Files
@ b41e2aea6dd8
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/TransformFunctions/arm_cfft_radix2_f32.c
b41e2aea6dd8
12.9 KiB
text/plain
Added correct temperature conversions to RTD version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_cfft_radix2_f32.c
*
* Description: Radix-2 Decimation in Frequency CFFT & CIFFT Floating point processing function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
void arm_radix2_butterfly_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier);
void arm_radix2_butterfly_inverse_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier,
float32_t onebyfftLen);
extern void arm_bitreversal_f32(
float32_t * pSrc,
uint16_t fftSize,
uint16_t bitRevFactor,
uint16_t * pBitRevTab);
/**
* @ingroup groupTransforms
*/
/**
* @addtogroup ComplexFFT
* @{
*/
/**
* @details
* @brief Radix-2 CFFT/CIFFT.
* @deprecated Do not use this function. It has been superceded by \ref arm_cfft_f32 and will be removed
* in the future.
* @param[in] *S points to an instance of the floating-point Radix-2 CFFT/CIFFT structure.
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
* @return none.
*/
void arm_cfft_radix2_f32(
const arm_cfft_radix2_instance_f32 * S,
float32_t * pSrc)
{
if(S->ifftFlag == 1u)
{
/* Complex IFFT radix-2 */
arm_radix2_butterfly_inverse_f32(pSrc, S->fftLen, S->pTwiddle,
S->twidCoefModifier, S->onebyfftLen);
}
else
{
/* Complex FFT radix-2 */
arm_radix2_butterfly_f32(pSrc, S->fftLen, S->pTwiddle,
S->twidCoefModifier);
}
if(S->bitReverseFlag == 1u)
{
/* Bit Reversal */
arm_bitreversal_f32(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
}
}
/**
* @} end of ComplexFFT group
*/
/* ----------------------------------------------------------------------
** Internal helper function used by the FFTs
** ------------------------------------------------------------------- */
/*
* @brief Core function for the floating-point CFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to the twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix2_butterfly_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier)
{
uint32_t i, j, k, l;
uint32_t n1, n2, ia;
float32_t xt, yt, cosVal, sinVal;
float32_t p0, p1, p2, p3;
float32_t a0, a1;
#ifndef ARM_MATH_CM0_FAMILY
/* Initializations for the first stage */
n2 = fftLen >> 1;
ia = 0;
i = 0;
// loop for groups
for (k = n2; k > 0; k--)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
/* Twiddle coefficients index modifier */
ia += twidCoefModifier;
/* index calculation for the input as, */
/* pSrc[i + 0], pSrc[i + fftLen/1] */
l = i + n2;
/* Butterfly implementation */
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 + p1;
pSrc[2 * l + 1] = p2 - p3;
i++;
} // groups loop end
twidCoefModifier <<= 1u;
// loop for stage
for (k = n2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
j = 0;
do
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia += twidCoefModifier;
// loop for butterfly
i = j;
do
{
l = i + n2;
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 + p1;
pSrc[2 * l + 1] = p2 - p3;
i += n1;
} while( i < fftLen ); // butterfly loop end
j++;
} while( j < n2); // groups loop end
twidCoefModifier <<= 1u;
} // stages loop end
// loop for butterfly
for (i = 0; i < fftLen; i += 2)
{
a0 = pSrc[2 * i] + pSrc[2 * i + 2];
xt = pSrc[2 * i] - pSrc[2 * i + 2];
yt = pSrc[2 * i + 1] - pSrc[2 * i + 3];
a1 = pSrc[2 * i + 3] + pSrc[2 * i + 1];
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * i + 2] = xt;
pSrc[2 * i + 3] = yt;
} // groups loop end
#else
n2 = fftLen;
// loop for stage
for (k = fftLen; k > 1; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
j = 0;
do
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia += twidCoefModifier;
// loop for butterfly
i = j;
do
{
l = i + n2;
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 + p1;
pSrc[2 * l + 1] = p2 - p3;
i += n1;
} while(i < fftLen);
j++;
} while(j < n2);
twidCoefModifier <<= 1u;
}
#endif // #ifndef ARM_MATH_CM0_FAMILY
}
void arm_radix2_butterfly_inverse_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier,
float32_t onebyfftLen)
{
uint32_t i, j, k, l;
uint32_t n1, n2, ia;
float32_t xt, yt, cosVal, sinVal;
float32_t p0, p1, p2, p3;
float32_t a0, a1;
#ifndef ARM_MATH_CM0_FAMILY
n2 = fftLen >> 1;
ia = 0;
// loop for groups
for (i = 0; i < n2; i++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia += twidCoefModifier;
l = i + n2;
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 - p1;
pSrc[2 * l + 1] = p2 + p3;
} // groups loop end
twidCoefModifier <<= 1u;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
j = 0;
do
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia += twidCoefModifier;
// loop for butterfly
i = j;
do
{
l = i + n2;
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 - p1;
pSrc[2 * l + 1] = p2 + p3;
i += n1;
} while( i < fftLen ); // butterfly loop end
j++;
} while(j < n2); // groups loop end
twidCoefModifier <<= 1u;
} // stages loop end
// loop for butterfly
for (i = 0; i < fftLen; i += 2)
{
a0 = pSrc[2 * i] + pSrc[2 * i + 2];
xt = pSrc[2 * i] - pSrc[2 * i + 2];
a1 = pSrc[2 * i + 3] + pSrc[2 * i + 1];
yt = pSrc[2 * i + 1] - pSrc[2 * i + 3];
p0 = a0 * onebyfftLen;
p2 = xt * onebyfftLen;
p1 = a1 * onebyfftLen;
p3 = yt * onebyfftLen;
pSrc[2 * i] = p0;
pSrc[2 * i + 1] = p1;
pSrc[2 * i + 2] = p2;
pSrc[2 * i + 3] = p3;
} // butterfly loop end
#else
n2 = fftLen;
// loop for stage
for (k = fftLen; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
j = 0;
do
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
i = j;
do
{
l = i + n2;
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
p0 = xt * cosVal;
p1 = yt * sinVal;
p2 = yt * cosVal;
p3 = xt * sinVal;
pSrc[2 * i] = a0;
pSrc[2 * i + 1] = a1;
pSrc[2 * l] = p0 - p1;
pSrc[2 * l + 1] = p2 + p3;
i += n1;
} while( i < fftLen ); // butterfly loop end
j++;
} while( j < n2 ); // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
// loop for butterfly
for (i = 0; i < fftLen; i += n1)
{
l = i + n2;
a0 = pSrc[2 * i] + pSrc[2 * l];
xt = pSrc[2 * i] - pSrc[2 * l];
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
p0 = a0 * onebyfftLen;
p2 = xt * onebyfftLen;
p1 = a1 * onebyfftLen;
p3 = yt * onebyfftLen;
pSrc[2 * i] = p0;
pSrc[2u * l] = p2;
pSrc[2 * i + 1] = p1;
pSrc[2u * l + 1u] = p3;
} // butterfly loop end
#endif // #ifndef ARM_MATH_CM0_FAMILY
}
|