD_CDC_Setup (USBD_HandleTypeDef *pdev, 
 
                                USBD_SetupReqTypedef *req);
 
 
static uint8_t  USBD_CDC_DataIn (USBD_HandleTypeDef *pdev, 
 
                                 uint8_t epnum);
 
 
static uint8_t  USBD_CDC_DataOut (USBD_HandleTypeDef *pdev, 
 
                                 uint8_t epnum);
 
 
static uint8_t  USBD_CDC_EP0_RxReady (USBD_HandleTypeDef *pdev);
 
 
static uint8_t  *USBD_CDC_GetFSCfgDesc (uint16_t *length);
 
 
static uint8_t  *USBD_CDC_GetHSCfgDesc (uint16_t *length);
 
 
static uint8_t  *USBD_CDC_GetOtherSpeedCfgDesc (uint16_t *length);
 
 
static uint8_t  *USBD_CDC_GetOtherSpeedCfgDesc (uint16_t *length);
 
 
uint8_t  *USBD_CDC_GetDeviceQualifierDescriptor (uint16_t *length);
 
 
/* USB Standard Device Descriptor */
 
__ALIGN_BEGIN static uint8_t USBD_CDC_DeviceQualifierDesc[USB_LEN_DEV_QUALIFIER_DESC] __ALIGN_END =
 
{
 
  USB_LEN_DEV_QUALIFIER_DESC,
 
  USB_DESC_TYPE_DEVICE_QUALIFIER,
 
  0x00,
 
  0x02,
 
  0x00,
 
  0x00,
 
  0x00,
 
  0x40,
 
  0x01,
 
  0x00,
 
};
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CDC_Private_Variables
 
  * @{
 
  */ 
 
 
 
/* CDC interface class callbacks structure */
 
USBD_ClassTypeDef  USBD_CDC = 
 
{
 
  USBD_CDC_Init,
 
  USBD_CDC_DeInit,
 
  USBD_CDC_Setup,
 
  NULL,                 /* EP0_TxSent, */
 
  USBD_CDC_EP0_RxReady,
 
  USBD_CDC_DataIn,
 
  USBD_CDC_DataOut,
 
  NULL,
 
  NULL,
 
  NULL,     
 
  USBD_CDC_GetHSCfgDesc,  
 
  USBD_CDC_GetFSCfgDesc,    
 
  USBD_CDC_GetOtherSpeedCfgDesc, 
 
  USBD_CDC_GetDeviceQualifierDescriptor,
 
};
 
 
/* USB CDC device Configuration Descriptor */
 
__ALIGN_BEGIN uint8_t USBD_CDC_CfgHSDesc[USB_CDC_CONFIG_DESC_SIZ] __ALIGN_END =
 
{
 
  /*Configuration Descriptor*/
 
  0x09,   /* bLength: Configuration Descriptor size */
 
  USB_DESC_TYPE_CONFIGURATION,      /* bDescriptorType: Configuration */
 
  USB_CDC_CONFIG_DESC_SIZ,                /* wTotalLength:no of returned bytes */
 
  0x00,
 
  0x02,   /* bNumInterfaces: 2 interface */
 
  0x01,   /* bConfigurationValue: Configuration value */
 
  0x00,   /* iConfiguration: Index of string descriptor describing the configuration */
 
  0xC0,   /* bmAttributes: self powered */
 
  0x32,   /* MaxPower 0 mA */
 
  
 
  /*---------------------------------------------------------------------------*/
 
  
 
  /*Interface Descriptor */
 
  0x09,   /* bLength: Interface Descriptor size */
 
  USB_DESC_TYPE_INTERFACE,  /* bDescriptorType: Interface */
 
  /* Interface descriptor type */
 
  0x00,   /* bInterfaceNumber: Number of Interface */
 
  0x00,   /* bAlternateSetting: Alternate setting */
 
  0x01,   /* bNumEndpoints: One endpoints used */
 
  0x02,   /* bInterfaceClass: Communication Interface Class */
 
  0x02,   /* bInterfaceSubClass: Abstract Control Model */
 
  0x01,   /* bInterfaceProtocol: Common AT commands */
 
  0x00,   /* iInterface: */
 
  
 
  /*Header Functional Descriptor*/
 
  0x05,   /* bLength: Endpoint Descriptor size */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x00,   /* bDescriptorSubtype: Header Func Desc */
 
  0x10,   /* bcdCDC: spec release number */
 
  0x01,
 
  
 
  /*Call Management Functional Descriptor*/
 
  0x05,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x01,   /* bDescriptorSubtype: Call Management Func Desc */
 
  0x00,   /* bmCapabilities: D0+D1 */
 
  0x01,   /* bDataInterface: 1 */
 
  
 
  /*ACM Functional Descriptor*/
 
  0x04,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x02,   /* bDescriptorSubtype: Abstract Control Management desc */
 
  0x02,   /* bmCapabilities */
 
  
 
  /*Union Functional Descriptor*/
 
  0x05,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x06,   /* bDescriptorSubtype: Union func desc */
 
  0x00,   /* bMasterInterface: Communication class interface */
 
  0x01,   /* bSlaveInterface0: Data Class Interface */
 
  
 
  /*Endpoint 2 Descriptor*/
 
  0x07,                           /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,   /* bDescriptorType: Endpoint */
 
  CDC_CMD_EP,                     /* bEndpointAddress */
 
  0x03,                           /* bmAttributes: Interrupt */
 
  LOBYTE(CDC_CMD_PACKET_SIZE),     /* wMaxPacketSize: */
 
  HIBYTE(CDC_CMD_PACKET_SIZE),
 
  0x10,                           /* bInterval: */ 
 
  /*---------------------------------------------------------------------------*/
 
  
 
  /*Data class interface descriptor*/
 
  0x09,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_INTERFACE,  /* bDescriptorType: */
 
  0x01,   /* bInterfaceNumber: Number of Interface */
 
  0x00,   /* bAlternateSetting: Alternate setting */
 
  0x02,   /* bNumEndpoints: Two endpoints used */
 
  0x0A,   /* bInterfaceClass: CDC */
 
  0x00,   /* bInterfaceSubClass: */
 
  0x00,   /* bInterfaceProtocol: */
 
  0x00,   /* iInterface: */
 
  
 
  /*Endpoint OUT Descriptor*/
 
  0x07,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,      /* bDescriptorType: Endpoint */
 
  CDC_OUT_EP,                        /* bEndpointAddress */
 
  0x02,                              /* bmAttributes: Bulk */
 
  LOBYTE(CDC_DATA_HS_MAX_PACKET_SIZE),  /* wMaxPacketSize: */
 
  HIBYTE(CDC_DATA_HS_MAX_PACKET_SIZE),
 
  0x00,                              /* bInterval: ignore for Bulk transfer */
 
  
 
  /*Endpoint IN Descriptor*/
 
  0x07,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,      /* bDescriptorType: Endpoint */
 
  CDC_IN_EP,                         /* bEndpointAddress */
 
  0x02,                              /* bmAttributes: Bulk */
 
  LOBYTE(CDC_DATA_HS_MAX_PACKET_SIZE),  /* wMaxPacketSize: */
 
  HIBYTE(CDC_DATA_HS_MAX_PACKET_SIZE),
 
  0x00                               /* bInterval: ignore for Bulk transfer */
 
} ;
 
 
 
/* USB CDC device Configuration Descriptor */
 
__ALIGN_BEGIN uint8_t USBD_CDC_CfgFSDesc[USB_CDC_CONFIG_DESC_SIZ] __ALIGN_END =
 
{
 
  /*Configuration Descriptor*/
 
  0x09,   /* bLength: Configuration Descriptor size */
 
  USB_DESC_TYPE_CONFIGURATION,      /* bDescriptorType: Configuration */
 
  USB_CDC_CONFIG_DESC_SIZ,                /* wTotalLength:no of returned bytes */
 
  0x00,
 
  0x02,   /* bNumInterfaces: 2 interface */
 
  0x01,   /* bConfigurationValue: Configuration value */
 
  0x00,   /* iConfiguration: Index of string descriptor describing the configuration */
 
  0xC0,   /* bmAttributes: self powered */
 
  0x32,   /* MaxPower 0 mA */
 
  
 
  /*---------------------------------------------------------------------------*/
 
  
 
  /*Interface Descriptor */
 
  0x09,   /* bLength: Interface Descriptor size */
 
  USB_DESC_TYPE_INTERFACE,  /* bDescriptorType: Interface */
 
  /* Interface descriptor type */
 
  0x00,   /* bInterfaceNumber: Number of Interface */
 
  0x00,   /* bAlternateSetting: Alternate setting */
 
  0x01,   /* bNumEndpoints: One endpoints used */
 
  0x02,   /* bInterfaceClass: Communication Interface Class */
 
  0x02,   /* bInterfaceSubClass: Abstract Control Model */
 
  0x01,   /* bInterfaceProtocol: Common AT commands */
 
  0x00,   /* iInterface: */
 
  
 
  /*Header Functional Descriptor*/
 
  0x05,   /* bLength: Endpoint Descriptor size */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x00,   /* bDescriptorSubtype: Header Func Desc */
 
  0x10,   /* bcdCDC: spec release number */
 
  0x01,
 
  
 
  /*Call Management Functional Descriptor*/
 
  0x05,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x01,   /* bDescriptorSubtype: Call Management Func Desc */
 
  0x00,   /* bmCapabilities: D0+D1 */
 
  0x01,   /* bDataInterface: 1 */
 
  
 
  /*ACM Functional Descriptor*/
 
  0x04,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x02,   /* bDescriptorSubtype: Abstract Control Management desc */
 
  0x02,   /* bmCapabilities */
 
  
 
  /*Union Functional Descriptor*/
 
  0x05,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x06,   /* bDescriptorSubtype: Union func desc */
 
  0x00,   /* bMasterInterface: Communication class interface */
 
  0x01,   /* bSlaveInterface0: Data Class Interface */
 
  
 
  /*Endpoint 2 Descriptor*/
 
  0x07,                           /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,   /* bDescriptorType: Endpoint */
 
  CDC_CMD_EP,                     /* bEndpointAddress */
 
  0x03,                           /* bmAttributes: Interrupt */
 
  LOBYTE(CDC_CMD_PACKET_SIZE),     /* wMaxPacketSize: */
 
  HIBYTE(CDC_CMD_PACKET_SIZE),
 
  0x10,                           /* bInterval: */ 
 
  /*---------------------------------------------------------------------------*/
 
  
 
  /*Data class interface descriptor*/
 
  0x09,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_INTERFACE,  /* bDescriptorType: */
 
  0x01,   /* bInterfaceNumber: Number of Interface */
 
  0x00,   /* bAlternateSetting: Alternate setting */
 
  0x02,   /* bNumEndpoints: Two endpoints used */
 
  0x0A,   /* bInterfaceClass: CDC */
 
  0x00,   /* bInterfaceSubClass: */
 
  0x00,   /* bInterfaceProtocol: */
 
  0x00,   /* iInterface: */
 
  
 
  /*Endpoint OUT Descriptor*/
 
  0x07,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,      /* bDescriptorType: Endpoint */
 
  CDC_OUT_EP,                        /* bEndpointAddress */
 
  0x02,                              /* bmAttributes: Bulk */
 
  LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),  /* wMaxPacketSize: */
 
  HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
 
  0x00,                              /* bInterval: ignore for Bulk transfer */
 
  
 
  /*Endpoint IN Descriptor*/
 
  0x07,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,      /* bDescriptorType: Endpoint */
 
  CDC_IN_EP,                         /* bEndpointAddress */
 
  0x02,                              /* bmAttributes: Bulk */
 
  LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),  /* wMaxPacketSize: */
 
  HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
 
  0x00                               /* bInterval: ignore for Bulk transfer */
 
} ;
 
 
__ALIGN_BEGIN uint8_t USBD_CDC_OtherSpeedCfgDesc[USB_CDC_CONFIG_DESC_SIZ] __ALIGN_END =
 
{ 
 
  0x09,   /* bLength: Configuation Descriptor size */
 
  USB_DESC_TYPE_OTHER_SPEED_CONFIGURATION,   
 
  USB_CDC_CONFIG_DESC_SIZ,
 
  0x00,
 
  0x02,   /* bNumInterfaces: 2 interfaces */
 
  0x01,   /* bConfigurationValue: */
 
  0x04,   /* iConfiguration: */
 
  0xC0,   /* bmAttributes: */
 
  0x32,   /* MaxPower 100 mA */  
 
  
 
  /*Interface Descriptor */
 
  0x09,   /* bLength: Interface Descriptor size */
 
  USB_DESC_TYPE_INTERFACE,  /* bDescriptorType: Interface */
 
  /* Interface descriptor type */
 
  0x00,   /* bInterfaceNumber: Number of Interface */
 
  0x00,   /* bAlternateSetting: Alternate setting */
 
  0x01,   /* bNumEndpoints: One endpoints used */
 
  0x02,   /* bInterfaceClass: Communication Interface Class */
 
  0x02,   /* bInterfaceSubClass: Abstract Control Model */
 
  0x01,   /* bInterfaceProtocol: Common AT commands */
 
  0x00,   /* iInterface: */
 
  
 
  /*Header Functional Descriptor*/
 
  0x05,   /* bLength: Endpoint Descriptor size */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x00,   /* bDescriptorSubtype: Header Func Desc */
 
  0x10,   /* bcdCDC: spec release number */
 
  0x01,
 
  
 
  /*Call Management Functional Descriptor*/
 
  0x05,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x01,   /* bDescriptorSubtype: Call Management Func Desc */
 
  0x00,   /* bmCapabilities: D0+D1 */
 
  0x01,   /* bDataInterface: 1 */
 
  
 
  /*ACM Functional Descriptor*/
 
  0x04,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x02,   /* bDescriptorSubtype: Abstract Control Management desc */
 
  0x02,   /* bmCapabilities */
 
  
 
  /*Union Functional Descriptor*/
 
  0x05,   /* bFunctionLength */
 
  0x24,   /* bDescriptorType: CS_INTERFACE */
 
  0x06,   /* bDescriptorSubtype: Union func desc */
 
  0x00,   /* bMasterInterface: Communication class interface */
 
  0x01,   /* bSlaveInterface0: Data Class Interface */
 
  
 
  /*Endpoint 2 Descriptor*/
 
  0x07,                           /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT      ,   /* bDescriptorType: Endpoint */
 
