Files
@ b41e2aea6dd8
Branch filter:
Location: therm/drivers/CMSIS/DSP_Lib/Source/TransformFunctions/arm_rfft_fast_f32.c
b41e2aea6dd8
12.8 KiB
text/plain
Added correct temperature conversions to RTD version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | /* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.1
*
* Project: CMSIS DSP Library
* Title: arm_rfft_f32.c
*
* Description: RFFT & RIFFT Floating point process function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
void stage_rfft_f32(
arm_rfft_fast_instance_f32 * S,
float32_t * p, float32_t * pOut)
{
uint32_t k; /* Loop Counter */
float32_t twR, twI; /* RFFT Twiddle coefficients */
float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
float32_t *pA = p; /* increasing pointer */
float32_t *pB = p; /* decreasing pointer */
float32_t xAR, xAI, xBR, xBI; /* temporary variables */
float32_t t1a, t1b; /* temporary variables */
float32_t p0, p1, p2, p3; /* temporary variables */
k = (S->Sint).fftLen - 1;
/* Pack first and last sample of the frequency domain together */
xBR = pB[0];
xBI = pB[1];
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++ ;
twI = *pCoeff++ ;
// U1 = XA(1) + XB(1); % It is real
t1a = xBR + xAR ;
// U2 = XB(1) - XA(1); % It is imaginary
t1b = xBI + xAI ;
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
*pOut++ = 0.5f * ( t1a + t1b );
*pOut++ = 0.5f * ( t1a - t1b );
// XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) ));
pB = p + 2*k;
pA += 2;
do
{
/*
function X = my_split_rfft(X, ifftFlag)
% X is a series of real numbers
L = length(X);
XC = X(1:2:end) +i*X(2:2:end);
XA = fft(XC);
XB = conj(XA([1 end:-1:2]));
TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
for l = 2:L/2
XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
end
XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
X = XA;
*/
xBI = pB[1];
xBR = pB[0];
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++;
twI = *pCoeff++;
t1a = xBR - xAR ;
t1b = xBI + xAI ;
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
p0 = twR * t1a;
p1 = twI * t1a;
p2 = twR * t1b;
p3 = twI * t1b;
*pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
*pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
pA += 2;
pB -= 2;
k--;
} while(k > 0u);
}
/* Prepares data for inverse cfft */
void merge_rfft_f32(
arm_rfft_fast_instance_f32 * S,
float32_t * p, float32_t * pOut)
{
uint32_t k; /* Loop Counter */
float32_t twR, twI; /* RFFT Twiddle coefficients */
float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
float32_t *pA = p; /* increasing pointer */
float32_t *pB = p; /* decreasing pointer */
float32_t xAR, xAI, xBR, xBI; /* temporary variables */
float32_t t1a, t1b, r, s, t, u; /* temporary variables */
k = (S->Sint).fftLen - 1;
xAR = pA[0];
xAI = pA[1];
pCoeff += 2 ;
*pOut++ = 0.5f * ( xAR + xAI );
*pOut++ = 0.5f * ( xAR - xAI );
pB = p + 2*k ;
pA += 2 ;
while(k > 0u)
{
/* G is half of the frequency complex spectrum */
//for k = 2:N
// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
xBI = pB[1] ;
xBR = pB[0] ;
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++;
twI = *pCoeff++;
t1a = xAR - xBR ;
t1b = xAI + xBI ;
r = twR * t1a;
s = twI * t1b;
t = twI * t1a;
u = twR * t1b;
// real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
// imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
*pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
*pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
pA += 2;
pB -= 2;
k--;
}
}
/**
* @ingroup groupTransforms
*/
/**
* @defgroup Fast Real FFT Functions
*
* \par
* The CMSIS DSP library includes specialized algorithms for computing the
* FFT of real data sequences. The FFT is defined over complex data but
* in many applications the input is real. Real FFT algorithms take advantage
* of the symmetry properties of the FFT and have a speed advantage over complex
* algorithms of the same length.
* \par
* The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
* \par
* The real length N forward FFT of a sequence is computed using the steps shown below.
* \par
* \image html RFFT.gif "Real Fast Fourier Transform"
* \par
* The real sequence is initially treated as if it were complex to perform a CFFT.
* Later, a processing stage reshapes the data to obtain half of the frequency spectrum
* in complex format. Except the first complex number that contains the two real numbers
* X[0] and X[N/2] all the data is complex. In other words, the first complex sample
* contains two real values packed.
* \par
* The input for the inverse RFFT should keep the same format as the output of the
* forward RFFT. A first processing stage pre-process the data to later perform an
* inverse CFFT.