  CDC_CMD_EP,                     /* bEndpointAddress */
 
  0x03,                           /* bmAttributes: Interrupt */
 
  LOBYTE(CDC_CMD_PACKET_SIZE),     /* wMaxPacketSize: */
 
  HIBYTE(CDC_CMD_PACKET_SIZE),
 
  0xFF,                           /* bInterval: */
 
  
 
  /*---------------------------------------------------------------------------*/
 
  
 
  /*Data class interface descriptor*/
 
  0x09,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_INTERFACE,  /* bDescriptorType: */
 
  0x01,   /* bInterfaceNumber: Number of Interface */
 
  0x00,   /* bAlternateSetting: Alternate setting */
 
  0x02,   /* bNumEndpoints: Two endpoints used */
 
  0x0A,   /* bInterfaceClass: CDC */
 
  0x00,   /* bInterfaceSubClass: */
 
  0x00,   /* bInterfaceProtocol: */
 
  0x00,   /* iInterface: */
 
  
 
  /*Endpoint OUT Descriptor*/
 
  0x07,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,      /* bDescriptorType: Endpoint */
 
  CDC_OUT_EP,                        /* bEndpointAddress */
 
  0x02,                              /* bmAttributes: Bulk */
 
  0x40,                              /* wMaxPacketSize: */
 
  0x00,
 
  0x00,                              /* bInterval: ignore for Bulk transfer */
 
  
 
  /*Endpoint IN Descriptor*/
 
  0x07,   /* bLength: Endpoint Descriptor size */
 
  USB_DESC_TYPE_ENDPOINT,     /* bDescriptorType: Endpoint */
 
  CDC_IN_EP,                        /* bEndpointAddress */
 
  0x02,                             /* bmAttributes: Bulk */
 
  0x40,                             /* wMaxPacketSize: */
 
  0x00,
 
  0x00                              /* bInterval */
 
};
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CDC_Private_Functions
 
  * @{
 
  */ 
 
 
/**
 
  * @brief  USBD_CDC_Init
 
  *         Initilaize the CDC interface
 
  * @param  pdev: device instance
 
  * @param  cfgidx: Configuration index
 
  * @retval status
 
  */
 
static uint8_t  USBD_CDC_Init (USBD_HandleTypeDef *pdev, 
 
                               uint8_t cfgidx)
 
{
 
  uint8_t ret = 0;
 
  USBD_CDC_HandleTypeDef   *hcdc;
 
  
 
  if(pdev->dev_speed == USBD_SPEED_HIGH  ) 
 
  {  
 
    /* Open EP IN */
 
    USBD_LL_OpenEP(pdev,
 
                   CDC_IN_EP,
 
                   USBD_EP_TYPE_BULK,
 
                   CDC_DATA_HS_IN_PACKET_SIZE);
 
    
 
    /* Open EP OUT */
 
    USBD_LL_OpenEP(pdev,
 
                   CDC_OUT_EP,
 
                   USBD_EP_TYPE_BULK,
 
                   CDC_DATA_HS_OUT_PACKET_SIZE);
 
    
 
  }
 
  else
 
  {
 
    /* Open EP IN */
 
    USBD_LL_OpenEP(pdev,
 
                   CDC_IN_EP,
 
                   USBD_EP_TYPE_BULK,
 
                   CDC_DATA_FS_IN_PACKET_SIZE);
 
    
 
    /* Open EP OUT */
 
    USBD_LL_OpenEP(pdev,
 
                   CDC_OUT_EP,
 
                   USBD_EP_TYPE_BULK,
 
                   CDC_DATA_FS_OUT_PACKET_SIZE);
 
  }
 
  /* Open Command IN EP */
 
  USBD_LL_OpenEP(pdev,
 
                 CDC_CMD_EP,
 
                 USBD_EP_TYPE_INTR,
 
                 CDC_CMD_PACKET_SIZE);
 
  
 
    
 
  pdev->pClassData = USBD_malloc(sizeof (USBD_CDC_HandleTypeDef));
 
  
 
  if(pdev->pClassData == NULL)
 
  {
 
    ret = 1; 
 
  }
 
  else
 
  {
 
    hcdc = pdev->pClassData;
 
    
 
    /* Init  physical Interface components */
 
    ((USBD_CDC_ItfTypeDef *)pdev->pUserData)->Init();
 
    
 
    /* Init Xfer states */
 
    hcdc->TxState =0;
 
    hcdc->RxState =0;
 
       
 
    if(pdev->dev_speed == USBD_SPEED_HIGH  ) 
 
    {      
 
      /* Prepare Out endpoint to receive next packet */
 
      USBD_LL_PrepareReceive(pdev,
 
                             CDC_OUT_EP,
 
                             hcdc->RxBuffer,
 
                             CDC_DATA_HS_OUT_PACKET_SIZE);
 
    }
 
    else
 
    {
 
      /* Prepare Out endpoint to receive next packet */
 
      USBD_LL_PrepareReceive(pdev,
 
                             CDC_OUT_EP,
 
                             hcdc->RxBuffer,
 
                             CDC_DATA_FS_OUT_PACKET_SIZE);
 
    }
 
    
 
    
 
  }
 
  return ret;
 
}
 
 
/**
 
  * @brief  USBD_CDC_Init
 
  *         DeInitialize the CDC layer
 
  * @param  pdev: device instance
 
  * @param  cfgidx: Configuration index
 
  * @retval status
 
  */
 
static uint8_t  USBD_CDC_DeInit (USBD_HandleTypeDef *pdev, 
 
                                 uint8_t cfgidx)
 
{
 
  uint8_t ret = 0;
 
  
 
  /* Open EP IN */
 
  USBD_LL_CloseEP(pdev,
 
              CDC_IN_EP);
 
  
 
  /* Open EP OUT */
 
  USBD_LL_CloseEP(pdev,
 
              CDC_OUT_EP);
 
  
 
  /* Open Command IN EP */
 
  USBD_LL_CloseEP(pdev,
 
              CDC_CMD_EP);
 
  
 
  
 
  /* DeInit  physical Interface components */
 
  if(pdev->pClassData != NULL)
 
  {
 
    ((USBD_CDC_ItfTypeDef *)pdev->pUserData)->DeInit();
 
    USBD_free(pdev->pClassData);
 
    pdev->pClassData = NULL;
 
  }
 
  
 
  return ret;
 
}
 
 
/**
 
  * @brief  USBD_CDC_Setup
 
  *         Handle the CDC specific requests
 
  * @param  pdev: instance
 
  * @param  req: usb requests
 
  * @retval status
 
  */
 
static uint8_t  USBD_CDC_Setup (USBD_HandleTypeDef *pdev, 
 
                                USBD_SetupReqTypedef *req)
 
{
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  switch (req->bmRequest & USB_REQ_TYPE_MASK)
 
  {
 
  case USB_REQ_TYPE_CLASS :
 
    if (req->wLength)
 
    {
 
      if (req->bmRequest & 0x80)
 
      {
 
        ((USBD_CDC_ItfTypeDef *)pdev->pUserData)->Control(req->bRequest,
 
                                                          (uint8_t *)hcdc->data,
 
                                                          req->wLength);
 
          USBD_CtlSendData (pdev, 
 
                            (uint8_t *)hcdc->data,
 
                            req->wLength);
 
      }
 
      else
 
      {
 
        hcdc->CmdOpCode = req->bRequest;
 
        hcdc->CmdLength = req->wLength;
 
        
 
        USBD_CtlPrepareRx (pdev, 
 
                           (uint8_t *)hcdc->data,
 
                           req->wLength);
 
      }
 
      
 
    }
 
    else
 
    {
 
        ((USBD_CDC_ItfTypeDef *)pdev->pUserData)->Control(req->bRequest,
 
                                                          NULL,
 
                                                          0);
 
    }
 
    break;
 
 
 
  default: 
 
    break;
 
  }
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  usbd_audio_DataIn
 
  *         Data sent on non-control IN endpoint
 
  * @param  pdev: device instance
 
  * @param  epnum: endpoint number
 
  * @retval status
 
  */
 
static uint8_t  USBD_CDC_DataIn (USBD_HandleTypeDef *pdev, uint8_t epnum)
 
{
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  if(pdev->pClassData != NULL)
 
  {
 
    
 
    hcdc->TxState = 0;
 
 
    return USBD_OK;
 
  }
 
  else
 
  {
 
    return USBD_FAIL;
 
  }
 
}
 
 
/**
 
  * @brief  USBD_CDC_DataOut
 
  *         Data received on non-control Out endpoint
 
  * @param  pdev: device instance
 
  * @param  epnum: endpoint number
 
  * @retval status
 
  */
 
static uint8_t  USBD_CDC_DataOut (USBD_HandleTypeDef *pdev, uint8_t epnum)
 
{      
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  /* Get the received data length */
 
  hcdc->RxLength = USBD_LL_GetRxDataSize (pdev, epnum);
 
  
 
  /* USB data will be immediately processed, this allow next USB traffic being 
 
  NAKed till the end of the application Xfer */
 
  if(pdev->pClassData != NULL)
 
  {
 
    ((USBD_CDC_ItfTypeDef *)pdev->pUserData)->Receive(hcdc->RxBuffer, &hcdc->RxLength);
 
 
    return USBD_OK;
 
  }
 
  else
 
  {
 
    return USBD_FAIL;
 
  }
 
}
 
 
 
 
/**
 
  * @brief  USBD_CDC_DataOut
 
  *         Data received on non-control Out endpoint
 
  * @param  pdev: device instance
 
  * @param  epnum: endpoint number
 
  * @retval status
 
  */
 
static uint8_t  USBD_CDC_EP0_RxReady (USBD_HandleTypeDef *pdev)
 
{ 
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  if((pdev->pUserData != NULL) && (hcdc->CmdOpCode != 0xFF))
 
  {
 
    ((USBD_CDC_ItfTypeDef *)pdev->pUserData)->Control(hcdc->CmdOpCode,
 
                                                      (uint8_t *)hcdc->data,
 
                                                      hcdc->CmdLength);
 
      hcdc->CmdOpCode = 0xFF; 
 
      
 
  }
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  USBD_CDC_GetFSCfgDesc 
 
  *         Return configuration descriptor
 
  * @param  speed : current device speed
 
  * @param  length : pointer data length
 
  * @retval pointer to descriptor buffer
 
  */
 
static uint8_t  *USBD_CDC_GetFSCfgDesc (uint16_t *length)
 
{
 
  *length = sizeof (USBD_CDC_CfgFSDesc);
 
  return USBD_CDC_CfgFSDesc;
 
}
 
 
/**
 
  * @brief  USBD_CDC_GetHSCfgDesc 
 
  *         Return configuration descriptor
 
  * @param  speed : current device speed
 
  * @param  length : pointer data length
 
  * @retval pointer to descriptor buffer
 
  */
 
static uint8_t  *USBD_CDC_GetHSCfgDesc (uint16_t *length)
 
{
 
  *length = sizeof (USBD_CDC_CfgHSDesc);
 
  return USBD_CDC_CfgHSDesc;
 
}
 
 
/**
 
  * @brief  USBD_CDC_GetCfgDesc 
 
  *         Return configuration descriptor
 
  * @param  speed : current device speed
 
  * @param  length : pointer data length
 
  * @retval pointer to descriptor buffer
 
  */
 
static uint8_t  *USBD_CDC_GetOtherSpeedCfgDesc (uint16_t *length)
 
{
 
  *length = sizeof (USBD_CDC_OtherSpeedCfgDesc);
 
  return USBD_CDC_OtherSpeedCfgDesc;
 
}
 
 
/**
 
* @brief  DeviceQualifierDescriptor 
 
*         return Device Qualifier descriptor
 
* @param  length : pointer data length
 
* @retval pointer to descriptor buffer
 
*/
 
uint8_t  *USBD_CDC_GetDeviceQualifierDescriptor (uint16_t *length)
 
{
 
  *length = sizeof (USBD_CDC_DeviceQualifierDesc);
 
  return USBD_CDC_DeviceQualifierDesc;
 
}
 
 
/**
 
* @brief  USBD_CDC_RegisterInterface
 
  * @param  pdev: device instance
 
  * @param  fops: CD  Interface callback
 
  * @retval status
 
  */
 
uint8_t  USBD_CDC_RegisterInterface  (USBD_HandleTypeDef   *pdev, 
 
                                      USBD_CDC_ItfTypeDef *fops)
 
{
 
  uint8_t  ret = USBD_FAIL;
 
  
 
  if(fops != NULL)
 
  {
 
    pdev->pUserData= fops;
 
    ret = USBD_OK;    
 
  }
 
  
 
  return ret;
 
}
 
 
/**
 
  * @brief  USBD_CDC_SetTxBuffer
 
  * @param  pdev: device instance
 
  * @param  pbuff: Tx Buffer
 
  * @retval status
 
  */
 
uint8_t  USBD_CDC_SetTxBuffer  (USBD_HandleTypeDef   *pdev,
 
                                uint8_t  *pbuff,
 
                                uint16_t length)
 
{
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  hcdc->TxBuffer = pbuff;
 
  hcdc->TxLength = length;  
 
  
 
  return USBD_OK;  
 
}
 
 
 
/**
 
  * @brief  USBD_CDC_SetRxBuffer
 
  * @param  pdev: device instance
 
  * @param  pbuff: Rx Buffer
 
  * @retval status
 
  */
 
uint8_t  USBD_CDC_SetRxBuffer  (USBD_HandleTypeDef   *pdev,
 
                                   uint8_t  *pbuff)
 
{
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  hcdc->RxBuffer = pbuff;
 
  
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  USBD_CDC_DataOut
 
  *         Data received on non-control Out endpoint
 
  * @param  pdev: device instance
 
  * @param  epnum: endpoint number
 
  * @retval status
 
  */
 
uint8_t  USBD_CDC_TransmitPacket(USBD_HandleTypeDef *pdev)
 
{      
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  if(pdev->pClassData != NULL)
 
  {
 
    if(hcdc->TxState == 0)
 
    {
 
      
 
      /* Transmit next packet */
 
      USBD_LL_Transmit(pdev,
 
                       CDC_IN_EP,
 
                       hcdc->TxBuffer,
 
                       hcdc->TxLength);
 
      
 
      /* Tx Transfer in progress */
 
      hcdc->TxState = 1;
 
      return USBD_OK;
 