* \par
* \image html RIFFT.gif "Real Inverse Fast Fourier Transform"
* \par
* The algorithms for floating-point, Q15, and Q31 data are slightly different
* and we describe each algorithm in turn.
* \par Floating-point
* The main functions are <code>arm_rfft_fast_f32()</code>
* and <code>arm_rfft_fast_init_f32()</code>. The older functions
* <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been
* deprecated but are still documented.
* \par
* The FFT of a real N-point sequence has even symmetry in the frequency
* domain. The second half of the data equals the conjugate of the first half
* flipped in frequency:
* <pre>
*X[0] - real data
*X[1] - complex data
*X[2] - complex data
*...
*X[fftLen/2-1] - complex data
*X[fftLen/2] - real data
*X[fftLen/2+1] - conjugate of X[fftLen/2-1]
*X[fftLen/2+2] - conjugate of X[fftLen/2-2]
*...
*X[fftLen-1] - conjugate of X[1]
* </pre>
* Looking at the data, we see that we can uniquely represent the FFT using only
* <pre>
*N/2+1 samples:
*X[0] - real data
*X[1] - complex data
*X[2] - complex data
*...
*X[fftLen/2-1] - complex data
*X[fftLen/2] - real data
* </pre>
* Looking more closely we see that the first and last samples are real valued.
* They can be packed together and we can thus represent the FFT of an N-point
* real sequence by N/2 complex values:
* <pre>
*X[0],X[N/2] - packed real data: X[0] + jX[N/2]
*X[1] - complex data
*X[2] - complex data
*...
*X[fftLen/2-1] - complex data
* </pre>
* The real FFT functions pack the frequency domain data in this fashion. The
* forward transform outputs the data in this form and the inverse transform
* expects input data in this form. The function always performs the needed
* bitreversal so that the input and output data is always in normal order. The
* functions support lengths of [32, 64, 128, ..., 4096] samples.
* \par
* The forward and inverse real FFT functions apply the standard FFT scaling; no
* scaling on the forward transform and 1/fftLen scaling on the inverse
* transform.
* \par Q15 and Q31
* The real algorithms are defined in a similar manner and utilize N/2 complex
* transforms behind the scenes. In the case of fixed-point data, a radix-4
* complex transform is performed and this limits the allows sequence lengths to
* 128, 512, and 2048 samples.
* \par
* TBD. We need to document input and output order of data.
* \par
* The complex transforms used internally include scaling to prevent fixed-point
* overflows. The overall scaling equals 1/(fftLen/2).
* \par
* A separate instance structure must be defined for each transform used but
* twiddle factor and bit reversal tables can be reused.
* \par
* There is also an associated initialization function for each data type.
* The initialization function performs the following operations:
* - Sets the values of the internal structure fields.
* - Initializes twiddle factor table and bit reversal table pointers.
* - Initializes the internal complex FFT data structure.
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure
* cannot be placed into a const data section. To place an instance structure
* into a const data section, the instance structure should be manually
* initialized as follows:
* <pre>
*arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
*arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
* </pre>
* where <code>fftLenReal</code> is the length of the real transform;
* <code>fftLenBy2</code> length of the internal complex transform.
* <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
* <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
* output (=1).
* <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
* The value is based on the FFT length;
* <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
* <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;
* <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
* must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding
* static initialization of the complex FFT instance structure.
*/
/**
* @addtogroup RealFFT
* @{
*/
/**
* @brief Processing function for the floating-point real FFT.
* @param[in] *S points to an arm_rfft_fast_instance_f32 structure.
* @param[in] *p points to the input buffer.
* @param[in] *pOut points to an arm_rfft_fast_instance_f32 structure.
* @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1
* @return none.
*/
void arm_rfft_fast_f32(
arm_rfft_fast_instance_f32 * S,
float32_t * p, float32_t * pOut,
uint8_t ifftFlag)
{
arm_cfft_instance_f32 * Sint = &(S->Sint);
Sint->fftLen = S->fftLenRFFT / 2;
/* Calculation of Real FFT */
if(ifftFlag)
{
/* Real FFT comression */
merge_rfft_f32(S, p, pOut);
/* Complex radix-4 IFFT process */
arm_cfft_f32( Sint, pOut, ifftFlag, 1);
}
else
{
/* Calculation of RFFT of input */
arm_cfft_f32( Sint, p, ifftFlag, 1);
/* Real FFT extraction */
stage_rfft_f32(S, p, pOut);
}
}
|