    }
 
    else
 
    {
 
      return USBD_BUSY;
 
    }
 
  }
 
  else
 
  {
 
    return USBD_FAIL;
 
  }
 
}
 
 
 
/**
 
  * @brief  USBD_CDC_ReceivePacket
 
  *         prepare OUT Endpoint for reception
 
  * @param  pdev: device instance
 
  * @retval status
 
  */
 
uint8_t  USBD_CDC_ReceivePacket(USBD_HandleTypeDef *pdev)
 
{      
 
  USBD_CDC_HandleTypeDef   *hcdc = pdev->pClassData;
 
  
 
  /* Suspend or Resume USB Out process */
 
  if(pdev->pClassData != NULL)
 
  {
 
    if(pdev->dev_speed == USBD_SPEED_HIGH  ) 
 
    {      
 
      /* Prepare Out endpoint to receive next packet */
 
      USBD_LL_PrepareReceive(pdev,
 
                             CDC_OUT_EP,
 
                             hcdc->RxBuffer,
 
                             CDC_DATA_HS_OUT_PACKET_SIZE);
 
    }
 
    else
 
    {
 
      /* Prepare Out endpoint to receive next packet */
 
      USBD_LL_PrepareReceive(pdev,
 
                             CDC_OUT_EP,
 
                             hcdc->RxBuffer,
 
                             CDC_DATA_FS_OUT_PACKET_SIZE);
 
    }
 
    return USBD_OK;
 
  }
 
  else
 
  {
 
    return USBD_FAIL;
 
  }
 
}
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Class/CDC/usbd_cdc.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_cdc.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   header file for the usbd_cdc.c file.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
 
#ifndef __USB_CDC_CORE_H_
 
#define __USB_CDC_CORE_H_
 
 
#include  "usbd_ioreq.h"
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
  
 
/** @defgroup usbd_cdc
 
  * @brief This file is the Header file for USBD_cdc.c
 
  * @{
 
  */ 
 
 
 
/** @defgroup usbd_cdc_Exported_Defines
 
  * @{
 
  */ 
 
#define CDC_IN_EP                       0x81  /* EP1 for data IN */
 
#define CDC_OUT_EP                      0x01  /* EP1 for data OUT */
 
#define CDC_CMD_EP                      0x82  /* EP2 for CDC commands */
 
 
/* CDC Endpoints parameters: you can fine tune these values depending on the needed baudrates and performance. */
 
#define CDC_DATA_HS_MAX_PACKET_SIZE        512  /* Endpoint IN & OUT Packet size */
 
#define CDC_DATA_FS_MAX_PACKET_SIZE         64  /* Endpoint IN & OUT Packet size */
 
#define CDC_CMD_PACKET_SIZE                  8  /* Control Endpoint Packet size */ 
 
 
#define USB_CDC_CONFIG_DESC_SIZ                67
 
#define CDC_DATA_HS_IN_PACKET_SIZE                CDC_DATA_HS_MAX_PACKET_SIZE
 
#define CDC_DATA_HS_OUT_PACKET_SIZE               CDC_DATA_HS_MAX_PACKET_SIZE
 
 
#define CDC_DATA_FS_IN_PACKET_SIZE                CDC_DATA_FS_MAX_PACKET_SIZE
 
#define CDC_DATA_FS_OUT_PACKET_SIZE               CDC_DATA_FS_MAX_PACKET_SIZE
 
 
/*---------------------------------------------------------------------*/
 
/*  CDC definitions                                                    */
 
/*---------------------------------------------------------------------*/
 
 
#define CDC_SEND_ENCAPSULATED_COMMAND               0x00
 
#define CDC_GET_ENCAPSULATED_RESPONSE               0x01
 
#define CDC_SET_COMM_FEATURE                        0x02
 
#define CDC_GET_COMM_FEATURE                        0x03
 
#define CDC_CLEAR_COMM_FEATURE                      0x04
 
#define CDC_SET_LINE_CODING                         0x20
 
#define CDC_GET_LINE_CODING                         0x21
 
#define CDC_SET_CONTROL_LINE_STATE                  0x22
 
#define CDC_SEND_BREAK                              0x23
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CORE_Exported_TypesDefinitions
 
  * @{
 
  */
 
 
/**
 
  * @}
 
  */ 
 
typedef struct
 
{
 
  uint32_t bitrate;
 
  uint8_t  format;
 
  uint8_t  paritytype;
 
  uint8_t  datatype;
 
}USBD_CDC_LineCodingTypeDef;
 
 
typedef struct _USBD_CDC_Itf
 
{
 
  int8_t (* Init)          (void);
 
  int8_t (* DeInit)        (void);
 
  int8_t (* Control)       (uint8_t, uint8_t * , uint16_t);   
 
  int8_t (* Receive)       (uint8_t *, uint32_t *);  
 
 
}USBD_CDC_ItfTypeDef;
 
 
 
typedef struct
 
{
 
  uint32_t data[CDC_DATA_HS_MAX_PACKET_SIZE/4];      /* Force 32bits alignment */
 
  uint8_t  CmdOpCode;
 
  uint8_t  CmdLength;    
 
  uint8_t  *RxBuffer;  
 
  uint8_t  *TxBuffer;   
 
  uint32_t RxLength;
 
  uint32_t TxLength;    
 
  
 
  __IO uint32_t TxState;     
 
  __IO uint32_t RxState;    
 
}
 
USBD_CDC_HandleTypeDef; 
 
 
 
 
/** @defgroup USBD_CORE_Exported_Macros
 
  * @{
 
  */ 
 
  
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CORE_Exported_Variables
 
  * @{
 
  */ 
 
 
extern USBD_ClassTypeDef  USBD_CDC;
 
#define USBD_CDC_CLASS    &USBD_CDC
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USB_CORE_Exported_Functions
 
  * @{
 
  */
 
uint8_t  USBD_CDC_RegisterInterface  (USBD_HandleTypeDef   *pdev, 
 
                                      USBD_CDC_ItfTypeDef *fops);
 
 
uint8_t  USBD_CDC_SetTxBuffer  (USBD_HandleTypeDef   *pdev,
 
                                uint8_t  *pbuff,
 
                                uint16_t length);
 
 
uint8_t  USBD_CDC_SetRxBuffer        (USBD_HandleTypeDef   *pdev,
 
                                      uint8_t  *pbuff);
 
  
 
uint8_t  USBD_CDC_ReceivePacket  (USBD_HandleTypeDef *pdev);
 
 
uint8_t  USBD_CDC_TransmitPacket  (USBD_HandleTypeDef *pdev);
 
/**
 
  * @}
 
  */ 
 
 
#endif  // __USB_CDC_CORE_H_
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
  
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Class/CDC/usbd_cdc_if_template.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_cdc_if_template.c
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   Generic media access Layer.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_cdc_if_template.h"
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
 
 
/** @defgroup USBD_CDC 
 
  * @brief usbd core module
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_CDC_Private_TypesDefinitions
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CDC_Private_Defines
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CDC_Private_Macros
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CDC_Private_FunctionPrototypes
 
  * @{
 
  */
 
 
static int8_t TEMPLATE_Init     (void);
 
static int8_t TEMPLATE_DeInit   (void);
 
static int8_t TEMPLATE_Control  (uint8_t cmd, uint8_t* pbuf, uint16_t length);
 
static int8_t TEMPLATE_Receive  (uint8_t* pbuf, uint32_t *Len);
 
 
USBD_CDC_ItfTypeDef USBD_CDC_Template_fops = 
 
{
 
  TEMPLATE_Init,
 
  TEMPLATE_DeInit,
 
  TEMPLATE_Control,
 
  TEMPLATE_Receive
 
};
 
 
USBD_CDC_LineCodingTypeDef linecoding =
 
  {
 
    115200, /* baud rate*/
 
    0x00,   /* stop bits-1*/
 
    0x00,   /* parity - none*/
 
    0x08    /* nb. of bits 8*/
 
  };
 
 
/* Private functions ---------------------------------------------------------*/
 
 
/**
 
  * @brief  TEMPLATE_Init
 
  *         Initializes the CDC media low layer
 
  * @param  None
 
  * @retval Result of the opeartion: USBD_OK if all operations are OK else USBD_FAIL
 
  */
 
static int8_t TEMPLATE_Init(void)
 
{
 
  /*
 
     Add your initialization code here 
 
  */  
 
  return (0);
 
}
 
 
/**
 
  * @brief  TEMPLATE_DeInit
 
  *         DeInitializes the CDC media low layer
 
  * @param  None
 
  * @retval Result of the opeartion: USBD_OK if all operations are OK else USBD_FAIL
 
  */
 
static int8_t TEMPLATE_DeInit(void)
 
{
 
  /*
 
     Add your deinitialization code here 
 
  */  
 
  return (0);
 
}
 
 
 
/**
 
  * @brief  TEMPLATE_Control
 
  *         Manage the CDC class requests
 
  * @param  Cmd: Command code            
 
  * @param  Buf: Buffer containing command data (request parameters)
 
  * @param  Len: Number of data to be sent (in bytes)
 
  * @retval Result of the opeartion: USBD_OK if all operations are OK else USBD_FAIL
 
  */
 
static int8_t TEMPLATE_Control  (uint8_t cmd, uint8_t* pbuf, uint16_t length)
 
{ 
 
  switch (cmd)
 
  {
 
  case CDC_SEND_ENCAPSULATED_COMMAND:
 
    /* Add your code here */
 
    break;
 
 
  case CDC_GET_ENCAPSULATED_RESPONSE:
 
    /* Add your code here */
 
    break;
 
 
  case CDC_SET_COMM_FEATURE:
 
    /* Add your code here */
 
    break;
 
 
  case CDC_GET_COMM_FEATURE:
 
    /* Add your code here */
 
    break;
 
 
  case CDC_CLEAR_COMM_FEATURE:
 
    /* Add your code here */
 
    break;
 
 
  case CDC_SET_LINE_CODING:
 
    linecoding.bitrate    = (uint32_t)(pbuf[0] | (pbuf[1] << 8) |\
 
                            (pbuf[2] << 16) | (pbuf[3] << 24));
 
    linecoding.format     = pbuf[4];
 
    linecoding.paritytype = pbuf[5];
 
    linecoding.datatype   = pbuf[6];
 
    
 
    /* Add your code here */
 
    break;
 
 
  case CDC_GET_LINE_CODING:
 
    pbuf[0] = (uint8_t)(linecoding.bitrate);
 
    pbuf[1] = (uint8_t)(linecoding.bitrate >> 8);
 
    pbuf[2] = (uint8_t)(linecoding.bitrate >> 16);
 
    pbuf[3] = (uint8_t)(linecoding.bitrate >> 24);
 
    pbuf[4] = linecoding.format;
 
    pbuf[5] = linecoding.paritytype;
 
    pbuf[6] = linecoding.datatype;     
 
    
 
    /* Add your code here */
 
    break;
 
 
  case CDC_SET_CONTROL_LINE_STATE:
 
    /* Add your code here */
 
    break;
 
 
  case CDC_SEND_BREAK:
 
     /* Add your code here */
 
    break;    
 
    
 
  default:
 
    break;
 
  }
 
 
  return (0);
 
}
 
 
/**
 
  * @brief  TEMPLATE_DataRx
 
  *         Data received over USB OUT endpoint are sent over CDC interface 
 
  *         through this function.
 
  *           
 
  *         @note
 
  *         This function will block any OUT packet reception on USB endpoint 
 
  *         untill exiting this function. If you exit this function before transfer
 
  *         is complete on CDC interface (ie. using DMA controller) it will result 
 
  *         in receiving more data while previous ones are still not sent.
 
  *                 
 
  * @param  Buf: Buffer of data to be received
 
  * @param  Len: Number of data received (in bytes)
 
  * @retval Result of the opeartion: USBD_OK if all operations are OK else USBD_FAIL
 
  */
 
static int8_t TEMPLATE_Receive (uint8_t* Buf, uint32_t *Len)
 
{
 
 
 
  return (0);
 
}
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32_USB_Device_Library/Class/CDC/usbd_cdc_if_template.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_cdc_if_template.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   Header for dfu_mal.c file.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __USBD_CDC_IF_TEMPLATE_H
 
#define __USBD_CDC_IF_TEMPLATE_H
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_cdc.h"
 
 
/* Exported types ------------------------------------------------------------*/
 
/* Exported constants --------------------------------------------------------*/
 
 
extern USBD_CDC_ItfTypeDef  USBD_CDC_Template_fops;
 
 
/* Exported macro ------------------------------------------------------------*/
 
/* Exported functions ------------------------------------------------------- */
 
#endif /* __USBD_CDC_IF_TEMPLATE_H */
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Core/usbd_conf_template.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_conf_template.c
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   USB Device configuration and interface file
 
  *          This template should be copied to the user folder, renamed and customized
 
  *          following user needs.  
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_core.h"
 
/* Private typedef -----------------------------------------------------------*/
 
/* Private define ------------------------------------------------------------*/
 
/* Private macro -------------------------------------------------------------*/
 
/* Private variables ---------------------------------------------------------*/
 
/* Private function prototypes -----------------------------------------------*/
 
/* Private functions ---------------------------------------------------------*/
 
/**
 
  * @brief  Initializes the Low Level portion of the Device driver.
 
  * @param  pdev: Device handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_Init(USBD_HandleTypeDef *pdev)
 
{    
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  De-Initializes the Low Level portion of the Device driver.
 
  * @param  pdev: Device handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_DeInit(USBD_HandleTypeDef *pdev)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Starts the Low Level portion of the Device driver. 
 
  * @param  pdev: Device handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_Start(USBD_HandleTypeDef *pdev)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Stops the Low Level portion of the Device driver.
 
  * @param  pdev: Device handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_Stop(USBD_HandleTypeDef *pdev)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Opens an endpoint of the Low Level Driver.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @param  ep_type: Endpoint Type
 
  * @param  ep_mps: Endpoint Max Packet Size
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_OpenEP(USBD_HandleTypeDef *pdev,
 
                                  uint8_t ep_addr,
 
                                  uint8_t ep_type,
 
                                  uint16_t ep_mps)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Closes an endpoint of the Low Level Driver.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_CloseEP(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Flushes an endpoint of the Low Level Driver.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_FlushEP(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Sets a Stall condition on an endpoint of the Low Level Driver.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_StallEP(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Clears a Stall condition on an endpoint of the Low Level Driver.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_ClearStallEP(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
 
{
 
  return USBD_OK; 
 
}
 
 
/**
 
  * @brief  Returns Stall condition.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval Stall (1: Yes, 0: No)
 
  */
 
uint8_t USBD_LL_IsStallEP(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
 
{
 
   return 0;
 
}
 
 
/**
 
  * @brief  Assigns a USB address to the device.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_SetUSBAddress(USBD_HandleTypeDef *pdev, uint8_t dev_addr)
 
{
 
  return USBD_OK; 
 
}
 
 
/**
 
  * @brief  Transmits data over an endpoint.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @param  pbuf: Pointer to data to be sent
 
  * @param  size: Data size    
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_Transmit(USBD_HandleTypeDef *pdev, 
 
                                    uint8_t ep_addr,
 
                                    uint8_t *pbuf,
 
                                    uint16_t size)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Prepares an endpoint for reception.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @param  pbuf: Pointer to data to be received
 
  * @param  size: Data size
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef USBD_LL_PrepareReceive(USBD_HandleTypeDef *pdev, 
 
                                          uint8_t ep_addr,
 
                                          uint8_t *pbuf,
 
                                          uint16_t size)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
  * @brief  Returns the last transfered packet size.
 
  * @param  pdev: Device handle
 
  * @param  ep_addr: Endpoint Number
 
  * @retval Recived Data Size
 
  */
 
uint32_t USBD_LL_GetRxDataSize(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
 
{
 
  return 0;
 
}
 
 
/**
 
  * @brief  Delays routine for the USB Device Library.
 
  * @param  Delay: Delay in ms
 
  * @retval None
 
  */
 
void USBD_LL_Delay(uint32_t Delay)
 
{
 
}
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32_USB_Device_Library/Core/usbd_conf_template.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_conf_template.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   USB device low level driver configuration
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __USBD_CONF__H__
 
#define __USBD_CONF__H__
 
 
#include "stm32fxxx.h"  /* replace 'stm32xxx' with your HAL driver header filename, ex: stm32f4xx.h */
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <string.h>
 
 
/* Includes ------------------------------------------------------------------*/
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
  
 
/** @defgroup USBD_CONF
 
  * @brief USB device low level driver configuration file
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_CONF_Exported_Defines
 
  * @{
 
  */ 
 
 
#define USBD_MAX_NUM_INTERFACES               1
 
#define USBD_MAX_NUM_CONFIGURATION            1
 
#define USBD_MAX_STR_DESC_SIZ                 0x100
 
#define USBD_SUPPORT_USER_STRING              0 
 
#define USBD_SELF_POWERED                     1
 
#define USBD_DEBUG_LEVEL                      2
 
 
/* MSC Class Config */
 
#define MSC_MEDIA_PACKET                       8192   
 
 
/* CDC Class Config */
 
#define USBD_CDC_INTERVAL                      2000  
 
 
 /* DFU Class Config */
 
#define USBD_DFU_MAX_ITF_NUM                   1
 
#define USBD_DFU_XFERS_IZE                     1024
 
 
 /* AUDIO Class Config */
 
#define USBD_AUDIO_FREQ                       22100 
 
 
/** @defgroup USBD_Exported_Macros
 
  * @{
 
  */ 
 
 
 /* Memory management macros */   
 
#define USBD_malloc               malloc
 
#define USBD_free                 free
 
#define USBD_memset               memset
 
#define USBD_memcpy               memcpy
 
    
 
 /* DEBUG macros */  
 
 
  
 
#if (USBD_DEBUG_LEVEL > 0)
 
#define  USBD_UsrLog(...)   printf(__VA_ARGS__);\
 
                            printf("\n");
 
#else
 
#define USBD_UsrLog(...)   
 
#endif 
 
                            
 
                            
 
#if (USBD_DEBUG_LEVEL > 1)
 
 
#define  USBD_ErrLog(...)   printf("ERROR: ") ;\
 
                            printf(__VA_ARGS__);\
 
                            printf("\n");
 
#else
 
#define USBD_ErrLog(...)   
 
#endif 
 
                            
 
                            
 
#if (USBD_DEBUG_LEVEL > 2)                         
 
#define  USBD_DbgLog(...)   printf("DEBUG : ") ;\
 
                            printf(__VA_ARGS__);\
 
                            printf("\n");
 
#else
 
#define USBD_DbgLog(...)                         
 
#endif
 
                            
 
/**
 
  * @}
 
  */ 
 
 
 
    
 
    
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CONF_Exported_Types
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CONF_Exported_Macros
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CONF_Exported_Variables
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CONF_Exported_FunctionsPrototype
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
#endif //__USBD_CONF__H__
 
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32_USB_Device_Library/Core/usbd_core.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_core.c
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   This file provides all the USBD core functions.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_core.h"
 
 
/** @addtogroup STM32_USBD_DEVICE_LIBRARY
 
* @{
 
*/
 
 
 
/** @defgroup USBD_CORE 
 
* @brief usbd core module
 
* @{
 
*/ 
 
 
/** @defgroup USBD_CORE_Private_TypesDefinitions
 
* @{
 
*/ 
 
/**
 
* @}
 
*/ 
 
 
 
/** @defgroup USBD_CORE_Private_Defines
 
* @{
 
*/ 
 
 
/**
 
* @}
 
*/ 
 
 
 
/** @defgroup USBD_CORE_Private_Macros
 
* @{
 
*/ 
 
/**
 
* @}
 
*/ 
 
 
 
 
 
/** @defgroup USBD_CORE_Private_FunctionPrototypes
 
* @{
 
*/ 
 
 
/**
 
* @}
 
*/ 
 
 
/** @defgroup USBD_CORE_Private_Variables
 
* @{
 
*/ 
 
 
/**
 
* @}
 
*/ 
 
 
/** @defgroup USBD_CORE_Private_Functions
 
* @{
 
*/ 
 
 
/**
 
* @brief  USBD_Init
 
*         Initailizes the device stack and load the class driver
 
* @param  pdev: device instance
 
* @param  pdesc: Descriptor structure address
 
* @param  id: Low level core index
 
* @retval None
 
*/
 
USBD_StatusTypeDef USBD_Init(USBD_HandleTypeDef *pdev, USBD_DescriptorsTypeDef *pdesc, uint8_t id)
 
{
 
  /* Check whether the USB Host handle is valid */
 
  if(pdev == NULL)
 
  {
 
    USBD_ErrLog("Invalid Device handle");
 
    return USBD_FAIL; 
 
  }
 
  
 
  /* Unlink previous class*/
 
  if(pdev->pClass != NULL)
 
  {
 
    pdev->pClass = NULL;
 
  }
 
  
 
  /* Assign USBD Descriptors */
 
  if(pdesc != NULL)
 
  {
 
    pdev->pDesc = pdesc;
 
  }
 
  
 
  /* Set Device initial State */
 
  pdev->dev_state  = USBD_STATE_DEFAULT;
 
  pdev->id = id;
 
  /* Initialize low level driver */
 
  USBD_LL_Init(pdev);
 
  
 
  return USBD_OK; 
 
}
 
 
/**
 
* @brief  USBD_DeInit 
 
*         Re-Initialize th device library
 
* @param  pdev: device instance
 
* @retval status: status
 
*/
 
USBD_StatusTypeDef USBD_DeInit(USBD_HandleTypeDef *pdev)
 
{
 
  /* Set Default State */
 
  pdev->dev_state  = USBD_STATE_DEFAULT;
 
  
 
  /* Free Class Resources */
 
  pdev->pClass->DeInit(pdev, pdev->dev_config);  
 
  
 
    /* Stop the low level driver  */
 
  USBD_LL_Stop(pdev); 
 
  
 
  /* Initialize low level driver */
 
  USBD_LL_DeInit(pdev);
 
  
 
  return USBD_OK;
 
}
 
 
 
/**
 
  * @brief  USBD_RegisterClass 
 
  *         Link class driver to Device Core.
 
  * @param  pDevice : Device Handle
 
  * @param  pclass: Class handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef  USBD_RegisterClass(USBD_HandleTypeDef *pdev, USBD_ClassTypeDef *pclass)
 
{
 
  USBD_StatusTypeDef   status = USBD_OK;
 
  if(pclass != 0)
 
  {
 
    /* link the class tgo the USB Device handle */
 
    pdev->pClass = pclass;
 
    status = USBD_OK;
 
  }
 
  else
 
  {
 
    USBD_ErrLog("Invalid Class handle");
 
    status = USBD_FAIL; 
 
  }
 
  
 
  return status;
 
}
 
 
/**
 
  * @brief  USBD_Start 
 
  *         Start the USB Device Core.
 
  * @param  pdev: Device Handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef  USBD_Start  (USBD_HandleTypeDef *pdev)
 
{
 
  
 
  /* Start the low level driver  */
 
  USBD_LL_Start(pdev); 
 
  
 
  return USBD_OK;  
 
}
 
 
/**
 
  * @brief  USBD_Stop 
 
  *         Stop the USB Device Core.
 
  * @param  pdev: Device Handle
 
  * @retval USBD Status
 
  */
 
USBD_StatusTypeDef  USBD_Stop   (USBD_HandleTypeDef *pdev)
 
{
 
  /* Free Class Resources */
 
  pdev->pClass->DeInit(pdev, pdev->dev_config);  
 
 
  /* Stop the low level driver  */
 
  USBD_LL_Stop(pdev); 
 
  
 
  return USBD_OK;  
 
}
 
 
/**
 
* @brief  USBD_RunTestMode 
 
*         Launch test mode process
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_RunTestMode (USBD_HandleTypeDef  *pdev) 
 
{
 
  return USBD_OK;
 
}
 
 
 
/**
 
* @brief  USBD_SetClassConfig 
 
*        Configure device and start the interface
 
* @param  pdev: device instance
 
* @param  cfgidx: configuration index
 
* @retval status
 
*/
 
 
USBD_StatusTypeDef USBD_SetClassConfig(USBD_HandleTypeDef  *pdev, uint8_t cfgidx)
 
{
 
  USBD_StatusTypeDef   ret = USBD_FAIL;
 
  
 
  if(pdev->pClass != NULL)
 
  {
 
    /* Set configuration  and Start the Class*/
 
    if(pdev->pClass->Init(pdev, cfgidx) == 0)
 
    {
 
      ret = USBD_OK;
 
    }
 
  }
 
  return ret; 
 
}
 
 
/**
 
* @brief  USBD_ClrClassConfig 
 
*         Clear current configuration
 
* @param  pdev: device instance
 
* @param  cfgidx: configuration index
 
* @retval status: USBD_StatusTypeDef
 
*/
 
USBD_StatusTypeDef USBD_ClrClassConfig(USBD_HandleTypeDef  *pdev, uint8_t cfgidx)
 
{
 
  /* Clear configuration  and Deinitialize the Class process*/
 
  pdev->pClass->DeInit(pdev, cfgidx);  
 
  return USBD_OK;
 
}
 
 
 
/**
 
* @brief  USBD_SetupStage 
 
*         Handle the setup stage
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_SetupStage(USBD_HandleTypeDef *pdev, uint8_t *psetup)
 
{
 
 
  USBD_ParseSetupRequest(&pdev->request, psetup);
 
  
 
  pdev->ep0_state = USBD_EP0_SETUP;
 
  pdev->ep0_data_len = pdev->request.wLength;
 
  
 
  switch (pdev->request.bmRequest & 0x1F) 
 
  {
 
  case USB_REQ_RECIPIENT_DEVICE:   
 
    USBD_StdDevReq (pdev, &pdev->request);
 
    break;
 
    
 
  case USB_REQ_RECIPIENT_INTERFACE:     
 
    USBD_StdItfReq(pdev, &pdev->request);
 
    break;
 
    
 
  case USB_REQ_RECIPIENT_ENDPOINT:        
 
    USBD_StdEPReq(pdev, &pdev->request);   
 
    break;
 
    
 
  default:           
 
    USBD_LL_StallEP(pdev , pdev->request.bmRequest & 0x80);
 
    break;
 
  }  
 
  return USBD_OK;  
 
}
 
 
/**
 
* @brief  USBD_DataOutStage 
 
*         Handle data OUT stage
 
* @param  pdev: device instance
 
* @param  epnum: endpoint index
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_DataOutStage(USBD_HandleTypeDef *pdev , uint8_t epnum, uint8_t *pdata)
 
{
 
  USBD_EndpointTypeDef    *pep;
 
  
 
  if(epnum == 0) 
 
  {
 
    pep = &pdev->ep_out[0];
 
    
 
    if ( pdev->ep0_state == USBD_EP0_DATA_OUT)
 
    {
 
      if(pep->rem_length > pep->maxpacket)
 
      {
 
        pep->rem_length -=  pep->maxpacket;
 
       
 
        USBD_CtlContinueRx (pdev, 
 
                            pdata,
 
                            MIN(pep->rem_length ,pep->maxpacket));
 
      }
 
      else
 
      {
 
        if((pdev->pClass->EP0_RxReady != NULL)&&
 
           (pdev->dev_state == USBD_STATE_CONFIGURED))
 
        {
 
          pdev->pClass->EP0_RxReady(pdev); 
 
        }
 
        USBD_CtlSendStatus(pdev);
 
      }
 
    }
 
  }
 
  else if((pdev->pClass->DataOut != NULL)&&
 
          (pdev->dev_state == USBD_STATE_CONFIGURED))
 
  {
 
    pdev->pClass->DataOut(pdev, epnum); 
 
  }  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_DataInStage 
 
*         Handle data in stage
 
* @param  pdev: device instance
 
* @param  epnum: endpoint index
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_DataInStage(USBD_HandleTypeDef *pdev ,uint8_t epnum, uint8_t *pdata)
 
{
 
  USBD_EndpointTypeDef    *pep;
 
    
 
  if(epnum == 0) 
 
  {
 
    pep = &pdev->ep_in[0];
 
    
 
    if ( pdev->ep0_state == USBD_EP0_DATA_IN)
 
    {
 
      if(pep->rem_length > pep->maxpacket)
 
      {
 
        pep->rem_length -=  pep->maxpacket;
 
        
 
        USBD_CtlContinueSendData (pdev, 
 
                                  pdata, 
 
                                  pep->rem_length);
 
      }
 
      else
 
      { /* last packet is MPS multiple, so send ZLP packet */
 
        if((pep->total_length % pep->maxpacket == 0) &&
 
           (pep->total_length >= pep->maxpacket) &&
 
             (pep->total_length < pdev->ep0_data_len ))
 
        {
 
          
 
          USBD_CtlContinueSendData(pdev , NULL, 0);
 
          pdev->ep0_data_len = 0;
 
        }
 
        else
 
        {
 
          if((pdev->pClass->EP0_TxSent != NULL)&&
 
             (pdev->dev_state == USBD_STATE_CONFIGURED))
 
          {
 
            pdev->pClass->EP0_TxSent(pdev); 
 
          }          
 
          USBD_CtlReceiveStatus(pdev);
 
        }
 
      }
 
    }
 
    if (pdev->dev_test_mode == 1)
 
    {
 
      USBD_RunTestMode(pdev); 
 
      pdev->dev_test_mode = 0;
 
    }
 
  }
 
  else if((pdev->pClass->DataIn != NULL)&& 
 
          (pdev->dev_state == USBD_STATE_CONFIGURED))
 
  {
 
    pdev->pClass->DataIn(pdev, epnum); 
 
  }  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_LL_Reset 
 
*         Handle Reset event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
 
USBD_StatusTypeDef USBD_LL_Reset(USBD_HandleTypeDef  *pdev)
 
{
 
  /* Open EP0 OUT */
 
  USBD_LL_OpenEP(pdev,
 
              0x00,
 
              USBD_EP_TYPE_CTRL,
 
              USB_MAX_EP0_SIZE);
 
  
 
  pdev->ep_out[0].maxpacket = USB_MAX_EP0_SIZE;
 
  
 
  /* Open EP0 IN */
 
  USBD_LL_OpenEP(pdev,
 
              0x80,
 
              USBD_EP_TYPE_CTRL,
 
              USB_MAX_EP0_SIZE);
 
  
 
  pdev->ep_in[0].maxpacket = USB_MAX_EP0_SIZE;
 
  /* Upon Reset call usr call back */
 
  pdev->dev_state = USBD_STATE_DEFAULT;
 
  
 
  if (pdev->pClassData) 
 
    pdev->pClass->DeInit(pdev, pdev->dev_config);  
 
 
 
  
 
  return USBD_OK;
 
}
 
 
 
 
 
/**
 
* @brief  USBD_LL_Reset 
 
*         Handle Reset event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_SetSpeed(USBD_HandleTypeDef  *pdev, USBD_SpeedTypeDef speed)
 
{
 
  pdev->dev_speed = speed;
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_Suspend 
 
*         Handle Suspend event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
 
USBD_StatusTypeDef USBD_LL_Suspend(USBD_HandleTypeDef  *pdev)
 
{
 
  pdev->dev_old_state =  pdev->dev_state;
 
  pdev->dev_state  = USBD_STATE_SUSPENDED;
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_Resume 
 
*         Handle Resume event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
 
USBD_StatusTypeDef USBD_LL_Resume(USBD_HandleTypeDef  *pdev)
 
{
 
  pdev->dev_state = pdev->dev_old_state;  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_SOF 
 
*         Handle SOF event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
 
USBD_StatusTypeDef USBD_LL_SOF(USBD_HandleTypeDef  *pdev)
 
{
 
  if(pdev->dev_state == USBD_STATE_CONFIGURED)
 
  {
 
    if(pdev->pClass->SOF != NULL)
 
    {
 
      pdev->pClass->SOF(pdev);
 
    }
 
  }
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_IsoINIncomplete 
 
*         Handle iso in incomplete event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_IsoINIncomplete(USBD_HandleTypeDef  *pdev, uint8_t epnum)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_IsoOUTIncomplete 
 
*         Handle iso out incomplete event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_IsoOUTIncomplete(USBD_HandleTypeDef  *pdev, uint8_t epnum)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_DevConnected 
 
*         Handle device connection event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_DevConnected(USBD_HandleTypeDef  *pdev)
 
{
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_DevDisconnected 
 
*         Handle device disconnection event
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef USBD_LL_DevDisconnected(USBD_HandleTypeDef  *pdev)
 
{
 
  /* Free Class Resources */
 
  pdev->dev_state = USBD_STATE_DEFAULT;
 
  pdev->pClass->DeInit(pdev, pdev->dev_config);  
 
   
 
  return USBD_OK;
 
}
 
/**
 
* @}
 
*/ 
 
 
 
/**
 
* @}
 
*/ 
 
 
 
/**
 
* @}
 
*/ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
libraries/STM32_USB_Device_Library/Core/usbd_core.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_core.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   Header file for usbd_core.c
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
#ifndef __USBD_CORE_H
 
#define __USBD_CORE_H
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_conf.h"
 
#include "usbd_def.h"
 
#include "usbd_ioreq.h"
 
#include "usbd_ctlreq.h"
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
  
 
/** @defgroup USBD_CORE
 
  * @brief This file is the Header file for usbd_core.c file
 
  * @{
 
  */ 
 
 
 
/** @defgroup USBD_CORE_Exported_Defines
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_CORE_Exported_TypesDefinitions
 
  * @{
 
  */
 
 
 
 
/**
 
  * @}
 
  */ 
 
 
 
 
/** @defgroup USBD_CORE_Exported_Macros
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CORE_Exported_Variables
 
  * @{
 
  */ 
 
#define USBD_SOF          USBD_LL_SOF
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_CORE_Exported_FunctionsPrototype
 
  * @{
 
  */ 
 
USBD_StatusTypeDef USBD_Init(USBD_HandleTypeDef *pdev, USBD_DescriptorsTypeDef *pdesc, uint8_t id);
 
USBD_StatusTypeDef USBD_DeInit(USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef USBD_Start  (USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef USBD_Stop   (USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef USBD_RegisterClass(USBD_HandleTypeDef *pdev, USBD_ClassTypeDef *pclass);
 
 
USBD_StatusTypeDef USBD_RunTestMode (USBD_HandleTypeDef  *pdev); 
 
USBD_StatusTypeDef USBD_SetClassConfig(USBD_HandleTypeDef  *pdev, uint8_t cfgidx);
 
USBD_StatusTypeDef USBD_ClrClassConfig(USBD_HandleTypeDef  *pdev, uint8_t cfgidx);
 
 
USBD_StatusTypeDef USBD_LL_SetupStage(USBD_HandleTypeDef *pdev, uint8_t *psetup);
 
USBD_StatusTypeDef USBD_LL_DataOutStage(USBD_HandleTypeDef *pdev , uint8_t epnum, uint8_t *pdata);
 
USBD_StatusTypeDef USBD_LL_DataInStage(USBD_HandleTypeDef *pdev , uint8_t epnum, uint8_t *pdata);
 
 
USBD_StatusTypeDef USBD_LL_Reset(USBD_HandleTypeDef  *pdev);
 
USBD_StatusTypeDef USBD_LL_SetSpeed(USBD_HandleTypeDef  *pdev, USBD_SpeedTypeDef speed);
 
USBD_StatusTypeDef USBD_LL_Suspend(USBD_HandleTypeDef  *pdev);
 
USBD_StatusTypeDef USBD_LL_Resume(USBD_HandleTypeDef  *pdev);
 
 
USBD_StatusTypeDef USBD_LL_SOF(USBD_HandleTypeDef  *pdev);
 
USBD_StatusTypeDef USBD_LL_IsoINIncomplete(USBD_HandleTypeDef  *pdev, uint8_t epnum);
 
USBD_StatusTypeDef USBD_LL_IsoOUTIncomplete(USBD_HandleTypeDef  *pdev, uint8_t epnum);
 
 
USBD_StatusTypeDef USBD_LL_DevConnected(USBD_HandleTypeDef  *pdev);
 
USBD_StatusTypeDef USBD_LL_DevDisconnected(USBD_HandleTypeDef  *pdev);
 
 
/* USBD Low Level Driver */
 
USBD_StatusTypeDef  USBD_LL_Init (USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef  USBD_LL_DeInit (USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef  USBD_LL_Start(USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef  USBD_LL_Stop (USBD_HandleTypeDef *pdev);
 
USBD_StatusTypeDef  USBD_LL_OpenEP  (USBD_HandleTypeDef *pdev, 
 
                                      uint8_t  ep_addr,                                      
 
                                      uint8_t  ep_type,
 
                                      uint16_t ep_mps);
 
 
USBD_StatusTypeDef  USBD_LL_CloseEP (USBD_HandleTypeDef *pdev, uint8_t ep_addr);   
 
USBD_StatusTypeDef  USBD_LL_FlushEP (USBD_HandleTypeDef *pdev, uint8_t ep_addr);   
 
USBD_StatusTypeDef  USBD_LL_StallEP (USBD_HandleTypeDef *pdev, uint8_t ep_addr);   
 
USBD_StatusTypeDef  USBD_LL_ClearStallEP (USBD_HandleTypeDef *pdev, uint8_t ep_addr);   
 
uint8_t             USBD_LL_IsStallEP (USBD_HandleTypeDef *pdev, uint8_t ep_addr);   
 
USBD_StatusTypeDef  USBD_LL_SetUSBAddress (USBD_HandleTypeDef *pdev, uint8_t dev_addr);   
 
USBD_StatusTypeDef  USBD_LL_Transmit (USBD_HandleTypeDef *pdev, 
 
                                      uint8_t  ep_addr,                                      
 
                                      uint8_t  *pbuf,
 
                                      uint16_t  size);
 
 
USBD_StatusTypeDef  USBD_LL_PrepareReceive(USBD_HandleTypeDef *pdev, 
 
                                           uint8_t  ep_addr,                                      
 
                                           uint8_t  *pbuf,
 
                                           uint16_t  size);
 
 
uint32_t USBD_LL_GetRxDataSize  (USBD_HandleTypeDef *pdev, uint8_t  ep_addr);  
 
void  USBD_LL_Delay (uint32_t Delay);
 
 
/**
 
  * @}
 
  */ 
 
 
#endif /* __USBD_CORE_H */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
* @}
 
*/ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
 
 
 
libraries/STM32_USB_Device_Library/Core/usbd_ctlreq.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_req.c
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014 
 
  * @brief   This file provides the standard USB requests following chapter 9.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_ctlreq.h"
 
#include "usbd_ioreq.h"
 
 
 
/** @addtogroup STM32_USBD_STATE_DEVICE_LIBRARY
 
  * @{
 
  */
 
 
 
/** @defgroup USBD_REQ 
 
  * @brief USB standard requests module
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_REQ_Private_TypesDefinitions
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_REQ_Private_Defines
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_REQ_Private_Macros
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_REQ_Private_Variables
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_REQ_Private_FunctionPrototypes
 
  * @{
 
  */ 
 
static void USBD_GetDescriptor(USBD_HandleTypeDef *pdev , 
 
                               USBD_SetupReqTypedef *req);
 
 
static void USBD_SetAddress(USBD_HandleTypeDef *pdev , 
 
                            USBD_SetupReqTypedef *req);
 
 
static void USBD_SetConfig(USBD_HandleTypeDef *pdev , 
 
                           USBD_SetupReqTypedef *req);
 
 
static void USBD_GetConfig(USBD_HandleTypeDef *pdev , 
 
                           USBD_SetupReqTypedef *req);
 
 
static void USBD_GetStatus(USBD_HandleTypeDef *pdev , 
 
                           USBD_SetupReqTypedef *req);
 
 
static void USBD_SetFeature(USBD_HandleTypeDef *pdev , 
 
                            USBD_SetupReqTypedef *req);
 
 
static void USBD_ClrFeature(USBD_HandleTypeDef *pdev , 
 
                            USBD_SetupReqTypedef *req);
 
 
static uint8_t USBD_GetLen(uint8_t *buf);
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_REQ_Private_Functions
 
  * @{
 
  */ 
 
 
 
/**
 
* @brief  USBD_StdDevReq
 
*         Handle standard usb device requests
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_StdDevReq (USBD_HandleTypeDef *pdev , USBD_SetupReqTypedef  *req)
 
{
 
  USBD_StatusTypeDef ret = USBD_OK;  
 
  
 
  switch (req->bRequest) 
 
  {
 
  case USB_REQ_GET_DESCRIPTOR: 
 
    
 
    USBD_GetDescriptor (pdev, req) ;
 
    break;
 
    
 
  case USB_REQ_SET_ADDRESS:                      
 
    USBD_SetAddress(pdev, req);
 
    break;
 
    
 
  case USB_REQ_SET_CONFIGURATION:                    
 
    USBD_SetConfig (pdev , req);
 
    break;
 
    
 
  case USB_REQ_GET_CONFIGURATION:                 
 
    USBD_GetConfig (pdev , req);
 
    break;
 
    
 
  case USB_REQ_GET_STATUS:                                  
 
    USBD_GetStatus (pdev , req);
 
    break;
 
    
 
    
 
  case USB_REQ_SET_FEATURE:   
 
    USBD_SetFeature (pdev , req);    
 
    break;
 
    
 
  case USB_REQ_CLEAR_FEATURE:                                   
 
    USBD_ClrFeature (pdev , req);
 
    break;
 
    
 
  default:  
 
    USBD_CtlError(pdev , req);
 
    break;
 
  }
 
  
 
  return ret;
 
}
 
 
/**
 
* @brief  USBD_StdItfReq
 
*         Handle standard usb interface requests
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_StdItfReq (USBD_HandleTypeDef *pdev , USBD_SetupReqTypedef  *req)
 
{
 
  USBD_StatusTypeDef ret = USBD_OK; 
 
  
 
  switch (pdev->dev_state) 
 
  {
 
  case USBD_STATE_CONFIGURED:
 
    
 
    if (LOBYTE(req->wIndex) <= USBD_MAX_NUM_INTERFACES) 
 
    {
 
      pdev->pClass->Setup (pdev, req); 
 
      
 
      if((req->wLength == 0)&& (ret == USBD_OK))
 
      {
 
         USBD_CtlSendStatus(pdev);
 
      }
 
    } 
 
    else 
 
    {                                               
 
       USBD_CtlError(pdev , req);
 
    }
 
    break;
 
    
 
  default:
 
     USBD_CtlError(pdev , req);
 
    break;
 
  }
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_StdEPReq
 
*         Handle standard usb endpoint requests
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_StdEPReq (USBD_HandleTypeDef *pdev , USBD_SetupReqTypedef  *req)
 
{
 
  
 
  uint8_t   ep_addr;
 
  USBD_StatusTypeDef ret = USBD_OK; 
 
  USBD_EndpointTypeDef   *pep;
 
  ep_addr  = LOBYTE(req->wIndex);   
 
  
 
  switch (req->bRequest) 
 
  {
 
    
 
  case USB_REQ_SET_FEATURE :
 
    
 
    switch (pdev->dev_state) 
 
    {
 
    case USBD_STATE_ADDRESSED:          
 
      if ((ep_addr != 0x00) && (ep_addr != 0x80)) 
 
      {
 
        USBD_LL_StallEP(pdev , ep_addr);
 
      }
 
      break;	
 
      
 
    case USBD_STATE_CONFIGURED:   
 
      if (req->wValue == USB_FEATURE_EP_HALT)
 
      {
 
        if ((ep_addr != 0x00) && (ep_addr != 0x80)) 
 
        { 
 
          USBD_LL_StallEP(pdev , ep_addr);
 
          
 
        }
 
      }
 
      pdev->pClass->Setup (pdev, req);   
 
      USBD_CtlSendStatus(pdev);
 
      
 
      break;
 
      
 
    default:                         
 
      USBD_CtlError(pdev , req);
 
      break;    
 
    }
 
    break;
 
    
 
  case USB_REQ_CLEAR_FEATURE :
 
    
 
    switch (pdev->dev_state) 
 
    {
 
    case USBD_STATE_ADDRESSED:          
 
      if ((ep_addr != 0x00) && (ep_addr != 0x80)) 
 
      {
 
        USBD_LL_StallEP(pdev , ep_addr);
 
      }
 
      break;	
 
      
 
    case USBD_STATE_CONFIGURED:   
 
      if (req->wValue == USB_FEATURE_EP_HALT)
 
      {
 
        if ((ep_addr & 0x7F) != 0x00) 
 
        {        
 
          USBD_LL_ClearStallEP(pdev , ep_addr);
 
          pdev->pClass->Setup (pdev, req);
 
        }
 
        USBD_CtlSendStatus(pdev);
 
      }
 
      break;
 
      
 
    default:                         
 
      USBD_CtlError(pdev , req);
 
      break;    
 
    }
 
    break;
 
    
 
  case USB_REQ_GET_STATUS:                  
 
    switch (pdev->dev_state) 
 
    {
 
    case USBD_STATE_ADDRESSED:          
 
      if ((ep_addr & 0x7F) != 0x00) 
 
      {
 
        USBD_LL_StallEP(pdev , ep_addr);
 
      }
 
      break;	
 
      
 
    case USBD_STATE_CONFIGURED:
 
      pep = ((ep_addr & 0x80) == 0x80) ? &pdev->ep_in[ep_addr & 0x7F]:\
 
                                         &pdev->ep_out[ep_addr & 0x7F];
 
      if(USBD_LL_IsStallEP(pdev, ep_addr))
 
      {
 
        pep->status = 0x0001;     
 
      }
 
      else
 
      {
 
        pep->status = 0x0000;  
 
      }
 
      
 
      USBD_CtlSendData (pdev,
 
                        (uint8_t *)&pep->status,
 
                        2);
 
      break;
 
      
 
    default:                         
 
      USBD_CtlError(pdev , req);
 
      break;
 
    }
 
    break;
 
    
 
  default:
 
    break;
 
  }
 
  return ret;
 
}
 
/**
 
* @brief  USBD_GetDescriptor
 
*         Handle Get Descriptor requests
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_GetDescriptor(USBD_HandleTypeDef *pdev , 
 
                               USBD_SetupReqTypedef *req)
 
{
 
  uint16_t len;
 
  uint8_t *pbuf;
 
  
 
    
 
  switch (req->wValue >> 8)
 
  {
 
  case USB_DESC_TYPE_DEVICE:
 
    pbuf = pdev->pDesc->GetDeviceDescriptor(pdev->dev_speed, &len);
 
    break;
 
    
 
  case USB_DESC_TYPE_CONFIGURATION:     
 
    if(pdev->dev_speed == USBD_SPEED_HIGH )   
 
    {
 
      pbuf   = (uint8_t *)pdev->pClass->GetHSConfigDescriptor(&len);
 
      pbuf[1] = USB_DESC_TYPE_CONFIGURATION;
 
    }
 
    else
 
    {
 
      pbuf   = (uint8_t *)pdev->pClass->GetFSConfigDescriptor(&len);
 
      pbuf[1] = USB_DESC_TYPE_CONFIGURATION;
 
    }
 
    break;
 
    
 
  case USB_DESC_TYPE_STRING:
 
    switch ((uint8_t)(req->wValue))
 
    {
 
    case USBD_IDX_LANGID_STR:
 
     pbuf = pdev->pDesc->GetLangIDStrDescriptor(pdev->dev_speed, &len);        
 
      break;
 
      
 
    case USBD_IDX_MFC_STR:
 
      pbuf = pdev->pDesc->GetManufacturerStrDescriptor(pdev->dev_speed, &len);
 
      break;
 
      
 
    case USBD_IDX_PRODUCT_STR:
 
      pbuf = pdev->pDesc->GetProductStrDescriptor(pdev->dev_speed, &len);
 
      break;
 
      
 
    case USBD_IDX_SERIAL_STR:
 
      pbuf = pdev->pDesc->GetSerialStrDescriptor(pdev->dev_speed, &len);
 
      break;
 
      
 
    case USBD_IDX_CONFIG_STR:
 
      pbuf = pdev->pDesc->GetConfigurationStrDescriptor(pdev->dev_speed, &len);
 
      break;
 
      
 
    case USBD_IDX_INTERFACE_STR:
 
      pbuf = pdev->pDesc->GetInterfaceStrDescriptor(pdev->dev_speed, &len);
 
      break;
 
      
 
    default:
 
#if (USBD_SUPPORT_USER_STRING == 1)
 
      pbuf = pdev->pClass->GetUsrStrDescriptor(pdev, (req->wValue) , &len);
 
      break;
 
#else      
 
       USBD_CtlError(pdev , req);
 
      return;
 
#endif   
 
    }
 
    break;
 
  case USB_DESC_TYPE_DEVICE_QUALIFIER:                   
 
 
    if(pdev->dev_speed == USBD_SPEED_HIGH  )   
 
    {
 
      pbuf   = (uint8_t *)pdev->pClass->GetDeviceQualifierDescriptor(&len);
 
      break;
 
    }
 
    else
 
    {
 
      USBD_CtlError(pdev , req);
 
      return;
 
    } 
 
 
  case USB_DESC_TYPE_OTHER_SPEED_CONFIGURATION:
 
    if(pdev->dev_speed == USBD_SPEED_HIGH  )   
 
    {
 
      pbuf   = (uint8_t *)pdev->pClass->GetOtherSpeedConfigDescriptor(&len);
 
      pbuf[1] = USB_DESC_TYPE_OTHER_SPEED_CONFIGURATION;
 
      break; 
 
    }
 
    else
 
    {
 
      USBD_CtlError(pdev , req);
 
      return;
 
    }
 
 
  default: 
 
     USBD_CtlError(pdev , req);
 
    return;
 
  }
 
  
 
  if((len != 0)&& (req->wLength != 0))
 
  {
 
    
 
    len = MIN(len , req->wLength);
 
    
 
    USBD_CtlSendData (pdev, 
 
                      pbuf,
 
                      len);
 
  }
 
  
 
}
 
 
/**
 
* @brief  USBD_SetAddress
 
*         Set device address
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_SetAddress(USBD_HandleTypeDef *pdev , 
 
                            USBD_SetupReqTypedef *req)
 
{
 
  uint8_t  dev_addr; 
 
  
 
  if ((req->wIndex == 0) && (req->wLength == 0)) 
 
  {
 
    dev_addr = (uint8_t)(req->wValue) & 0x7F;     
 
    
 
    if (pdev->dev_state == USBD_STATE_CONFIGURED) 
 
    {
 
      USBD_CtlError(pdev , req);
 
    } 
 
    else 
 
    {
 
      pdev->dev_address = dev_addr;
 
      USBD_LL_SetUSBAddress(pdev, dev_addr);               
 
      USBD_CtlSendStatus(pdev);                         
 
      
 
      if (dev_addr != 0) 
 
      {
 
        pdev->dev_state  = USBD_STATE_ADDRESSED;
 
      } 
 
      else 
 
      {
 
        pdev->dev_state  = USBD_STATE_DEFAULT; 
 
      }
 
    }
 
  } 
 
  else 
 
  {
 
     USBD_CtlError(pdev , req);                        
 
  } 
 
}
 
 
/**
 
* @brief  USBD_SetConfig
 
*         Handle Set device configuration request
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_SetConfig(USBD_HandleTypeDef *pdev , 
 
                           USBD_SetupReqTypedef *req)
 
{
 
  
 
  static uint8_t  cfgidx;
 
  
 
  cfgidx = (uint8_t)(req->wValue);                 
 
  
 
  if (cfgidx > USBD_MAX_NUM_CONFIGURATION ) 
 
  {            
 
     USBD_CtlError(pdev , req);                              
 
  } 
 
  else 
 
  {
 
    switch (pdev->dev_state) 
 
    {
 
    case USBD_STATE_ADDRESSED:
 
      if (cfgidx) 
 
      {                                			   							   							   				
 
        pdev->dev_config = cfgidx;
 
        pdev->dev_state = USBD_STATE_CONFIGURED;
 
        if(USBD_SetClassConfig(pdev , cfgidx) == USBD_FAIL)
 
        {
 
          USBD_CtlError(pdev , req);  
 
          return;
 
        }
 
        USBD_CtlSendStatus(pdev);
 
      }
 
      else 
 
      {
 
         USBD_CtlSendStatus(pdev);
 
      }
 
      break;
 
      
 
    case USBD_STATE_CONFIGURED:
 
      if (cfgidx == 0) 
 
      {                           
 
        pdev->dev_state = USBD_STATE_ADDRESSED;
 
        pdev->dev_config = cfgidx;          
 
        USBD_ClrClassConfig(pdev , cfgidx);
 
        USBD_CtlSendStatus(pdev);
 
        
 
      } 
 
      else  if (cfgidx != pdev->dev_config) 
 
      {
 
        /* Clear old configuration */
 
        USBD_ClrClassConfig(pdev , pdev->dev_config);
 
        
 
        /* set new configuration */
 
        pdev->dev_config = cfgidx;
 
        if(USBD_SetClassConfig(pdev , cfgidx) == USBD_FAIL)
 
        {
 
          USBD_CtlError(pdev , req);  
 
          return;
 
        }
 
        USBD_CtlSendStatus(pdev);
 
      }
 
      else
 
      {
 
        USBD_CtlSendStatus(pdev);
 
      }
 
      break;
 
      
 
    default:					
 
       USBD_CtlError(pdev , req);                     
 
      break;
 
    }
 
  }
 
}
 
 
/**
 
* @brief  USBD_GetConfig
 
*         Handle Get device configuration request
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_GetConfig(USBD_HandleTypeDef *pdev , 
 
                           USBD_SetupReqTypedef *req)
 
{
 
 
  if (req->wLength != 1) 
 
  {                   
 
     USBD_CtlError(pdev , req);
 
  }
 
  else 
 
  {
 
    switch (pdev->dev_state )  
 
    {
 
    case USBD_STATE_ADDRESSED:                     
 
      pdev->dev_default_config = 0;
 
      USBD_CtlSendData (pdev, 
 
                        (uint8_t *)&pdev->dev_default_config,
 
                        1);
 
      break;
 
      
 
    case USBD_STATE_CONFIGURED:   
 
      
 
      USBD_CtlSendData (pdev, 
 
                        (uint8_t *)&pdev->dev_config,
 
                        1);
 
      break;
 
      
 
    default:
 
       USBD_CtlError(pdev , req);
 
      break;
 
    }
 
  }
 
}
 
 
/**
 
* @brief  USBD_GetStatus
 
*         Handle Get Status request
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_GetStatus(USBD_HandleTypeDef *pdev , 
 
                           USBD_SetupReqTypedef *req)
 
{
 
  
 
    
 
  switch (pdev->dev_state) 
 
  {
 
  case USBD_STATE_ADDRESSED:
 
  case USBD_STATE_CONFIGURED:
 
    
 
#if ( USBD_SELF_POWERED == 1)
 
    pdev->dev_config_status = USB_CONFIG_SELF_POWERED;                                  
 
#else
 
    pdev->dev_config_status = 0;                                   
 
#endif
 
                      
 
    if (pdev->dev_remote_wakeup) 
 
    {
 
       pdev->dev_config_status |= USB_CONFIG_REMOTE_WAKEUP;                                
 
    }
 
    
 
    USBD_CtlSendData (pdev, 
 
                      (uint8_t *)& pdev->dev_config_status,
 
                      2);
 
    break;
 
    
 
  default :
 
    USBD_CtlError(pdev , req);                        
 
    break;
 
  }
 
}
 
 
 
/**
 
* @brief  USBD_SetFeature
 
*         Handle Set device feature request
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_SetFeature(USBD_HandleTypeDef *pdev , 
 
                            USBD_SetupReqTypedef *req)
 
{
 
 
  if (req->wValue == USB_FEATURE_REMOTE_WAKEUP)
 
  {
 
    pdev->dev_remote_wakeup = 1;  
 
    pdev->pClass->Setup (pdev, req);   
 
    USBD_CtlSendStatus(pdev);
 
  }
 
 
}
 
 
 
/**
 
* @brief  USBD_ClrFeature
 
*         Handle clear device feature request
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval status
 
*/
 
static void USBD_ClrFeature(USBD_HandleTypeDef *pdev , 
 
                            USBD_SetupReqTypedef *req)
 
{
 
  switch (pdev->dev_state)
 
  {
 
  case USBD_STATE_ADDRESSED:
 
  case USBD_STATE_CONFIGURED:
 
    if (req->wValue == USB_FEATURE_REMOTE_WAKEUP) 
 
    {
 
      pdev->dev_remote_wakeup = 0; 
 
      pdev->pClass->Setup (pdev, req);   
 
      USBD_CtlSendStatus(pdev);
 
    }
 
    break;
 
    
 
  default :
 
     USBD_CtlError(pdev , req);
 
    break;
 
  }
 
}
 
 
/**
 
* @brief  USBD_ParseSetupRequest 
 
*         Copy buffer into setup structure
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval None
 
*/
 
 
void USBD_ParseSetupRequest(USBD_SetupReqTypedef *req, uint8_t *pdata)
 
{
 
  req->bmRequest     = *(uint8_t *)  (pdata);
 
  req->bRequest      = *(uint8_t *)  (pdata +  1);
 
  req->wValue        = SWAPBYTE      (pdata +  2);
 
  req->wIndex        = SWAPBYTE      (pdata +  4);
 
  req->wLength       = SWAPBYTE      (pdata +  6);
 
 
}
 
 
/**
 
* @brief  USBD_CtlError 
 
*         Handle USB low level Error
 
* @param  pdev: device instance
 
* @param  req: usb request
 
* @retval None
 
*/
 
 
void USBD_CtlError( USBD_HandleTypeDef *pdev ,
 
                            USBD_SetupReqTypedef *req)
 
{
 
  USBD_LL_StallEP(pdev , 0x80);
 
  USBD_LL_StallEP(pdev , 0);
 
}
 
 
 
/**
 
  * @brief  USBD_GetString
 
  *         Convert Ascii string into unicode one
 
  * @param  desc : descriptor buffer
 
  * @param  unicode : Formatted string buffer (unicode)
 
  * @param  len : descriptor length
 
  * @retval None
 
  */
 
void USBD_GetString(uint8_t *desc, uint8_t *unicode, uint16_t *len)
 
{
 
  uint8_t idx = 0;
 
  
 
  if (desc != NULL) 
 
  {
 
    *len =  USBD_GetLen(desc) * 2 + 2;    
 
    unicode[idx++] = *len;
 
    unicode[idx++] =  USB_DESC_TYPE_STRING;
 
    
 
    while (*desc != '\0') 
 
    {
 
      unicode[idx++] = *desc++;
 
      unicode[idx++] =  0x00;
 
    }
 
  } 
 
}
 
 
/**
 
  * @brief  USBD_GetLen
 
  *         return the string length
 
   * @param  buf : pointer to the ascii string buffer
 
  * @retval string length
 
  */
 
static uint8_t USBD_GetLen(uint8_t *buf)
 
{
 
    uint8_t  len = 0;
 
 
    while (*buf != '\0') 
 
    {
 
        len++;
 
        buf++;
 
    }
 
 
    return len;
 
}
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Core/usbd_ctlreq.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_req.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   header file for the usbd_req.c file
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
 
#ifndef __USB_REQUEST_H_
 
#define __USB_REQUEST_H_
 
 
/* Includes ------------------------------------------------------------------*/
 
#include  "usbd_def.h"
 
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
  
 
/** @defgroup USBD_REQ
 
  * @brief header file for the usbd_ioreq.c file
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_REQ_Exported_Defines
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_REQ_Exported_Types
 
  * @{
 
  */
 
/**
 
  * @}
 
  */ 
 
 
 
 
/** @defgroup USBD_REQ_Exported_Macros
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_REQ_Exported_Variables
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_REQ_Exported_FunctionsPrototype
 
  * @{
 
  */ 
 
 
USBD_StatusTypeDef  USBD_StdDevReq (USBD_HandleTypeDef  *pdev, USBD_SetupReqTypedef  *req);
 
USBD_StatusTypeDef  USBD_StdItfReq (USBD_HandleTypeDef  *pdev, USBD_SetupReqTypedef  *req);
 
USBD_StatusTypeDef  USBD_StdEPReq  (USBD_HandleTypeDef  *pdev, USBD_SetupReqTypedef  *req);
 
 
 
void USBD_CtlError  (USBD_HandleTypeDef  *pdev, USBD_SetupReqTypedef *req);
 
 
void USBD_ParseSetupRequest (USBD_SetupReqTypedef *req, uint8_t *pdata);
 
 
void USBD_GetString         (uint8_t *desc, uint8_t *unicode, uint16_t *len);
 
/**
 
  * @}
 
  */ 
 
 
#endif /* __USB_REQUEST_H_ */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
* @}
 
*/ 
 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Core/usbd_def.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_def.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   general defines for the usb device library 
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
 
#ifndef __USBD_DEF_H
 
#define __USBD_DEF_H
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_conf.h"
 
 
/** @addtogroup STM32_USBD_DEVICE_LIBRARY
 
  * @{
 
  */
 
  
 
/** @defgroup USB_DEF
 
  * @brief general defines for the usb device library file
 
  * @{
 
  */ 
 
 
/** @defgroup USB_DEF_Exported_Defines
 
  * @{
 
  */ 
 
 
#ifndef NULL
 
#define NULL ((void *)0)
 
#endif
 
 
 
#define  USB_LEN_DEV_QUALIFIER_DESC                     0x0A
 
#define  USB_LEN_DEV_DESC                               0x12
 
#define  USB_LEN_CFG_DESC                               0x09
 
#define  USB_LEN_IF_DESC                                0x09
 
#define  USB_LEN_EP_DESC                                0x07
 
#define  USB_LEN_OTG_DESC                               0x03
 
#define  USB_LEN_LANGID_STR_DESC                        0x04
 
#define  USB_LEN_OTHER_SPEED_DESC_SIZ                   0x09
 
 
#define  USBD_IDX_LANGID_STR                            0x00 
 
#define  USBD_IDX_MFC_STR                               0x01 
 
#define  USBD_IDX_PRODUCT_STR                           0x02
 
#define  USBD_IDX_SERIAL_STR                            0x03 
 
#define  USBD_IDX_CONFIG_STR                            0x04 
 
#define  USBD_IDX_INTERFACE_STR                         0x05 
 
 
#define  USB_REQ_TYPE_STANDARD                          0x00
 
#define  USB_REQ_TYPE_CLASS                             0x20
 
#define  USB_REQ_TYPE_VENDOR                            0x40
 
#define  USB_REQ_TYPE_MASK                              0x60
 
 
#define  USB_REQ_RECIPIENT_DEVICE                       0x00
 
#define  USB_REQ_RECIPIENT_INTERFACE                    0x01
 
#define  USB_REQ_RECIPIENT_ENDPOINT                     0x02
 
#define  USB_REQ_RECIPIENT_MASK                         0x03
 
 
#define  USB_REQ_GET_STATUS                             0x00
 
#define  USB_REQ_CLEAR_FEATURE                          0x01
 
#define  USB_REQ_SET_FEATURE                            0x03
 
#define  USB_REQ_SET_ADDRESS                            0x05
 
#define  USB_REQ_GET_DESCRIPTOR                         0x06
 
#define  USB_REQ_SET_DESCRIPTOR                         0x07
 
#define  USB_REQ_GET_CONFIGURATION                      0x08
 
#define  USB_REQ_SET_CONFIGURATION                      0x09
 
#define  USB_REQ_GET_INTERFACE                          0x0A
 
#define  USB_REQ_SET_INTERFACE                          0x0B
 
#define  USB_REQ_SYNCH_FRAME                            0x0C
 
 
#define  USB_DESC_TYPE_DEVICE                              1
 
#define  USB_DESC_TYPE_CONFIGURATION                       2
 
#define  USB_DESC_TYPE_STRING                              3
 
#define  USB_DESC_TYPE_INTERFACE                           4
 
#define  USB_DESC_TYPE_ENDPOINT                            5
 
#define  USB_DESC_TYPE_DEVICE_QUALIFIER                    6
 
#define  USB_DESC_TYPE_OTHER_SPEED_CONFIGURATION           7
 
 
 
#define USB_CONFIG_REMOTE_WAKEUP                           2
 
#define USB_CONFIG_SELF_POWERED                            1
 
 
#define USB_FEATURE_EP_HALT                                0
 
#define USB_FEATURE_REMOTE_WAKEUP                          1
 
#define USB_FEATURE_TEST_MODE                              2
 
 
 
#define USB_HS_MAX_PACKET_SIZE                            512
 
#define USB_FS_MAX_PACKET_SIZE                            64
 
#define USB_MAX_EP0_SIZE                                  64
 
 
/*  Device Status */
 
#define USBD_STATE_DEFAULT                                1
 
#define USBD_STATE_ADDRESSED                              2
 
#define USBD_STATE_CONFIGURED                             3
 
#define USBD_STATE_SUSPENDED                              4
 
 
 
/*  EP0 State */    
 
#define USBD_EP0_IDLE                                     0
 
#define USBD_EP0_SETUP                                    1
 
#define USBD_EP0_DATA_IN                                  2
 
#define USBD_EP0_DATA_OUT                                 3
 
#define USBD_EP0_STATUS_IN                                4
 
#define USBD_EP0_STATUS_OUT                               5
 
#define USBD_EP0_STALL                                    6    
 
 
#define USBD_EP_TYPE_CTRL                                 0
 
#define USBD_EP_TYPE_ISOC                                 1
 
#define USBD_EP_TYPE_BULK                                 2
 
#define USBD_EP_TYPE_INTR                                 3
 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_DEF_Exported_TypesDefinitions
 
  * @{
 
  */
 
 
typedef  struct  usb_setup_req 
 
{
 
    
 
    uint8_t   bmRequest;                      
 
    uint8_t   bRequest;                           
 
    uint16_t  wValue;                             
 
    uint16_t  wIndex;                             
 
    uint16_t  wLength;                            
 
}USBD_SetupReqTypedef;
 
 
struct _USBD_HandleTypeDef;
 
    
 
typedef struct _Device_cb
 
{
 
  uint8_t  (*Init)             (struct _USBD_HandleTypeDef *pdev , uint8_t cfgidx);
 
  uint8_t  (*DeInit)           (struct _USBD_HandleTypeDef *pdev , uint8_t cfgidx);
 
 /* Control Endpoints*/
 
  uint8_t  (*Setup)            (struct _USBD_HandleTypeDef *pdev , USBD_SetupReqTypedef  *req);  
 
  uint8_t  (*EP0_TxSent)       (struct _USBD_HandleTypeDef *pdev );    
 
  uint8_t  (*EP0_RxReady)      (struct _USBD_HandleTypeDef *pdev );  
 
  /* Class Specific Endpoints*/
 
  uint8_t  (*DataIn)           (struct _USBD_HandleTypeDef *pdev , uint8_t epnum);   
 
  uint8_t  (*DataOut)          (struct _USBD_HandleTypeDef *pdev , uint8_t epnum); 
 
  uint8_t  (*SOF)              (struct _USBD_HandleTypeDef *pdev); 
 
  uint8_t  (*IsoINIncomplete)  (struct _USBD_HandleTypeDef *pdev , uint8_t epnum); 
 
  uint8_t  (*IsoOUTIncomplete) (struct _USBD_HandleTypeDef *pdev , uint8_t epnum);   
 
 
  uint8_t  *(*GetHSConfigDescriptor)(uint16_t *length); 
 
  uint8_t  *(*GetFSConfigDescriptor)(uint16_t *length);   
 
  uint8_t  *(*GetOtherSpeedConfigDescriptor)(uint16_t *length);
 
  uint8_t  *(*GetDeviceQualifierDescriptor)(uint16_t *length);
 
#if (USBD_SUPPORT_USER_STRING == 1)
 
  uint8_t  *(*GetUsrStrDescriptor)(struct _USBD_HandleTypeDef *pdev ,uint8_t index,  uint16_t *length);   
 
#endif  
 
  
 
} USBD_ClassTypeDef;
 
 
/* Following USB Device Speed */
 
typedef enum 
 
{
 
  USBD_SPEED_HIGH  = 0,
 
  USBD_SPEED_FULL  = 1,
 
  USBD_SPEED_LOW   = 2,  
 
}USBD_SpeedTypeDef;
 
 
/* Following USB Device status */
 
typedef enum {
 
  USBD_OK   = 0,
 
  USBD_BUSY,
 
  USBD_FAIL,
 
}USBD_StatusTypeDef;
 
 
/* USB Device descriptors structure */
 
typedef struct
 
{
 
  uint8_t  *(*GetDeviceDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length);  
 
  uint8_t  *(*GetLangIDStrDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length); 
 
  uint8_t  *(*GetManufacturerStrDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length);  
 
  uint8_t  *(*GetProductStrDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length);  
 
  uint8_t  *(*GetSerialStrDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length);  
 
  uint8_t  *(*GetConfigurationStrDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length);  
 
  uint8_t  *(*GetInterfaceStrDescriptor)( USBD_SpeedTypeDef speed , uint16_t *length);   
 
} USBD_DescriptorsTypeDef;
 
 
/* USB Device handle structure */
 
typedef struct
 
{ 
 
  uint32_t                status;
 
  uint32_t                total_length;    
 
  uint32_t                rem_length; 
 
  uint32_t                maxpacket;   
 
} USBD_EndpointTypeDef;
 
 
/* USB Device handle structure */
 
typedef struct _USBD_HandleTypeDef
 
{
 
  uint8_t                 id;
 
  uint32_t                dev_config;
 
  uint32_t                dev_default_config;
 
  uint32_t                dev_config_status; 
 
  USBD_SpeedTypeDef       dev_speed; 
 
  USBD_EndpointTypeDef    ep_in[15];
 
  USBD_EndpointTypeDef    ep_out[15];  
 
  uint32_t                ep0_state;  
 
  uint32_t                ep0_data_len;     
 
  uint8_t                 dev_state;
 
  uint8_t                 dev_old_state;
 
  uint8_t                 dev_address;
 
  uint8_t                 dev_connection_status;  
 
  uint8_t                 dev_test_mode;
 
  uint32_t                dev_remote_wakeup;
 
 
  USBD_SetupReqTypedef    request;
 
  USBD_DescriptorsTypeDef *pDesc;
 
  USBD_ClassTypeDef       *pClass;
 
  void                    *pClassData;  
 
  void                    *pUserData;    
 
  void                    *pData;    
 
} USBD_HandleTypeDef;
 
 
/**
 
  * @}
 
  */ 
 
 
 
 
/** @defgroup USBD_DEF_Exported_Macros
 
  * @{
 
  */ 
 
#define  SWAPBYTE(addr)        (((uint16_t)(*((uint8_t *)(addr)))) + \
 
                               (((uint16_t)(*(((uint8_t *)(addr)) + 1))) << 8))
 
 
#define LOBYTE(x)  ((uint8_t)(x & 0x00FF))
 
#define HIBYTE(x)  ((uint8_t)((x & 0xFF00) >>8))
 
#define MIN(a, b)  (((a) < (b)) ? (a) : (b))
 
#define MAX(a, b)  (((a) > (b)) ? (a) : (b))
 
 
 
#if  defined ( __GNUC__ )
 
  #ifndef __weak
 
    #define __weak   __attribute__((weak))
 
  #endif /* __weak */
 
  #ifndef __packed
 
    #define __packed __attribute__((__packed__))
 
  #endif /* __packed */
 
#endif /* __GNUC__ */
 
 
 
/* In HS mode and when the DMA is used, all variables and data structures dealing
 
   with the DMA during the transaction process should be 4-bytes aligned */    
 
 
#if defined   (__GNUC__)        /* GNU Compiler */
 
  #define __ALIGN_END    __attribute__ ((aligned (4)))
 
  #define __ALIGN_BEGIN         
 
#else                           
 
  #define __ALIGN_END
 
  #if defined   (__CC_ARM)      /* ARM Compiler */
 
    #define __ALIGN_BEGIN    __align(4)  
 
  #elif defined (__ICCARM__)    /* IAR Compiler */
 
    #define __ALIGN_BEGIN 
 
  #elif defined  (__TASKING__)  /* TASKING Compiler */
 
    #define __ALIGN_BEGIN    __align(4) 
 
  #endif /* __CC_ARM */  
 
#endif /* __GNUC__ */ 
 
  
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_DEF_Exported_Variables
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_DEF_Exported_FunctionsPrototype
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
#endif /* __USBD_DEF_H */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
* @}
 
*/ 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Core/usbd_ioreq.c
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_ioreq.c
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   This file provides the IO requests APIs for control endpoints.
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Includes ------------------------------------------------------------------*/
 
#include "usbd_ioreq.h"
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
 
 
/** @defgroup USBD_IOREQ 
 
  * @brief control I/O requests module
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_IOREQ_Private_TypesDefinitions
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_IOREQ_Private_Defines
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_IOREQ_Private_Macros
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_IOREQ_Private_Variables
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_IOREQ_Private_FunctionPrototypes
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_IOREQ_Private_Functions
 
  * @{
 
  */ 
 
 
/**
 
* @brief  USBD_CtlSendData
 
*         send data on the ctl pipe
 
* @param  pdev: device instance
 
* @param  buff: pointer to data buffer
 
* @param  len: length of data to be sent
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_CtlSendData (USBD_HandleTypeDef  *pdev, 
 
                               uint8_t *pbuf,
 
                               uint16_t len)
 
{
 
  /* Set EP0 State */
 
  pdev->ep0_state          = USBD_EP0_DATA_IN;                                      
 
  pdev->ep_in[0].total_length = len;
 
  pdev->ep_in[0].rem_length   = len;
 
 /* Start the transfer */
 
  USBD_LL_Transmit (pdev, 0x00, pbuf, len);  
 
  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_CtlContinueSendData
 
*         continue sending data on the ctl pipe
 
* @param  pdev: device instance
 
* @param  buff: pointer to data buffer
 
* @param  len: length of data to be sent
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_CtlContinueSendData (USBD_HandleTypeDef  *pdev, 
 
                                       uint8_t *pbuf,
 
                                       uint16_t len)
 
{
 
 /* Start the next transfer */
 
  USBD_LL_Transmit (pdev, 0x00, pbuf, len);   
 
  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_CtlPrepareRx
 
*         receive data on the ctl pipe
 
* @param  pdev: device instance
 
* @param  buff: pointer to data buffer
 
* @param  len: length of data to be received
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_CtlPrepareRx (USBD_HandleTypeDef  *pdev,
 
                                  uint8_t *pbuf,                                  
 
                                  uint16_t len)
 
{
 
  /* Set EP0 State */
 
  pdev->ep0_state = USBD_EP0_DATA_OUT; 
 
  pdev->ep_out[0].total_length = len;
 
  pdev->ep_out[0].rem_length   = len;
 
  /* Start the transfer */
 
  USBD_LL_PrepareReceive (pdev,
 
                          0,
 
                          pbuf,
 
                         len);
 
  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_CtlContinueRx
 
*         continue receive data on the ctl pipe
 
* @param  pdev: device instance
 
* @param  buff: pointer to data buffer
 
* @param  len: length of data to be received
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_CtlContinueRx (USBD_HandleTypeDef  *pdev, 
 
                                          uint8_t *pbuf,                                          
 
                                          uint16_t len)
 
{
 
 
  USBD_LL_PrepareReceive (pdev,
 
                          0,                     
 
                          pbuf,                         
 
                          len);
 
  return USBD_OK;
 
}
 
/**
 
* @brief  USBD_CtlSendStatus
 
*         send zero lzngth packet on the ctl pipe
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_CtlSendStatus (USBD_HandleTypeDef  *pdev)
 
{
 
 
  /* Set EP0 State */
 
  pdev->ep0_state = USBD_EP0_STATUS_IN;
 
  
 
 /* Start the transfer */
 
  USBD_LL_Transmit (pdev, 0x00, NULL, 0);   
 
  
 
  return USBD_OK;
 
}
 
 
/**
 
* @brief  USBD_CtlReceiveStatus
 
*         receive zero lzngth packet on the ctl pipe
 
* @param  pdev: device instance
 
* @retval status
 
*/
 
USBD_StatusTypeDef  USBD_CtlReceiveStatus (USBD_HandleTypeDef  *pdev)
 
{
 
  /* Set EP0 State */
 
  pdev->ep0_state = USBD_EP0_STATUS_OUT; 
 
  
 
 /* Start the transfer */  
 
  USBD_LL_PrepareReceive ( pdev,
 
                    0,
 
                    NULL,
 
                    0);  
 
 
  return USBD_OK;
 
}
 
 
 
/**
 
* @brief  USBD_GetRxCount
 
*         returns the received data length
 
* @param  pdev: device instance
 
* @param  ep_addr: endpoint address
 
* @retval Rx Data blength
 
*/
 
uint16_t  USBD_GetRxCount (USBD_HandleTypeDef  *pdev , uint8_t ep_addr)
 
{
 
  return USBD_LL_GetRxDataSize(pdev, ep_addr);
 
}
 
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */ 
 
 
 
/**
 
  * @}
 
  */ 
 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/STM32_USB_Device_Library/Core/usbd_ioreq.h
Show inline comments
 
new file 100644
 
/**
 
  ******************************************************************************
 
  * @file    usbd_ioreq.h
 
  * @author  MCD Application Team
 
  * @version V2.2.0
 
  * @date    13-June-2014
 
  * @brief   header file for the usbd_ioreq.c file
 
  ******************************************************************************
 
  * @attention
 
  *
 
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
 
  *
 
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
 
  * You may not use this file except in compliance with the License.
 
  * You may obtain a copy of the License at:
 
  *
 
  *        http://www.st.com/software_license_agreement_liberty_v2
 
  *
 
  * Unless required by applicable law or agreed to in writing, software 
 
  * distributed under the License is distributed on an "AS IS" BASIS, 
 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
  * See the License for the specific language governing permissions and
 
  * limitations under the License.
 
  *
 
  ******************************************************************************
 
  */ 
 
 
/* Define to prevent recursive inclusion -------------------------------------*/
 
 
#ifndef __USBD_IOREQ_H_
 
#define __USBD_IOREQ_H_
 
 
/* Includes ------------------------------------------------------------------*/
 
#include  "usbd_def.h"
 
#include  "usbd_core.h"
 
 
/** @addtogroup STM32_USB_DEVICE_LIBRARY
 
  * @{
 
  */
 
  
 
/** @defgroup USBD_IOREQ
 
  * @brief header file for the usbd_ioreq.c file
 
  * @{
 
  */ 
 
 
/** @defgroup USBD_IOREQ_Exported_Defines
 
  * @{
 
  */ 
 
/**
 
  * @}
 
  */ 
 
 
 
/** @defgroup USBD_IOREQ_Exported_Types
 
  * @{
 
  */
 
 
 
/**
 
  * @}
 
  */ 
 
 
 
 
/** @defgroup USBD_IOREQ_Exported_Macros
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_IOREQ_Exported_Variables
 
  * @{
 
  */ 
 
 
/**
 
  * @}
 
  */ 
 
 
/** @defgroup USBD_IOREQ_Exported_FunctionsPrototype
 
  * @{
 
  */ 
 
 
USBD_StatusTypeDef  USBD_CtlSendData (USBD_HandleTypeDef  *pdev, 
 
                               uint8_t *buf,
 
                               uint16_t len);
 
 
USBD_StatusTypeDef  USBD_CtlContinueSendData (USBD_HandleTypeDef  *pdev, 
 
                               uint8_t *pbuf,
 
                               uint16_t len);
 
 
USBD_StatusTypeDef USBD_CtlPrepareRx (USBD_HandleTypeDef  *pdev, 
 
                               uint8_t *pbuf,                                 
 
                               uint16_t len);
 
 
USBD_StatusTypeDef  USBD_CtlContinueRx (USBD_HandleTypeDef  *pdev, 
 
                              uint8_t *pbuf,                                          
 
                              uint16_t len);
 
 
USBD_StatusTypeDef  USBD_CtlSendStatus (USBD_HandleTypeDef  *pdev);
 
 
USBD_StatusTypeDef  USBD_CtlReceiveStatus (USBD_HandleTypeDef  *pdev);
 
 
uint16_t  USBD_GetRxCount (USBD_HandleTypeDef  *pdev , 
 
                           uint8_t epnum);
 
 
/**
 
  * @}
 
  */ 
 
 
#endif /* __USBD_IOREQ_H_ */
 
 
/**
 
  * @}
 
  */ 
 
 
/**
 
* @}
 
*/ 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
libraries/USB/usb_core.c
Show inline comments
 
deleted file
libraries/USB/usb_core.h
Show inline comments
 
deleted file
libraries/USB/usb_def.h
Show inline comments
 
deleted file
libraries/USB/usb_init.c
Show inline comments
 
deleted file
libraries/USB/usb_init.h
Show inline comments
 
deleted file
libraries/USB/usb_int.c
Show inline comments
 
deleted file
libraries/USB/usb_int.h
Show inline comments
 
deleted file
libraries/USB/usb_lib.h
Show inline comments
 
deleted file
libraries/USB/usb_mem.c
Show inline comments
 
deleted file
libraries/USB/usb_mem.h
Show inline comments
 
deleted file
libraries/USB/usb_regs.c
Show inline comments
 
deleted file
libraries/USB/usb_regs.h
Show inline comments
 
deleted file
libraries/USB/usb_sil.c
Show inline comments
 
deleted file
libraries/USB/usb_sil.h
Show inline comments
 
deleted file
libraries/USB/usb_type.h
Show inline comments
 
deleted file
main.c
Show inline comments
 
#include "main.h"
 
#include "stm32f0xx_hal.h"
 
#include "stm32f0xx_hal_conf.h"
 
#include "usb_device.h"
 
#include "ssd1306.h"
 
#include "config.h"
 
#include "eeprom_min.h"
 
#include "gpio.h"
 
#include "clock.h"
 
#include "spi.h"
 
#include "clock.h"
 
 
// USB includes
 
//#include "hw_config.h"
 
//#include "usb_lib.h"
 
//#include "usb_desc.h"
 
//#include "usb_pwr.h"
 
//#include "stringhelpers.h"
 
 
// TODO: Grab buttonpresses with interrupts
 
 
// USB Supporting Vars
 
extern __IO uint8_t Receive_Buffer[64];
 
extern __IO  uint32_t Receive_length ;
 
extern __IO  uint32_t length ;
 
uint8_t Send_Buffer[64];
 
uint32_t packet_sent=1;
 
uint32_t packet_receive=1;
 
 
enum tempunits {
 
    TEMP_UNITS_CELSIUS = 0,
 
    TEMP_UNITS_FAHRENHEIT,
 
};
 
 
// Globalish setting vars
 
uint8_t boottobrew = 0;
 
uint8_t temp_units = TEMP_UNITS_CELSIUS;
 
uint16_t windup_guard = 1;
 
uint16_t k_p = 1;
 
uint16_t k_i = 1;
 
uint16_t k_d = 1;
 
 
uint8_t ignore_tc_error  = 0;
 
 
// ISR ticks var
 
volatile uint32_t ticks = 0;
 
 
int16_t setpoint_brew = 0;
 
int16_t setpoint_steam = 0;
 
 
// HAL Variables
 
SPI_HandleTypeDef hspi1;
 
 
 
// State definition
 
enum state {
 
    STATE_IDLE = 0,
 
 
    STATE_SETP,
 
    STATE_SETI,
 
    STATE_SETD,
 
    STATE_SETSTEPS,
 
    STATE_SETWINDUP,
 
    STATE_SETBOOTTOBREW,
 
    STATE_SETUNITS,
 
 
    STATE_PREHEAT_BREW,
 
    STATE_MAINTAIN_BREW,
 
    STATE_PREHEAT_STEAM,
 
    STATE_MAINTAIN_STEAM,
 
 
    STATE_TC_ERROR
 
};
 
 
uint8_t state = STATE_IDLE;
 
 
static __IO uint32_t TimingDelay;
 
 
// Move to header file
 
void process();
 
void machine();
 
 
void restore_settings();
 
void save_settings();
 
void save_setpoints();
 
 
int main(void)
 
{
 
    // Init clocks
 
    HAL_Init();
 
    SystemClock_Config();
 
    
 
    // Init GPIO
 
    init_gpio();
 
 
    // Turn on power LED
 
    GPIO_SetBits(LED_POWER);
 
 
    // TODO: Awesome pwm of power LED (TIM4_CH4 or TIM11_CH1)
 
 
    // Configure 1ms SysTick (change if more temporal resolution needed) 
 
    RCC_ClocksTypeDef RCC_Clocks;
 
    RCC_GetClocksFreq(&RCC_Clocks);
 
    SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
 
 
    // Init SPI busses
 
    init_spi();
main.h
Show inline comments
 
#ifndef __MAIN_H
 
#define __MAIN_H
 
 
#include "stm32f0xx.h"
 
 
void TimingDelay_Decrement(void);
 
void delay(__IO uint32_t nTime);
 
 
#endif /* __MAIN_H */
 
0 comments (0 inline, 0 general)